WorldWideScience

Sample records for holographic quantum critical

  1. Holographic butterfly effect at quantum critical points

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-10-01

    When the Lyapunov exponent λL in a quantum chaotic system saturates the bound λL ≤ 2π k B T , it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this paper we propose that the butterfly velocity can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with an anisotropic holographic model exhibiting metal-insulator transitions (MIT), in which the derivatives of the butterfly velocity with respect to system parameters characterizes quantum critical points (QCP) with local extremes in zero temperature limit. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).

  2. A holographic model for quantum critical responses

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Robert C. [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Sierens, Todd [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute,University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Witczak-Krempa, William [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-05-12

    We analyze the dynamical response functions of strongly interacting quantum critical states described by conformal field theories (CFTs). We construct a self-consistent holographic model that incorporates the relevant scalar operator driving the quantum critical phase transition. Focusing on the finite temperature dynamical conductivity σ(ω,T), we study its dependence on our model parameters, notably the scaling dimension of the relevant operator. It is found that the conductivity is well-approximated by a simple ansatz proposed in http://dx.doi.org/10.1103/PhysRevB.90.245109 for a wide range of parameters. We further dissect the conductivity at large frequencies ω≫T using the operator product expansion, and show how it reveals the spectrum of our model CFT. Our results provide a physically-constrained framework to study the analytic continuation of quantum Monte Carlo data, as we illustrate using the O(2) Wilson-Fisher CFT. Finally, we comment on the variation of the conductivity as we tune away from the quantum critical point, setting the stage for a comprehensive analysis of the phase diagram near the transition.

  3. Holographic butterfly effect and diffusion in quantum critical region

    Science.gov (United States)

    Ling, Yi; Xian, Zhuo-Yu

    2017-09-01

    We investigate the butterfly effect and charge diffusion near the quantum phase transition in holographic approach. We argue that their criticality is controlled by the holographic scaling geometry with deformations induced by a relevant operator at finite temperature. Specifically, in the quantum critical region controlled by a single fixed point, the butterfly velocity decreases when deviating from the critical point. While, in the non-critical region, the behavior of the butterfly velocity depends on the specific phase at low temperature. Moreover, in the holographic Berezinskii-Kosterlitz-Thouless transition, the universal behavior of the butterfly velocity is absent. Finally, the tendency of our holographic results matches with the numerical results of Bose-Hubbard model. A comparison between our result and that in the O( N ) nonlinear sigma model is also given.

  4. Holographic aspects of black holes, matrix models and quantum criticality

    NARCIS (Netherlands)

    Papadoulaki, O.

    2017-01-01

    In one word the core subject of this thesis is holography. What we mean by holography broadly is the mapping of a gravitational theory in D dimensions to a quantum mechanics system or quantum field theory in one less dimension In chapter 1, we give a basic and self-contained introduction of the

  5. Holographic entanglement entropy close to quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Liu, Peng; Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Xian, Zhuo-Yu [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China)

    2016-04-19

    We investigate the holographic entanglement entropy (HEE) of a strip geometry in four dimensional Q-lattice backgrounds, which exhibit metal-insulator transitions in the dual field theory. Remarkably, we find that the HEE always displays a peak in the vicinity of the quantum critical points. Our model provides the first direct evidence that the HEE can be used to characterize the quantum phase transition (QPT). We also conjecture that the maximization behavior of HEE at quantum critical points would be universal in general holographic models.

  6. Holographic correlation functions in Critical Gravity

    Science.gov (United States)

    Anastasiou, Giorgos; Olea, Rodrigo

    2017-11-01

    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

  7. Spiral holographic imaging through quantum interference

    Science.gov (United States)

    Tang, Jie; Ming, Yang; Hu, Wei; Lu, Yan-qing

    2017-07-01

    Spiral holographic imaging in the Hong-Ou-Mandel interference scheme is introduced. Using spontaneous parametric down-conversion as a source of photon pairs, we analyze the joint orbital angular momentum spectrum of a reference photon and the photon encoding information of the object. The first-order interference of light beams in standard holographic imaging is replaced by the quantum interference of two-photon probability amplitudes. The difficulty in retrieving the amplitude and phase structure of an unknown photon is thereby avoided as classical interferometric techniques such as optical holography do not apply. Our results show that the full information of the object's transmission function can be recorded in the spiral hologram, which originates directly from the joint orbital angular momentum spectrum. This presents a lateral demonstration of compressive imaging and can potentially be used for remote sensing.

  8. Quantum corrections to holographic mutual information

    Energy Technology Data Exchange (ETDEWEB)

    Agón, Cesar A. [Martin Fisher School of Physics, Brandeis University,Waltham, MA 02453 (United States); Faulkner, Thomas [University of Illinois, Urbana-Champaign,Urbana, IL 61801-3080 (United States)

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.

  9. Harmonic resolution as a holographic quantum number

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2004-01-31

    The Bekenstein bound takes the holographic principle into the realm of flat space, promising new insights on the relation of non-gravitational physics to quantum gravity. This makes it important to obtain a precise formulation of the bound. Conventionally, one specifies two macroscopic quantities, mass and spatial width, which cannot be simultaneously diagonalized. Thus, the counting of compatible states is not sharply defined. The resolution of this and other formal difficulties leads naturally to a definition in terms of discretized light-cone quantization. In this form, the area difference specified in the covariant bound converts to a single quantum number, the harmonic resolution K. The Bekenstein bound then states that the Fock space sector with K units of longitudinal momentum contains no more than exp(2 pi^2 K) independent discrete states. This conjecture can be tested unambiguously for a given Lagrangian, and it appears to hold true for realistic field theories, including models arising from string compactifications. For large K, it makes contact with more conventional but less well-defined formulations.

  10. Holographic quantum phase transitions and interacting bulk scalars

    Directory of Open Access Journals (Sweden)

    Pankaj Chaturvedi

    2014-12-01

    Full Text Available We consider a system of two massive, mutually interacting probe real scalar fields, in zero temperature holographic backgrounds. The system does not have any continuous symmetry. For a suitable range of the interaction parameters adhering to the interaction potential between the bulk scalars, we have shown that as one turns on the source for one scalar field, the system may go through a second order quantum critical phase transition across which the second scalar field forms a condensate. We have looked at the resulting phase diagram and numerically computed the condensate. We have also investigated our system in two different backgrounds: AdS4 and AdS soliton, and got similar phase structure.

  11. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  12. Conductivity tensor in a holographic quantum Hall ferromagnet

    Directory of Open Access Journals (Sweden)

    Joel Hutchinson

    2014-11-01

    Full Text Available The Hall and longitudinal conductivities of a recently studied holographic model of a quantum Hall ferromagnet are computed using the Karch–O'Bannon technique. In addition, the low temperature entropy of the model is determined. The holographic model has a phase transition as the Landau level filling fraction is increased from zero to one. We argue that this phase transition allows the longitudinal conductivity to have features qualitatively similar to those of two dimensional electron gases in the integer quantum Hall regime. The argument also applies to the low temperature limit of the entropy. The Hall conductivity is found to have an interesting structure. Even though it does not exhibit Hall plateaux, it has a flattened dependence on the filling fraction with a jump, analogous to the interpolation between Hall plateaux, at the phase transition.

  13. Fluctuation and dissipation at a quantum critical point.

    Science.gov (United States)

    Tong, David; Wong, Kenny

    2013-02-08

    In nonrelativistic field theories, quantum fluctuations give rise to dissipative behavior even at zero temperature. Here we use holographic methods to explore the dissipative dynamics of massive particles coupled to quantum critical theories. We present analytic expressions for correlation functions and response functions. The behavior changes qualitatively as the dynamical exponent passes through z=2. In particular, for z>2, the long-time dynamics of the particle is independent of its inertial mass.

  14. APS Quantum Critical Higgs

    CERN Document Server

    Bellazzini, Brando; Hubisz, Jay; Lee, Seung J.; Serra, Javi; Terning, John

    2016-01-01

    The appearance of the light Higgs boson at the LHC is difficult to explain, particularly in light of naturalness arguments in quantum field theory. However light scalars can appear in condensed matter systems when parameters (like the amount of doping) are tuned to a critical point. At zero temperature these quantum critical points are directly analogous to the finely tuned standard model. In this paper we explore a class of models with a Higgs near a quantum critical point that exhibits non-mean-field behavior. We discuss the parametrization of the effects of a Higgs emerging from such a critical point in terms of form factors, and present two simple realistic scenarios based on either generalized free fields or a 5D dual in AdS space. For both of these models we consider the processes $gg\\to ZZ$ and $gg\\to hh$, which can be used to gain information about the Higgs scaling dimension and IR transition scale from the experimental data.

  15. Holographic Duals for Five-Dimensional Superconformal Quantum Field Theories

    Science.gov (United States)

    D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.

    2017-03-01

    We construct global solutions to type IIB supergravity with 16 residual supersymmetries whose space-time is AdS6×S2 warped over a Riemann surface. Families of solutions are labeled by an arbitrary number L ≥3 of asymptotic regions, in each of which the supergravity fields match those of a (p ,q ) five-brane, and may therefore be viewed as near-horizon limits of fully localized intersections of five-branes in type IIB string theory. These solutions provide compelling candidates for holographic duals to a large class of five-dimensional superconformal quantum field theories which arise as nontrivial UV fixed points of perturbatively nonrenormalizable Yang-Mills theories, thereby making them more directly accessible to quantitative analysis.

  16. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  17. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  18. Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas and Holographic Duality

    Science.gov (United States)

    2012-11-19

    gained by a light-like quark moving through the QGP. This can be reduced [367–369] to computing a light-like Wilson loop in the QGP. Holographically , the...description to a small subset of modes? Secondly, might this truncated holographic model have a more straightforward QFT representation than the full...comments regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to

  19. Quantum critical response: from conformal perturbation theory to holography

    Science.gov (United States)

    Lucas, Andrew; Sierens, Todd; Witczak-Krempa, William

    2017-07-01

    We discuss dynamical response functions near quantum critical points, allowing for both a finite temperature and detuning by a relevant operator. When the quantum critical point is described by a conformal field theory (CFT), conformal perturbation theory and the operator product expansion can be used to fix the first few leading terms at high frequencies. Knowledge of the high frequency response allows us then to derive non-perturbative sum rules. We show, via explicit computations, how holography recovers the general results of conformal field theory, and the associated sum rules, for any holographic field theory with a conformal UV completion — regardless of any possible new ordering and/or scaling physics in the IR. We numerically obtain holographic response functions at all frequencies, allowing us to probe the breakdown of the asymptotic high-frequency regime. Finally, we show that high frequency response functions in holographic Lifshitz theories are quite similar to their conformal counterparts, even though they are not strongly constrained by symmetry.

  20. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (Tholographic complexity will be divergent.

  1. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  2. Black Holes as Critical Point of Quantum Phase Transition

    CERN Document Server

    Dvali, Gia

    2014-01-01

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  3. Critical gravitational collapse towards a holographic understanding of the Regge region

    CERN Document Server

    Alvarez-Gaumé, Luís; Sabio Vera, Agustin; Tavanfar, Alireza; Vázquez-Mozo, Miguel Angel

    2009-01-01

    We study the possible holographic connection between the Regge limit in QCD and critical gravitational collapse of a perfect fluid in higher dimensions. We begin by analyzing the problem of critical gravitational collapse of a perfect fluid in any number of dimensions and numerically compute the associated Choptuik exponent in d=5, 6 and 7 for a range of values of the speed of sound of the fluid. Using continuous self-similarity as guiding principle, a holographic correspondence between this process and the phenomenon of parton saturation in high-energy scattering in QCD is proposed. This holographic connection relates strong gravitational physics in the bulk with (nonsupersymmetric) QCD at weak coupling in four dimensions.

  4. Holographic description of a quantum black hole on a computer.

    Science.gov (United States)

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-23

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.

  5. Quantum critical phenomena induced by geometrical frustration

    OpenAIRE

    常盤, 欣文

    2015-01-01

    Quantum criticality can be induced by quantum fluctuations due to geometrical frustration. I show the evidence of quantum criticality in frustrated magnets and the characteristic behavior of a system at frustration-induced quantum critical point.

  6. Fermion-induced quantum critical points.

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  7. Multidimensional entropy landscape of quantum criticality

    Science.gov (United States)

    Grube, K.; Zaum, S.; Stockert, O.; Si, Q.; Löhneysen, H. V.

    2017-08-01

    The third law of thermodynamics states that the entropy of any system in equilibrium has to vanish at absolute zero temperature. At nonzero temperatures, on the other hand, matter is expected to accumulate entropy near a quantum critical point, where it undergoes a continuous transition from one ground state to another. Here, we determine, based on general thermodynamic principles, the spatial-dimensional profile of the entropy S near a quantum critical point and its steepest descent in the corresponding multidimensional stress space. We demonstrate this approach for the canonical quantum critical compound CeCu 6-xAux near its onset of antiferromagnetic order. We are able to link the directional stress dependence of S to the previously determined geometry of quantum critical fluctuations. Our demonstration of the multidimensional entropy landscape provides the foundation to understand how quantum criticality nucleates novel phases such as high-temperature superconductivity.

  8. Quantum criticality as a resource for quantum estimation

    Science.gov (United States)

    Zanardi, Paolo; Paris, Matteo G. A.; Campos Venuti, Lorenzo

    2008-10-01

    We address quantum critical systems as a resource in quantum estimation and derive the ultimate quantum limits to the precision of any estimator of the coupling parameters. In particular, if L denotes the size of a system and λ is the relevant coupling parameters driving a quantum phase transition, we show that a precision improvement of order 1/L may be achieved in the estimation of λ at the critical point compared to the noncritical case. We show that analog results hold for temperature estimation in classical phase transitions. Results are illustrated by means of a specific example involving a fermion tight-binding model with pair creation (BCS model).

  9. The quantum-classical divide understood in terms of Bohm's holographic paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Matarese, Vera [The University of Hong Kong (China)

    2014-07-01

    This paper aims to interpret the problem of the quantum-classical divide following Bohm's holographic model and to reformulate it as an indication of a new physical order. First of all I briefly outline the differences between the classical world and the quantum one (such as locality against nonlocality, determinism against indeterminism and continuity against discontinuity); then I claim that in order to understand the divide between the two domains we should start from what is common, and regard them as two abstractions and limiting cases of a general theory. In particular, following Bohm, I show that the central notion of this new theory is an undivided whole characterized by a general order consisting of a holomovement from an implicate order - the quantum domain - to an explicate order - in the classical domain. This part is explained with the aid of the structure of the hologram and is supported by a reflection on some key terms such as 'order', 'structure', 'implicate' and 'explicate'. Finally I propose that this movement of unfoldment and enfoldment can explain the apparent incompatibility of the two physical domains and the passage from one to the other.

  10. Holographic description of curved-space quantum field theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, Christoph Frank

    2012-12-12

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  11. Quantum critical behavior in heavy electron materials.

    Science.gov (United States)

    Yang, Yi-feng; Pines, David

    2014-06-10

    Quantum critical behavior in heavy electron materials is typically brought about by changes in pressure or magnetic field. In this paper, we develop a simple unified model for the combined influence of pressure and magnetic field on the effectiveness of the hybridization that plays a central role in the two-fluid description of heavy electron emergence. We show that it leads to quantum critical and delocalization lines that accord well with those measured for CeCoIn5, yields a quantitative explanation of the field and pressure-induced changes in antiferromagnetic ordering and quantum critical behavior measured for YbRh2Si2, and provides a valuable framework for describing the role of magnetic fields in bringing about quantum critical behavior in other heavy electron materials.

  12. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  13. Ising quantum criticality in Majorana nanowires

    Science.gov (United States)

    Cole, William S.; Sau, Jay D.; Das Sarma, S.

    2017-10-01

    Finite-length one-dimensional topological superconductor wires host localized Majorana zero modes at their ends. In realistic models, these appear only after a topological quantum critical point is crossed by external tuning of parameters. Thus, there is a universal finite-size scaling, governed by the critical point, that dictates the evolution of the energy of the Majorana modes near the transition. We first describe this scaling, then apply it in detail to an explicit synthetic topological superconductor model. Our work not only connects Ising quantum criticality with realistic nanowires in the presence of spin-orbit coupling, Zeeman splitting, and superconductivity, but also provides a viable experimental route for discerning the existence of the topological quantum critical point.

  14. Critical behaviors of gravity under quantum perturbations

    Directory of Open Access Journals (Sweden)

    ZHANG Hongsheng

    2014-02-01

    Full Text Available Phase transition and critical phenomenon is a very interesting topic in thermodynamics and statistical mechanics. Gravity is believed to have deep and inherent relation to thermodynamics. Near the critical point,the perturbation becomes significant. Thus for ordinary matter (governed by interactions besides gravity the critical behavior will become very different if we ignore the perturbations around the critical point,such as mean field theory. We find that the critical exponents for RN-AdS spacetime keep the same values even when we consider the full quantum perturbations. This indicates a key difference between gravity and ordinary thermodynamic system.

  15. Quantum Criticality of Hot Random Spin Chains

    Science.gov (United States)

    Vasseur, R.; Potter, A. C.; Parameswaran, S. A.

    2015-05-01

    We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit nonergodic behavior at strong disorder. The analysis is conveniently implemented in terms of SU (2 )k anyon chains that include the Ising and Potts chains as notable examples. Highly excited eigenstates of these systems exhibit properties usually associated with quantum critical ground states, leading us to dub them "quantum critical glasses." We argue that random-bond Heisenberg chains self-thermalize and that the excited-state entanglement crosses over from volume-law to logarithmic scaling at a length scale that diverges in the Heisenberg limit k →∞. The excited state fixed points are generically distinct from their ground state counterparts, and represent novel nonequilibrium critical phases of matter.

  16. Deconfined quantum criticality beyond designer Hamiltonians

    Science.gov (United States)

    Lang, Thomas C.; Kaul, Ribhu K.

    The SU(6) symmetric generalization of the Hubbard model on the square lattice provides the simplest microscopic realization of the quantum phase transition from a Néel to a valence bond solid (VBS) ordered phase. By constructing dimensionless quantities such as ratios of the magnetic structure factor and valence bond correlations we are able to unambiguously determine the existence of weak, but robust antiferromagnetic order in the weak coupling regime and a plaquette VBS in the strong coupling limit. Furthermore these ratios provide a tool to accurately determine the (critical) point from both sides of the phase transition separating the two limits. Preliminary results suggest a direct continuous transition for which we extract estimates for the critical exponents and compare the scaling function with the SU(6) designer spin-models to investigate whether this quantum phase transition is compatible with the scenario of deconfined quantum criticality.

  17. Quantum Critical Scaling of the Geometric Tensors

    Science.gov (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2007-08-01

    Berry phases and the quantum-information theoretic notion of fidelity have been recently used to analyze quantum phase transitions from a geometrical perspective. In this Letter we unify these two approaches showing that the underlying mechanism is the critical singular behavior of a complex tensor over the Hamiltonian parameter space. This is achieved by performing a scaling analysis of this quantum geometric tensor in the vicinity of the critical points. In this way most of the previous results are understood on general grounds and new ones are found. We show that criticality is not a sufficient condition to ensure superextensive divergence of the geometric tensor, and state the conditions under which this is possible. The validity of this analysis is further checked by exact diagonalization of the spin-1/2 XXZ Heisenberg chain.

  18. Sensitive chemical compass assisted by quantum criticality

    Science.gov (United States)

    Cai, C. Y.; Ai, Qing; Quan, H. T.; Sun, C. P.

    2012-02-01

    A radical-pair-based chemical reaction might be used by birds for navigation via the geomagnetic direction. The inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could respond to a weak magnetic field and be sensitive to the direction of such a field; this then results in different photopigments to be sensed by the avian eyes. Here, we propose a quantum bionic setup, inspired by the avian compass, as an ultrasensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of detection of weak magnetic fields.

  19. Quantum criticality at the origin of life

    Science.gov (United States)

    Vattay, Gábor; Salahub, Dennis; Csabai, István; Nassimi, Ali; Kaufmann, Stuart A.

    2015-07-01

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level statistics of these biomolecules show the universal transitional distribution of the metal-insulator critical point and the wave functions are multifractals in accordance with the theory of Anderson transitions. The findings point to the existence of a universal mechanism of charge transport in living matter. The revealed bio-conductor material is neither a metal nor an insulator but a new quantum critical material which can exist only in highly evolved systems and has unique material properties.

  20. Quantum Criticality at the Origin of Life

    OpenAIRE

    Vattay, Gabor; Salahub, Dennis; Csabai, Istvan; Nassimi, Ali; Kaufmann, Stuart A.

    2015-01-01

    Why life persists at the edge of chaos is a question at the very heart of evolution. Here we show that molecules taking part in biochemical processes from small molecules to proteins are critical quantum mechanically. Electronic Hamiltonians of biomolecules are tuned exactly to the critical point of the metal-insulator transition separating the Anderson localized insulator phase from the conducting disordered metal phase. Using tools from Random Matrix Theory we confirm that the energy level ...

  1. The holographic universe

    NARCIS (Netherlands)

    McFadden, P.L.; Skenderis, K.

    2010-01-01

    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory (QFT). The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein

  2. Quantum UV/IR relations and holographic dark energy from entropic force

    Science.gov (United States)

    Li, Miao; Wang, Yi

    2010-04-01

    We investigate the implications of the entropic force formalism proposed by Verlinde. We show that an UV/IR relation proposed by Cohen et al., as well as an uncertainty principle proposed by Hogan can be derived from the entropic force formalism. We show that applying the entropic force formalism to cosmology, there is an additional term in the Friedmann equation, which can be identified as holographic dark energy. We also propose an intuitive picture of holographic screen, which can be thought of as an improvement of Susskind's holographic screen.

  3. Entanglement in Nonunitary Quantum Critical Spin Chains

    Science.gov (United States)

    Couvreur, Romain; Jacobsen, Jesper Lykke; Saleur, Hubert

    2017-07-01

    Entanglement entropy has proven invaluable to our understanding of quantum criticality. It is natural to try to extend the concept to "nonunitary quantum mechanics," which has seen growing interest from areas as diverse as open quantum systems, noninteracting electronic disordered systems, or nonunitary conformal field theory (CFT). We propose and investigate such an extension here, by focusing on the case of one-dimensional quantum group symmetric or supergroup symmetric spin chains. We show that the consideration of left and right eigenstates combined with appropriate definitions of the trace leads to a natural definition of Rényi entropies in a large variety of models. We interpret this definition geometrically in terms of related loop models and calculate the corresponding scaling in the conformal case. This allows us to distinguish the role of the central charge and effective central charge in rational minimal models of CFT, and to define an effective central charge in other, less well-understood cases. The example of the s l (2 |1 ) alternating spin chain for percolation is discussed in detail.

  4. Deconfined quantum critical points: symmetries and dualities

    Science.gov (United States)

    Wang, Chong; Nahum, Adam; Metlitski, Max; Xu, Cenke; Senthil, T.

    The deconfined quantum critical point (QCP) between the Neel and the valence bond solid (VBS) phases was proposed as an example of (2 + 1) d conformal field theories that are fundamentally different from all the standard Landau-Ginzburg-Wilson-Fisher fixed points. In this work we demonstrate that the deconfined QCP, both the easy-plane version and the version with an explicit SU(2) spin symmetry, have multiple equivalent descriptions. In particular, the easy-plane deconfined QCP, besides its self-duality that was discussed before, is also dual to the Nf = 2 fermionic quantum electrodynamics (QED), which has its own self-duality and hence has an O(4) ×Z2T symmetry; the deconfined QCP with the explicit SU(2) spin symmetry is dual to the Nf = 2 QED-Gross-Neveu fixed point, and could have an emergent SO(5) symmetry, as was conjectured before.

  5. Operator fidelity susceptibility, decoherence, and quantum criticality

    Science.gov (United States)

    Lu, Xiao-Ming; Sun, Zhe; Wang, Xiaoguang; Zanardi, Paolo

    2008-09-01

    The extension of the notion of quantum fidelity from the state-space to the operator level can be used to study environment-induced decoherence. The state-dependent operator fidelity susceptibility (OFS), the leading-order term for slightly different operator parameters, is shown to have a nontrivial behavior when the environment is at critical points. Two different contributions to the OFS are identified which have distinct physical origins and temporal dependence. Exact results are obtained for the finite-temperature decoherence caused by a bath described by the Ising model in a transverse field.

  6. Effective and fundamental quantum fields at criticality

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michael

    2010-10-28

    We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)

  7. Exact beta function from the holographic loop equation of large-N QCD_4

    OpenAIRE

    Bochicchio, Marco

    2007-01-01

    We construct and study a previously defined quantum holographic effective action whose critical equation implies the holographic loop equation of large-N QCD_4 for planar self-avoiding loops in a certain regularization scheme. We extract from the effective action the exact beta function in the given scheme. For the Wilsonean coupling constant the beta function is exacly one loop and the first coefficient agrees with its value in perturbation theory. For the canonical coupling constant the exa...

  8. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  9. Domain-wall dynamics near a quantum critical point

    NARCIS (Netherlands)

    Yuan, Shengjun; De Raedt, Hans; Miyashita, Seiji

    We study the real-time domain-wall dynamics near a quantum critical point of the one-dimensional anisotropic ferromagnetic spin 1/2 chain. By numerical simulation, we find that the domain wall is dynamically stable in the Heisenberg-Ising model. Near the quantum critical point, the width of the

  10. Quantum mechanical cluster calculations of critical scintillationprocesses

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, Stephen E.; Klintenberg, Mattias K.; Weber, Marvin J.

    2000-02-22

    This paper describes the use of commercial quantum chemistrycodes to simu-late several critical scintillation processes. The crystalis modeled as a cluster of typically 50 atoms embedded in an array oftypically 5,000 point charges designed to reproduce the electrostaticfield of the infinite crystal. The Schrodinger equation is solved for theground, ionized, and excited states of the system to determine the energyand electron wavefunction. Computational methods for the followingcritical processes are described: (1) the formation and diffusion ofrelaxed holes, (2) the formation of excitons, (3) the trapping ofelectrons and holes by activator atoms, (4) the excitation of activatoratoms, and (5) thermal quenching. Examples include hole diffusion in CsI,the exciton in CsI, the excited state of CsI:Tl, the energy barrier forthe diffusion of relaxed holes in CaF2 and PbF2, and prompt hole trappingby activator atoms in CaF2:Eu and CdS:Te leading to an ultra-fast (<50ps) scintillation risetime.

  11. Emergence of Quantum Critical Behavior in Metallic Quantum-Well States of Strongly Correlated Oxides.

    Science.gov (United States)

    Kobayashi, Masaki; Yoshimatsu, Kohei; Mitsuhashi, Taichi; Kitamura, Miho; Sakai, Enju; Yukawa, Ryu; Minohara, Makoto; Fujimori, Atsushi; Horiba, Koji; Kumigashira, Hiroshi

    2017-11-30

    Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO3 by in situ angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent α = 1 is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.

  12. Characteristic signatures of quantum criticality driven by geometrical frustration.

    Science.gov (United States)

    Tokiwa, Yoshifumi; Stingl, Christian; Kim, Moo-Sung; Takabatake, Toshiro; Gegenwart, Philipp

    2015-04-01

    Geometrical frustration describes situations where interactions are incompatible with the lattice geometry and stabilizes exotic phases such as spin liquids. Whether geometrical frustration of magnetic interactions in metals can induce unconventional quantum critical points is an active area of research. We focus on the hexagonal heavy fermion metal CeRhSn, where the Kondo ions are located on distorted kagome planes stacked along the c axis. Low-temperature specific heat, thermal expansion, and magnetic Grüneisen parameter measurements prove a zero-field quantum critical point. The linear thermal expansion, which measures the initial uniaxial pressure derivative of the entropy, displays a striking anisotropy. Critical and noncritical behaviors along and perpendicular to the kagome planes, respectively, prove that quantum criticality is driven be geometrical frustration. We also discovered a spin flop-type metamagnetic crossover. This excludes an itinerant scenario and suggests that quantum criticality is related to local moments in a spin liquid-like state.

  13. Quantum critical scaling and fluctuations in Kondo lattice materials.

    Science.gov (United States)

    Yang, Yi-Feng; Pines, David; Lonzarich, Gilbert

    2017-06-13

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature [Formula: see text], whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below [Formula: see text] may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials.

  14. Quantum critical scaling and fluctuations in Kondo lattice materials

    Science.gov (United States)

    Yang, Yi-feng; Pines, David; Lonzarich, Gilbert

    2017-01-01

    We propose a phenomenological framework for three classes of Kondo lattice materials that incorporates the interplay between the fluctuations associated with the antiferromagnetic quantum critical point and those produced by the hybridization quantum critical point that marks the end of local moment behavior. We show that these fluctuations give rise to two distinct regions of quantum critical scaling: Hybridization fluctuations are responsible for the logarithmic scaling in the density of states of the heavy electron Kondo liquid that emerges below the coherence temperature T∗, whereas the unconventional power law scaling in the resistivity that emerges at lower temperatures below TQC may reflect the combined effects of hybridization and antiferromagnetic quantum critical fluctuations. Our framework is supported by experimental measurements on CeCoIn5, CeRhIn5, and other heavy electron materials. PMID:28559308

  15. Bures metric over thermal state manifolds and quantum criticality

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo; Giorda, Paolo

    2007-12-01

    We analyze the Bures metric over the manifold of thermal density matrices for systems featuring a zero temperature quantum phase transition. We show that the quantum critical region can be characterized in terms of the temperature scaling behavior of the metric tensor itself. Furthermore, the analysis of the metric tensor when both temperature and an external field are varied, allows one to complement the understanding of the phase diagram including crossover regions which are not characterized by any singular behavior. These results provide a further extension of the scope of the metric approach to quantum criticality.

  16. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  17. Can a quantum critical state represent a blackbody?

    Science.gov (United States)

    Chakravarty, Sudip; Kraus, Per

    2018-01-01

    The blackbody theory of Planck played a seminal role in the development of quantum theory at the turn of the past century. A blackbody cavity is generally thought to be a collection of photons in thermal equilibrium; the radiation emitted is at all wavelengths, and the intensity follows a scaling law, which is Planck's characteristic distribution law. These photons arise from non-interacting normal modes. Here we suggest that certain quantum critical states when heated emit ;radiation; at all wavelengths and satisfy all the criteria of a blackbody. An important difference is that the ;radiation; does not necessarily consist of non-interacting photons, but also emergent relativistic bosons or fermions. The examples we provide include emergent relativistic fermions at a topological quantum critical point. This perspective on a quantum critical state may be illuminating in many unforeseen ways.

  18. Can a quantum critical state represent a blackbody?

    CERN Document Server

    Chakravarty, Sudip

    2016-01-01

    The blackbody theory of Planck played a seminal role in the development of quantum theory at the turn of the past century. A blackbody cavity is generally thought to be a collection of photons in thermal equilibrium; the radiation emitted is at all wavelengths, and the intensity follows a scaling law, which is Planck's characteristic distribution law. These photons arise from non-interacting normal modes. Here we suggest that certain quantum critical states when heated emit "radiation" at all wavelengths and satisfy all the criteria of a blackbody. An important difference is that the "radiation" does not necessarily consist of non-interacting photons, but also emergent relativistic bosons or fermions. The examples we provide include emergent relativistic fermions at a topological quantum critical point. This perspective on a quantum critical state may be illuminating in many unforeseen ways.

  19. Quantum criticality in your car bumper

    CERN Document Server

    Coleman, P

    2003-01-01

    Over the past few years, condensed-matter physicists have become fascinated by the phenomenon of quantum phase transitions. We know that new forms of order develop within a material by way of phase transitions and that they can drastically change its properties. (U.K.)

  20. Assembling quantum dots via critical Casimir forces

    NARCIS (Netherlands)

    Marino, E.; Kodger, T.E.; Hove, J.B. ten; Velders, A.H.; Schall, P.

    2016-01-01

    Programmed assembly of colloidal inorganic nanocrystal superstructures is crucial for the realization of future artificial solids as well as present optoelectronic applications. Here, we present a new way to assemble quantum dots reversibly using binary solvents. By tuning the temperature and

  1. Random matrix theory and critical phenomena in quantum spin chains

    Science.gov (United States)

    Hutchinson, J.; Keating, J. P.; Mezzadri, F.

    2015-09-01

    We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups $U(N)$, $O(N)$ and $Sp(2N)$. In particular we calculate critical exponents $s$, $\

  2. Geometric critical exponents in classical and quantum phase transitions.

    Science.gov (United States)

    Kumar, Prashant; Sarkar, Tapobrata

    2014-10-01

    We define geometric critical exponents for systems that undergo continuous second-order classical and quantum phase transitions. These relate scalar quantities on the information theoretic parameter manifolds of such systems, near criticality. We calculate these exponents by approximating the metric and thereby solving geodesic equations analytically, near curvature singularities of two-dimensional parameter manifolds. The critical exponents are seen to be the same for both classical and quantum systems that we consider, and we provide evidence about the possible universality of our results.

  3. Exact Critical Exponents for the Antiferromagnetic Quantum Critical Metal in Two Dimensions

    Science.gov (United States)

    Schlief, Andres; Lunts, Peter; Lee, Sung-Sik

    2017-04-01

    Unconventional metallic states which do not support well-defined single-particle excitations can arise near quantum phase transitions as strong quantum fluctuations of incipient order parameters prevent electrons from forming coherent quasiparticles. Although antiferromagnetic phase transitions occur commonly in correlated metals, understanding the nature of the strange metal realized at the critical point in layered systems has been hampered by a lack of reliable theoretical methods that take into account strong quantum fluctuations. We present a nonperturbative solution to the low-energy theory for the antiferromagnetic quantum critical metal in two spatial dimensions. Being a strongly coupled theory, it can still be solved reliably in the low-energy limit as quantum fluctuations are organized by a new control parameter that emerges dynamically. We predict the exact critical exponents that govern the universal scaling of physical observables at low temperatures.

  4. Quantum critical behavior of the quantum Ising model on fractal lattices.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I study the properties of the quantum critical point of the transverse-field quantum Ising model on various fractal lattices such as the Sierpiński carpet, Sierpiński gasket, and Sierpiński tetrahedron. Using a continuous-time quantum Monte Carlo simulation method and finite-size scaling analysis, I identify the quantum critical point and investigate its scaling properties. Among others, I calculate the dynamic critical exponent and find that it is greater than one for all three structures. The fact that it deviates from one is a direct consequence of the fractal structures not being integer-dimensional regular lattices. Other critical exponents are also calculated. The exponents are different from those of the classical critical point and satisfy the quantum scaling relation, thus confirming that I have indeed found the quantum critical point. I find that the Sierpiński tetrahedron, of which the dimension is exactly 2, belongs to a different universality class than that of the two-dimensional square lattice. I conclude that the critical exponents depend on more details of the structure than just the dimension and the symmetry.

  5. The holographic universe

    CERN Document Server

    Talbot, Michael

    1991-01-01

    'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.

  6. Phenomenology of Holographic Quenches

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-10-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  7. Twisted local systems solve the (holographic) loop equation of large-N QCD{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, Marco [INFN Sezione di Roma, Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185 Rome (Italy)

    2005-06-01

    We construct a holographic map from the loop equation of large-N QCD in d = 2 and d = 4, for planar self-avoiding loops, to the critical equation of an equivalent effective action. The holographic map is based on two ingredients: an already proposed holographic form of the loop equation, such that the quantum contribution is reduced to the evaluation of a regularized residue; a new conformal map from the region encircled by the based loop to a cuspidal fundamental domain in the upper half-plane, such that the regularized residue vanishes at the cusp which is the image of the base point of the loop. The critical equation of the holographic effective action determines a unitary abelian local system in d = 2 and a non-abelian twisted local system in d 4. As a check in the d = 2 theory, we study the distribution of eigenvalues of the Wilson loop implied by the critical equation. As a check in the d = 4 theory, we study the first coefficient of the beta function implied by the holographic loop equation and, as a preliminary step, that part of the second coefficient which arises from the rescaling anomaly, in passing from the Wilsonian to the canonically normalised (holographic) effective action.

  8. Twisted local systems solve the (holographic) loop equation of large-N QCD4

    Science.gov (United States)

    Bochicchio, Marco

    2005-06-01

    We construct a holographic map from the loop equation of large-N QCD in d = 2 and d = 4, for planar self-avoiding loops, to the critical equation of an equivalent effective action. The holographic map is based on two ingredients: an already proposed holographic form of the loop equation, such that the quantum contribution is reduced to the evaluation of a regularized residue; a new conformal map from the region encircled by the based loop to a cuspidal fundamental domain in the upper half-plane, such that the regularized residue vanishes at the cusp which is the image of the base point of the loop. The critical equation of the holographic effective action determines a unitary abelian local system in d = 2 and a non-abelian twisted local system in d = 4. As a check in the d = 2 theory, we study the distribution of eigenvalues of the Wilson loop implied by the critical equation. As a check in the d = 4 theory, we study the first coefficient of the beta function implied by the holographic loop equation and, as a preliminary step, that part of the second coefficient which arises from the rescaling anomaly, in passing from the Wilsonian to the canonically normalised (holographic) effective action.

  9. Quantum critical behavior influenced by measurement backaction in ultracold gases

    Science.gov (United States)

    Ashida, Yuto; Furukawa, Shunsuke; Ueda, Masahito

    2016-11-01

    Recent realizations of quantum gas microscopy offer the possibility of continuous monitoring of the dynamics of a quantum many-body system at the single-particle level. By analyzing effective non-Hermitian Hamiltonians for interacting bosons in an optical lattice and continuum, we demonstrate that the backaction of quantum measurement shifts the quantum critical point and gives rise to a unique critical phase beyond the terrain of the standard universality class. We perform mean-field and strong-coupling-expansion analyses and show that non-Hermitian contributions shift the superfluid-Mott-insulator transition point. Using a low-energy effective field theory, we discuss critical behavior of the one-dimensional interacting Bose gas subject to the measurement backaction. We derive an exact ground state of the effective non-Hermitian Hamiltonian and find a unique critical behavior beyond the Tomonaga-Luttinger liquid universality class. We propose experimental implementations of postselections using a quantum gas microscope to simulate the non-Hermitian dynamics and argue that our results can be investigated with current experimental techniques in ultracold atoms.

  10. Quantum criticality of bosonic systems with the Lifshitz dispersion

    Science.gov (United States)

    Wu, Jianda; Zhou, Fei; Wu, Congjun

    2017-08-01

    We study a novel type of quantum criticality of the Lifshitz φ4 theory below the upper critical dimension du=z +dc=8 , where the dynamic critical exponent z =4 and the spatial upper critical dimension dc=4 . Two fixed points, one Gaussian and the other non-Gaussian, are identified with zero and finite interaction strengths, respectively. At zero temperature the particle density exhibits different power-law dependences on the chemical potential in the weak- and strong-interaction regions. At finite temperatures, critical behaviors in the quantum disordered region are mainly controlled by the chemical potential. In contrast, in the quantum critical region critical scalings are determined by temperature. The scaling ansatz remains valid in the strong-interaction limit for the chemical potential, correlation length, and particle density, while it breaks down in the weak-interaction one. Approaching the upper critical dimension, physical quantities develop logarithmic dependence on dimensionality in the strong-interaction region. These results are applied to spin-orbit coupled bosonic systems, leading to predictions testable by future experiments.

  11. Vison excitations in near-critical quantum dimer models

    Science.gov (United States)

    Strübi, G.; Ivanov, D. A.

    2011-06-01

    We study vison excitations in a quantum dimer model interpolating between the Rokhsar-Kivelson models on the square and triangular lattices. In the square-lattice case, the model is known to be critical and characterized by U(1) topological quantum numbers. Introducing diagonal dimers brings the model to a Z2 resonating-valence-bond phase. We study variationally the emergence of vison excitations at low concentration of diagonal dimers, close to the critical point. We find that, in this regime, vison excitations are large in size and their structure resembles vortices in type-II superconductors.

  12. Holographic entanglement entropy

    CERN Document Server

    Rangamani, Mukund

    2017-01-01

    This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part f...

  13. Comparative approximations of criticality in a neural and quantum regime.

    Science.gov (United States)

    Bettinger, Jesse Sterling

    2017-12-01

    Under a variety of conditions, stochastic and non-linear systems with many degrees of freedom tend to evolve towards complexity and criticality. Over the last decades, a steady proliferation of models re: far-from-equilibrium thermodynamics of metastable, many-valued systems arose, serving as attributes of a 'critical' attractor landscape. Building off recent data citing trademark aspects of criticality in the brain-including: power-laws, scale-free (1/f) behavior (scale invariance, or scale independence), critical slowing, and avalanches-it has been conjectured that operating at criticality entails functional advantages such as: optimized neural computation and information processing; boosted memory; large dynamical ranges; long-range communication; and an increased ability to react to highly diverse stimuli. In short, critical dynamics provide a necessary condition for neurobiologically significant elements of brain dynamics. Theoretical predictions have been verified in specific models such as Boolean networks, liquid state machines, and neural networks. These findings inspired the neural criticality hypothesis, proposing that the brain operates in a critical state because the associated optimal computational capabilities provide an evolutionarily advantage. This paper develops in three parts: after developing the critical landscape, we will then shift gears to rediscover another inroad to criticality via stochastic quantum field theory and dissipative dynamics. The existence of these two approaches deserves some consideration, given both neural and quantum criticality hypotheses propose specific mechanisms that leverage the same phenomena. This suggests that understanding the quantum approach could help to shed light on brain-based modeling. In the third part, we will turn to Whitehead's actual entities and modes of perception in order to demonstrate a concomitant logic underwriting both models. In the discussion, I briefly motivate a reading of criticality and

  14. Holographic metal-insulator transition in higher derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Zhou, Zhenhua, E-mail: zhouzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-10

    We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  15. Holographic metal-insulator transition in higher derivative gravity

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-03-01

    Full Text Available We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs of MIT. It testifies the conjecture in [1,2] that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT.

  16. Electron self-trapping at quantum and classical critical points

    NARCIS (Netherlands)

    Auslender, M.I.; Katsnelson, M.I.

    2006-01-01

    Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground

  17. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Science.gov (United States)

    Huang, Yichen

    2017-05-01

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique.

  18. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  19. Mott Quantum Criticality in the Anisotropic 2D Hubbard Model.

    Science.gov (United States)

    Lenz, Benjamin; Manmana, Salvatore R; Pruschke, Thomas; Assaad, Fakher F; Raczkowski, Marcin

    2016-02-26

    We present evidence for Mott quantum criticality in an anisotropic two-dimensional system of coupled Hubbard chains at half-filling. In this scenario emerging from variational cluster approximation and cluster dynamical mean-field theory, the interchain hopping t_{⊥} acts as a control parameter driving the second-order critical end point T_{c} of the metal-insulator transition down to zero at t_{⊥}^{c}/t≃0.2. Below t_{⊥}^{c}, the volume of the hole and electron Fermi pockets of a compensated metal vanishes continuously at the Mott transition. Above t_{⊥}^{c}, the volume reduction of the pockets is cut off by a first-order transition. We discuss the relevance of our findings to a putative quantum critical point in layered organic conductors, whose location remains elusive so far.

  20. Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I. P.; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S.-K.

    2015-04-01

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU (3 )1 Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  1. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  2. Entanglement dynamics in critical random quantum Ising chain with perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yichen, E-mail: ychuang@caltech.edu

    2017-05-15

    We simulate the entanglement dynamics in a critical random quantum Ising chain with generic perturbations using the time-evolving block decimation algorithm. Starting from a product state, we observe super-logarithmic growth of entanglement entropy with time. The numerical result is consistent with the analytical prediction of Vosk and Altman using a real-space renormalization group technique. - Highlights: • We study the dynamical quantum phase transition between many-body localized phases. • We simulate the dynamics of a very long random spin chain with matrix product states. • We observe numerically super-logarithmic growth of entanglement entropy with time.

  3. Edge Quantum Criticality and Emergent Supersymmetry in Topological Phases

    Science.gov (United States)

    Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong

    2017-09-01

    Proposed as a fundamental symmetry describing our Universe, spacetime supersymmetry (SUSY) has not been discovered yet in nature. Nonetheless, it has been predicted that SUSY may emerge in low-energy physics of quantum materials such as topological superconductors and Weyl semimetals. Here, by performing state-of-the-art sign-problem-free quantum Monte Carlo simulations of an interacting two-dimensional topological superconductor, we show convincing evidence that the N =1 SUSY emerges at its edge quantum critical point (EQCP) while its bulk remains gapped and topologically nontrivial. Remarkably, near the EQCP, we find that the edge Majorana fermion acquires a mass that is identical with that of its bosonic superpartner. To the best of our knowledge, this is the first observation that fermions and bosons have equal dynamically generated masses, a hallmark of emergent SUSY. We further discuss experimental signatures of such EQCP and associated SUSY.

  4. Exact beta function from the holographic loop equation of large-N QCD4

    Science.gov (United States)

    Bochicchio, Marco

    2007-09-01

    We construct and study a quantum holographic effective action, Γq, whose critical equation implies the holographic loop equation of large-N QCD4 for planar self-avoiding loops in a certain regularization scheme. We extract from Γq the exact beta function in the given scheme. For the Wilsonean coupling constant the beta function is exactly one loop and the first coefficient, β0, agrees with its value in perturbation theory. For the canonical coupling constant the exact beta function has a NSV Z form and the first two coefficients in powers of the coupling, β0 and β1, agree with their value in perturbation theory.

  5. Phase transition of holographic entanglement entropy in massive gravity

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2016-05-01

    Full Text Available The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  6. Holographic Memories

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, NCR; Berg, RH

    1999-01-01

    A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...... storage. They exhibit high resolution, high diffraction efficiency, have long storage life, are fully erasable and are mechanically stable....

  7. Quantum Critical Behavior in a Concentrated Ternary Solid Solution.

    Science.gov (United States)

    Sales, Brian C; Jin, Ke; Bei, Hongbin; Stocks, G Malcolm; Samolyuk, German D; May, Andrew F; McGuire, Michael A

    2016-05-18

    The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess -TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region. The limit of extreme chemical disorder in this simple fcc material thus provides a novel and unique platform to study quantum critical behavior in a highly tunable system.

  8. Quantum superconductor-insulator transition: implications of BKT critical behavior.

    Science.gov (United States)

    Schneider, T; Weyeneth, S

    2013-07-31

    We explore the implications of Berezinskii-Kosterlitz-Thouless (BKT) critical behavior on the two-dimensional (2D) quantum superconductor-insulator (QSI) transition driven by the tuning parameter x. Concentrating on the sheet resistance R(x,T) BKT behavior implies: an explicit quantum scaling function for R(x,T) along the superconducting branch ending at the nonuniversal critical value Rc = R(xc); a BKT-transition line T(c)(x) [proportionality] (x - x(c))(zν[overline]), where z is the dynamic exponent and ν[overline] the exponent of the zero-temperature correlation length; independent estimates of zν[overline], z and ν[overline] from the x dependence of the nonuniversal parameters entering the BKT expression for the sheet resistance. To illustrate the potential and the implications of this scenario we analyze the data of Bollinger et al (2011 Nature 472 458) taken on gate voltage tuned epitaxial films of La2-xSrxCuO4 that are one unit cell in thickness. The resulting estimates, z ~/= 3.1 and ν[overline] ~/= 0.52, indicate a clean 2D-QSI critical point where hyperscaling, the proportionality between d/λ(2)(0) and Tc, and the correspondence between the quantum phase transitions in D dimensions and the classical ones in (D + z) dimensions are violated.

  9. Entropy Flow Through Near-Critical Quantum Junctions

    Science.gov (United States)

    Friedan, Daniel

    2017-05-01

    This is the continuation of Friedan (J Stat Phys, 2017. doi: 10.1007/s10955-017-1752-8). Elementary formulas are derived for the flow of entropy through a circuit junction in a near-critical quantum circuit close to equilibrium, based on the structure of the energy-momentum tensor at the junction. The entropic admittance of a near-critical junction in a bulk-critical circuit is expressed in terms of commutators of the chiral entropy currents. The entropic admittance at low frequency, divided by the frequency, gives the change of the junction entropy with temperature—the entropic "capacitance". As an example, and as a check on the formalism, the entropic admittance is calculated explicitly for junctions in bulk-critical quantum Ising circuits (free fermions, massless in the bulk), in terms of the reflection matrix of the junction. The half-bit of information capacity per end of critical Ising wire is re-derived by integrating the entropic "capacitance" with respect to temperature, from T=0 to T=∞.

  10. Persistent Currents and Quantum Critical Phenomena in Mesoscopic Physics

    Science.gov (United States)

    Zelyak, Oleksandr

    In this thesis, we study persistent currents and quantum critical phenomena in the systems of mesoscopic physics. As an introduction in Chapter 1 we familiarize the reader with the area of mesoscopic physics. We explain how mesoscopic systems are different from quantum systems of single atoms and molecules and bulk systems with an Avogadro number of elements. We also describe some important mesoscopic phenomena. One of the mathematical tools that we extensively use in our studies is Random Matrix Theorty. This theory is not a part of standard physics courses and for educational purposes we provide the basics of Random Matrix Theory in Chapter 2. In Chapter 3 we study the persistent current of noninteracting electrons in quantum billiards. We consider simply connected chaotic Robnik-Berry quantum billiard and its annular analog. The electrons move in the presence of a point-like magnetic flux at the center of the billiard. For the simply connected billiard, we find a large diamagnetic contribution to the persistent current at small flux, which is independent of the flux and is proportional to the number of electrons (or equivalently the density since we keep the area fixed). The size of this diamagnetic contribution is much larger than the previously studied mesoscopic fluctuations in the persistent current in the simply connected billiard. This behavior of persistent current can ultimately be traced to the response of the angular-momentum l = 0 levels (neglected in semiclassical expansions) on the unit disk to a point-like flux at its center. We observe the same behavior for the annular billiard when the inner radius is much smaller than the outer one. We also find that the usual fluctuating persistent current and Anderson-like localization due to boundary scattering are seen when the annulus tends to a one-dimensional ring. We explore the conditions for the observability of this phenomenon. In Chapter 4 we study quantum critical phenomena in a system of two

  11. Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM

    2007-12-15

    For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)

  12. Thermal and electrical transport across a magnetic quantum critical point.

    Science.gov (United States)

    Pfau, Heike; Hartmann, Stefanie; Stockert, Ulrike; Sun, Peijie; Lausberg, Stefan; Brando, Manuel; Friedemann, Sven; Krellner, Cornelius; Geibel, Christoph; Wirth, Steffen; Kirchner, Stefan; Abrahams, Elihu; Si, Qimiao; Steglich, Frank

    2012-04-25

    A quantum critical point (QCP) arises when a continuous transition between competing phases occurs at zero temperature. Collective excitations at magnetic QCPs give rise to metallic properties that strongly deviate from the expectations of Landau's Fermi-liquid description, which is the standard theory of electron correlations in metals. Central to this theory is the notion of quasiparticles, electronic excitations that possess the quantum numbers of the non-interacting electrons. Here we report measurements of thermal and electrical transport across the field-induced magnetic QCP in the heavy-fermion compound YbRh(2)Si(2) (refs 2, 3). We show that the ratio of the thermal to electrical conductivities at the zero-temperature limit obeys the Wiedemann-Franz law for magnetic fields above the critical field at which the QCP is attained. This is also expected for magnetic fields below the critical field, where weak antiferromagnetic order and a Fermi-liquid phase form below 0.07 K (at zero field). At the critical field, however, the low-temperature electrical conductivity exceeds the thermal conductivity by about 10 per cent, suggestive of a non-Fermi-liquid ground state. This apparent violation of the Wiedemann-Franz law provides evidence for an unconventional type of QCP at which the fundamental concept of Landau quasiparticles no longer holds. These results imply that Landau quasiparticles break up, and that the origin of this disintegration is inelastic scattering associated with electronic quantum critical fluctuations--these insights could be relevant to understanding other deviations from Fermi-liquid behaviour frequently observed in various classes of correlated materials.

  13. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Directory of Open Access Journals (Sweden)

    Mahdi Kord Zangeneh

    2017-08-01

    Full Text Available Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  14. Code Properties from Holographic Geometries

    Directory of Open Access Journals (Sweden)

    Fernando Pastawski

    2017-05-01

    Full Text Available Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015 163.JHEPFG1029-847910.1007/JHEP04(2015163] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC. Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  15. Code Properties from Holographic Geometries

    Science.gov (United States)

    Pastawski, Fernando; Preskill, John

    2017-04-01

    Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  16. Holographic complexity and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-01-15

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  17. Holographic Dynamics from Multiscale Entanglement Renormalization Ansatz

    CERN Document Server

    Chua, Victor; Tiwari, Apoorv; Ryu, Shinsei

    2016-01-01

    The Multiscale Entanglement Renormalization Ansatz (MERA) is a tensor network based variational ansatz that is capable of capturing many of the key physical properties of strongly correlated ground states such as criticality and topological order. MERA also shares many deep relationships with the AdS/CFT (gauge-gravity) correspondence by realizing a UV complete holographic duality within the tensor networks framework. Motivated by this, we have re-purposed the MERA tensor network as an analysis tool to study the real-time evolution of the 1D transverse Ising model in its low energy excited state sector. We performed this analysis by allowing the ancilla qubits of the MERA tensor network to acquire quantum fluctuations, which yields a unitary transform between the physical (boundary) and ancilla qubit (bulk) Hilbert spaces. This then defines a reversible quantum circuit which is used as a `holographic transform' to study excited states and their real-time dynamics from the point of the bulk ancillae. In the ga...

  18. Information scrambling at an impurity quantum critical point

    Science.gov (United States)

    Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu

    2017-10-01

    The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.

  19. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  20. Holographic superconductivity from higher derivative theory

    Science.gov (United States)

    Wu, Jian-Pin; Liu, Peng

    2017-11-01

    We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  1. Holographic superconductivity from higher derivative theory

    Directory of Open Access Journals (Sweden)

    Jian-Pin Wu

    2017-11-01

    Full Text Available We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC phase. The phase diagram (γ1,Tˆc and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  2. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    Science.gov (United States)

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.

  3. Local quantum criticality in the two-dimensional dissipative quantum XY model

    Science.gov (United States)

    Zhu, Lijun; Chen, Yan; Varma, Chandra M.

    2015-05-01

    We use quantum Monte Carlo simulations to calculate the phase diagram and the correlation functions for the quantum phase transitions in the two-dimensional dissipative quantum XY model with and without fourfold anisotropy. Without anisotropy, the model describes the superconductor-to-insulator transition in two-dimensional dirty superconductors. With anisotropy, the model represents the loop-current order observed in the underdoped cuprates and its fluctuations, as well as the fluctuations near the ordering vector in simple models of two-dimensional itinerant ferromagnets and itinerant antiferromagnets. These calculations test an analytic solution of the model which reexpressed it in terms of topological excitations: the vortices with interactions only in space but none in time, and warps with leading interactions only in time but none in space, as well as subleading interactions which are both space and time dependent. For parameters where the proliferation of warps dominates the phase transition, the critical fluctuations as functions of the deviation of the dissipation parameter α on the disordered side from its critical value αc are scale invariant in imaginary time τ as the correlation length in time ξτ=τce[αc/(αc-α ) ] 1 /2 diverges, where τc is a short-time cutoff. On the other hand, the spatial correlations develop with a correlation length ξx≈ξ0ln(ξτ) , with ξ0 of the order of a lattice constant. The dynamic correlation exponent z is therefore ∞ . The Monte Carlo calculations also directly show warps and vortices. Their densities and correlations across the various transitions in the model are calculated and related to those of the order-parameter correlations in the dissipative quantum XY model.

  4. Critical properties of effective gauge theories for novel quantum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Smoergrav, Eivind

    2005-07-01

    Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos

  5. Quantum critical phase with infinite projected entangled paired states

    Science.gov (United States)

    Poilblanc, Didier; Mambrini, Matthieu

    2017-07-01

    A classification of SU(2)-invariant projected entangled paired states (PEPS) on the square lattice, based on a unique site tensor, has been recently introduced by Mambrini et al. [M. Mambrini, R. Orús, and D. Poilblanc, Phys. Rev. B 94, 205124 (2016), 10.1103/PhysRevB.94.205124]. It is not clear whether such SU(2)-invariant PEPS can either (i) exhibit long-range magnetic order (such as in the Néel phase) or (ii) describe a genuine quantum critical point (QCP) or quantum critical phase (QCPh) separating two ordered phases. Here, we identify a specific family of SU(2)-invariant PEPS of the classification which provides excellent variational energies for the J1-J2 frustrated Heisenberg model, especially at J2=0.5 , corresponding to the approximate location of the QCP or QCPh separating the Néel phase from a dimerized phase. The PEPS are built from virtual states belonging to the 1/2⊗N⊕0 SU(2) representation, i.e., with N "colors" of virtual spin-1/2 . Using a full-update infinite-PEPS approach directly in the thermodynamic limit, based on the corner transfer matrix renormalization algorithm supplemented by a conjugate gradient optimization scheme, we provide evidence of (i) the absence of magnetic order and of (ii) diverging correlation lengths (i.e., showing no sign of saturation with increasing environment dimension) in both the singlet and triplet channels, when the number of colors N ≥3 . We argue that such a PEPS gives a qualitative description of the QCP or QCPh of the J1-J2 model.

  6. Holographic bounds on the UV cutoff scale in inflationary cosmology

    DEFF Research Database (Denmark)

    Keski-Vakkuri, Esko; Sloth, Martin Snoager

    2003-01-01

    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating the e...

  7. Holographic Optical Data Storage

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    , and security medium as well. The evolution of holographic optical memories has followed a path not altogether different from holography itself, with several cycles of alternating interest over the past four decades. P. J. van Heerden is widely credited for being the first to elucidate the principles behind holographic data storage in a 1963 paper, predicting bit storage densities on the order of 1/lambda(sup 3) with source wavelength lambda - a fantastic capacity of nearly 1 TB/cu cm for visible light! The science and engineering of such a storage paradigm was heavily pursued thereafter, resulting in many novel hologram multiplexing techniques for dense data storage, as well as important advances in holographic recording materials. Ultimately, however, the lack of such enabling technologies as compact laser sources and high performance optical data I/O devices dampened the hopes for the development of a commercial product. After a period of relative dormancy, successful applications of holography in other arenas sparked a renewed interest in holographic data storage in the late 1980s and the early 1990s. Currently, with most of the critical optoelectronic device technologies in place and the quest for an ideal holographic recording medium intensified, holography is once again considered as one of several future data storage paradigms that may answer our constantly growing need for higher-capacity and faster-access memories.

  8. Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models

    Science.gov (United States)

    Nahum, Adam; Chalker, J. T.; Serna, P.; Ortuño, M.; Somoza, A. M.

    2015-10-01

    Numerical studies of the transition between Néel and valence bond solid phases in two-dimensional quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realize the universal physics of the Néel-valence-bond-solid (VBS) transition in a three-dimensional classical loop model (this model includes the subtle interference effect that suppresses hedgehog defects in the Néel order parameter). We use the loop model for simulations of unprecedentedly large systems (up to linear size L =512 ). Our results are compatible with a continuous transition at which both Néel and VBS order parameters are critical, and we do not see conventional signs of first-order behavior. However, we show that the scaling violations are stronger than previously realized and are incompatible with conventional finite-size scaling, even if allowance is made for a weakly or marginally irrelevant scaling variable. In particular, different approaches to determining the anomalous dimensions ηVBS and ηN é el yield very different results. The assumption of conventional finite-size scaling leads to estimates that drift to negative values at large sizes, in violation of the unitarity bounds. In contrast, the decay with distance of critical correlators on scales much smaller than system size is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behavior at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, for example, from an additional dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analyzing the renormalization group flows for the noncompact CP n -1 field theory (the n -component Abelian Higgs model) between two and four dimensions, we give the simplest scenario by which an anomalously weak first

  9. Holographic Cosmology

    OpenAIRE

    Banks, T.; Fischler, W.

    2004-01-01

    We describe a cosmology of the very early universe, based on the holographic principle of 't Hooft and Susskind. We have described the initial state as a dense black hole fluid. Here we present a mathematical model of this heuristic picture, as well as a non-rigorous discussion of how a more normal universe could evolve out of such a state. The gross features of the cosmology depend on a few parameters, which cannot yet be calculated from first principles. For some range of these parameters, ...

  10. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements.

    Science.gov (United States)

    Poran, S; Nguyen-Duc, T; Auerbach, A; Dupuis, N; Frydman, A; Bourgeois, Olivier

    2017-02-22

    The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, c p , measurements. Here we use a unique highly sensitive experiment to measure c p of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.

  11. Entropy Bounds, Holographic Principle and Uncertainty Relation

    Directory of Open Access Journals (Sweden)

    I. V. Volovich

    2001-06-01

    Full Text Available Abstract: A simple derivation of the bound on entropy is given and the holographic principle is discussed. We estimate the number of quantum states inside space region on the base of uncertainty relation. The result is compared with the Bekenstein formula for entropy bound, which was initially derived from the generalized second law of thermodynamics for black holes. The holographic principle states that the entropy inside a region is bounded by the area of the boundary of that region. This principle can be called the kinematical holographic principle. We argue that it can be derived from the dynamical holographic principle which states that the dynamics of a system in a region should be described by a system which lives on the boundary of the region. This last principle can be valid in general relativity because the ADM hamiltonian reduces to the surface term.

  12. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  13. Thermalization after holographic bilocal quench

    Science.gov (United States)

    Aref'eva, Irina Ya.; Khramtsov, Mikhail A.; Tikhanovskaya, Maria D.

    2017-09-01

    We study thermalization in the holographic (1 + 1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from a collision of two massless particles. We perform holographic computation of entanglement entropy and mutual information in the boundary theory and analyze their evolution with time. We show that equilibration of the entanglement in the regions which contained one of the initial excitations is generally similar to that in other holographic quench models, but with some important distinctions. We observe that entanglement propagates along a sharp effective light cone from the points of initial excitations on the boundary. The characteristics of entanglement propagation in the global quench models such as entanglement velocity and the light cone velocity also have a meaning in the bilocal quench scenario. We also observe the loss of memory about the initial state during the equilibration process. We find that the memory loss reflects on the time behavior of the entanglement similarly to the global quench case, and it is related to the universal linear growth of entanglement, which comes from the interior of the forming black hole. We also analyze general two-point correlation functions in the framework of the geodesic approximation, focusing on the study of the late time behavior.

  14. Holographic spin networks from tensor network states

    Science.gov (United States)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.

    2018-01-01

    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  15. Clocks, computers, black holes, spacetime foam, and holographic principle

    OpenAIRE

    Ng, Y. Jack

    2000-01-01

    What do simple clocks, simple computers, black holes, space-time foam, and holographic principle have in common? I will show that the physics behind them is inter-related, linking together our concepts of information, gravity, and quantum uncertainty. Thus, the physics that sets the limits to computation and clock precision also yields Hawking radiation of black holes and the holographic principle. Moreover, the latter two strongly imply that space-time undergoes much larger quantum fluctuati...

  16. Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2015-12-01

    Full Text Available Numerical studies of the transition between Néel and valence bond solid phases in two-dimensional quantum antiferromagnets give strong evidence for the remarkable scenario of deconfined criticality, but display strong violations of finite-size scaling that are not yet understood. We show how to realize the universal physics of the Néel–valence-bond-solid (VBS transition in a three-dimensional classical loop model (this model includes the subtle interference effect that suppresses hedgehog defects in the Néel order parameter. We use the loop model for simulations of unprecedentedly large systems (up to linear size L=512. Our results are compatible with a continuous transition at which both Néel and VBS order parameters are critical, and we do not see conventional signs of first-order behavior. However, we show that the scaling violations are stronger than previously realized and are incompatible with conventional finite-size scaling, even if allowance is made for a weakly or marginally irrelevant scaling variable. In particular, different approaches to determining the anomalous dimensions η_{VBS} and η_{Néel} yield very different results. The assumption of conventional finite-size scaling leads to estimates that drift to negative values at large sizes, in violation of the unitarity bounds. In contrast, the decay with distance of critical correlators on scales much smaller than system size is consistent with large positive anomalous dimensions. Barring an unexpected reversal in behavior at still larger sizes, this implies that the transition, if continuous, must show unconventional finite-size scaling, for example, from an additional dangerously irrelevant scaling variable. Another possibility is an anomalously weak first-order transition. By analyzing the renormalization group flows for the noncompact CP^{n-1} field theory (the n-component Abelian Higgs model between two and four dimensions, we give the simplest scenario by which an

  17. Critical behavior of the quantum Ising model on a fractal structure.

    Science.gov (United States)

    Yi, Hangmo

    2013-07-01

    We study the critical behavior of the transverse-field quantum Ising model on a fractal structure, namely the Sierpinski carpet. When a magnetic field Δ is applied perpendicular to the Ising spin direction, quantum fluctuations affect the transition between the ferromagnetic and the paramagnetic phases. Employing the continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, we investigate the interplay between the quantum fluctuations and the exotic dimensionality of the fractal structure and its effect on the critical behavior. As the transverse magnetic field increases, the critical temperature monotonically decreases until it apparently vanishes at a critical field Δ(c), beyond which the system becomes paramagnetic at all temperatures. However, the critical exponents are independent of Δ and remain the same as in the purely classical(Δ=0) case.

  18. Causality & holographic entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Matthew [Martin Fisher School of Physics, Brandeis University, MS 057, 415 South Street, Waltham, MA 02454 (United States); Hubeny, Veronika E. [Centre for Particle Theory & Department of Mathematical Sciences,Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Lawrence, Albion [Martin Fisher School of Physics, Brandeis University, MS 057, 415 South Street, Waltham, MA 02454 (United States); Rangamani, Mukund [Centre for Particle Theory & Department of Mathematical Sciences,Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2014-12-29

    We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.

  19. Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu

    Science.gov (United States)

    Svanidze, E.; Besara, T.; Wang, J. K.; Geiger, D.; Prochaska, L.; Santiago, J. M.; Lynn, J. W.; Paschen, S.; Siegrist, T.; Morosan, E.

    2017-06-01

    We present an experimental realization of a quantum critical point in an itinerant antiferromagnet composed of nonmagnetic constituents, TiAu. By partially substituting Ti with Sc in Ti1 -xScxAu , a doping amount of xc=0.13 ±0.01 induces a quantum critical point with minimal disorder effects. The accompanying non-Fermi liquid behavior is observed in both the resistivity ρ ∝T and specific heat Cp/T ∝-ln T , characteristic of a two-dimensional antiferromagnet. The quantum critical point is accompanied by an enhancement of the spin fluctuations, as indicated by the diverging Sommerfeld coefficient γ at x =xc .

  20. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  1. Holographic technidilaton

    Science.gov (United States)

    Haba, Kazumoto; Matsuzaki, Shinya; Yamawaki, Koichi

    2010-09-01

    Technidilaton, a pseudo-Nambu-Goldstone boson of scale symmetry, was predicted long ago in the scale-invariant/walking/conformal technicolor (SWC-TC) as a remnant of the (approximate) scale symmetry associated with the conformal fixed point, based on the conformal gauge dynamics of ladder Schwinger-Dyson (SD) equation with nonrunning coupling. We study the technidilaton as a flavor-singlet bound state of technifermions by including the technigluon condensate (tGC) effect into the previous (bottom-up) holographic approach to the SWC-TC, a deformation of the holographic QCD with γm≃0 by large anomalous dimension γm≃1. With including a bulk scalar field corresponding to the gluon condensate, we first improve the operator product expansion of the current correlators so as to reproduce gluonic 1/Q4 term both in QCD and SWC-TC. We find in QCD about 10% (negative) contribution of gluon condensate to the ρ meson mass. We also calculate the oblique electroweak S-parameter in the presence of the effect of the tGC and find that for the fixed value of S the tGC effects dramatically reduce the flavor-singlet scalar (technidilaton) mass MTD (in the unit of Fπ), while the vector and axial-vector masses Mρ and Ma1 are rather insensitive to the tGC, where Fπ is the decay constant of the technipion. If we use the range of values of tGC implied by the ladder SD analysis of the nonperturbative scale anomaly in the large Nf QCD near the conformal window, the phenomenological constraint S≃0.1 predicts the technidilaton mass MTD˜600GeV which is within reach of LHC discovery.

  2. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  3. A non-critical string approach to black holes, time and quantum dynamics

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1994-01-01

    We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\

  4. Interplay of quantum criticality and frustration in spin-orbital liquids

    Science.gov (United States)

    Lee, Sungbin

    Motivated by recent experiment, we discuss new types of spin-orbital liquid phase. Interplay of quantum criticality and magnetic frustration can induce unique quantum phases and we discuss their phase transitions out of spin-orbital liquid phase. KAIST startup funding.

  5. Holographic Chern-Simons defects

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutoshi [Department of Physics and Astronomy, University of Kentucky,Lexington, KY 40506 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Melby-Thompson, Charles M. [Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Meyer, René [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York 11794-3800 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Sugimoto, Shigeki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan)

    2016-06-28

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  6. Quantum criticality in the 2D Hubbard: from weak to strong coupling

    Science.gov (United States)

    Galanakis, Dimitrios; Mikelsons, Karlis; Khatami, Ehsan; Zhang, Peng; Xu, Zhaoxin; Moreno, Juana; Jarrell, Mark

    2010-03-01

    We study the phase diagram of the two-dimensional Hubbard model in the vicinity of the quantum critical point which separates the fermi liquid from the pseudogap region. We use the Dynamical Cluster Approximation (DCA) in conjunction with the weak-coupling continuous time quantum Monte Carlo (CTQMC) cluster solver. We measure the filling nc and the density of states at the critical point as a function of the Coulomb interaction U. We observe a change in behavior when the Coulomb interaction is of the order of the bandwidth. We also evaluate the temperature range in which the system is under the influence of the quantum critical point and compare it with the effective spin coupling Jeff. We discuss the consistency of these results with various mechanisms of quantum criticality. This research is supported by NSF DMR-0706379 and OISE-0952300.

  7. Phase transition in anisotropic holographic superfluids with arbitrary dynamical critical exponent z and hyperscaling violation factor α

    Science.gov (United States)

    Park, Miok; Park, Jiwon; Oh, Jae-Hyuk

    2017-11-01

    Einstein-scalar- U(2) gauge field theory is considered in a spacetime characterized by α and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential μ . It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and α , we first apply Sturm-Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of 1 ≤ z ≤ 4 and 0 ≤ α ≤ 4 to check if the Sturm-Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential μ _c for the given parameter region of α and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and α . However, for large values of z and α , the anisotropic phase is not favored.

  8. Towards quantum turbulence in finite temperature Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Shanquan [Department of Physics, Beijing Normal University,Beijing, 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing, 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors,Shanghai, 200444 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing, 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel, andThe International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium)

    2016-07-19

    Motivated by the various indications that holographic superfluid is BCS like at the standard quantization but BEC like at the alternative quantization, we have implemented the alternative quantization in the dynamical holographic superfluid for the first time. With this accomplishment, we further initiate the detailed investigation of quantum turbulence in finite temperature BEC by a long time stable numerical simulation of bulk dynamics, which includes the two body decay of vortex number caused by vortex pair annihilation, the onset of superfluid turbulence signaled by Kolmogorov scaling law, and a direct energy cascade demonstrated by injecting energy to the turbulent superfluid. All of these results share the same patterns as the holographic superfluid at the standard quantization, thus suggest that these should be universal features for quantum turbulence at temperatures order of the critical temperature.

  9. Quantum Criticality Due to Incipient Phase Separation in the Two-dimentional Hubbard Model

    Science.gov (United States)

    Khatami, Ehsan; Mikelsons, Karlis; Macridin, Alexandru; Scalettar, Richard; Galanakis, Dimitrios; Moreno, Juana; Jarrell, Mark

    2010-03-01

    We investigate the two-dimensional Hubbard model with next-nearest-neighbor hopping, t^', using the dynamical cluster approximation. We confirm the existence of a first order phase separation transition terminating at a second order critical point at filling nc(t^') and temperature Tps(t^'). We find that as t' approaches zero, Tps(t^') vanishes and nc(t^') approaches the filling associated with the quantum critical point separating the Fermi liquid from the pseudogap phase. We propose that the quantum critical point under the superconducting dome is the zero temperature limit of the line of second order critical points.

  10. Quantum criticality due to incipient phase separation in the two-dimensional Hubbard model

    Science.gov (United States)

    Khatami, E.; Mikelsons, K.; Galanakis, D.; Macridin, A.; Moreno, J.; Scalettar, R. T.; Jarrell, M.

    2010-05-01

    We investigate the two-dimensional Hubbard model with next-nearest-neighbor hopping, t' , using the dynamical cluster approximation. We confirm the existence of a first-order phase-separation transition terminating at a second-order critical point at filling nc(t') and temperature Tps(t') . We find that as t' approaches zero, Tps(t') vanishes and nc(t') approaches the filling associated with the quantum critical point separating the Fermi liquid from the pseudogap phase. We propose that the quantum critical point under the superconducting dome is the zero-temperature limit of the line of second-order critical points.

  11. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.

    Science.gov (United States)

    Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A

    2017-05-09

    Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin [Formula: see text] itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting [Formula: see text] enclosing the nematic quantum critical point. For temperatures above [Formula: see text], we see strikingly non-Fermi liquid behavior, including a "nodal-antinodal dichotomy" reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with "bad metal" phenomenology.

  12. Quantum criticality out of equilibrium: steady state in a magnetic single-electron transistor.

    Science.gov (United States)

    Kirchner, Stefan; Si, Qimiao

    2009-11-13

    Quantum critical systems out of equilibrium are of extensive interest, but are difficult to study theoretically. We consider here the steady-state limit of a single-electron transistor with ferromagnetic leads. In equilibrium (i.e., bias voltage V = 0), this system features a continuous quantum phase transition with a critical destruction of the Kondo effect. We construct an exact quantum Boltzmann treatment in a dynamical large-N limit, and determine the universal scaling functions of both the nonlinear conductance and fluctuation-dissipation ratios. We also elucidate the decoherence properties as encoded in the local spin response.

  13. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point

    Science.gov (United States)

    Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A.

    2017-05-01

    Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin 1212 itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting TcTc enclosing the nematic quantum critical point. For temperatures above TcTc, we see strikingly non-Fermi liquid behavior, including a “nodal-antinodal dichotomy” reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with “bad metal” phenomenology.

  14. Excitation-Gap Scaling near Quantum Critical Three-Dimensional Antiferromagnets

    Science.gov (United States)

    Lohöfer, M.; Wessel, S.

    2017-04-01

    By means of large-scale quantum Monte Carlo simulations, we examine the quantum critical scaling of the magnetic excitation gap (the triplon gap) in a three-dimensional dimerized quantum antiferromagnet, the bicubic lattice, and identify characteristic multiplicative logarithmic scaling corrections atop the leading mean-field behavior. These findings are in accord with field-theoretical predictions that are based on an effective description of the quantum critical system in terms of an asymptotically free field theory, which exhibits a logarithmic decay of the renormalized interaction strength upon approaching the quantum critical point. Furthermore, using bond-based singlet spectroscopy, we identify the amplitude (Higgs) mode resonance within the antiferromagnetic region. We find a Higgs mass scaling in accord with field-theoretical predictions that relate it by a factor of √{2 } to the corresponding triplon gap in the quantum disordered regime. In contrast to the situation in lower-dimensional systems, we observe in this three-dimensional coupled-dimer system a distinct signal from the amplitude mode also in the dynamical spin structure factor. Its width is observed to vanish proportional to the Higgs mass in the accessible proximity to the quantum critical point.

  15. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparing with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.

  16. Extracting Entanglement Geometry from Quantum States

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R.; Bauer, Bela

    2017-10-01

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network—and hence the geometry—is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  17. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  18. Systematic study of the Grüneisen ratio near quantum critical points

    Directory of Open Access Journals (Sweden)

    R. Küchler, P. Gegenwart, C. Geibel and F. Steglich

    2007-01-01

    Full Text Available At any pressure-sensitive quantum critical point (QCP, the volume thermal expansion coefficient is more singular than the specific heat. Consequently, the resulting critical Grüneisen ratio Γcr~βcr/Ccr, where βcr and Ccr denote the thermal expansion and specific heat after subtraction of non-critical background contributions, diverges. The related critical exponent epsilon in Γcr~T−epsilon can be used to characterize the nature of the underlying quantum critical fluctuations. We have performed a comparative study on various heavy fermion (HF systems close to antiferromagnetic QCPs. In particular, we have studied (i CeIn3−xSnx, (ii CeNi2Ge2, (iii YbRh2(Si0.95Ge0.052, as well as (iv CeCu5.8Ag0.2, all of which show a divergent Grüneisen ratio. For the two former systems the critical exponent epsilon=1 is compatible with the predictions of the well-established Hertz–Millis–Moriya theory for three-dimensional extended quantum critical fluctuations. By contrast, for the two latter systems epsilon<1 is found to be incompatible with "conventional" quantum criticality. Our results thus suggest the existence of at least two different classes of QCPs in HF systems.

  19. Universal short-time quantum critical dynamics of finite-size systems

    Science.gov (United States)

    Shu, Yu-Rong; Yin, Shuai; Yao, Dao-Xin

    2017-09-01

    We investigate the short-time quantum critical dynamics in the imaginary-time relaxation processes of finite-size systems. Universal scaling behaviors exist in the imaginary-time evolution. In particular, the system undergoes a critical initial slip stage characterized by an exponent θ , in which an initial power-law increase emerges in the imaginary-time correlation function when the initial state has a zero order parameter and a vanishing correlation length. Under different initial conditions, the quantum critical point and critical exponents can be determined from the universal scaling behaviors. We apply the method to the one- and two-dimensional transverse field Ising models using quantum Monte Carlo (QMC) simulations. In the one-dimensional case, we locate the quantum critical point at (h/J ) c=1.000 03 (8 ) in the thermodynamic limit, and we estimate the critical initial slip exponent θ =0.3734 (2 ) and the static exponent β /ν =0.1251 (2 ) by analyzing data on chains of length L =32 -256 and 48-256, respectively. For the two-dimensional square-lattice system, the critical coupling ratio is given by 3.044 51 (7 ) in the thermodynamic limit, while the critical exponents are θ =0.209 (4 ) and β /ν =0.518 (1 ) estimated by data on systems of size L =24 -64 and 32-64, respectively. Remarkably, the critical initial slip exponents obtained in both models are notably distinct from their classical counterparts due to the essential differences between classical and quantum dynamics. The short-time critical dynamics and the imaginary-time relaxation QMC approach can be readily adapted to various models.

  20. Collapse and revival in holographic quenches

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-04-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  1. Universal behavior of the Shannon mutual information of critical quantum chains.

    Science.gov (United States)

    Alcaraz, F C; Rajabpour, M A

    2013-07-05

    We consider the Shannon mutual information of subsystems of critical quantum chains in their ground states. Our results indicate a universal leading behavior for large subsystem sizes. Moreover, as happens with the entanglement entropy, its finite-size behavior yields the conformal anomaly c of the underlying conformal field theory governing the long-distance physics of the quantum chain. We study analytically a chain of coupled harmonic oscillators and numerically the Q-state Potts models (Q=2, 3, and 4), the XXZ quantum chain, and the spin-1 Fateev-Zamolodchikov model. The Shannon mutual information is a quantity easily computed, and our results indicate that for relatively small lattice sizes, its finite-size behavior already detects the universality class of quantum critical behavior.

  2. Athermal domain-wall creep near a ferroelectric quantum critical point.

    Science.gov (United States)

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-16

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  3. Tensor RG calculations and quantum simulations near criticality

    CERN Document Server

    Meurice, Y; Tsai, Shan-Wen; Unmuth-Yockey, J; Yang, Li-Ping; Zhang, Jin

    2016-01-01

    We discuss the reformulation of the O(2) model with a chemical potential and the Abelian Higgs model on a 1+1 dimensional space-time lattice using the Tensor Renormalization Group (TRG) method. The TRG allows exact blocking and connects smoothly the classical Lagrangian approach to the quantum Hamiltonian approach. We calculate the entanglement entropy in the superfluid phase of the O(2) model and show that it approximately obeys the logarithmic Calabrese-Cardy scaling obtained from Conformal Field Theory (CFT). We calculate the Polyakov loop in the Abelian Higgs model and discuss the possibility of a deconfinement transition at finite volume. We propose Bose-Hubbard Hamiltonians implementable on optical lattices as quantum simulators for CFT models.

  4. Quantum criticality and first-order transitions in the extended periodic Anderson model

    OpenAIRE

    Hagymasi, I.; Itai, K.; Solyom, J.

    2012-01-01

    We investigate the behavior of the periodic Anderson model in the presence of $d$-$f$ Coulomb interaction ($U_{df}$) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of $U_{df}$ and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of ...

  5. Bifurcation in Ground-state Fidelity and Quantum Criticality in Two-leg Potts Ladder

    Directory of Open Access Journals (Sweden)

    Sheng-Hao LI

    2014-02-01

    Full Text Available We have investigated an intriguing connection between bifurcations, reduced fidelity per lattice site, local order parameter, universal order parameter, entropy and quantum phase transitions in the ground state for quantum three-state Potts model with two coupled infinite-size ladder system, in the context of the tensor network algorithm. The tensor network algorithm produces degenerate symmetry-breaking ground-state wave functions arising from the Z3 symmetry breaking, each of results from a randomly chosen initial state. We expect that our approach might provide further insights into critical phenomena in quantum many-body infinite lattice systems in condensed matter physics.

  6. Bad-Metal Behavior Reveals Mott Quantum Criticality in Doped Hubbard Models.

    Science.gov (United States)

    Vučičević, J; Tanasković, D; Rozenberg, M J; Dobrosavljević, V

    2015-06-19

    Bad-metal (BM) behavior featuring linear temperature dependence of the resistivity extending to well above the Mott-Ioffe-Regel (MIR) limit is often viewed as one of the key unresolved signatures of strong correlation. Here we associate the BM behavior with the Mott quantum criticality by examining a fully frustrated Hubbard model where all long-range magnetic orders are suppressed, and the Mott problem can be rigorously solved through dynamical mean-field theory. We show that for the doped Mott insulator regime, the coexistence dome and the associated first-order Mott metal-insulator transition are confined to extremely low temperatures, while clear signatures of Mott quantum criticality emerge across much of the phase diagram. Remarkable scaling behavior is identified for the entire family of resistivity curves, with a quantum critical region covering the entire BM regime, providing not only insight, but also quantitative understanding around the MIR limit, in agreement with the available experiments.

  7. Critical current anomaly at the topological quantum phase transition in a Majorana Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Liang, Qi-Feng [Department of Physics, Shaoxing University, Shaoxing 312000 (China); Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Zhi, E-mail: physicswangzhi@gmail.com [School of Physics, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-06-28

    Majorana bound states in topological Josephson junctions induce a 4π period current-phase relation. Direct detection of the 4π periodicity is complicated by the quasiparticle poisoning. We reveal that Majorana bound states are also signaled by the anomalous enhancement on the critical current of the junction. We show the landscape of the critical current for a nanowire Josephson junction under a varying Zeeman field, and reveal a sharp step feature at the topological quantum phase transition point, which comes from the anomalous enhancement of the critical current at the topological regime. In multi-band wires, the anomalous enhancement disappears for an even number of bands, where the Majorana bound states fuse into Andreev bound states. This anomalous critical current enhancement directly signals the existence of the Majorana bound states, and also provides a valid signature for the topological quantum phase transition. - Highlights: • We introduce the critical current step as a signal for the topological quantum phase transition. • We study the quantum phase transition in the topological nanowire under a rotating Zeeman field. • We show that the critical current anomaly gradually disappears for systems with more sub-bands.

  8. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases

    Science.gov (United States)

    Yang, Bing; Chen, Yang-Yang; Zheng, Yong-Guang; Sun, Hui; Dai, Han-Ning; Guan, Xi-Wen; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2017-10-01

    We experimentally investigate the quantum criticality and Tomonaga-Luttinger liquid (TLL) behavior within one-dimensional (1D) ultracold atomic gases. Based on the measured density profiles at different temperatures, the universal scaling laws of thermodynamic quantities are observed. The quantum critical regime and the relevant crossover temperatures are determined through the double-peak structure of the specific heat. In the TLL regime, we obtain the Luttinger parameter by probing sound propagation. Furthermore, a characteristic power-law behavior emerges in the measured momentum distributions of the 1D ultracold gas, confirming the existence of the TLL.

  9. Goldiocks probes for noisy interferometry via quantum annealing to criticality

    Science.gov (United States)

    Durkin, Gabriel

    Quantum annealing is explored as a resource for quantum information beyond solution of classical combinatorial problems. Envisaged as a generator of robust interferometric probes, we examine a Hamiltonian of N 1 uniformly coupled spins subject to a transverse magnetic field. The discrete many-body problem is mapped onto dynamics of a single one-dimensional particle in a continuous potential. This reveals all the qualitative features of the ground state beyond typical mean-field or large classical spin models. It illustrates explicitly a graceful warping from an entangled unimodal to bimodal ground state in the phase transition region. The transitional Goldilocks probe has a component distribution of width N 2 / 3 and exhibits characteristics for enhanced phase estimation in a decoherent environment. In the presence of realistic local noise and collective dephasing, we find this probe state asymptotically saturates ultimate precision bounds calculated previously. By reducing the transverse field adiabatically, the Goldilocks probe is prepared in advance of the minimum gap bottleneck, allowing the annealing schedule to be terminated early. Adiabatic time complexity of probe preparation is shown to be linear in N.

  10. Quantum criticality on ferromagnetic systems: it is not where you think it is!

    Science.gov (United States)

    Taufour, Valentin; Kaluarachchi, Udhara; Nguyen, Manh Cuong; Kim, Stella K.; Lin, Xiao; Mun, Eun Deok; Kim, Hyunsoo; Furukawa, Yuji; Wang, Cai Zhuang; Ho, Kai Ming; Bud'Ko, Sergey L.; Canfield, Paul C.; Guguchia, Zurab; Khasanov, Rustem; Bonfa, Pietro; de Renzi, Roberto

    When a ferromagnetic-paramagnetic transition is tuned to 0 K by application of pressure in clean systems, the transition becomes of the first order at a tricritical point before disappearing. Instead of having a quantum critical point, i.e. a second order transition at 0 K, there is a quantum phase transition of the first order. The quantum phase transition can be from a ferromagnetic to a paramagnetic phase, or to a spatially modulated phase. We illustrate this case on a new material: LaCrGe3. We will present the temperature-pressure-magnetic field phase diagram of LaCrGe3 and show that quantum criticality is avoided by the appearance of a modulated phase. We will also explain how quantum criticality can be re-introduced. Work at Ames Laboratory was supported by US DOE under the Contract No. DE-AC02-07CH11358. Magnetization measurements under pressure were supported by Ames Laboratory's laboratory-directed research and development (LDRD) funding.

  11. Geometric phase with nonunitary evolution in the presence of a quantum critical bath.

    Science.gov (United States)

    Cucchietti, F M; Zhang, J-F; Lombardo, F C; Villar, P I; Laflamme, R

    2010-12-10

    Geometric phases, arising from cyclic evolutions in a curved parameter space, appear in a wealth of physical settings. Recently, and largely motivated by the need of an experimentally realistic definition for quantum computing applications, the quantum geometric phase was generalized to open systems. The definition takes a kinematical approach, with an initial state that is evolved cyclically but coupled to an environment--leading to a correction of the geometric phase with respect to the uncoupled case. We obtain this correction by measuring the nonunitary evolution of the reduced density matrix of a spin one-half coupled to an environment. In particular we are interested in baths near a quantum phase transition, which are known to induce strong decoherence. The experiments are done with a NMR quantum simulator, where we emulate qualitatively the influence of a critical environment using a simple one-qubit model.

  12. Hyperscaling violation at the Ising-nematic quantum critical point in two dimensional metals

    CERN Document Server

    Eberlein, Andreas; Sachdev, Subir

    2016-01-01

    Understanding optical conductivity data in the optimally doped cuprates in the framework of quantum criticality requires a strongly-coupled quantum critical metal which violates hyperscaling. In the simplest scaling framework, hyperscaling violation can be characterized by a single non-zero exponent $\\theta$, so that in a spatially isotropic state in $d$ spatial dimensions, the specific heat scales with temperature as $T^{(d-\\theta)/z}$, and the optical conductivity scales with frequency as $\\omega^{(d-\\theta-2)/z}$ for $\\omega \\gg T$, where $z$ is the dynamic critical exponent. We study the Ising-nematic critical point, using the controlled dimensional regularization method proposed by Dalidovich and Lee (Phys. Rev. B {\\bf 88}, 245106 (2013)). We find that hyperscaling is violated, with $\\theta =1$ in $d=2$. We expect that similar results apply to Fermi surfaces coupled to gauge fields in $d=2$.

  13. The critical point of quantum chromodynamics through lattice and ...

    Indian Academy of Sciences (India)

    may make QCD predictions for these measurements along the freezeout curve. Results from the latter approach [7] are shown in figure 2. Deviations from a smooth behaviour near the critical point are visible in these extrap- olations, although there are large errors. The reason is the following. With a choice of. Tc = 170 MeV ...

  14. Finite-size scaling for quantum criticality using the finite-element method.

    Science.gov (United States)

    Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre

    2012-03-01

    Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.

  15. Universal time fluctuations in near-critical out-of-equilibrium quantum dynamics.

    Science.gov (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2014-02-01

    Out-of-equilibrium quantum systems display complex temporal patterns. Such time fluctuations are generically exponentially small in the system volume and therefore can be safely ignored in most of the cases. However, if one consider small quench experiments, time fluctuations can be greatly enhanced. We show that time fluctuations may become stronger than other forms of equilibrium quantum fluctuations if the quench is performed close to a critical point. For sufficiently relevant operators the full distribution function of dynamically evolving observable expectation values becomes a universal function uniquely characterized by the critical exponents and the boundary conditions. At regular points of the phase diagram and for nonsufficiently relevant operators the distribution becomes Gaussian. Our predictions are confirmed by an explicit calculation on the quantum Ising model.

  16. Universal time fluctuations in near-critical out-of-equilibrium quantum dynamics

    Science.gov (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2014-02-01

    Out-of-equilibrium quantum systems display complex temporal patterns. Such time fluctuations are generically exponentially small in the system volume and therefore can be safely ignored in most of the cases. However, if one consider small quench experiments, time fluctuations can be greatly enhanced. We show that time fluctuations may become stronger than other forms of equilibrium quantum fluctuations if the quench is performed close to a critical point. For sufficiently relevant operators the full distribution function of dynamically evolving observable expectation values becomes a universal function uniquely characterized by the critical exponents and the boundary conditions. At regular points of the phase diagram and for nonsufficiently relevant operators the distribution becomes Gaussian. Our predictions are confirmed by an explicit calculation on the quantum Ising model.

  17. Classical behavior of strongly correlated electron systems of solids near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Department of Physics, Washington University, St. Louis, MO 63130 (United States); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation)

    2013-03-01

    The spectra of collective excitations of electron systems situated near a Fermi-liquid quantum critical point are analyzed. Phonon-like soft and weakly damped branches of the transverse zero-sound mode are found that have extremely low effective Debye temperatures. Their contributions to the collision integral are shown to drive electron transport in the vicinity of the critical point toward a classical regime.

  18. On a possible connection of non-critical strings to certain aspects of quantum brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1997-01-01

    We review certain aspects of brain function which could be associated with non-critical (Liouville) string theory. In particular we simulate the physics of brain microtubules (MT) by using a (completely integrable) non-critical string, we discuss the collapse of the wave function as a result of quantum gravity effects due to abrupt conformational changes of the MT protein dimers, and we propose a new mechanism for memory coding.

  19. Extended quantum critical phase in a magnetized spin-1/2 antiferromagnetic chain

    DEFF Research Database (Denmark)

    Stone, M.B.; Reich, D.H.; Broholm, C.

    2003-01-01

    Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/Jless than or equal to0.025 for H=0 and H=8.7 T, where...

  20. Trigonometric Cherednik algebra at critical level and quantum many-body problems

    NARCIS (Netherlands)

    Emsiz, E.; Opdam, E.M.; Stokman, J.V.

    2009-01-01

    For any module over the affine Weyl group we construct a representation of the associated trigonometric Cherednik algebra A(k) at critical level in terms of Dunkl type operators. Under this representation the center of A(k) produces quantum conserved integrals for root system generalizations of

  1. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    Energy Technology Data Exchange (ETDEWEB)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bell function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.

  2. M theory as a holographic field theory

    Science.gov (United States)

    Hořava, Petr

    1999-02-01

    We suggest that M theory could be nonperturbatively equivalent to a local quantum field theory. More precisely, we present a ``renormalizable'' gauge theory in eleven dimensions, and show that it exhibits various properties expected of quantum M theory, most notably the holographic principle of 't Hooft and Susskind. The theory also satisfies Mach's principle: A macroscopically large space-time (and the inertia of low-energy excitations) is generated by a large number of ``partons'' in the microscopic theory. We argue that at low energies in large eleven dimensions, the theory should be effectively described by eleven-dimensional supergravity. This effective description breaks down at much lower energies than naively expected, precisely when the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for a covariant, nonperturbative formulation of quantum M theory.

  3. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.

    Science.gov (United States)

    Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y

    2010-02-26

    The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.

  4. Quantum critical local spin dynamics near the Mott metal-insulator transition in infinite dimensions

    Science.gov (United States)

    Dasari, Nagamalleswararao; Vidhyadhiraja, N. S.; Jarrell, Mark; McKenzie, Ross H.

    2017-04-01

    Finding microscopic models for metallic states that exhibit quantum critical properties is a major theoretical challenge. We calculate the dynamical local spin susceptibility χ (T ,ω ) for a Hubbard model at half-filling using dynamical mean-field theory, which is exact in infinite dimensions. Qualitatively distinct behavior is found in the different regions of the phase diagram: Mott insulator, Fermi liquid metal, bad metal, and a quantum critical region above the finite-temperature critical point. The signature of the latter is ω /T scaling, where ω is the frequency and T is the temperature. Our results are consistent with previous results showing scaling of the dc electrical conductivity, and they are relevant to experiments on organic charge-transfer salts.

  5. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann

    2017-05-01

    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  6. P-wave holographic superconductor/insulator phase transitions affected by dark matter sector

    Energy Technology Data Exchange (ETDEWEB)

    Rogatko, Marek; Wysokinski, Karol I. [Institute of Physics, Maria Curie-Skłodowska University,20-031 Lublin, pl. Marii Curie-Skłodowskiej 1 (Poland)

    2016-03-31

    The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ{sub D}. For ρ{sub D}>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ{sub c} for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ{sub D} and for μ{sub D}=0 is a decreasing function of α.

  7. Holographic Dark Information Energy

    Directory of Open Access Journals (Sweden)

    Michael Paul Gough

    2011-04-01

    Full Text Available Landauer’s principle and the Holographic principle are used to derive the holographic information energy contribution to the Universe. Information energy density has increased with star formation until sufficient to start accelerating the expansion of the universe. The resulting reduction in the rate of star formation due to the accelerated expansion may provide a feedback that limits the information energy density to a constant level. The characteristics of the universe’s holographic information energy then closely match those required to explain dark energy and also answer the cosmic coincidence problem. Furthermore the era of acceleration will be clearly limited in time.

  8. Dynamical holographic QCD model

    Directory of Open Access Journals (Sweden)

    Li Danning

    2014-01-01

    Full Text Available We develop a dynamical holographic QCD model, which resembles the renormalization group from ultraviolet (UV to infrared (IR. The dynamical holographic model is constructed in the graviton-dilaton-scalar framework with the dilaton background field Φ and scalar field X responsible for the gluodynamics and chiral dynamics, respectively. We summarize the results on hadron spectra, QCD phase transition and transport properties including the jet quenching parameter and the shear/bulk viscosity in the framework of the dynamical holographic QCD model.

  9. Universal Scaling and Critical Exponents of the Anisotropic Quantum Rabi Model

    Science.gov (United States)

    Liu, Maoxin; Chesi, Stefano; Ying, Zu-Jian; Chen, Xiaosong; Luo, Hong-Gang; Lin, Hai-Qing

    2017-12-01

    We investigate the quantum phase transition of the anisotropic quantum Rabi model, in which the rotating and counterrotating terms are allowed to have different coupling strengths. The model interpolates between two known limits with distinct universal properties. Through a combination of analytic and numerical approaches, we extract the phase diagram, scaling functions, and critical exponents, which determine the universality class at finite anisotropy (identical to the isotropic limit). We also reveal other interesting features, including a superradiance-induced freezing of the effective mass and discontinuous scaling functions in the Jaynes-Cummings limit. Our findings are extended to the few-body quantum phase transitions with N >1 spins, where we expose the same effective parameters, scaling properties, and phase diagram. Thus, a stronger form of universality is established, valid from N =1 up to the thermodynamic limit.

  10. Quantum electrodynamics in 2+1 dimensions with quenched disorder: Quantum critical states with interactions and disorder

    Science.gov (United States)

    Thomson, Alex; Sachdev, Subir

    2017-06-01

    Quantum electrodynamics in 2+1 dimensions (QED3) is a strongly coupled conformal field theory (CFT) of a U(1) gauge field coupled to 2 N two-component massless fermions. The N =2 CFT has been proposed as a ground state of the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the presence of weak quenched disorder in its two spatial directions. When the disorder explicitly breaks the fermion flavor symmetry from SU (2 N ) → U(1) × SU (N ) but preserves time-reversal symmetry, we find that the theory flows to a nontrivial fixed line at nonzero disorder with a continuously varying dynamical critical exponent z >1 . We determine the zero-temperature flavor (spin) conductivity along the critical line. Our calculations are performed in the large-N limit, and the disorder is handled using the replica method.

  11. Holographic fluctuations and the principle of minimal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, Wissam [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany); Department of Mechanical Engineering, MIT,Cambridge MA 02139 (United States); Osborne, Tobias J. [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany)

    2016-12-14

    We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. We describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system.

  12. Locating the quantum critical point of the Bose-Hubbard model through singularities of simple observables.

    Science.gov (United States)

    Łącki, Mateusz; Damski, Bogdan; Zakrzewski, Jakub

    2016-12-02

    We show that the critical point of the two-dimensional Bose-Hubbard model can be easily found through studies of either on-site atom number fluctuations or the nearest-neighbor two-point correlation function (the expectation value of the tunnelling operator). Our strategy to locate the critical point is based on the observation that the derivatives of these observables with respect to the parameter that drives the superfluid-Mott insulator transition are singular at the critical point in the thermodynamic limit. Performing the quantum Monte Carlo simulations of the two-dimensional Bose-Hubbard model, we show that this technique leads to the accurate determination of the position of its critical point. Our results can be easily extended to the three-dimensional Bose-Hubbard model and different Hubbard-like models. They provide a simple experimentally-relevant way of locating critical points in various cold atomic lattice systems.

  13. Periodically driven holographic superconductor

    National Research Council Canada - National Science Library

    Li, Wei-Jia; Tian, Yu; Zhang, Hongbao

    2013-01-01

    .... As a result, our holographic superconductor is driven to the final oscillating state, where the condensate is suppressed and the oscillation frequency is controlled by twice of the driving frequency...

  14. Evolution of Quantum Fluctuations Near the Quantum Critical Point of the Transverse Field Ising Chain System CoNb_{2}O_{6}

    Directory of Open Access Journals (Sweden)

    A. W. Kinross

    2014-07-01

    Full Text Available The transverse field Ising chain model is ideally suited for testing the fundamental ideas of quantum phase transitions because its well-known T=0 ground state can be extrapolated to finite temperatures. Nonetheless, the lack of appropriate model materials hindered the past effort to test the theoretical predictions. Here, we map the evolution of quantum fluctuations in the transverse field Ising chain based on nuclear magnetic resonance measurements of CoNb_{2}O_{6}, and we demonstrate the finite-temperature effects on quantum criticality for the first time. From the temperature dependence of the ^{93}Nb longitudinal relaxation rate 1/T_{1}, we identify the renormalized classical, quantum critical, and quantum disordered scaling regimes in the temperature (T vs transverse magnetic field (h_{⊥} phase diagram. Precisely at the critical field h_{⊥}^{c}=5.25±0.15  T, we observe a power-law behavior, 1/T_{1}∼T^{−3/4}, as predicted by quantum critical scaling. Our parameter-free comparison between the data and theory reveals that quantum fluctuations persist up to as high as T∼0.4J, where the intrachain exchange interaction J is the only energy scale of the problem.

  15. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: The rise and fall of hot spots

    Science.gov (United States)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael M.

    2017-05-01

    In several unconventional superconductors, the highest superconducting transition temperature Tc is found in a region of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-Tc superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible for the superconducting instability of a general low-energy model, called the spin-fermion model. In this approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, Tc increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters that most strongly affect Tc, but also important benchmarks to assess the origin of superconductivity in both microscopic models and actual materials.

  16. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    Science.gov (United States)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  17. Lifshitz holographic superconductor in Hořava–Lifshitz gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cheng-Jian, E-mail: rocengeng@hotmail.com [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Kuang, Xiao-Mei, E-mail: xmeikuang@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2016-08-10

    We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by an anisotropic scalar field in the probe limit in Hořava–Lifshitz gravity. With the use of numerical and analytical method, we investigate how the critical temperature of the condensation is affected by the Lifshitz exponent z, α-correction term in the action as well as the dimensions of the gravity. We also numerically explore the condensation of the dual operator and optical conductivity of the holographic system. Various interesting properties of the holographic condensation affected by the parameters of model are discussed.

  18. A DMFT+CTQMC Investigation of Strange Metallicity in Local Quantum Critical Scenario

    Science.gov (United States)

    Acharya, Swagata; Laad, M. S.; Taraphder, A.

    2016-10-01

    “Strange” metallicity is now a pseudonym for a novel metallic state exhibiting anomalous infra-red (branch-cut) continuum features in one- and two-particle responses. Here, we employ dynamical mean-field theory (DMFT) using low-temperature continuous-time- quantum Monte-Carlo (CTQMC) solver for an extended periodic Anderson model (EPAM) model to investigate unusual magnetic fluctuations in the strange metal. We show how extinction of Landau quasiparticles in the orbital selective Mott phase (OSMP) leads to (i) qualitative explication of strange transport features and (ii) anomalous quantum critical magnetic fluctuations due to critical liquid-like features in dynamical spin fluctuations, in excellent accord with data in some f-electron systems.

  19. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator.

    Science.gov (United States)

    Lin, Z R; Nakamura, Y; Dykman, M I

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  20. Bang-bang control of a qubit coupled to a quantum critical spin bath

    Science.gov (United States)

    Rossini, D.; Facchi, P.; Fazio, R.; Florio, G.; Lidar, D. A.; Pascazio, S.; Plastina, F.; Zanardi, P.

    2008-05-01

    We analytically and numerically study the effects of pulsed control on the decoherence of a qubit coupled to a quantum spin bath. When the environment is critical, decoherence is faster and we show that the control is relatively more effective. Two coupling models are investigated, namely, a qubit coupled to a bath via a single link and a spin-star model, yielding results that are similar and consistent.

  1. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  2. Magnetic Signatures of Quantum Critical Points of the Ferrimagnetic Mixed Spin-(1/2, S) Heisenberg Chains at Finite Temperatures

    Science.gov (United States)

    Strečka, Jozef; Verkholyak, Taras

    2017-06-01

    Magnetic properties of the ferrimagnetic mixed spin-(1/2, S) Heisenberg chains are examined using quantum Monte Carlo simulations for two different quantum spin numbers S=1 and 3/2. The calculated magnetization curves at finite temperatures are confronted with zero-temperature magnetization data obtained within the density matrix renormalization group method, which imply an existence of two quantum critical points determining a breakdown of the gapped Lieb-Mattis ferrimagnetic phase and Tomonaga-Luttinger spin-liquid phase, respectively. While a square root behavior of the magnetization accompanying each quantum critical point is gradually smoothed upon rising temperature, the susceptibility and isothermal entropy change data at low temperatures provide a stronger evidence of the zero-temperature quantum critical points through marked local maxima and minima, respectively.

  3. Fermion-parity anomaly of the critical supercurrent in the quantum spin-Hall effect.

    Science.gov (United States)

    Beenakker, C W J; Pikulin, D I; Hyart, T; Schomerus, H; Dahlhaus, J P

    2013-01-04

    The helical edge state of a quantum spin-Hall insulator can carry a supercurrent in equilibrium between two superconducting electrodes (separation L, coherence length ξ). We calculate the maximum (critical) current I(c) that can flow without dissipation along a single edge, going beyond the short-junction restriction L parity of the ground state when L becomes larger than ξ. Fermion-parity conservation doubles the critical current in the low-temperature, long-junction limit, while for a short junction I(c) is the same with or without parity constraints. This provides a phase-insensitive, dc signature of the 4 π-periodic Josephson effect.

  4. Holographic coherent states from random tensor networks

    Science.gov (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang

    2017-08-01

    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  5. Quantum criticality and first-order transitions in the extended periodic Anderson model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  6. Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

    Science.gov (United States)

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    2017-06-01

    We study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttinger parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.

  7. Note on the butterfly effect in holographic superconductor models

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-05-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  8. Note on the butterfly effect in holographic superconductor models

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-05-01

    Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  9. Note on the butterfly effect in holographic superconductor models

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2017-05-10

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  10. Horizon as critical phenomenon

    Science.gov (United States)

    Lee, Sung-Sik

    2016-09-01

    We show that renormalization group flow can be viewed as a gradual wave function collapse, where a quantum state associated with the action of field theory evolves toward a final state that describes an IR fixed point. The process of collapse is described by the radial evolution in the dual holographic theory. If the theory is in the same phase as the assumed IR fixed point, the initial state is smoothly projected to the final state. If in a different phase, the initial state undergoes a phase transition which in turn gives rise to a horizon in the bulk geometry. We demonstrate the connection between critical behavior and horizon in an example, by deriving the bulk metrics that emerge in various phases of the U( N ) vector model in the large N limit based on the holographic dual constructed from quantum renormalization group. The gapped phase exhibits a geometry that smoothly ends at a finite proper distance in the radial direction. The geometric distance in the radial direction measures a complexity: the depth of renormalization group transformation that is needed to project the generally entangled UV state to a direct product state in the IR. For gapless states, entanglement persistently spreads out to larger length scales, and the initial state can not be projected to the direct product state. The obstruction to smooth projection at charge neutral point manifests itself as the long throat in the anti-de Sitter space. The Poincare horizon at infinity marks the critical point which exhibits a divergent length scale in the spread of entanglement. For the gapless states with non-zero chemical potential, the bulk space becomes the Lifshitz geometry with the dynamical critical exponent two. The identification of horizon as critical point may provide an explanation for the universality of horizon. We also discuss the structure of the bulk tensor network that emerges from the quantum renormalization group.

  11. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  12. Quantum critical properties of a metallic spin-density-wave transition

    Science.gov (United States)

    Gerlach, Max H.; Schattner, Yoni; Berg, Erez; Trebst, Simon

    2017-01-01

    We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model. Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical dynamics of the bosonic order parameter are well described by a dynamical critical exponent z =2 , consistent with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point. In the superconducting state we find a gap function that has an opposite sign between the two bands of the model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear breakdown of Fermi liquid theory around these points.

  13. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  14. Magnonic Holographic Memory

    Science.gov (United States)

    Khitun, Alexander; Kozhevnikov, Alexander; Gertz, Frederick; Filimonov, Yuri

    2015-03-01

    Collective oscillation of spins in magnetic lattice known as spin waves (magnons) possess relatively long coherence length at room temperature, which makes it possible to build sub-micrometer scale holographic devices similar to the devices developed in optics. In this work, we present a prototype 2-bit magnonic holographic memory. The memory consists of the double-cross waveguide structure made of Y3Fe2(FeO4)3 with magnets placed on the top of waveguide junctions. Information is encoded in the orientation of the magnets, while the read-out is accomplished by the spin waves generated by the micro-antennas placed on the edges of the waveguides. The interference pattern produced by multiple spin waves makes it possible to build a unique holographic image of the magnetic structure and recognize the state of the each magnet. The development of magnonic holographic devices opens a new horizon for building scalable holographic devices compatible with conventional electronic devices. This work was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the National Science Foundation under the NEB2020 Grant ECCS-1124714.

  15. Fermion-induced quantum critical points in three-dimensional Weyl semimetals

    Science.gov (United States)

    Jian, Shao-Kai; Yao, Hong

    2017-10-01

    Fermion-induced quantum critical points (FIQCPs) were recently discovered at the putatively first-order transitions between two-dimensional (2D) Dirac semimetals and the Kekule valence bond solids on the honeycomb lattice by sign-free quantum Monte Carlo simulations [Nat. Commun. 8, 314 (2017), 10.1038/s41467-017-00167-6]. Here, we investigate possible FIQCPs in 3D topological Weyl semimetals at a Z3 symmetry-breaking transition that is putatively first-order according to the Landau criterion. We construct a lattice model featuring 3D double-Weyl fermions (monopole charges ±2 ), and we show that Z3 nodal-nematic transitions occur under finite Hubbard interaction. Furthermore, using renormalization-group analysis, we identify such a transition as a genuine FIQCP where the cubic terms are irrelevant and an enlarged U(1) symmetry emerges at low energy. We further discuss quantum critical behaviors and experimental signatures of such FIQCPs in 3D double-Weyl semimetals.

  16. Magnon-induced nuclear relaxation in the quantum critical region of a Heisenberg linear chain

    Science.gov (United States)

    Hoch, M. J. R.

    2017-07-01

    The low-temperature properties of spin-1/2 one-dimensional (1D) Heisenberg antiferromagnetic (HAF) chains which have relatively small exchange couplings between the spins can be tuned using laboratory-scale magnetic fields. Magnetization measurements, made as a function of temperature, provide phase diagrams for these systems and establish the quantum critical point (QCP). The evolution of the spin dynamics behavior with temperature and applied field in the quantum critical (QC) region, near the QCP, is of particular interest and has been experimentally investigated in a number of 1D HAFs using neutron scattering and nuclear magnetic resonance as the preferred techniques. In the QC phase both quantum and thermal spin fluctuations are present. As a result of extended spin correlations in the chains, magnon excitations are important at finite temperatures. An expression for the NMR spin-lattice relaxation rate 1 /T1 of probe nuclei in the QC phase of 1D HAFs is obtained by considering Raman scattering processes which induce nuclear spin flips. The relaxation rate expression, which involves the temperature and the chemical potential, predicts scaling behavior of 1 /T1 consistent with recent experimental findings for quasi-1D HAF systems. A simple relationship between 1 /T1 and the deviation of the magnetization from saturation (MS-M ) is predicted for the QC region.

  17. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  18. Interplay of Broken Symmetries and Quantum Criticality in Correlated Electronic Systems

    Science.gov (United States)

    Chowdhury, Debanjan

    This thesis delves into a study of phases of strongly correlated quantum matter confined to two spatial dimensions. The thesis can broadly be divided into three parts. In the first part, comprising of chapters 2 and 3, we investigate some interesting aspects of symmetry breaking and quantum criticality in the superconducting phase of the iron-based superconductors. In particular, motivated by tunneling microscopy measurements on FeSe, in chapter 2 we study the effect of spontaneously broken rotational symmetry on the structure of the superconducting vortex. In chapter 3, we study the critical singularities associated with the superfluid-density at a wide class of symmetry-breaking and topological phase transitions in a clean superconductor. Inspired by experiments on BaFe 2(As1-xPx) 2, we also analyze the effect of quenched disorder on the superfluid-density in the vicinity of magnetic quantum critical points. The second part of this thesis, consisting of chapters 4 and 5, is devoted to a study of the pseudogap phase in the underdoped cuprates. In chapter 4 we study the effect of thermal fluctuations of various competing order parameters, including preformed superconductivity and short-ranged charge-density wave, on the electronic excitations. In chapter 5 we analyze the feedback of pairing fluctuations on the landscape of various competing charge-density wave order parameters within the framework of fermi-liquid theory. In the final part of the thesis, consisting of chapters 6 and 7, we propose an alternative picture for describing the pseudogap metal. In chapter 6, we study a quantum-disordered phase of matter--the fractionalized fermi-liquid (FL*)--where the electrons are coupled to the fractionalized excitations of a strongly fluctuating antiferromagnet and propose it to be a candidate state for the pseudogap. We investigate instabilities of the FL* to density-wave order and compare with experiments. In chapter 7, we describe a framework for describing a novel

  19. Deconfined quantum criticality in SU(3) antiferromagnets on the triangular lattice

    Science.gov (United States)

    Pimenov, Dimitri; Punk, Matthias

    2017-05-01

    We propose field theories for a deconfined quantum critical point in SU(3) antiferromagnets on the triangular lattice. In particular we consider the continuous transition between a magnetic, three-sublattice color-ordered phase and a trimerized SU(3) singlet phase. Starting from the magnetically ordered state we derive a critical theory in terms of fractional bosonic degrees of freedom, in close analogy to the well-developed description of the SU(2) Néel—valence bond solid (VBS) transition on the square lattice. Our critical theory consists of three coupled C P2 models and we study its fixed point structure using a functional renormalization group approach in a suitable large N limit. We find a stable critical fixed point and estimate its critical exponents, thereby providing an example of deconfined criticality beyond the universality class of the C PN model. In addition we present a complementary route towards the critical field theory by studying topological defects of the trimerized SU(3) singlet phase.

  20. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    Energy Technology Data Exchange (ETDEWEB)

    Sarfatti, Jack [Internet Science Education Project (Country Unknown); Levit, Creon, E-mail: adastra1@mac.co, E-mail: creon.levit@nasa.go [NASA Ames Research Center (United States)

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the 'zero point' (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual 'condensate' (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter OMEGAM{sub DM} approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  1. Corrections to holographic entanglement plateau

    Science.gov (United States)

    Chen, Bin; Li, Zhibin; Zhang, Jia-ju

    2017-09-01

    We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that Δ S = S( L) - | S( L - ℓ) - S( ℓ)| is nonnegative, where S( L) is the thermal entropy and S( L - ℓ), S( ℓ) are the entanglement entropies. Holographically there is an entanglement plateau in the BTZ black hole background, which means that there exists a critical length such that when ℓ ≤ ℓ c the inequality saturates Δ S =0. In thermal AdS background, the holographic entanglement entropy leads to Δ S = 0 for arbitrary ℓ. We compute the next-to-leading order contributions to Δ S in the large central charge CFT at both high and low temperatures. In both cases we show that Δ S is strictly positive except for ℓ = 0 or ℓ = L. This turns out to be true for any 2D CFT. In calculating the single interval entanglement entropy in a thermal state, we develop new techniques to simplify the computation. At a high temperature, we ignore the finite size correction such that the problem is related to the entanglement entropy of double intervals on a complex plane. As a result, we show that the leading contribution from a primary module takes a universal form. At a low temperature, we show that the leading thermal correction to the entanglement entropy from a primary module does not take a universal form, depending on the details of the theory.

  2. Testing quantum gravity effects through Dyonic charged AdS black hole

    CERN Document Server

    Sadeghi, J; Rostami, M

    2016-01-01

    In this paper, we consider dyonic charged AdS black hole which is holographic dual of a van der Waals fluid. We use logarithmic corrected entropy and study thermodynamics of the black hole and show that holographic picture is still valid. Critical behaviors and stability also discussed. Logarithmic corrections arises due to thermal fluctuations which are important when size of black hole be small. So, thermal fluctuations interpreted as quantum effect. It means that we can see quantum effect of a black hole which is a gravitational system. Hence, one can use result of this paper to compare with that of van der Waals fluid in the lab and see quantum gravity effects.

  3. Time-domain pumping a quantum-critical charge density wave ordered material

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-09-01

    We determine the exact time-resolved photoemission spectroscopy for a nesting driven charge density wave (described by the spinless Falicov-Kimball model within dynamical mean-field theory). The pump-probe experiment involves two light pulses: the first is an ultrashort intense pump pulse that excites the system into nonequilibrium, and the second is a lower amplitude, higher frequency probe pulse that photoexcites electrons. We examine three different cases: the strongly correlated metal, the quantum-critical charge density wave, and the critical Mott insulator. Our results show that the quantum critical charge density wave has an ultraefficient relaxation channel that allows electrons to be de-excited during the pump pulse, resulting in little net excitation. In contrast, the metal and the Mott insulator show excitations that are closer to what one expects from these systems. In addition, the pump field produces spectral band narrowing, peak sharpening, and a spectral gap reduction, all of which rapidly return to their field free values after the pump is over.

  4. Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate.

    Science.gov (United States)

    Xiang, Jun-Sen; Chen, Cong; Li, Wei; Sheng, Xian-Lei; Su, Na; Cheng, Zhao-Hua; Chen, Qiang; Chen, Zi-Yu

    2017-03-15

    In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant.

  5. Entanglement renormalization, quantum error correction, and bulk causality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-04-07

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  6. Superconductivity, spin and charge order, and quantum criticality in correlated electron materials

    Directory of Open Access Journals (Sweden)

    Chu J.-H.

    2012-03-01

    Full Text Available We describe recent experiments performed in our laboratory that address spin or charge ordered phases in novel rare earth and actinide based materials and phenomena that emerge when these ordered phases are suppressed toward 0 K by varying an external control parameter such as chemical composition, pressure, or magnetic field. Specific examples discussed include magnetic order, heavy fermion behavior, and unconventional quantum criticality in noncentrosymmetric M2T12P7 compounds (M = rare earth, actinide; T = Co, Fe and the interplay of superconductivity and charge density waves in rare earth tritelluride compounds RTe3 (R = Gd, Tb, Dy.

  7. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  8. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene

    Science.gov (United States)

    Lucas, Andrew; Crossno, Jesse; Fong, Kin Chung; Kim, Philip; Sachdev, Subir

    2016-02-01

    We develop a general hydrodynamic framework for computing direct current, thermal, and electric transport in a strongly interacting finite-temperature quantum system near a Lorentz-invariant quantum critical point. Our framework is nonperturbative in the strength of long-wavelength fluctuations in the background-charge density of the electronic fluid and requires the rate of electron-electron scattering to be faster than the rate of electron-impurity scattering. We use this formalism to compute transport coefficients in the Dirac fluid in clean samples of graphene near the charge neutrality point, and find results insensitive to long-range Coulomb interactions. Numerical results are compared to recent experimental data on thermal and electrical conductivity in the Dirac fluid in graphene and a substantially improved quantitative agreement over existing hydrodynamic theories is found. We comment on the interplay between the Dirac fluid and acoustic and optical phonons, and qualitatively explain the experimentally observed effects. Our work paves the way for quantitative contact between experimentally realized condensed matter systems and the wide body of high-energy inspired theories on transport in interacting many-body quantum systems.

  9. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    Science.gov (United States)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field hc = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  10. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.

    Science.gov (United States)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-27

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  11. Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula

    Science.gov (United States)

    Milsted, Ashley; Vidal, Guifre

    2017-12-01

    We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated procedures which, using only the lattice Hamiltonian H =∑jhj as an input, systematically identify the low-energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes Hn of the Hamiltonian density hj. The Hn were introduced as lattice representations of the Virasoro generators by Koo and Saleur [Nucl. Phys. B 426, 459 (1994), 10.1016/0550-3213(94)90018-3]. In this paper, we demonstrate that these operators can be used to extract conformal data in a nonintegrable quantum spin chain.

  12. Momentum dependence of the almost quantum critical spin fluctuations in CeCu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huesges, Zita; Stockert, Oliver; Jeevan, Hirale S.; Steglich, Frank [Max Planck Institute CPfS, Dresden (Germany); Schmalzl, Karin [Juelich Center for Neutron Science, outstation at Institut Laue-Langevin, Grenoble (France)

    2013-07-01

    The heavy-fermion superconductor CeCu{sub 2}Si{sub 2} is located close to a quantum critical point. The spin fluctuations at the nesting wave vector Q{sub AF} in the normal state are quasielastic and show considerable slowing down. The magnetic response also exhibits scaling expected for a 3D spin-density-wave quantum critical point. We present here the first measurement of the momentum dependence of these almost quantum critical fluctuations. The temperature dependence of the linewidth of the spin fluctuations in reciprocal space is studied and compared to theoretical expectations, which arise from the connection of momentum width and energy width via the dynamical critical exponent z.

  13. Holographic analysis of photopolymers

    Science.gov (United States)

    Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.

    2017-05-01

    Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (material analysis must be carefully evaluated in this regime. We present a study of the effects of the finite Gaussian write and read beams on the CWT analysis of photopolymer materials and discuss what intuition this can give us about the effect other non-uniformities, such as mechanical stresses and significant absorption of the write beam, will have on the analysis of the maximum attainable refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.

  14. Adiabatic Perturbation Theory: From Landau-Zener Problem to Quenching Through a Quantum Critical Point

    Science.gov (United States)

    De Grandi, C.; Polkovnikov, A.

    Dynamics in closed systems recently attracted a lot of theoretical interest largely following experimental developments in cold atom systems (see e.g., [1] for a review). Several spectacular experiments already explored different aspects of non-equilibrium dynamics in interacting many-particle systems [2-8]. Recent theoretical works in this context focused on various topics, for instance: connection of dynamics and thermodynamics [9-11 M. Rigol, unpublished], dynamics following a sudden quench in low dimensional systems [11-23, L. Mathey and A. Polkovnikov, unpublished; A. Iucci and M.A. Cazalilla,unpublished], adiabatic dynamics near quantum critical points [24-37, D. Chowdhury et al., unpublished; K. Sengupta and D. Sen, unpublished; A.P. Itin and P. Törmä, unpublished; F. Pollmann et al., unpublished] and others. Though there is still very limited understanding of the generic aspects of non-equilibrium quantum dynamics, it has been recognized that such issues as integrability, dimensionality, universality (near critical points) can be explored to understand the non-equilibrium behavior of many-particle systems in various specific situations.

  15. CePdAl. A frustrated Kondo lattice at a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Veronika [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Karlsruhe Institute of Technology (Germany); Sakai, Akito; Gegenwart, Philipp [EP 6, Electronic Correlations and Magnetism, University of Augsburg (Germany); Huesges, Zita; Lucas, Stefan; Stockert, Oliver [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Kittler, Wolfram; Taubenheim, Christian; Grube, Kai; Loehneysen, Hilbert von [Karlsruhe Institute of Technology (Germany); Huang, Chien-Lung [Karlsruhe Institute of Technology (Germany); Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)

    2016-07-01

    CePdAl is one of the rare frustrated Kondo lattice systems that can be tuned across a quantum critical point (QCP) by means of chemical pressure, i. e., the substitution of Pd by Ni. Magnetic frustration and Kondo effect are antithetic phenomena: The Kondo effect with the incipient delocalization of the magnetic moments, is not beneficial for the formation of a frustrated state. On the other hand, magnetic frustrated exchange interactions between the local moments can result in a breakdown of Kondo screening. Furthermore, the fate of frustration is unclear when approaching the QCP, since there is no simple observable to quantify the degree of frustration. We present thermodynamic and neutron scattering experiments on CePd{sub 1-x}Ni{sub x}Al close to the critical concentration x ∼0.14. Our experiments indicate that even at the QCP magnetic frustration is still present, opening the perspective to find new universality classes at such a quantum phase transition.

  16. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  17. Holographic Thermalization in Gauss-Bonnet Gravity with de Sitter Boundary

    CERN Document Server

    Zhang, Shao-Jun; Abdalla, Elcio; Papantonopoulos, Eleftherios

    2015-01-01

    We introduce higher-derivative Gauss-Bonnet correction terms in the gravity sector and we relate the modified gravity theory in the bulk to the strongly coupled quantum field theory on a de Sitter boundary. We study the process of holographic thermalization by examining three non-local observables, the two-point function, the Wilson loop and the holographic entanglement entropy. We study the time evolution of these three observables and we find that the modification of the gravity side with the Gauss-Bonnet correction terms influences the saturation time to reach thermal equilibrium with the dominant effect given by the holographic entanglement entropy since it contains more bulk information.

  18. Intelligent holographic databases

    Science.gov (United States)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features

  19. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W., E-mail: jwc@wuphys.wustl.edu [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow, 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow, 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  20. Quantum criticality in the coupled two-leg spin ladder Ba2CuTeO6

    Science.gov (United States)

    Glamazda, A.; Choi, Y. S.; Do, S.-H.; Lee, S.; Lemmens, P.; Ponomaryov, A. N.; Zvyagin, S. A.; Wosnitza, J.; Sari, Dita Puspita; Watanabe, I.; Choi, K.-Y.

    2017-05-01

    We report on zero-field muon spin rotation, electron-spin resonance, and polarized Raman scattering measurements of the coupled quantum spin ladder Ba2CuTeO6 . Zero-field muon spin rotation and electron-spin resonance probes disclose a successive crossover from a paramagnetic through a spin-liquid-like into a magnetically ordered state with decreasing temperature. More significantly, the two-magnon Raman response obeys a T -linear scaling relation in its peak energy, linewidth, and intensity. This critical scaling behavior presents an experimental signature of proximity to a quantum-critical point from an ordered side in Ba2CuTeO6 .

  1. Deriving covariant holographic entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)

    2016-11-07

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  2. Pinning the Order: The Nature of Quantum Criticality in the Hubbard Model on Honeycomb Lattice

    Directory of Open Access Journals (Sweden)

    Fakher F. Assaad

    2013-08-01

    Full Text Available In numerical simulations, spontaneously broken symmetry is often detected by computing two-point correlation functions of the appropriate local order parameter. This approach, however, computes the square of the local order parameter, and so when it is small, very large system sizes at high precisions are required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetry-breaking field and then measure the induced local order parameter infinitely far from the pinning center. The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the projective auxiliary-field quantum Monte Carlo algorithm. With our enhanced resolution, we find a direct and continuous quantum phase transition between the semimetallic and the insulating antiferromagnetic states with increase of the interaction. The single-particle gap, measured in units of Hubbard U, tracks the staggered magnetization. An excellent data collapse is obtained by finite-size scaling, with the values of the critical exponents in accord with the Gross-Neveu universality class of the transition.

  3. Landau-Ginzburg Limit of Black Hole's Quantum Portrait: Self Similarity and Critical Exponent

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Recently we have suggested that the microscopic quantum description of a black hole is an overpacked self-sustained Bose-condensate of N weakly-interacting soft gravitons, which obeys the rules of 't Hooft's large-N physics. In this note we derive an effective Landau-Ginzburg Lagrangian for the condensate and show that it becomes an exact description in a semi-classical limit that serves as the black hole analog of 't Hooft's planar limit. The role of a weakly-coupled Landau-Ginzburg order parameter is played by N. This description consistently reproduces the known properties of black holes in semi-classical limit. Hawking radiation, as the quantum depletion of the condensate, is described by the slow-roll of the field N. In the semiclassical limit, where black holes of arbitrarily small size are allowed, the equation of depletion is self similar leading to a scaling law for the black hole size with critical exponent 1/3.

  4. Critical strain region evaluation of self-assembled semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sales, D L [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Pizarro, J [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Galindo, P L [Departamento de Lenguajes y Sistemas Informaticos, Universidad de Cadiz, Puerto Real, Cadiz (Spain); Garcia, R [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain); Trevisi, G [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Frigeri, P [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Nasi, L [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Franchi, S [CNR-IMEM Institute, Parco delle Scienze 37a, 43100, Parma (Italy); Molina, S I [Departamento de Ciencia de los Materiales e I. M. y Q. I., Universidad de Cadiz, Puerto Real, Cadiz (Spain)

    2007-11-28

    A novel peak finding method to map the strain from high resolution transmission electron micrographs, known as the Peak Pairs method, has been applied to In(Ga)As/AlGaAs quantum dot (QD) samples, which present stacking faults emerging from the QD edges. Moreover, strain distribution has been simulated by the finite element method applying the elastic theory on a 3D QD model. The agreement existing between determined and simulated strain values reveals that these techniques are consistent enough to qualitatively characterize the strain distribution of nanostructured materials. The correct application of both methods allows the localization of critical strain zones in semiconductor QDs, predicting the nucleation of defects, and being a very useful tool for the design of semiconductor devices.

  5. Charge density wave quantum critical point with strong enhancement of superconductivity

    Science.gov (United States)

    Gruner, Thomas; Jang, Dongjin; Huesges, Zita; Cardoso-Gil, Raul; Fecher, Gerhard H.; Koza, Michael M.; Stockert, Oliver; MacKenzie, Andrew P.; Brando, Manuel; Geibel, Christoph

    2017-10-01

    Quantum critical points (QCPs), at which a second-order phase transition is continuously suppressed to zero temperature, are currently one of the central topics in solid-state physics. The strong interest emerges from observations of very unusual properties at QCPs such as the onset of unconventional superconductivity (SC). While QCPs found at the disappearance of magnetic order are quite common and intensively studied, a QCP that results from a structural transition is scarce and poorly investigated. Here, we report on the observation of a charge density wave (CDW) type of structural ordering in LuPt 2In with a second-order transition at TCDW = 490 K. Substituting Pd for Pt suppresses TCDW continuously towards T = 0, leading to a QCP at 58% Pd substitution. We find a strong enhancement of bulk SC just at the QCP, pointing to a new type of interaction between CDW and SC.

  6. A holographic model for QCD in the Veneziano limit at finite temperature and density

    CERN Document Server

    Alho, T.; Kajantie, K.; Kiritsis, E.; Rosen, C.; Tuominen, K.

    2014-01-01

    A holographic model of QCD in the limit of large number of colors, $N_c$, and massless fermion flavors, $N_f$, but constant ratio $x_f=N_f/N_c$ is analyzed at finite temperature and chemical potential. The five dimensional gravity model contains three bulk fields: a scalar dilaton sourcing ${\\rm Tr}F^2$, a scalar tachyon dual to $\\bar qq$ and a 4-vector dual to the baryon current $\\bar q \\gamma^{\\mu} q$. The main result is the $\\mu,T$ phase diagram of the holographic theory. A first order deconfining transition along $T_h(\\mu)$ and a chiral transition at $T_\\chi(\\mu)>T_h(\\mu)$ are found. The chiral transition is of second order for small $\\mu$ and becomes of first order at larger $\\mu$. The two regimes are separated by a tricritical point. The dependence of thermodynamical quantities including the speed of sound and susceptibilities on the chemical potential and temperature is computed. A new quantum critical regime is found at zero temperature and finite chemical potential. It is controlled by an AdS$_2\\time...

  7. The Holographic Principle in a Cosmological Setting

    NARCIS (Netherlands)

    Savonije, Ivo Lothar

    2003-01-01

    We study the holographic principle in a cosmological context. First, entropy bounds are derived from the holographic principle and applied within a Anti-de Sitter spacetime. Next, the compatibility of the holographic principle and de Sitter spacetime is considered. The holographic principle is a

  8. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  9. Holographic Baryons and Instanton Crystal

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated ADHM construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review we summarize the known results on the construction and phases of crystals of the holographic baryons.

  10. Holographic baryons and instanton crystals

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    2015-06-01

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-Abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review, we summarize the known results on the construction and phases of crystals of the holographic baryons.

  11. A holographic bound for D3-brane

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)

    2017-06-15

    In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)

  12. Effects of backreaction on power-Maxwell holographic superconductors in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Hamid Reza; Montakhab, Afshin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-10-15

    We analytically and numerically investigate the properties of s-wave holographic superconductors by considering the effects of scalar and gauge fields on the background geometry in five-dimensional Einstein-Gauss-Bonnet gravity. We assume the gauge field to be in the form of the power-Maxwell nonlinear electrodynamics. We employ the Sturm-Liouville eigenvalue problem for analytical calculation of the critical temperature and the shooting method for the numerical investigation. Our numerical and analytical results indicate that higher curvature corrections affect condensation of the holographic superconductors with backreaction. We observe that the backreaction can decrease the critical temperature of the holographic superconductors, while the power-Maxwell electrodynamics and Gauss-Bonnet coefficient term may increase the critical temperature of the holographic superconductors. We find that the critical exponent has the mean-field value β = 1/2, regardless of the values of Gauss-Bonnet coefficient, backreaction and power-Maxwell parameters. (orig.)

  13. Comments on entanglement negativity in holographic field theories

    Science.gov (United States)

    Rangamani, Mukund; Rota, Massimiliano

    2014-10-01

    We explore entanglement negativity, a measure of the distillable entanglement contained in a quantum state, in relativistic field theories in various dimensions. We first give a general overview of negativity and its properties and then explain a well known result relating (logarithmic) negativity of pure quantum states to the Rényi entropy (at index 1/2), by exploiting the simple features of entanglement in thermal states. In particular, we show that the negativity of the thermofield double state is given by the free energy difference of the system at temperature T and 2 T respectively. We then use this result to compute the negativity in the vacuum state of conformal field theories in various dimensions, utilizing results that have been derived for free and holographic CFTs in the literature. We also comment upon general lessons to be learnt about negativity in holographic field theories.

  14. Quantum Critical Behavior of One-Dimensional Soft Bosons in the Continuum

    Science.gov (United States)

    Rossotti, Stefano; Teruzzi, Martina; Pini, Davide; Galli, Davide Emilio; Bertaina, Gianluca

    2017-11-01

    We consider a zero-temperature one-dimensional system of bosons interacting via the soft-shoulder potential in the continuum, typical of dressed Rydberg gases. We employ quantum Monte Carlo simulations, which allow for the exact calculation of imaginary-time correlations, and a stochastic analytic continuation method, to extract the dynamical structure factor. At finite densities, in the weakly interacting homogeneous regime, a rotonic spectrum marks the tendency to clustering. With strong interactions, we indeed observe cluster liquid phases emerging, characterized by the spectrum of a composite harmonic chain. Luttinger theory has to be adapted by changing the reference lattice density field. In both the liquid and cluster liquid phases, we find convincing evidence of a secondary mode, which becomes gapless only at the transition. In that region, we also measure the central charge and observe its increase towards c =3 /2 , as recently evaluated in a related extended Bose-Hubbard model, and we note a fast reduction of the Luttinger parameter. For two-particle clusters, we then interpret such observations in terms of the compresence of a Luttinger liquid and a critical transverse Ising model, related to the instability of the reference lattice density field towards coalescence of sites, typical of potentials which are flat at short distances. Even in the absence of a true lattice, we are able to evaluate the spatial correlation function of a suitable pseudospin operator, which manifests ferromagnetic order in the cluster liquid phase, exponential decay in the liquid phase, and algebraic order at criticality.

  15. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories

    Science.gov (United States)

    Blake, Mike

    2016-08-01

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by Dc=C vB2/(2 π T ), where vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

  16. Charge diffusion and the butterfly effect in striped holographic matter

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)

    2016-10-26

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  17. Charge diffusion and the butterfly effect in striped holographic matter

    Science.gov (United States)

    Lucas, Andrew; Steinberg, Julia

    2016-10-01

    Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.

  18. Extracting Entanglement Geometry from Quantum States.

    Science.gov (United States)

    Hyatt, Katharine; Garrison, James R; Bauer, Bela

    2017-10-06

    Tensor networks impose a notion of geometry on the entanglement of a quantum system. In some cases, this geometry is found to reproduce key properties of holographic dualities, and subsequently much work has focused on using tensor networks as tractable models for holographic dualities. Conventionally, the structure of the network-and hence the geometry-is largely fixed a priori by the choice of the tensor network ansatz. Here, we evade this restriction and describe an unbiased approach that allows us to extract the appropriate geometry from a given quantum state. We develop an algorithm that iteratively finds a unitary circuit that transforms a given quantum state into an unentangled product state. We then analyze the structure of the resulting unitary circuits. In the case of noninteracting, critical systems in one dimension, we recover signatures of scale invariance in the unitary network, and we show that appropriately defined geodesic paths between physical degrees of freedom exhibit known properties of a hyperbolic geometry.

  19. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  20. Volume holographic memory

    Directory of Open Access Journals (Sweden)

    Cornelia Denz

    2000-05-01

    Full Text Available Volume holography represents a promising alternative to existing storage technologies. Its parallel data storage leads to high capacities combined with short access times and high transfer rates. The design and realization of a compact volume holographic storage demonstrator is presented. The technique of phase-coded multiplexing implemented to superimpose many data pages in a single location enables to store up to 480 holograms per storage location without any moving parts. Results of analog and digital data storage are shown and real time optical image processing is demonstrated.

  1. Laser adaptive holographic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2016-03-31

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  2. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  3. Generalized holographic cosmology

    Science.gov (United States)

    Banerjee, Souvik; Bhowmick, Samrat; Sahay, Anurag; Siopsis, George

    2013-04-01

    We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditions on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newton's constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.

  4. Fischler Susskind holographic cosmology revisited

    Science.gov (United States)

    Diaz, Pablo; Per, M. A.; Segui, Antonio

    2007-11-01

    When Fischler and Susskind proposed a holographic prescription based on the particle horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the particle horizon area. In this paper, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid this problem if they expand fast enough. It has also been shown that the holographic principle is saturated for a codimension one-brane dominated universe. The Fischler Susskind prescription is used to obtain the maximum number of degrees of freedom per Planck volume at the Planck era compatible with the holographic principle.

  5. Holographic Lattices Give the Graviton a Mass

    CERN Document Server

    Blake, Mike; Vegh, David

    2014-01-01

    We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.

  6. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  7. The traveltime holographic principle

    KAUST Repository

    Huang, Y.

    2014-11-06

    Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.

  8. Digital holographic microscopy

    Science.gov (United States)

    Barkley, Solomon; Dimiduk, Thomas; Manoharan, Vinothan

    Digital holographic microscopy is a 3D optical imaging technique with high temporal ( ms) and spatial ( 10 nm) precision. However, its adoption as a characterization technique has been limited due to the inherent difficulty of recovering 3D data from the holograms. Successful analysis has traditionally required substantial knowledge about the sample being imaged (for example, the approximate positions of particles in the field of view), as well as expertise in scattering theory. To overcome the obstacles to widespread adoption of holographic microscopy, we developed HoloPy - an open source python package for analysis of holograms and scattering data. HoloPy uses Bayesian statistical methods to determine the geometry and properties of discrete scatterers from raw holograms. We demonstrate the use of HoloPy to measure the dynamics of colloidal particles at interfaces, to ascertain the structures of self-assembled colloidal particles, and to track freely swimming bacteria. The HoloPy codebase is thoroughly tested and well-documented to facilitate use by the broader experimental community. This research is supported by NSF Grant DMR-1306410 and NSERC.

  9. How far can a pragmatist go into quantum theory? - A critical view of our current understanding of quantum phenomena

    CERN Document Server

    Sanz, A S

    2015-01-01

    To date, quantum mechanics has proven to be our most successful theoretical model. However, it is still surrounded by a "mysterious halo" that can be summarized in a simple but challenging question: Why quantum phenomena are not understood under the same logic as classical ones? Although this is an open question (probably without an answer), from a pragmatist's point of view there is still room enough to further explore the quantum world, marveling ourselves with new physical insights. We just need to look back in the historical evolution of the quantum theory and thoroughly reconsider three key issues: (1) how this has developed since its early stages at a conceptual level, (2) what kind of experiments can be performed at present in a laboratory, and (3) what nonstandard conceptual models are available to extract some extra information. This contribution is aimed at providing some answers (and, perhaps, also raising some issues) to these questions through one of such models, namely Bohmian mechanics, a hydro...

  10. S -duality for holographic p -wave superconductors

    Science.gov (United States)

    Gorsky, Alexander; Gubankova, Elena; Meyer, René; Zayakin, Andrey

    2017-11-01

    We consider the generalization of the S -duality transformation previously investigated in the context of the fractional quantum Hall effect (FQHE) and s -wave superconductivity to p -wave superconductivity in 2 +1 dimensions in the framework of the AdS /CFT correspondence. The vector Cooper condensate transforms under the S -duality action to the pseudovector condensate at the dual side. The 3 +1 -dimensional Einstein-Yang-Mills theory, the holographic dual to p -wave superconductivity, is used to investigate the S -duality action via the AdS /CFT correspondence. It is shown that, in order to implement the duality transformation, chemical potentials on both the electric and magnetic sides of the duality have to be introduced. A relation for the product of the non-Abelian conductivities in the dual models is derived. We also conjecture a flavor S -duality transformation in the holographic dual to 3 +1 -dimensional QCD low-energy QCD with non-Abelian flavor gauge groups. The conjectured S -duality interchanges isospin and baryonic chemical potentials.

  11. Random holographic "large worlds" with emergent dimensions

    Science.gov (United States)

    Trugenberger, Carlo A.

    2016-11-01

    I propose a random network model governed by a Gaussian weight corresponding to Ising link antiferromagnetism as a model for emergent quantum space-time. In this model, discrete space is fundamental, not a regularization; its spectral dimension ds is not a model input but is, rather, completely determined by the antiferromagnetic coupling constant. Perturbative terms suppressing triangles and favoring squares lead to locally Euclidean ground states that are Ricci flat "large worlds" with power-law extension. I then consider the quenched graphs of lowest energy for ds=2 and ds=3 , and I show how quenching leads to the spontaneous emergence of embedding spaces of Hausdorff dimension dH=4 and dH=5 , respectively. One of the additional, spontaneous dimensions can be interpreted as time, causality being an emergent property that arises in the large N limit (with N the number of vertices). For ds=2 , the quenched graphs constitute a discrete version of a 5D-space-filling surface with a number of fundamental degrees of freedom scaling like N2 /5, a graph version of the holographic principle. These holographic degrees of freedom can be identified with the squares of the quenched graphs, which, being triangle-free, are the fundamental area (or loop) quanta.

  12. Holographic free energy and thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)

    2016-12-15

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  13. Phase diagram and quantum criticality of disordered Majorana-Weyl fermions

    Science.gov (United States)

    Wilson, Justin; Pixley, Jed; Goswami, Pallab

    A three-dimensional px + ipy superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  14. Field-induced quantum criticality in the Kitaev system α -RuCl3

    Science.gov (United States)

    Wolter, A. U. B.; Corredor, L. T.; Janssen, L.; Nenkov, K.; Schönecker, S.; Do, S.-H.; Choi, K.-Y.; Albrecht, R.; Hunger, J.; Doert, T.; Vojta, M.; Büchner, B.

    2017-07-01

    α -RuCl3 has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaev's honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to 0.4 K in applied magnetic fields up to 9 T for fields parallel to the a b plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to μ0Hc≈6.9 T. Above Hc, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point at Hc; this is supported by universal scaling behavior near Hc. Remarkably, the data also reveal the existence of a small characteristic energy scale well below 1 meV, above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a J1-K1-Γ1-J3 honeycomb model.

  15. Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties

    Directory of Open Access Journals (Sweden)

    Liang BL

    2007-01-01

    Full Text Available AbstractInAs/GaAs heterostructures have been simultaneously grown by molecular beam epitaxy on GaAs (100, GaAs (100 with a 2° misorientation angle towards [01−1], and GaAs (n11B (n = 9, 7, 5 substrates. While the substrate misorientation angle increased from 0° to 15.8°, a clear evolution from quantum dots to quantum well was evident by the surface morphology, the photoluminescence, and the time-resolved photoluminescence, respectively. This evolution revealed an increased critical thickness and a delayed formation of InAs quantum dots as the surface orientation departed from GaAs (100, which was explained by the thermal-equilibrium model due to the less efficient of strain relaxation on misoriented substrate surfaces.

  16. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    Science.gov (United States)

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  17. Linearity of holographic entanglement entropy

    National Research Council Canada - National Science Library

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-01-01

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula...

  18. Adventures in Holographic Dimer Models

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  19. Adventures in holographic dimer models

    Science.gov (United States)

    Kachru, Shamit; Karch, Andreas; Yaida, Sho

    2011-03-01

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  20. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    Energy Technology Data Exchange (ETDEWEB)

    Helm, T. [MPI-CPFS (Germany); Bachmann, M. [MPI-CPFS (Germany); Moll, P.J.W. [MPI-CPFS (Germany); Balicas, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramshaw, Brad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcdonald, Ross David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bauer, Eric Dietzgen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ronning, Filip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-23

    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-Tc and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivity appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.

  1. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  2. Noncommutative effects of spacetime on holographic superconductors

    Directory of Open Access Journals (Sweden)

    Debabrata Ghorai

    2016-07-01

    Full Text Available The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  3. Noncommutative effects of spacetime on holographic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)

    2016-07-10

    The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  4. On holographic defect entropy

    Energy Technology Data Exchange (ETDEWEB)

    Estes, John [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom); Jensen, Kristan [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8W 3P6 (Canada); C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook,Stony Brook, NY 11794-3840 (United States); O’Bannon, Andy [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Tsatis, Efstratios [8 Kotylaiou Street, Athens 11364 (Greece); Wrase, Timm [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2014-05-19

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions.

  5. On holographic defect entropy

    Science.gov (United States)

    Estes, John; Jensen, Kristan; O'Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-05-01

    We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3 + 1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1 + 1)-dimensional field theories generalizes to higher dimensions.

  6. Holographic Vortex Coronagraph

    Science.gov (United States)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  7. Holographic versatile disc system

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi

    2005-09-01

    A Holographic Versatile Disc (HVD) system, using Collinear Technologies for a high capacity and high data transfer rates storage system, is proposed. With its unique configuration the optical pickup can be designed as small as a DVD's, and can be placed on one side of the disc. With the HVD's special structure, the system can servo the focus/track and locate reading/writing address. A unique selectable capacity recording format of HVD and its standardization activity are also introduced. Experimental and theoretical studies suggest that the tilt, wavelength, defocus and de-track margins are wide enough to miniaturize the HVD system at a low cost. HVD systems using Collinear Technologies will be compatible with existing disc storage systems, like CD and DVD, and will enable us to expand its applications into other optical information storage systems.

  8. Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2015-07-01

    Full Text Available The aim of the present letter is to find the holographic entanglement entropy (HEE in 2D holographic superconductors (HSC. Indeed, it is possible to compute the exact form of this entropy due to an advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression for HEE is obtained. In case the software cannot calculate minimal surface integrals analytically, it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We see that HEE changes linearly with belt angle. It's due to the extensivity of this type of entropy and the emergent of an entropic force. We find that the wider belt angle corresponds to a larger holographic surface. Another remarkable observation is that no “confinement/deconfinement” phase transition point exists in our 2D dual field theory. Furthermore, we observe that the slope of the HEE with respect to the temperature dSdT decreases, thanks to the emergence extra degree of freedom(s in low temperature system. A first order phase transition is detected near the critical point.

  9. Accurate Determination of the Quasiparticle and Scaling Properties Surrounding the Quantum Critical Point of Disordered Three-Dimensional Dirac Semimetals

    Science.gov (United States)

    Fu, Bo; Zhu, Wei; Shi, Qinwei; Li, Qunxiang; Yang, Jinlong; Zhang, Zhenyu

    2017-04-01

    Exploiting the enabling power of the Lanczos method in momentum space, we determine accurately the quasiparticle and scaling properties of disordered three-dimensional Dirac semimetals surrounding the quantum critical point separating the semimetal and diffusive metal regimes. We unveil that the imaginary part of the quasiparticle self-energy obeys a common power law before, at, and after the quantum phase transition, but the power law is nonuniversal, whose exponent is dependent on the disorder strength. More intriguingly, whereas a common power law is also found for the real part of the self-energy before and after the phase transition, a distinctly different behavior is identified at the critical point, characterized by the existence of a nonanalytic logarithmic singularity. This nonanalytical correction serves as the very basis for the unusual power-law behaviors of the quasiparticles and many other physical properties surrounding the quantum critical point. Our approach also allows the ready and reliable determination of the scaling properties of the correlation length and dynamical exponents. We further show that the central findings are valid for both uncorrelated and correlated disorder distributions and should be directly comparable with future experimental observations.

  10. Atomic spin-chain realization of a model for quantum criticality

    NARCIS (Netherlands)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be

  11. Holographic superconductor on Q-lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Peng; Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); Wu, Jian-Pin [Department of Physics, School of Mathematics and Physics, Bohai University,Jinzhou, 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Xian, Zhuo-Yu [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China)

    2015-02-10

    We construct the simplest gravitational dual model of a superconductor on Q-lattices. We analyze the condition for the existence of a critical temperature at which the charged scalar field will condense. In contrast to the holographic superconductor on ionic lattices, the presence of Q-lattices will suppress the condensate of the scalar field and lower the critical temperature. In particular, when the Q-lattice background is dual to a deep insulating phase, the condensation would never occur for some small charges. Furthermore, we numerically compute the optical conductivity in the superconducting regime. It turns out that the presence of Q-lattice does not remove the pole in the imaginary part of the conductivity, ensuring the appearance of a delta function in the real part. We also evaluate the gap which in general depends on the charge of the scalar field as well as the Q-lattice parameters. Nevertheless, when the charge of the scalar field is relatively large and approaches the probe limit, the gap becomes universal with ω{sub g}≃9T{sub c} which is consistent with the result for conventional holographic superconductors.

  12. Holographic Waveguided See-Through Display Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...

  13. 3D holographic printer: fast printing approach.

    Science.gov (United States)

    Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B

    2014-02-10

    This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.

  14. Magnetic phenomena in holographic superconductivity with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Aldo Dector

    2015-09-01

    Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

  15. Holographic Gratings for Slow-Neutron Optics

    Science.gov (United States)

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin

    2012-01-01

    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  16. String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals.

    Science.gov (United States)

    Janiszewski, Stefan; Karch, Andreas

    2013-02-22

    We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.

  17. Holographic framework for eternal inflation

    Science.gov (United States)

    Freivogel, Ben; Sekino, Yasuhiro; Susskind, Leonard; Yeh, Chen-Pin

    2006-10-01

    In this paper we provide some circumstantial evidence for a holographic duality between bubble nucleation in an eternally inflating universe and a Euclidean conformal field theory (CFT). The holographic correspondence (which is different than Strominger’s de Sitter (dS)/CFT duality) relates the decay of (3+1)-dimensional de Sitter space to a two-dimensional CFT. It is not associated with pure de Sitter space, but rather with Coleman-De Luccia bubble nucleation. Alternatively, it can be thought of as a holographic description of the open, infinite, Friedmann-Robertson-Walker (FRW) cosmology that results from such a bubble. The conjectured holographic representation is of a new type that combines holography with the Wheeler-DeWitt formalism to produce a Wheeler-DeWitt theory that lives on the spatial boundary of a k=-1 FRW cosmology. We also argue for a more ambitious interpretation of the Wheeler-DeWitt CFT as a holographic dual of the entire Landscape.

  18. Supersolid Phase Accompanied by a Quantum Critical Point in the Intermediate Coupling Regime of the Holstein Model

    Science.gov (United States)

    Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo

    2014-12-01

    We reveal that electron-phonon systems described by the Holstein model on a bipartite lattice exhibit, away from half filling, a supersolid (SS) phase characterized by coexisting charge order (CO) and superconductivity (SC), and an accompanying quantum critical point (QCP). The SS phase, demonstrated by the dynamical mean-field theory with a quantum Monte Carlo impurity solver, emerges in the intermediate-coupling regime, where the peak of the Tc dome is located and the metal-insulator crossover occurs. On the other hand, in the weak- and strong-coupling regimes the CO-SC boundary is of first order with no intervening SS phases. The QCP is associated with the continuous transition from SS to SC and characterized by a reentrant behavior of the SS around it. We further show that the SS-SC transition is hallmarked by diverging charge fluctuations and a kink (peak) in the superfluid density.

  19. Multispectral digital holographic microscopy with applications in water quality assessment

    Science.gov (United States)

    Kazemzadeh, Farnoud; Jin, Chao; Yu, Mei; Amelard, Robert; Haider, Shahid; Saini, Simarjeet; Emelko, Monica; Clausi, David A.; Wong, Alexander

    2015-09-01

    Safe drinking water is essential for human health, yet over a billion people worldwide do not have access to safe drinking water. Due to the presence and accumulation of biological contaminants in natural waters (e.g., pathogens and neuro-, hepato-, and cytotoxins associated with algal blooms) remain a critical challenge in the provision of safe drinking water globally. It is not financially feasible and practical to monitor and quantify water quality frequently enough to identify the potential health risk due to contamination, especially in developing countries. We propose a low-cost, small-profile multispectral (MS) system based on Digital Holographic Microscopy (DHM) and investigate methods for rapidly capturing holographic data of natural water samples. We have developed a test-bed for an MSDHM instrument to produce and capture holographic data of the sample at different wavelengths in the visible and the near Infra-red spectral region, allowing for resolution improvement in the reconstructed images. Additionally, we have developed high-speed statistical signal processing and analysis techniques to facilitate rapid reconstruction and assessment of the MS holographic data being captured by the MSDHM instrument. The proposed system is used to examine cyanobacteria as well as Cryptosporidium parvum oocysts which remain important and difficult to treat microbiological contaminants that must be addressed for the provision of safe drinking water globally.

  20. On holographic entanglement density

    Science.gov (United States)

    Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie

    2017-10-01

    We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.

  1. Holography as a principle in quantum gravity?-Some historical and systematic observations

    Science.gov (United States)

    Sieroka, Norman; Mielke, Eckehard W.

    2014-05-01

    Holography is a fruitful concept in modern physics. However, there is no generally accepted definition of the term, and its significance, especially as a guiding principle in quantum gravity, is rather uncertain. The present paper critically evaluates variants of the holographic principle from two perspectives: (i) their relevance in contemporary approaches to quantum gravity and in closely related areas; (ii) their historical forerunners in the early twentieth century and the role played by past and present concepts of holography in attempts to unify physics. By combining these two perspectives a certain depth of focus is gained which allows us to draw some tentative conclusions about what might be reasonable aspirations and prospects for holography in quantum gravity. By the same token, we will have a brief and critical look at wider philosophical interpretations of the term.

  2. Advances with holographic DESA emulsions

    Science.gov (United States)

    Dünkel, Lothar; Eichler, Jürgen; Schneeweiss, Claudia; Ackermann, Gerhard

    2006-02-01

    DESA emulsions represent layer systems based on ultra-fine grained silver halide (AgX) technology. The new layers have an excellent performance for holographic application. The technology has been presented repeatedly in recent years, including the emulsion characterization and topics of chemical and spectral sensitization. The paper gives a survey of actual results referring to panchromatic sensitization and other improvements like the application of silver halide sensitized gelatine (SHSG) procedure. These results are embedded into intensive collaborations with small and medium enterprises (SME's) to commercialize DESA layers. Predominant goals are innovative products with holographic components and layers providing as well as cost effectiveness and high quality.

  3. Pinning of holographic sliding stripes

    Science.gov (United States)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2017-11-01

    In a holographic probe-brane model exhibiting a spontaneously spatially modulated ground state, we introduce explicit sources of symmetry breaking in the form of ionic and antiferromagnetic lattices. For the first time in a holographic model, we demonstrate pinning, in which the translational Goldstone mode is lifted by the introduction of explicit sources of translational symmetry breaking. The numerically computed optical conductivity fits very well to a Drude-Lorentz model with a small residual metallicity, precisely matching analytic formulas for the DC conductivity. We also find an instability of the striped phase in the presence of a large-amplitude ionic lattice.

  4. Proximity of the Superconducting Dome and the Quantum Critical Point in the Two-Dimensional Hubbard Model

    Science.gov (United States)

    Yang, S.-X.; Fotso, H.; Su, S.-Q.; Galanakis, D.; Khatami, E.; She, J.-H.; Moreno, J.; Zaanen, J.; Jarrell, M.

    2011-01-01

    We use the dynamical cluster approximation to understand the proximity of the superconducting dome to the quantum critical point in the two-dimensional Hubbard model. In a BCS formalism, Tc may be enhanced through an increase in the d-wave pairing interaction (Vd) or the bare pairing susceptibility (χ0d). At optimal doping, where Vd is revealed to be featureless, we find a power-law behavior of χ0d(ω=0), replacing the BCS log, and strongly enhanced Tc. We suggest experiments to verify our predictions.

  5. Novel quantum criticality in CeRu2Si2 near absolute zero observed by thermal expansion and magnetostriction.

    Science.gov (United States)

    Yoshida, J; Abe, S; Takahashi, D; Segawa, Y; Komai, Y; Tsujii, H; Matsumoto, K; Suzuki, H; Onuki, Y

    2008-12-19

    We report linear thermal expansion and magnetostriction measurements for CeRu2Si2 in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.

  6. Holographic study of the QCD matter under external conditions

    Directory of Open Access Journals (Sweden)

    Katanaeva Alisa

    2017-01-01

    We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.

  7. Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs{sub 2}CuCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cong, P. T., E-mail: t.pham@hzdr.de [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Postulka, L.; Wolf, B.; Ritter, F.; Assmus, W.; Krellner, C.; Lang, M., E-mail: michael.lang@physik.uni-frankfurt.de [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Well, N. van [Physics Institute, Goethe University Frankfurt, D-60438 Frankfurt am Main (Germany); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2016-10-14

    Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs{sub 2}CuCl{sub 4} were performed for the longitudinal modes c{sub 11} and c{sub 33} in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at T{sub N}. Isothermal measurements at T < T{sub N} of the sound attenuation α reveal two closely spaced features of different characters on approaching the material's quantum-critical point (QCP) at B{sub s} ≈ 8.5 T for B || a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature T{sub N}(B). The second anomaly, which is rounded and which becomes reduced in size upon cooling, is assigned to the material's spin-liquid properties preceding the long-range antiferromagnetic ordering with decreasing temperature. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/k{sub B} ≈ 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.

  8. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  9. Holographic Grating Study. Volume 1

    Science.gov (United States)

    1979-03-01

    EFFICIENCY GRATING ANALYSIS AND MEASUREMENT 167 4. 1 High-Efficiency Holographic Grating Desl ^ri Isaues .... 167 4.2 Computer Modeling of High...one or more higher orders is maximized . This distinguishes them from low-efficiency gratings which utilize the zero order at hi^h efficiency

  10. Picosecond Holographic-Grating Spectroscopy

    NARCIS (Netherlands)

    Duppen, K.

    1987-01-01

    Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves

  11. Holographic entanglement entropy for gravitational anomaly in four dimensions

    Science.gov (United States)

    Ali, Tibra; Haque, S. Shajidul; Murugan, Jeff

    2017-03-01

    We compute the holographic entanglement entropy for the anomaly polynomial Tr R 2 in 3+1 dimensions. Using the perturbative method developed for computing entanglement entropy for quantum field theories, we also compute the parity odd contribution to the entanglement entropy of the dual field theory that comes from a background gravitational Chern-Simons term. We find that, in leading order in the perturbation of the background geometry, the two contributions match except for a logarithmic divergent term on the field theory side. We interpret this extra contribution as encoding our ignorance of the source which creates the perturbation of the geometry.

  12. TASI Lectures on Holographic Space-Time, SUSY, and Gravitational Effective Field Theory

    Science.gov (United States)

    Banks, Tom

    2012-11-01

    I argue that the conventional field theoretic notion of vacuum state is not valid in quantum gravity. The arguments use gravitational effective field theory, as well as results from string theory, particularly the AdS/CFT correspondence. Different solutions of the same low energy gravitational field equations correspond to different quantum systems, rather than different states in the same system. I then introduce holographic space-time a quasi-local quantum mechanical construction based on the holographic principle. I argue that models of quantum gravity in asymptotically flat space-time will be exactly super-Poincare invariant, because the natural variables of holographic space-time for such a system, are the degrees of freedom of massless superparticles. The formalism leads to a non-singular quantum Big Bang cosmology, in which the asymptotic future is required to be a de Sitter space, with cosmological constant (c.c.) determined by cosmological initial conditions. It is also approximately SUSic in the future, with the gravitino mass KΛ1/4.

  13. Matrix theory for baryons: an overview of holographic QCD for nuclear physics.

    Science.gov (United States)

    Aoki, Sinya; Hashimoto, Koji; Iizuka, Norihiro

    2013-10-01

    We provide, for non-experts, a brief overview of holographic QCD (quantum chromodynamics) and a review of the recent proposal (Hashimoto et al 2010 (arXiv:1003.4988[hep-th])) of a matrix-like description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for a generic number of flavors. This is consistent with a recent lattice QCD analysis for Nf = 2, 3 where the repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion analysis.

  14. Quantum Phase Transitions in Quantum Dots

    OpenAIRE

    Rau, I. G.; Amasha, S.; Oreg, Y.; Goldhaber-Gordon, D.

    2013-01-01

    This review article describes theoretical and experimental advances in using quantum dots as a system for studying impurity quantum phase transitions and the non-Fermi liquid behavior at the quantum critical point.

  15. Critical issues in the formation of quantum computer test structures by ion implantation

    OpenAIRE

    Schenkel, T; Lo, C. C.; Weis, C.D.; Schuh, A.; Persaud, A.; Bokor, J.

    2009-01-01

    The formation of quantum computer test structures in silicon by ion implantation enables the characterization of spin readout mechanisms with ensembles of dopant atoms and the development of single atom devices. We briefly review recent results in the characterization of spin dependent transport and single ion doping and then discuss the diffusion and segregation behaviour of phosphorus, antimony and bismuth ions from low fluence, low energy implantations as characterized through depth profil...

  16. Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal

    Science.gov (United States)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes G.

    2016-05-01

    There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor. This term originates from a quantum-theoretical treatment of the fluctuation-dissipation theorem (FDT). Is the zero-point term really there, or is it only an experimental artifact, due to the uncertainty principle, for phase-sensitive amplifiers? Could it be removed by renormalization of theories? We discuss some historical measurement schemes that do not lead to the effect predicted by the FDT, and we analyse new features that emerge when the consequences of the zero-point term are measured via the mean energy and force in a capacitor shunting the resistor. If these measurements verify the existence of a zero-point term in the noise, then two types of perpetual motion machines can be constructed. Further investigation with the same approach shows that, in the quantum limit, the Johnson-Nyquist formula is also invalid under general conditions even though it is valid for a resistor-antenna system. Therefore we conclude that in a satisfactory quantum theory of the Johnson noise, the FDT must, as a minimum, include also the measurement system used to evaluate the observed quantities. Issues concerning the zero-point term may also have implications for phenomena in advanced nanotechnology.

  17. Circuit complexity in quantum field theory

    Science.gov (United States)

    Jefferson, Robert A.; Myers, Robert C.

    2017-10-01

    Motivated by recent studies of holographic complexity, we examine the question of circuit complexity in quantum field theory. We provide a quantum circuit model for the preparation of Gaussian states, in particular the ground state, in a free scalar field theory for general dimensions. Applying the geometric approach of Nielsen to this quantum circuit model, the complexity of the state becomes the length of the shortest geodesic in the space of circuits. We compare the complexity of the ground state of the free scalar field to the analogous results from holographic complexity, and find some surprising similarities.

  18. Spin-liquid Mott quantum criticality in two dimensions: Destabilization of a spinon Fermi surface and emergence of one-dimensional spin dynamics

    Science.gov (United States)

    Han, Jae-Ho; Cho, Yong-Heum; Kim, Ki-Seok

    2017-06-01

    Resorting to a recently developed theoretical device called dimensional regularization for quantum criticality with a Fermi surface, we examine a metal-insulator quantum phase transition from a Landau's Fermi-liquid state to a U(1) spin-liquid phase with a spinon Fermi surface in two dimensions. Unfortunately, we fail to approach the spin-liquid Mott quantum critical point from the U(1) spin-liquid state within the dimensional regularization technique. Self-interactions between charge fluctuations called holons are not screened, which shows a run-away renormalization group flow, interpreted as holons remain gapped. This leads us to consider another fixed point, where the spinon Fermi surface can be destabilized across the Mott transition. Based on this conjecture, we reveal the nature of the spin-liquid Mott quantum critical point: Dimensional reduction to one dimension occurs for spin dynamics described by spinons. As a result, Landau damping for both spin and charge dynamics disappear in the vicinity of the Mott quantum critical point. When the flavor number of holons is over its critical value, an interacting fixed point appears to be identified with an inverted X Y universality class, controlled within the dimensional regularization technique. On the other hand, a fluctuation-driven first order metal-insulator transition results when it is below the critical number. We propose that the destabilization of a spinon Fermi surface and the emergence of one-dimensional spin dynamics near the spin-liquid Mott quantum critical point can be checked out by spin susceptibility with a 2 kF transfer momentum, where kF is a Fermi momentum in the U(1) spin-liquid state: The absence of Landau damping in U(1) gauge fluctuations gives rise to a divergent behavior at zero temperature while it vanishes in the presence of a spinon Fermi surface.

  19. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system.

    Science.gov (United States)

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju

    2017-08-21

    Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

  20. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black ...

  1. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  2. Holographic P -wave superconductors in 1 +1 dimensions

    Science.gov (United States)

    Alkac, Gokhan; Chakrabortty, Shankhadeep; Chaturvedi, Pankaj

    2017-10-01

    We study (1 +1 )-dimensional P -wave holographic superconductors described by three- dimensional Einstein-Maxwell gravity coupled to a massive complex vector field in the context of AdS3/CFT2 correspondence. In the probe limit, where the backreaction of matter fields is neglected, we show that there is a formation of a vector hair around the black hole below a certain critical temperature. In the dual strongly coupled (1 +1 )-dimensional boundary theory, this holographically corresponds to the formation of a charged vector condensate which breaks spontaneously both the U (1 ) and S O (1 ,1 ) symmetries. We numerically compute both the free energy and the ac conductivity for the superconducting phase of the boundary field theory. Our numerical computations clearly establish that the superconducting phase of the boundary theory is favorable to the normal phase, and the presence of a magnetic moment term in the dual bulk theory effects the conductivity in the boundary field theory.

  3. Strong valence fluctuation in the quantum critical heavy fermion superconductor β-YbAlB4: a hard x-ray photoemission study.

    Science.gov (United States)

    Okawa, M; Matsunami, M; Ishizaka, K; Eguchi, R; Taguchi, M; Chainani, A; Takata, Y; Yabashi, M; Tamasaku, K; Nishino, Y; Ishikawa, T; Kuga, K; Horie, N; Nakatsuji, S; Shin, S

    2010-06-18

    Electronic structures of the quantum critical superconductor β-YbAlB4 and its polymorph α-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ∼2.73 and ∼2.75 for α- and β-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in β-YbAlB4.

  4. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  5. Applications of Holographic Duality: Black Hole Metals and Supergravity Superconductors

    Science.gov (United States)

    Henriksson, Oscar Karl Johannes

    We apply holographic duality to the study of strongly interacting quantum matter. The correspondence between the four-dimensional N = 8 gauged supergravity and the three-dimensional superconformal ABJM quantum field theory allows us to study the latter theory by performing computations in the former. Asymptotically anti-de Sitter spacetimes satisfying the classical supergravity equations of motion are interpreted as states of strongly interacting ABJM theory. If such a spacetime sources an electric field, the dual state is at non-zero charge density. Interesting observables of such states include spectral functions of fermionic operators--we compute these by solving Dirac equations in a variety of spacetimes. In a family of extremal charged black holes, we find Fermi surface singularities with non-Fermi liquid characteristics. In a special "three-charge" black hole, an interval appears in the spectral functions within which the fermionic excitations are perfectly stable. We then study three different domain wall spacetimes dual to zero-temperature states with a broken U(1) symmetry. In these "holographic superconductors", we find features similar to conventional superconductors such as the development of a gap in the fermionic spectra. Finally, we investigate the question of how bosonic properties, for example susceptibilities, are affected by fermionic properties, such as Fermi surface singularities, in holographic states of matter. We do this by computing the static charge susceptibility in the three-charge black hole state. Our results reveal singularities at complex momenta, with a real part approximately equal to the largest Fermi momentum in the state.

  6. Thermodynamics of the quantum critical point at finite doping in the two-dimensional Hubbard model studied via the dynamical cluster approximation

    Science.gov (United States)

    Mikelsons, Karlis; Khatami, Ehsan; Galanakis, Dimitrios; Macridin, Alexandru; Moreno, Juana; Jarrell, Mark

    2010-03-01

    We study the thermodynamics of the two-dimensional Hubbard model within the dynamical cluster approximation. We use continuous time quantum Monte Carlo as a cluster solver to avoid the systematic error which complicates the calculation of the entropy and potential energy (double occupancy). We find that at a critical filling, there is a pronounced peak in the entropy divided by temperature, S/T, and in the normalized double occupancy as a function of doping. At this filling, we find that specific heat divided by temperature, C/T, increases strongly with decreasing temperature and kinetic and potential energies vary like T^2 T. These are all characteristics of quantum critical behavior.

  7. Asymptotically optimal probes for noisy interferometry via quantum annealing to criticality

    Science.gov (United States)

    Durkin, Gabriel A.

    2016-10-01

    Quantum annealing is explored as a resource for quantum information beyond solution of classical combinatorial problems. Envisaged as a generator of robust interferometric probes, we examine a Hamiltonian of N ≫1 uniformly coupled spins subject to a transverse magnetic field. The discrete many-body problem is mapped onto dynamics of a single one-dimensional particle in a continuous potential. This reveals all the qualitative features of the ground state beyond typical mean-field or large classical spin models. It illustrates explicitly a graceful warping from an entangled unimodal to bimodal ground state in the phase transition region. The transitional "Goldilocks" probe has a component distribution of width N2 /3 and exhibits characteristics for enhanced phase estimation in a decoherent environment. In the presence of realistic local noise and collective dephasing, we find this probe state asymptotically saturates ultimate precision bounds calculated previously. By reducing the transverse field adiabatically, the Goldilocks probe is prepared in advance of the minimum gap bottleneck, allowing the annealing schedule to be terminated "early." Adiabatic time complexity of probe preparation is shown to be linear in N .

  8. Holographic reflector for reflective LCDs

    Science.gov (United States)

    Sato, Atsushi; Murillo-Mora, Luis M.; Iwata, Fujio

    1997-05-01

    We describe a new holographic optical element to improve the image's quality of a reflective liquid crystal displays (LCDs). This new holographic reflector consists basically of 2 layers: a volume type transmission hologram layer and a metallic reflection layer. Compared with conventional reflectors for reflective LCDs, a high optical efficiency can be obtained because the hologram is able to concentrate the reflected light to the observer's eyes. Also, it avoids the problems of glare in the LCDs by deviating the reflected incident light (used for display) away from the direction of the direct reflection light. The transmission hologram's low wavelength selectivity permits us to obtain a near white color reflector for reflective LCDs which for multiple applications is the preferable color for the background.

  9. Holographic renormalization in teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krssak, Martin [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-01-15

    We consider the problem of IR divergences of the action in the covariant formulation of teleparallel gravity in asymptotically Minkowski spacetimes. We show that divergences are caused by inertial effects and can be removed by adding an appropriate surface term, leading to the renormalized action. This process can be viewed as a teleparallel analog of holographic renormalization. Moreover, we explore the variational problem in teleparallel gravity and explain how the variation with respect to the spin connection should be performed. (orig.)

  10. Photopolymerizable Nanocomposites for Holographic Applications

    OpenAIRE

    Leite, Elsa

    2010-01-01

    Photopolymerizable nanocomposites with good optical properties consisting of an acrylamide based photopolymer and zeolite nanoparticles (Beta, zeolite A, AlPO-18, silicalite-1 and zeolite L) were fabricated and characterized for holographic applications. The colloidal zeolite solutions used in this project were characterized by several techniques including X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM) and Raman spectroscopy to ensure their success...

  11. Constructive use of holographic projections

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)

    2008-07-01

    Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)

  12. Engineering Holographic Superconductor Phase Diagrams

    OpenAIRE

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two ord...

  13. Non-Fermi Liquid Behavior Close to a Quantum Critical Point in a Ferromagnetic State without Local Moments

    Directory of Open Access Journals (Sweden)

    E. Svanidze

    2015-03-01

    Full Text Available A quantum critical point (QCP occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid behavior, manifested in the logarithmic divergence of the specific heat both in the ferro-and the paramagnetic states, as well as linear temperature dependence of the low-temperature resistivity. With doping, critical scaling is observed close to the QCP, as the critical exponents δ, γ, and β have weak composition dependence, with δ nearly twice and β almost half of their respective mean-field values. The unusually large paramagnetic moment μ_{PM}∼1.3μ_{B}/F.U. is nearly composition independent. Evidence for strong spin fluctuations, accompanying the QCP at x_{c}=0.035±0.005, may be ascribed to the reduced dimensionality of Sc_{3.1}In, associated with the nearly one-dimensional Sc-In chains.

  14. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6.

    Science.gov (United States)

    Liang, Tian; Koohpayeh, S M; Krizan, J W; McQueen, T M; Cava, R J; Ong, N P

    2015-07-06

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition.

  15. Holographic cosmology from BIonic solutions

    Science.gov (United States)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2017-02-01

    In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.

  16. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  17. Medical applications of holographic stereograms

    Science.gov (United States)

    Tsujiuchi, Jumpei

    1991-02-01

    A method for displaying 3D images of medical objects by using holographic stereogram is described together with basic properties of reconstructed images of cylindrical holographic stereograms. INTRODUCTI ON A holographic stereogram (HS) is a synthesized hologram from an original film which consists of a series of ordinary photographs taken from different directions of an object and is possible to apply to an object whose hologram is very difficult or impossible to take with conventional techniques [U. Such a feature of HS can be used for 3D display of medical images such as X-ray images computer assisted tomogrphy (CT) images nuclear magnetic reasonance images (MRI) or ultrasonic images of a patient. CYLINDRICAL HOLOGRAPHI C STEREOGRAMS The original film of the medical HS is taken by rotating around the body axis of a patient a U-shaped arm equipment one end of which has a pulse X-ray source and the other end a movie camera with an image intensifier [2]. Synthesis of HS is carried out by using a special optical system the hologram is shaped into a cylinder and is reconstructed by illuminating the hologram with a small white light source located on the axis of the cylinder. Such a HS is called multiplex hologram (MH) the most popular HS and the reconstructed image can be observed in the cylinder. The formation of reconstructed image is made in unusual way and fundamental properties

  18. Holographic entanglement entropy in superconductor phase transition with dark matter sector

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2015-11-01

    Full Text Available In this paper, we investigate the holographic phase transition with dark matter sector in the AdS black hole background away from the probe limit. We discuss the properties of phases mostly from the holographic topological entanglement entropy of the system. We find the entanglement entropy is a good probe to the critical temperature and the order of the phase transition in the general model. The behaviors of entanglement entropy at large strip size suggest that the area law still holds when including dark matter sector. We also conclude that the holographic topological entanglement entropy is useful in detecting the stability of the phase transitions. Furthermore, we derive the complete diagram of the effects of coupled parameters on the critical temperature through the entanglement entropy and analytical methods.

  19. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2017-02-01

    Full Text Available We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  20. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan, E-mail: yanpengphy@163.com [School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165 (China); School of Mathematics and Computer Science, Shaanxi Sci-Tech University, Hanzhong, Shaanxi 723000 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Liu, Yunqi, E-mail: liuyunqi@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2017-02-15

    We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  1. Steady-State Dynamics and Effective Temperature for a Model of Quantum Criticality in an Open System.

    Science.gov (United States)

    Ribeiro, P; Zamani, F; Kirchner, S

    2015-11-27

    We study the thermal and nonthermal steady-state scaling functions and the steady-state dynamics of a model of local quantum criticality. The model we consider, i.e., the pseudogap Kondo model, allows us to study the concept of effective temperatures near fully interacting as well as weak-coupling fixed points. In the vicinity of each fixed point we establish the existence of an effective temperature-different at each fixed point-such that the equilibrium fluctuation-dissipation theorem is recovered. Most notably, steady-state scaling functions in terms of the effective temperatures coincide with the equilibrium scaling functions. This result extends to higher correlation functions as is explicitly demonstrated for the Kondo singlet strength. The nonlinear charge transport is also studied and analyzed in terms of the effective temperature.

  2. Glueball-baryon interactions in holographic QCD

    Science.gov (United States)

    Li, Si-Wen

    2017-10-01

    Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.

  3. The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, Mohamed Saladin [Department of Physics, Alexandria University, Alexandria (Egypt); Department of Astrophysics, Cairo University, Cairo (Egypt); Department of Physics, Mansura University (Egypt)

    2006-02-01

    An idealized two-slit experiment is envisaged in which the hypothetical experimental set-up is constructed in such a way as to resemble a toy model giving information about the structure of quantum space-time itself. Thus starting from a very simple equation which may be interpreted as a physical realization of Goedel's undecidability theorem, we proceed to show that space-time is very likely to be akin to a fuzzy Kaehler-like manifold on the quantum level. This remarkable manifold transforms gradually into a classical space-time as we decrease the resolution in a way reversibly analogous to the processes of recovering classical space-time from the Riemannian space of general relativity. The paper's main philosophy is to emphasize that the quintessence of the two-slit experiment as well as Feynman's path integral could be given a different interpretation by altering our classical concept of space-time geometry and topology. In turn this would be in keeping with the development in theoretical physics since special and subsequently general relativity. In the final analysis it would seem that we have two different yet, from a positivistic philosophy viewpoint, completely equivalent alternatives to view quantum physics. Either we insist on what we see in our daily experiences, namely, a smooth four-dimensional space-time, and then accept, whether we like it or not, things such as probability waves and complex probabilities. Alternatively, we could see behind the facade of classical space-time a far more elaborate and highly complex fuzzy space-time with infinite hierarchical dimensions such as the so-called Fuzzy K3 or E-Infinity space-time and as a reward for this imaginative picture we can return to real probabilities without a phase and an almost classical picture with the concept of a particle's path restored. We say almost classical because non-linear dynamics and deterministic chaos have long shown the central role of randomness in classical

  4. Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence.

    Science.gov (United States)

    Chitambar, Eric; Gour, Gilad

    2016-07-15

    Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.

  5. Resistivity of a non-galilean-invariant Fermi liquid near Pomeranchuk quantum criticality.

    Science.gov (United States)

    Maslov, Dmitrii L; Yudson, Vladimir I; Chubukov, Andrey V

    2011-03-11

    We analyze the effect of the electron-electron interaction on the resistivity of a metal near a Pomeranchuk quantum phase transition (QPT). We show that umklapp processes are not effective near a QPT, and one must consider both interactions and disorder to obtain a finite and T dependent resistivity. By power counting, the correction to the residual resistivity at low T scales as AT((D+2)/3) near a Z=3 QPT. We show, however, that A=0 for a simply connected, convex Fermi surface in 2D, due to the hidden integrability of the electron motion. We argue that A>0 in a two-band (s-d) model and propose this model as an explanation for the observed T((D+2)/3) behavior.

  6. Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations

    Energy Technology Data Exchange (ETDEWEB)

    Çakmak, B., E-mail: cakmakb@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956 (Turkey); Karpat, G.; Gedik, Z. [Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956 (Turkey)

    2012-10-01

    We investigate the thermal quantum and total correlations in the anisotropic XY spin chain in transverse field. While we adopt concurrence and geometric quantum discord to measure quantum correlations, we use measurement-induced non-locality and an alternative quantity defined in terms of Wigner–Yanase information to quantify total correlations. We show that the ability of these measures to estimate the critical point at finite temperature strongly depend on the anisotropy parameter of the Hamiltonian. We also identify a correlation measure which detects the factorized ground state in this model. Furthermore, we study the effect of temperature on long-range correlations. -- Highlights: ► Thermal quantum and total correlations in anisotropic XY spin chain are analyzed. ► All considered measures are able to detect the critical point of the transition. ► Effects of finite temperature on the estimation of critical points is studied. ► Detection of the factorized ground state using correlation measures is discussed. ► Long-range behavior of thermal quantum and total correlations are investigated.

  7. Digital Holographic Interferometry for Airborne Particle Characterization

    Science.gov (United States)

    2015-03-19

    and its extinction cross section, and a computational demonstration that holographic interferometry can resolve aerosol particle size evolution ...hologram and its extinction cross section, and a computational demonstration that holographic interferometry can resolve aerosol particle size... evolution . 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING

  8. System for coherence-controlled holographic microscopy of living cells

    Science.gov (United States)

    Antoš, Martin; Čolláková, Jana; Veselý, Pavel; Chmelík, Radim; Křížová, Aneta

    2012-01-01

    Coherence Controlled Holographic Microscopy (CCHM) is a novel holographic technique for quantitative-phasecontrast (QPC) biological observations particularly of living cells. Owing to the ordinary (low coherence) illumination source, the CCHM images are of low noise, deprived of coherence noise (speckles) and the lateral resolution is improved by a factor of 2 compared to classic holographic microscopes. Long-lasting time-lapse experiments require elimination of the CCHM optical system instability in order to achieve precise QPC measurement and to maintain correct CCHM adjustment for its low-coherence operation. The critical part of CCHM is the interferometer, which is very sensitive to temperature fluctuations and air turbulences. The temperature stabilization of the whole microscope without air turbulences is therefore required to provide stability for long-term observations of living cells. Novel heated microscope box and stage designed and constructed for this purpose are described in the paper. The system maintains a constant temperature of both the microscope and of the sample set to 37 °C thus providing optimal living conditions for living human and animal cells. The system is completed with a novel flow-chamber for living-cells accommodation during observation. A service of the system to CCHM is demonstrated by a series of pictures of growing cells.

  9. Notes on theta dependence in holographic Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, Francesco [INFN - Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [Dipartimento di Fisica e Astronomia, Università di Firenze and INFN - Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Sisca, Roberto [Università di Pisa, Dipartimento di Fisica “E. Fermi' ,Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)

    2015-08-18

    Effects of the θ parameter are studied in Witten’s model of holographic 4d Yang-Mills, where θ is the coefficient of the CP-breaking topological term. First, the gravity background, including the full backreaction of the RR form dual to the θ parameter, is revisited. Then, a number of observables are computed holographically: the ground-state energy density, the string tension, the ’t Hooft loop, the light scalar glueball mass, the baryon mass scale, the critical temperature for deconfinement — and thus the whole (T,θ) phase diagram — and the entanglement entropy. A simple rule is provided to derive the θ corrections to (at least) all the CP-neutral observables of the model. Some of the observables we consider can and have been in fact studied in pure 4d Yang-Mills on the lattice. In that framework the results, obtained in the small θ regime, are given up to very few powers of θ{sup 2}. The corresponding holographic results agree qualitatively with available lattice data and signal an overall mass scale reduction by θ. Moreover, being exact in θ, they provide a benchmark for higher order corrections in Yang-Mills.

  10. Holographic complexity for time-dependent backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-11-10

    In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.

  11. 2D quantum field theories away from criticality: Finite-size scaling, the C-theorem and the S-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, N.E. (Oxford Univ. (UK). Dept. of Theoretical Physics Hertford Coll., Oxford (UK)); Miramontes, J.L.; Sanchez de Santos, J.M. (Universidad de Santiago de Compostela (Spain). Dept. de Particulas Elementales)

    1990-08-01

    Issues concerning the behavior of renormalizable 2D quantum field theories away from criticality are addressed. Connection of Zamolodchikov's c-function with the generating functional of connected correlators is established using a finite-size scaling approach. (orig.).

  12. Structural disorder study of d- and f-metals close to ferromagnetic quantum critical point

    Science.gov (United States)

    Lussier, Jean-Guy; Gebretsadik, Adane; Wang, Ruizhe; Schroeder, Almut; Page, Katharine

    We present low temperature neutron diffraction data and pair distribution function analysis of two ferromagnetic alloys which can be driven to a paramagnetic phase by chemical substitution. Both series show indication that magnetic inhomogeneities like magnetic clusters play an important role for this magnetic quantum phase transition. All Ni1-xVx polycrystalline samples up to x = 15 % crystallize in a single phase, random alloy FCC structure. The increase of lattice constant and the atomic displacement parameter can be explained by a random occupation of V- and Ni-ions on the lattice with a radius ratio of 1.05. This is sufficient to explain the magnetic cluster formation. All polycrystalline CePt1-xRhx samples as well as CePd1-xRhx samples with 0 . 2 atomic displacement parameters towards higher x > 0 . 5 indicate a large variation in Ce-Rh bond lengths. This disorder is created by the different Ce neighbor atoms, indicating Ce is mixed valent. (experiments performed at LANSCE, Los Alamos National Laboratory and SNS, Oak Ridge National Laboratory)

  13. Holographic two-point functions for 4d log-gravity

    NARCIS (Netherlands)

    Johansson, Niklas; Naseh, Ali; Zojer, Thomas

    We compute holographic one- and two-point functions of critical higher-curvature gravity in four dimensions. The two most important operators are the stress tensor and its logarithmic partner, sourced by ordinary massless and by logarithmic non-normalisable gravitons, respectively. In addition, the

  14. Holographic Read-Only Memory

    Science.gov (United States)

    Mok, F.; Zhou, G.; Psaltis, D.

    The most successful use of optical memories so far has been as read-only memories (ROM). A main reason for this success has been the availability of inexpensive methods to mass-produce copies of recorded disks. This has made it possible to publish data (audio, video, databases, computer games) and distribute it widely through normal retail channels. In this chapter, we show results of a holographic read-only memory (HROM) of which digital data on a master disk can be copied onto replicate disks efficiently.

  15. A Holographic Twin Higgs Model

    OpenAIRE

    Geller, Michael; Telem, Ofri

    2014-01-01

    We present a UV completion of the twin Higgs idea in the framework of holographic composite Higgs. The SM contribution to the Higgs potential is effectively cut off by the SM-singlet mirror partners at the sigma-model scale f, naturally allowing for m_{KK} beyond the LHC reach. The bulk symmetry is SU(7) X SO(8), broken on the IR brane into SU(7) X SO(7) and on the UV brane into (SU(3) X SU(2) X U(1))^{SM} X (SU(3) X SU(2) X U(1))^{mirror} X Z2. The field content on the UV brane is the SM, ex...

  16. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  17. Variable modified Chaplygin gas in the holographic dark energy scenario

    Science.gov (United States)

    Chattopadhyay, Surajit; Debnath, Ujjal

    2012-07-01

    The holographic principle emerged in the context of black-holes, where it was noted that a local quantum field theory can not fully describe the black holes [1]. Some long standing debates regarding the time evolution of a system, where a black hole forms and then evaporates, played the key role in the development of the holographic principle [2,3,4]. The Chaplygin gas is characterized by an exotic equation of state p=-B/ρ. where B is a positive constant. Role of Chaplygin gas in the accelerated universe has been studied by several authors. The above mentioned equation of state has been modified to p=-B/ρ^{α}, where α lies between 0 and 1. This equation has been further modified to p=-A+B/ρ^{α}. This is called the modified Chaplygin gas. Debnath [5] introduced a variable modified Chaplygin gas by considering B as a function of scale factor a. In this work, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology References: [1] K. Enqvist, S. Hannested and M. S. Sloth, JCAP 2, 004 (2005). [2] L. Thorlocius, hep-th/0404098. [3] G. T. Hooft, gr-qc/9310026. [4] L. Susskind, J. Math. Phys. 36, 6377 (1995). [5] U. Debnath, Astrophys. Space Sci. 312, 295 (2007).

  18. Holographic Floquet states I: a strongly coupled Weyl semimetal

    Science.gov (United States)

    Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi

    2017-05-01

    Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.

  19. Quantum gases. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas.

    Science.gov (United States)

    Navon, Nir; Gaunt, Alexander L; Smith, Robert P; Hadzibabic, Zoran

    2015-01-09

    Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3/2. Copyright © 2015, American Association for the Advancement of Science.

  20. Weyl holographic superconductor in the Lifshitz black hole background

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, S. A. Hosseini [Department of Physics, Boston University,590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, B. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mokhtari, A. [Department of Physics, Tarbiat Modares University,Tehran 14155-4838 (Iran, Islamic Republic of); Dezaki, F. Lalehgani; Sherkatghanad, Z. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-07-21

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω{sub g}/T{sub c}.

  1. Analogue holographic correspondence in optical metamaterials

    Science.gov (United States)

    Khveshchenko, D. V.

    2015-03-01

    We assess the prospects of using metamaterials for simulating various aspects of analogue gravity and holographic correspondence. Albeit requiring a careful engineering of the dielectric media, some hallmark features reminiscent of the hypothetical “generalized holographic conjecture” can be detected by measuring non-local optical field correlations. The possibility of such simulated behavior might also shed light on the true origin of those ostensibly holographic phenomena in the condensed-matter systems with emergent effective metrics which may not, in fact, require any reference to the string-theoretical holography.

  2. Holographic entanglement entropy on generic time slices

    Science.gov (United States)

    Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji

    2017-06-01

    We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.

  3. Vortex in holographic two-band superfluid/superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mu-Sheng [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); National Center of Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. (China); Wu, Shang-Yu [Department of Electrophysics and Shing-Tung Yau Center, National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C. (China); Zhang, Hai-Qing [Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2016-05-02

    We construct numerically static vortex solutions in a holographic model of two-band superconductor with an interband Josephson coupling in both the superfluid and superconductor regime. We investigate the effects of the interband coupling on the order parameter of each superconducting band in the vortex solution, and we find that it is different for each of the two bands. We compute also the free energy, critical magnetic field, magnetic penetration length and coherence lengths for the two bands, and we study their dependence on the interband coupling and temperature. Interestingly, we find that the coherence lengths of the two bands are close to identical.

  4. Bit Threads and Holographic Entanglement

    Science.gov (United States)

    Freedman, Michael; Headrick, Matthew

    2017-05-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  5. Universal far-from-equilibrium dynamics of a holographic superconductor

    Science.gov (United States)

    Sonner, Julian; Del Campo, Adolfo; Zurek, Wojciech H.

    2015-06-01

    Symmetry-breaking phase transitions are an example of non-equilibrium processes that require real-time treatment, a major challenge in strongly coupled systems without long-lived quasiparticles. Holographic duality provides such an approach by mapping strongly coupled field theories in D dimensions into weakly coupled quantum gravity in D+1 anti-de Sitter spacetime. Here we use holographic duality to study the formation of topological defects--winding numbers--in the course of a superconducting transition in a strongly coupled theory in a 1D ring. When the system undergoes the transition on a given quench time, the condensate builds up with a delay that can be deduced using the Kibble-Zurek mechanism from the quench time and the universality class of the theory, as determined from the quasinormal mode spectrum of the dual model. Typical winding numbers deposited in the ring exhibit a universal fractional power law dependence on the quench time, also predicted by the Kibble-Zurek Mechanism.

  6. Bounding the space of holographic CFTs with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)

    2016-10-13

    Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.

  7. Chemical pressure in SmNiC(2-x)B(x) compounds: evidence of a quantum critical behavior.

    Science.gov (United States)

    Morales, F; Mendivil, L F; Escamilla, R

    2014-11-12

    We studied the effect of carbon substituted by boron on polycrystalline samples of SmNiC(2) in the B content range 0 ⩽ x ⩽ 0.200. The structural parameters were determined from x-ray measurements by Rietveld analysis. The structural analysis shows that the cell volume increases as the B content increases indicating that the substitution produces an internal pressure. The samples were studied by resistance as a function of temperature from room temperature down to 2 K. The transition temperature of the charge density wave, TCDW = 148 K, decreases with an increment of B until the transition vanishes in the resistance measurements. At the same time, the ferromagnetic transition temperature changes showing a tiny dome with the B content, with a maximum transition temperature of ∼ 23.1 K. In addition, the resistance behaviour above the charge density wave is linear in temperature and this behaviour persists until the charge density wave disappears, suggesting that the system is a non-Fermi liquid. The resulting temperature--boron content phase--diagram indicates a quantum critical behaviour.

  8. Multiband nodeless superconductivity near the charge-density-wave quantum critical point in ZrTe3-x Se x

    Science.gov (United States)

    Shan, Cui; Lan-Po, He; Xiao-Chen, Hong; Xiang-De, Zhu; Cedomir, Petrovic; Shi-Yan, Li

    2016-07-01

    It was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe3. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe3-x Se x near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe3-x Se x single crystals (x = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term κ 0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ 0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe3-x Se x , which indicates conventional superconductivity despite of the existence of a CDW QCP. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB821402 and 2015CB921401), the National Natural Science Foundation of China (Grant Nos. 91421101, 11422429, and 11204312), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and STCSM of China (Grant No. 15XD1500200). Work at Brookhaven National Laboratory was supported by the US DOE under Contract No. DESC00112704.

  9. Unconventional superconductivity and an ambient-pressure magnetic quantum critical point in single-crystal LaNiC2

    Science.gov (United States)

    Landaeta, J. F.; Subero, D.; Machado, P.; Honda, F.; Bonalde, I.

    2017-11-01

    Superconductivity in noncentrosymmetric LaNiC2 is expected to be induced by electron-phonon interactions due to its lack of magnetic instabilities. The non-Bardeen-Cooper-Schrieffer (BCS) behaviors found in this material call into question the long-standing idea that relates unconventional superconductivity with magnetic interactions. Here we report magnetic penetration-depth measurements in a high-purity single crystal of LaNiC2 at pressures up to 2.5 GPa and temperatures down to 0.04 K. At ambient pressure and below 0.5 Tc the penetration depth goes as T4 for the in-plane and T2 for the out-of-plane component, firmly implying the existence of point nodes in the energy gap and the unconventional character of this superconductor. The present study also provides evidence of magnetism in LaNiC2 by unraveling a pressure-induced antiferromagnetic phase inside the superconducting state at temperatures below 0.5 K, with a quantum critical point around ambient pressure. The results presented here maintain a solid base for the notion that unconventional superconductivity only arises near magnetic order or fluctuations.

  10. Glueball–baryon interactions in holographic QCD

    Directory of Open Access Journals (Sweden)

    Si-Wen Li

    2017-10-01

    Full Text Available Studying the Witten–Sakai–Sugimoto model with type IIA string theory, we find the glueball–baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball–baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball–baryon interaction as “graviton–instanton” interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball–baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are “scalar and tensor glueball interacting with baryons”. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.

  11. G-corrected holographic dark energy model

    CERN Document Server

    Malekjani, M

    2013-01-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.

  12. Surface counterterms and regularized holographic complexity

    Science.gov (United States)

    Yang, Run-Qiu; Niu, Chao; Kim, Keun-Young

    2017-09-01

    The holographic complexity is UV divergent. As a finite complexity, we propose a "regularized complexity" by employing a similar method to the holographic renor-malization. We add codimension-two boundary counterterms which do not contain any boundary stress tensor information. It means that we subtract only non-dynamic back-ground and all the dynamic information of holographic complexity is contained in the regularized part. After showing the general counterterms for both CA and CV conjectures in holographic spacetime dimension 5 and less, we give concrete examples: the BTZ black holes and the four and five dimensional Schwarzschild AdS black holes. We propose how to obtain the counterterms in higher spacetime dimensions and show explicit formulas only for some special cases with enough symmetries. We also compute the complexity of formation by using the regularized complexity.

  13. Holographic equipartition and the maximization of entropy

    Science.gov (United States)

    Krishna, P. B.; Mathew, Titus K.

    2017-09-01

    The accelerated expansion of the Universe can be interpreted as a tendency to satisfy holographic equipartition. It can be expressed by a simple law, Δ V =Δ t (Nsurf-ɛ Nbulk) , where V is the Hubble volume in Planck units, t is the cosmic time in Planck units, and Nsurf /bulk is the number of degrees of freedom on the horizon/bulk of the Universe. We show that this holographic equipartition law effectively implies the maximization of entropy. In the cosmological context, a system that obeys the holographic equipartition law behaves as an ordinary macroscopic system that proceeds to an equilibrium state of maximum entropy. We consider the standard Λ CDM model of the Universe and show that it is consistent with the holographic equipartition law. Analyzing the entropy evolution, we find that it also proceeds to an equilibrium state of maximum entropy.

  14. Some applications of holographic interferometry in biomechanics

    Science.gov (United States)

    Ebbeni, Jean P. L.

    1992-03-01

    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  15. Fischler-Susskind holographic cosmology revisited

    OpenAIRE

    Diaz, Pablo; Per, M. A.; Segui, Antonio

    2007-01-01

    When Fischler and Susskind proposed a holographic prescription based on the Particle Horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the Particle Horizon area. In this article, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid this problem if they expand fast enough. It has been also shown that the Holographic Principle is satu...

  16. Strongly interacting matter from holographic QCD model

    Directory of Open Access Journals (Sweden)

    Chen Yidian

    2016-01-01

    Full Text Available We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field Φ and the scalar field X responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.

  17. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  18. Soft wall model for a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2016-06-15

    We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)

  19. History Of Holographic Display In Japan

    Science.gov (United States)

    Iwata, Fujio

    1987-06-01

    The first exhibition of holographic display was held at Seibu Museum of Art in Tokyo in 1975 and played a role of opening of the holographic era in Japan. This exhibition and the next big exhibition of holography held at Isetan department store 3 years later in 1978 were really epoch-making facts on holographic display in Japan. Since these two exhibitions, holographic display in Japan has come to attract attention of a lot of people to the new display media, holography. At that time, mass production technology of holograms had not been fully developed yet, and the hologram was so expensive that they were found only at the big event. Some companies and universities still continued research and development to have holograms get into practical applications of display media. Few years later, people became interested in 3-D displays and sometimes many peoples took an interest in holographic display, mainly mass produced embossed type holograms applied to the field of publications, book and magazine, etc. 3-D display booms occurred in the year of Tsukuba Science Expo'85 in 1985 and embossed type hologram became much popular. History of holographic display of Japan in terms of technical development and practical use on laser reconstruction hologram, rainbow hologram, multiplex hologram and lippmann hologram will be introduced.

  20. Topologically twisted renormalization group flow and its holographic dual

    Science.gov (United States)

    Nakayama, Yu

    2017-03-01

    Euclidean field theories admit more general deformations than usually discussed in quantum field theories because of mixing between rotational symmetry and internal symmetry (also known as topological twist). Such deformations may be relevant, and if the subsequent renormalization group flow leads to a nontrivial fixed point, it generically gives rise to a scale invariant Euclidean field theory without conformal invariance. Motivated by an ansatz studied in cosmological models some time ago, we develop a holographic dual description of such renormalization group flows in the context of AdS /CFT . We argue that the nontrivial fixed points require fine-tuning of the bulk theory, in general, but remarkably we find that the O (3 ) Yang-Mills theory coupled with the four-dimensional Einstein gravity in the minimal manner supports such a background with the Euclidean anti-de Sitter metric.

  1. Holographic reconstruction by compressive sensing

    Science.gov (United States)

    Leportier, T.; Park, M.-C.

    2017-06-01

    Techniques based on compressive sensing (CS) have been proposed recently for the optical capture of compressed holographic data. However, even though several remarkable articles have presented mathematical theories and numerical simulations, only a few experimental demonstrations have been reported. In this paper, we investigate the use of different metrics for the estimation of sparsity and show that the Gini index is the most consistent. In addition, we compare the sparsifying bases based on discrete cosine transform, Fourier transform and Fresnelets. We demonstrate that the Fresnelets basis is the best choice for the reconstruction of digital holograms by CS. Finally, we present an experimental set-up for optical acquisition of phase-shifted holograms with an imaging system based on a single-pixel sensor.

  2. Soft Pomeron in Holographic QCD

    CERN Document Server

    Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko

    2016-01-01

    We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.

  3. Note on subregion holographic complexity

    Science.gov (United States)

    Roy, Pratim; Sarkar, Tapobrata

    2017-07-01

    The volume inside a Ryu-Takayanagi surface has been conjectured to be related to the complexity of subregions of the boundary field theory. Here, we study the behavior of this volume analytically, when the entangling surface has a strip geometry. We perform systematic expansions in the low- and high-temperature regimes for AdS-Schwarzschild and RN-AdS black holes. In the latter regime, we point out spurious divergences that might occur due to the limitations of a near horizon expansion. A similar analysis is performed for extremal black holes and, at large charge, we find that there might be some new features of the volume as compared to the area. Finally, we numerically study a four-dimensional RN-AdS black hole in global AdS, the entangling surface being a sphere. We find that the holographic complexity captures essentially the same information as the entanglement entropy, as far as phase transitions are concerned.

  4. Emergent Spacetime and Holographic CFTs

    CERN Document Server

    El-Showk, Sheer

    2012-01-01

    We discuss universal properties of conformal field theories with holographic duals. A central feature of these theories is the existence of a low-lying sector of operators whose correlators factorize. We demonstrate that factorization can only hold in the large central charge limit. Using conformal invariance and factorization we argue that these operators are naturally represented as fields in AdS as this makes the underlying linearity of the system manifest. In this class of CFTs the solution of the conformal bootstrap conditions can be naturally organized in structures which coincide with Witten diagrams in the bulk. The large value of the central charge suggests that the theory must include a large number of new operators not captured by the factorized sector. Consequently we may think of the AdS hologram as an effective representation of a small sector of the CFT, which is embedded inside a much larger Hilbert space corresponding to the black hole microstates.

  5. Determination of {{\\rm{\\Lambda }}}_{\\overline{{\\rm{MS}}}} at five loops from holographic QCD

    Science.gov (United States)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2017-10-01

    The recent determination of the β-function of the quantum chromodynamics (QCD) running coupling {α }\\overline{{{MS}}}({Q}2) to five-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter {{{Λ }}}s based on the light-front holographic approach to nonperturbative QCD. The new five-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter κ from hadronic spectroscopy, leads to an improved precision of the value of {{{Λ }}}s in the \\overline{{{MS}}} scheme close to a factor of two; we find {{{Λ }}}\\overline{{{MS}}}(3)=0.339+/- 0.019 {GeV} for {n}f=3, in excellent agreement with the world average, {{{Λ }}}\\overline{{{MS}}}(3)=0.332 +/- 0.017 {GeV}. We also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.

  6. Non-local probes in holographic theories with momentum relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffar, M. Reza Mohammadi; Mollabashi, Ali [School of Physics, Institute for Research in Fundamental Sciences (IPM),Tehran (Iran, Islamic Republic of); Omidi, Farzad [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),Tehran (Iran, Islamic Republic of)

    2016-10-25

    We consider recently introduced solutions of Einstein gravity with minimally coupled massless scalars. The geometry is homogeneous, isotropic and asymptotically anti de-Sitter while the scalar fields have linear spatial-dependent profiles. The spatially-dependent marginal operators dual to scalar fields cause momentum dissipation in the deformed dual CFT. We study the effect of these marginal deformations on holographic entanglement measures and Wilson loop. We show that the structure of the universal terms of entanglement entropy for d>2-dim deformed CFTs is corrected depending on the geometry of the entangling regions. In d=2 case, the universal term is not corrected while momentum relaxation leads to a non-critical correction. We also show that decrease of the correlation length causes: the phase transition of holographic mutual information to happen at smaller separations and the confinement/deconfinement phase transition to take place at smaller critical lengths. The effective potential between point like external objects also gets corrected. We show that the strength of the corresponding force between these objects is an increasing function of the momentum relaxation parameter.

  7. Holographic superconductor with momentum relaxation and Weyl correction

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-04-01

    Full Text Available We construct a holographic model with Weyl corrections in five dimensional spacetime. In particular, we introduce a coupling term between the axion fields and the Maxwell field such that the momentum is relaxed even in the probe limit in this model. We investigate the Drude behavior of the optical conductivity in low frequency region. It is interesting to find that the incoherent part of the conductivity is suppressed with the increase of the axion parameter k/T, which is in contrast to other holographic axionic models at finite density. Furthermore, we study the superconductivity associated with the condensation of a complex scalar field and evaluate the critical temperature for condensation in both analytical and numerical manner. It turns out that the critical temperature decreases with k˜, indicating that the condensation becomes harder in the presence of the axions, while it increases with Weyl parameter γ. We also discuss the change of the gap in optical conductivity with coupling parameters. Finally, we evaluate the charge density of the superfluid in zero temperature limit, and find that it exhibits a linear relation with σ˜DC(Tc˜Tc˜, such that a modified version of Homes' law is testified.

  8. In situ single-atom array synthesis using dynamic holographic optical tweezers

    Science.gov (United States)

    Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372

  9. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality

    Science.gov (United States)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  10. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...

  11. Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer

    Science.gov (United States)

    Liu, H.; Yu, D.; Jiang, Y.; Sun, X.

    2009-06-01

    This paper characterizes holographic scattering and demonstrates its application in determining the kinetic parameters in materials with high transmittance and strong holographic scattering like phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA). We define a polymerization rate parameter which can be determined by the temporal evolution of the scattering losses. Two basic kinetic parameters, quantum yield and molar-absorption coefficient, are obtained by nonlinear fitting the curve of the polymerization rate parameter as a function of the thickness, which are 1.9×10-6 mol/einstein and 2.1×104 cm2/mol for a wavelength of 532 nm respectively. These results improve the understanding of photochemical behaviors and allow us to describe the grating formation in the photopolymer reasonably.

  12. Form Factors and Wave Functions of Vector Mesons in Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hovhannes R. Grigoryan; Anatoly V. Radyushkin

    2007-07-01

    Within the framework of a holographic dual model of QCD, we develop a formalism for calculating form factors of vector mesons. We show that the holographic bound states can be described not only in terms of eigenfunctions of the equation of motion, but also in terms of conjugate wave functions that are close analogues of quantum-mechanical bound state wave functions. We derive a generalized VMD representation for form factors, and find a very specific VMD pattern, in which form factors are essentially given by contributions due to the first two bound states in the Q^2-channel. We calculate electric radius of the \\rho-meson, finding the value < r_\\rho^2>_C = 0.53 fm^2.

  13. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  14. Quantum Gravity as a Dissipative Deterministic System

    NARCIS (Netherlands)

    Hooft, G. 't

    1999-01-01

    It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in

  15. Quantum coherence versus quantum uncertainty

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    The notion of measurement is of both foundational and instrumental significance in quantum mechanics, and coherence destroyed by measurements (decoherence) lies at the very heart of quantum to classical transition. Qualitative aspects of this spirit have been widely recognized and analyzed ever since the inception of quantum theory. However, axiomatic and quantitative investigations of coherence are attracting great interest only recently with several figures of merit for coherence introduced [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. While these resource theoretic approaches have many appealing and intuitive features, they rely crucially on various notions of incoherent operations which are sophisticated, subtle, and not uniquely defined, as have been critically assessed [Chitambar and Gour, Phys. Rev. Lett. 117, 030401 (2016), 10.1103/PhysRevLett.117.030401]. In this paper, we elaborate on the idea that coherence and quantum uncertainty are dual viewpoints of the same quantum substrate, and address coherence quantification by identifying coherence of a state (with respect to a measurement) with quantum uncertainty of a measurement (with respect to a state). Consequently, coherence measures may be set into correspondence with measures of quantum uncertainty. In particular, we take average quantum Fisher information as a measure of quantum uncertainty, and introduce the corresponding measure of coherence, which is demonstrated to exhibit desirable properties. Implications for interpreting quantum purity as maximal coherence, and quantum discord as minimal coherence, are illustrated.

  16. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  17. Didactical Holographic Exhibit Including Holo TV (holographic Television)

    Science.gov (United States)

    Lunazzi, José J.; Magalhães, Daniel S. F.; Rivera, Noemí I. R.

    2008-04-01

    Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where nice holograms are shown altogether with basic experiments of geometric and wave optics. This experiments lead to the understanding of the phenomenon of images of an ample way. Thousands of people have been present at them, in their majority of the Universidade Estadual de Campinas, where since 2002 they have taken the format of a course without formal evaluation. This way the exhibition has been divided in four modules, in each one of them are shown different holograms, experiments of optics and applications of diffractive images with white light developed in the Institute of Physics. The sequence of the learning through the modules begins with the geometric optics, later we explain the wave optics and finally holography. The phenomenon of the diffraction in daily elements is shown experimentally from the beginning. As well as the application of the holographic screens in white light: the television images that appear in front of the screen and the spectator can try to experience the reality illusion. Put something so exclusive (that only exists in the laboratory) to the public is a way to approximate the persons to an investigation in course. The vision of images that seem to be of holograms, but in movement, and size of until a square meter completes this exhibition of an exclusive way in the world.

  18. Quantifying Quantumness

    Science.gov (United States)

    Braun, Daniel; Giraud, Olivier; Braun, Peter A.

    2010-03-01

    We introduce and study a measure of ``quantumness'' of a quantum state based on its Hilbert-Schmidt distance from the set of classical states. ``Classical states'' were defined earlier as states for which a positive P-function exists, i.e. they are mixtures of coherent states [1]. We study invariance properties of the measure, upper bounds, and its relation to entanglement measures. We evaluate the quantumness of a number of physically interesting states and show that for any physical system in thermal equilibrium there is a finite critical temperature above which quantumness vanishes. We then use the measure for identifying the ``most quantum'' states. Such states are expected to be potentially most useful for quantum information theoretical applications. We find these states explicitly for low-dimensional spin-systems, and show that they possess beautiful, highly symmetric Majorana representations. [4pt] [1] Classicality of spin states, Olivier Giraud, Petr Braun, and Daniel Braun, Phys. Rev. A 78, 042112 (2008)

  19. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Directory of Open Access Journals (Sweden)

    N.S. Mazhari

    2017-03-01

    Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  20. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Mazhari, N.S., E-mail: najmemazhari86@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-03-10

    The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  1. Unconventional Surface Critical Behavior Induced by a Quantum Phase Transition from the Two-Dimensional Affleck-Kennedy-Lieb-Tasaki Phase to a Néel-Ordered Phase.

    Science.gov (United States)

    Zhang, Long; Wang, Fa

    2017-02-24

    A symmetry-protected topological phase has nontrivial surface states in the presence of certain symmetries, which can either be gapless or be degenerate. In this work, we study the physical consequence of such gapless surface states at the bulk quantum phase transition (QPT) that spontaneously breaks these symmetries. The two-dimensional Affleck-Kennedy-Lieb-Tasaki phase on a square lattice and its QPTs to Néel ordered phases are realized with the spin-1/2 Heisenberg model on a decorated square lattice. With large-scale quantum Monte Carlo simulations, we show that even though the bulk QPTs are governed by the conventional Landau phase transition theory, the gapless surface states induce unconventional universality classes of the surface critical behavior.

  2. Theta dependence in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bartolini, Lorenzo [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Bigazzi, Francesco [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bolognesi, Stefano [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Manenti, Andrea [Institute of Physics, EPFL,Rte de la Sorge, BSP 728, CH-1015 Lausanne (Switzerland)

    2017-02-07

    We study the effects of the CP-breaking topological θ-term in the large N{sub c} QCD model by Witten, Sakai and Sugimoto with N{sub f} degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N{sub f}=2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ḡ{sub πNN}, finding that it is zero to leading order in the large N{sub c} limit.

  3. Holographic Optics For Vision Systems

    Science.gov (United States)

    Freeman, Michael H.

    1989-05-01

    The human visual system is often equated to a photographic camera. This is a poor analogy because the differences are far greater than the similarities. The processing of the human visual system is complex and non-linear so that even optical transfer function concepts must be applied with caution. Holographic optics offers some extra degrees of freedom with respect to refractive optics. Unlike refractive optics, diffractive effects are not, in the first order, dependent on material and geometric shape and require no significant volume. On the other hand they may suffer from fractional efficiencies and strong wavelength dependencies. The Pilkington 'Diffrax' lens invented by the author is an example of a product which steers between the disadvantages and maximises the advantages to provide the world's first diffractive bifocal contact lens. Indications for other visual applications are not very propitious although time and development may show this to be incorrect. This paper will review the interaction between the preferences and antipathies of the human visual system and the optical effects of diffractive systems.

  4. An automatic holographic adaptive phoropter

    Science.gov (United States)

    Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam

    2017-08-01

    Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.

  5. Holographic model for charmonium dissociation

    Science.gov (United States)

    Braga, Nelson R. F.; Ferreira, Luiz F.; Vega, Alfredo

    2017-11-01

    We present a holographic bottom up model for the thermal behavior of c c bar vector mesons in a finite temperature and density plasma. There is a clear physical interpretation for the three input energy parameters of the model. Two of them are related to the mass spectrum of the heavy meson. Namely the quark mass and the string tension of the quark-anti-quark interaction. The third parameter is a large energy scale associated with the non-hadronic meson decay. In such a process the heavy meson is transformed into a much lighter state by electroweak processes. The corresponding transition amplitude is assumed to depend on the energy scale associated with this large mass variation. With this three parameter model one can fit the masses and decay constants of J / Ψ and three radial excitations with an rms error of 20.7%. Using the geometry of a charged black hole, one finds the spectral function for charmonium states inside a plasma at finite temperature and density. The charmonium dissociation in the medium is represented by the decrease in the height of the spectral function peaks.

  6. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  7. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  8. Anomalous transport and holographic momentum relaxation

    Science.gov (United States)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio

    2017-09-01

    The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.

  9. Wavelength techniques for digital holographic memories

    Science.gov (United States)

    Lande, David

    Holographic storage is a technique to store and retrieve information spread out in a volume, in contrast to current optical devices which store information locally on a surface. It provides for parallel page-by-page recording and readout of data instead of the usual serial, bit-by-bit, technique, and offers much higher diffraction-limited capacity. Success in the development of a competitive holographic storage device then depends on its cost, compactness and reliability. Since the first digital demonstrations, considerable effort by various groups has been spent in the development of high performance, practical holographic systems. This thesis presents several contributions toward this goal, suitable for holographic storage in lithium niobate and other applicable media. An intuitive explanation of volume holography is given, and Fourier analysis is used to derive the diffraction- limited capacity of digital storage in the form of elementary refractive index gratings. The physics of photorefractive materials, which are commonly used in holographic recording, is then presented, along with an established phenomenological model for grating formation. Following an analysis of imaging and multiplexing, a completely automated storage system implementing wavelength-multiplexed holography is described and evaluated, highlighting the feasibility of systems with fewer optical and mechanical components. The volatility of information in photorefractive media is then addressed by a demonstration of optical fixing, a technique based on two-photon recording mechanisms. Such an all-optical technique removes the need for heating elements, high voltages, or other post-processing elements currently used in non-volatile systems. Two-photon recording is also used to modulate, or apodize, the amplitude of volume gratings within the crystal bulk, providing a flexible technique to reduce cross-talk noise between stored pages and optimize the system capacity. Finally, simulations of

  10. Holographic mutual information for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffar, M. Reza Mohammadi; Mollabashi, Ali [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Omidi, Farzad [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2015-12-14

    We study corner contributions to holographic mutual information for entangling regions composed of a set of disjoint sectors of a single infinite circle in 3-dimensional conformal field theories. In spite of the UV divergence of holographic mutual information, it exhibits a first order phase transition. We show that tripartite information is also divergent for disjoint sectors, which is in contrast with the well-known feature of tripartite information being finite even when entangling regions share boundaries. We also verify the locality of corner effects by studying mutual information between regions separated by a sharp annular region. Possible extensions to higher dimensions and hyperscaling violating geometries is also considered for disjoint sectors.

  11. Holographic corrections to meson scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk

    2017-06-15

    We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.

  12. Holographic Photon Production and Anisotropic Flow

    Science.gov (United States)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-08-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature via the bottom-up models in holographic QCD in the deconfined phase is studied. The models are constructed to approximately reproduce the electric conductivity obtained from lattice simulations for the quark gluon plasma (QGP). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons and hadronic contributions to analyze the spectra and anisotropic flow of direct photons in RHIC and LHC. In general, the holographic models enhance the yield and improve the agreement in spectra, while they reduce the flow in low pT and increase it in high pT.

  13. Liquid crystals for holographic optical data storage

    DEFF Research Database (Denmark)

    Matharu, Avtar; Jeeva, S.; Ramanujam, P.S.

    2007-01-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution...... to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity...

  14. A computer test of holographic flavour dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Filev, Veselin G.; O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)

    2016-05-20

    We perform computer simulations of the Berkooz-Douglas (BD) matrix model, holographically dual to the D0/D4-brane intersection. We generate the fundamental condensate versus bare mass curve of the theory both holographically and from simulations of the BD model. Our studies show excellent agreement of the two approaches in the deconfined phase of the theory and significant deviations in the confined phase. We argue the discrepancy in the confined phase is explained by the embedding of the D4-brane which yields stronger α{sup ′} corrections to the condensate in this phase.

  15. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    chromophores-which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting...... materials. Here we show that holographic gratings with large first-order diffraction efficiencies (up to 80%) can be written and erased optically in oligomer films only a few micrometres thick. The holograms also exhibit good thermal stability, and are not erased after heating to 180 degrees C for one month...

  16. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  17. Quantum foam, gravitational thermodynamics, and the dark sector

    Science.gov (United States)

    Ng, Y. Jack

    2017-05-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected

  18. Holographic display for see-through augmented reality using mirror-lens holographic optical element.

    Science.gov (United States)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Cho, Jaebum; Lee, Byoungho

    2016-06-01

    A holographic display system for realizing a three-dimensional optical see-through augmented reality (AR) is proposed. A multi-functional holographic optical element (HOE), which simultaneously performs the optical functions of a mirror and a lens, is adopted in the system. In the proposed method, a mirror that is used to guide the light source into a reflection type spatial light modulator (SLM) and a lens that functions as Fourier transforming optics are recorded on a single holographic recording material by utilizing an angular multiplexing technique of volume hologram. The HOE is transparent and performs the optical functions just for Bragg matched condition. Therefore, the real-world scenes that are usually distorted by a Fourier lens or an SLM in the conventional holographic display can be observed without visual disturbance by using the proposed mirror-lens HOE (MLHOE). Furthermore, to achieve an optimized optical recording condition of the MLHOE, the optical characteristics of the holographic material are measured. The proposed holographic AR display system is verified experimentally.

  19. Experimental holographic movie to estimate picture quality for holographic television (III)

    Science.gov (United States)

    Higuchi, Kazuhito; Ishikawa, Jun; Hiyama, Shigeo

    1994-05-01

    Holographic movies can be seen as a tool to estimate the picture quality of moving holographic images as a step towards holographic television. The authors have previously developed two versions of an experimental holographic movie system, and this paper is a report on an improved version 3 of the system. The new version features a newly-developed recording system which utilizes a pulsed Nd:YAG laser with an injection seeder, and an automatic film driver unit which moves perforated 35 mm holographic film intermittently. The system is mounted on a dolly to which a hydraulic lifter is attached. A twin diamond-shaped hologram format, developed for an earlier version of the system, is adopted for the films. After the films are developed, they are driven intermittently with a shutter, illuminated by the LD pumped CW Nd:YAG laser, and viewed through twin diamond-shaped windows. This version 3 system makes it possible to record live scenes, including those of the human body, flowing liquids, smoke, etc., which was impossible in the version 1 and version 3 systems. As a consequence, the characteristics of holographic 3D images with motion can be studied over an area covered by both eyes, and the labor required of animators in taking holograms is greatly reduced.

  20. The origins of the research on the foundations of quantum mechanics (and other critical activities) in Italy during the 1970s

    Science.gov (United States)

    Baracca, Angelo; Bergia, Silvio; Del Santo, Flavio

    2017-02-01

    We present a reconstruction of the studies on the Foundations of Quantum Mechanics carried out in Italy at the turn of the 1960s. Actually, they preceded the revival of the interest of the American physicists towards the foundations of quantum mechanics around mid-1970s, recently reconstructed by David Kaiser in a book of 2011. An element common to both cases is the role played by the young generation, even though the respective motivations were quite different. In the US they reacted to research cuts after the war in Vietnam, and were inspired by the New Age mood. In Italy the dissatisfaction of the young generations was rooted in the student protests of 1968 and the subsequent labour and social fights, which challenged the role of scientists. The young generations of physicists searched for new scientific approaches and challenged their own scientific knowledge and role. The criticism to the foundations of quantum mechanics and the perspectives of submitting them to experimental tests were perceived as an innovative research field and this attitude was directly linked to the search for an innovative and radical approach in the history of science. All these initiatives gave rise to booming activity throughout the 1970s, contributing to influence the scientific attitude and the teaching approach.

  1. A holographic model for black hole complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)

    2016-12-07

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  2. Composite materials inspection. [ultrasonic vibration holographic NDT

    Science.gov (United States)

    Erf, R. K.

    1974-01-01

    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  3. Display applications for holographic optical elements

    Science.gov (United States)

    Gambogi, William J., Jr.; Armstrong, Mark L.; Hamzavy, Babak; Levin, Michael L.; Mackara, Steven R.; Molteni, William J., Jr.; Steijn, Kirk W.; Stevenson, Sylvia H.; Felder, Thomas C.; Heidt, Gerald L.; Miller, Douglas R.

    2001-06-01

    In the last several years, holographic elements have been introduced into a wide array of display applications. Holographic Reflectors are incorporated with liquid crystal displays to shift optimum viewing angle away form specular glare and raise brightness by concentrating light at a convenient viewing angle. Reflectors can be produced in blue, green, gold, red, or white colors. Denso GlassVision projection screens incorporate transmission holograms to efficiently direct projected light to the viewer in a screen that reverts to clear glass When the projection image is turned off. JVC has introduce da large-screen HDTV that uses a holographic color filter to separate blue, green, and red light from the illumination beam, and direct the sorted colors to the appropriate color pixel, raising brightness with a passive component. Most recently, HOE prototypes have been produced to improve the efficiency of portable liquid crystal color display. Front diffuser are affixed to the face of reflective color LCDs and direct output light from the LCD to the viewer at a convenient viewing angle in a concentrated view cone. Reflective Colors Filters are pixelated diffuse reflectors internal to the LCD structure and aligned to the LCD matrix. These reflective filters provide higher brightness, larger color gamut, and better color saturation including a holographic grating are under development to provide wider view angle in direct-view LCDs.

  4. Holographic recording in two-stage networks

    Science.gov (United States)

    McLeod, Robert R.; Peng, Haiyan; Nair, Devatha P.; Kowalski, Benjamin A.; Bowman, Christopher N.

    2017-05-01

    We demonstrate holography in a traditional two-component holographic photopolymer in which the solid polymer host matrix has three distinct sets of material properties: 1) an initially liquid state appropriate for formulation and casting into the desired final shape, 2) a rubbery state with low glass transition temperature appropriate for holographic recording, and 3) a final higher modulus state with improved mechanical robustness. The general chemical scheme is to form the second stage rubbery polymer network via a thiol-acrylate Michael addition with an excess of one functional group. Holographic recording then takes place via radically initiated photopolymerization of a mobile high refractive index monomer, per the common two-chemistry process. During final flood illumination of the material, the remaining monomer and excess functional groups are polymerized to increase crosslink density and improve the mechanical properties of the matrix. We described three such material schemes and report general trends. We demonstrate high (96%) efficiency holographic recording, low (1.1%) shrinkage, no oxygen sensitivity and stage 2 glass transition temperatures at or above room temperature, sufficient to enable self-supporting films.

  5. Holographic space: presence and absence in time

    Science.gov (United States)

    Chang, Yin-Ren; Richardson, Martin

    2017-03-01

    In terms of contemporary art, time-based media generally refers to artworks that have duration as a dimension and unfold to the viewer over time, that could be a video, slide, film, computer-based technologies or audio. As part of this category, holography pushes this visual-oriented narrative a step further, which brings a real 3D image to invite and allow audiences revisiting the scene of the past, at the moment of recording in space and time. Audiences could also experience the kinetic holographic aesthetics through constantly moving the viewing point or illumination source, which creates dynamic visual effects. In other words, when the audience and hologram remain still, the holographic image can only be perceived statically. This unique form of expression is not created by virtual simulation; the principal of wavefront reconstruction process made holographic art exceptional from other time-based media. This project integrates 3D printing technology to explore the nature of material aesthetics, transiting between material world and holographic space. In addition, this series of creation also reveals the unique temporal quality of a hologram's presence and absence, an ambiguous relationship existing in this media.

  6. Phases of kinky holographic nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)

    2016-10-17

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  7. Holographic Josephson junction from massive gravity

    NARCIS (Netherlands)

    Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, H.

    2016-01-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass

  8. Enhanced pairing of quantum critical metals near d=3+1

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Kachru, Shamit; Kaplan, Jared; Raghu, S.; Torroba, Gonzalo; Wang, Huajia

    2015-07-20

    We study the dynamics of a quantum critical boson coupled to a Fermi surface in intermediate energy regimes where the Landau damping of the boson can be parametrically controlled, either via large Fermi velocity or by large- N techniques. We develop a systematic approach to the BCS instability of such systems, including careful treatment of the enhanced log 2 and log 3 singularities which appear already at 1-loop. These singularities arise due to the exchange of a critical boson in the Cooper channel and are absent in Fermi liquid theory. We also treat possible instabilities to charge density wave (CDW) formation, and compare the scales Λ BCS and Λ CDW of the onset of the instabilities in different parametric regimes. We address the question of whether the dressing of the fermions into a non-Fermi liquid via interactions with the order parameter field can happen at energies > Λ BCS , Λ CDW .

  9. Zeroth order phase transition in a holographic superconductor with single impurity

    Directory of Open Access Journals (Sweden)

    Hua Bi Zeng

    2015-08-01

    Full Text Available We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic impurity with small impurity strength. However, by increasing the size of the impurity in a fixed-size host superconductor, we find a decreasing critical temperature Tc of the host superconductor, which agrees with the results in condensed matter literatures. More importantly, the phase transition at the critical impurity strength (or the critical temperature is of zeroth order.

  10. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  11. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime.

  12. Holographic paramagnetism–ferromagnetism phase transition with the nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng-Yuan; Wu, Ya-Bo, E-mail: ybwu61@163.com; Zhang, Ya-Nan; Wang, Huan-Yu; Wu, Meng-Meng

    2017-01-15

    In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism–ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics which has been presented in Ref. , we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.

  13. Holographic paramagnetism–ferromagnetism phase transition with the nonlinear electrodynamics

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Zhang

    2017-01-01

    Full Text Available In the probe limit, we investigate the nonlinear electrodynamical effects of the both exponential form and the logarithmic form on the holographic paramagnetism–ferromagnetism phase transition in the background of a Schwarzschild-AdS black hole spacetime. Moreover, by comparing the exponential form of nonlinear electrodynamics with the logarithmic form of nonlinear electrodynamics and the Born–Infeld nonlinear electrodynamics which has been presented in Ref. [55], we find that the higher nonlinear electrodynamics correction makes the critical temperature smaller and the magnetic moment harder form in the case without external field. Furthermore, the increase of nonlinear parameter b will result in extending the period of the external magnetic field. Especially, the effect of the exponential form of nonlinear electrodynamics on the periodicity of hysteresis loop is more noticeable.

  14. Norland Optical Adhesive 72® as phase holographic material

    Directory of Open Access Journals (Sweden)

    Mauricio Ortiz-Gutiérrez

    2015-12-01

    Full Text Available Characterization of the holographic material composed by adhesive polymer Norland Optical Adhesive 72® (NOA 72® was studied. With a wavelength of 457 nm from an Ar laser, real time phase holographic gratings under different parameters such as energy, frequency and thickness were recorded. The diffraction efficiency of the recorded holographic gratings was measured and some experimental results are shown. Furthermore, the material was used to record Fourier holograms.

  15. Applications of holographic interferometry for spacecraft structural components

    Science.gov (United States)

    Rao, M. V.; Samuel, R.; Nair, P. S.

    1994-06-01

    An overview of the applications of holographic interferometry for spacecraft structural components at ISRO Satellite Center, Bangalore, India, is presented. The details of the development of a dual vacuum stressing technique and its application for holographic nondestructive testing (HNDT) of honeycomb panels are presented. Results of some calibration studies conducted for HNDT of propellant tanks are also presented. It is found that holographic interferometry is quite useful, particularly for HNDT of honeycomb panels and propellant tanks used for spacecraft structural components.

  16. Saturation of the Holographic Principle for Spatially Closed Cosmological Models

    Science.gov (United States)

    Diaz, P.; Per, M. A.; Segui, A.

    Under the assumption on the fundamental character of the Holographic Principle as a primary principle guiding the behavior of our universe the saturation of the holographic limit is reasonable. On the other hand the Fischler-Susskind holographic prescription seems to be incompatible with closed cosmological models due to the apparently unavoidable recontraction of the particle horizon area. However we will show that the saturation of the Fischler-Susskind holographic prescription over a closed (although almost flat) cosmological model enforces a cosmological evolution very similar to the observed universe.

  17. Holographic display with LED sources illumination and enlarged viewing angle

    Science.gov (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz

    2016-09-01

    In this work we present holographic display that uses LED sources illumination and have enlarged viewing angle. In this holographic display design we employ phase only SLM because it allows to obtain reconstructions of high quality. Our setup realizes complex coding scheme and allows to reconstruct complex holographic images. Thus reconstruction of inplane holograms is possible. Holograms displayed on SLM are computer generated. For enlargement of angular field of view we use three spatially separated illumination sources and time multiplexing technique. In experimental part, where we display computer generated holograms, we show that it is possible to obtain holographic reconstructions of 3D object with extended viewing angle.

  18. Higher order corrections to holographic black hole chemistry

    Science.gov (United States)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  19. HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...

  20. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications

    Science.gov (United States)

    Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; Neipp, Cristian; Pascual, Inmaculada; Beléndez, Augusto

    2012-01-01

    Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material. PMID:28817008

  1. Quantum field theory at finite coupling through the holographic string

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    the Hydrogen atom in Chemistry. We will review new techniques that are motivated by the dual string description and are based on Integrability and Holography. These techniques allow for the first time exact computation of dynamical quantities at any strength of the interaction. We will focus on the computation of scattering amplit...

  2. Holographic interpolation between a and F

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Teruhiko [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nakaguchi, Yuki [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8568 (Japan); Nishioka, Tatsuma [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-12-29

    An interpolating function F-tilde between the a-anomaly coefficient in even dimensions and the free energy on an odd-dimensional sphere has been proposed recently and is conjectured to monotonically decrease along any renormalization group flow in continuous dimension d. We examine F-tilde in the large-N CFT’s in d dimensions holographically described by the Einstein-Hilbert gravity in the AdS{sub d+1} space. We show that F-tilde is a smooth function of d and correctly interpolates the a coefficients and the free energies. The monotonicity of F-tilde along an RG flow follows from the analytic continuation of the holographic c-theorem to continuous d, which completes the proof of the conjecture.

  3. Holographic Associative Memory Employing Phase Conjugation

    Science.gov (United States)

    Soffer, B. H.; Marom, E.; Owechko, Y.; Dunning, G.

    1986-12-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,8'8' are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  4. Multiplexed fluorescence spectroscopy with holographic optical tweezers

    Science.gov (United States)

    Cibula, M. A.; Kendrick, M. J.; Gruss, D. S.; Bychkova, V.; Pylypiuk, N.; Koesdjojo, M.; Remcho, V. T.; Ostroverkhova, O.; McIntyre, D. H.

    2011-10-01

    We present a multiplexed spectroscopy technique using holographic optical tweezers to trap and excite multiple sensor particles. Our goal is to develop a lab-on-a-chip measurement platform for monitoring pH and other ion concentrations with high spatial resolution in a microfluidic device or within biological cells. We have developed a variety of polymeric pH/ion sensitive nanoparticles with fluorescence spectra that change with the pH/ion concentration of the surrounding environment. We optically trap and manipulate multiple nanosensors using holographic optical tweezers. The trapped particles are irradiated with a separate excitation laser and the fluorescence from all the particles is detected simultaneously with an imaging spectrometer. Electronic separation of the parallel, discrete spectra allows for concurrent determination of multiple spectra.

  5. Reheating of the Universe as holographic thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)

    2016-08-10

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  6. Holographic trace anomaly at finite temperature

    Science.gov (United States)

    Lee, Bum-Hoon; Nam, Siyoung; Park, Chanyong

    2017-01-01

    Using the holographic renormalization, we investigate the finite temperature and size effect to the energy-momentum tensor of the dual field theory and its renormalization group (RG) flow. Following the anti-de Sitter/conformal field theory correspondence, the dual field theory of the AdS space is well known to be a conformal field theory that has no nontrivial RG flow. Holographically, that theory can be lifted to a finite temperature version by considering a AdS black hole solution. Because the black hole horizon associated with temperature is dimensionful, it breaks the boundary conformal symmetry and leads to a nontrivial RG flow. In this work, we investigate the finite temperature and size correction to a strongly interacting conformal field theory along the Wisonian renormalization group flow.

  7. Transonic flow visualization using holographic interferometry

    Science.gov (United States)

    Bryanston-Cross, Peter J.

    1987-05-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  8. Reheating of the Universe as holographic thermalization

    Directory of Open Access Journals (Sweden)

    Shinsuke Kawai

    2016-08-01

    Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  9. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal.

    Science.gov (United States)

    Ogiwara, Akifumi; Watanabe, Minoru; Moriwaki, Retsu

    2013-04-01

    Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization controllable optical devices, such as the holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (T(ni)) that the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is discussed with two types of LC composites comprised of isotropic and LC diacrylate monomers. The holographic memory formed by the LC and LC diacrylate monomer performs precise reconstruction of the context information for ORGAs at high temperatures more than 150°C.

  10. Holography, Quantum Geometry, and Quantum Information Theory

    Directory of Open Access Journals (Sweden)

    P. A. Zizzi

    2000-03-01

    Full Text Available Abstract: We interpret the Holographic Conjecture in terms of quantum bits (qubits. N-qubit states are associated with surfaces that are punctured in N points by spin networks' edges labelled by the spin-½ representation of SU(2, which are in a superposed quantum state of spin "up" and spin "down". The formalism is applied in particular to de Sitter horizons, and leads to a picture of the early inflationary universe in terms of quantum computation. A discrete micro-causality emerges, where the time parameter is being defined by the discrete increase of entropy. Then, the model is analysed in the framework of the theory of presheaves (varying sets on a causal set and we get a quantum history. A (bosonic Fock space of the whole history is considered. The Fock space wavefunction, which resembles a Bose-Einstein condensate, undergoes decoherence at the end of inflation. This fact seems to be responsible for the rather low entropy of our universe.

  11. Holographic microscopy for 3D tracking of bacteria

    Science.gov (United States)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  12. Holographic window for solar power generation

    Science.gov (United States)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-12-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  13. Non-relativistic geometry of holographic screens

    Science.gov (United States)

    Moosa, Mudassir

    2017-06-01

    We propose that the intrinsic geometry of holographic screens should be described by the Newton-Cartan geometry. As a test of this proposal, we show that the evolution equations of the screen can be written in a covariant form in terms of a stress tensor, an energy current, and a momentum one-form. We derive the expressions for the stress tensor, energy density, and momentum one-form using Brown-York action formalism.

  14. Holographic cosmological models on the braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2009-01-26

    In this Letter we have studied a closed universe which a holographic energy on the brane whose energy density is described by {rho}(H)=3c{sup 2}H{sup 2} and we obtain an equation for the Hubble parameter. This equation gave us different physical behavior depending if c{sup 2}>1 or c{sup 2}<1 against of the sign of the brane tension.

  15. Shrinkage measurement for holographic recording materials

    Science.gov (United States)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.

    2017-05-01

    There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).

  16. Holographic Investigation of Solid Propellant Particulates.

    Science.gov (United States)

    1981-12-01

    used at the Naval Postgraduate School in an attempt to obtain this type of data. They are: 1. High speed cinematography of burning propellant strands in...techniques vice conventional photography. Utilization of the holographic procedure results in a film plate which has recorded on it both the phase and...AGFA-GEVAERT 8E75 HD film plate is mounted on a kinematic plate holder near the focal plane of a pair of plano convex lenses. This device serves to

  17. Geometric Analogue of Holographic Reduced Representation

    OpenAIRE

    Aerts, Diederik; Czachor, Marek; De Moor, Bart

    2007-01-01

    Holographic reduced representations (HRR) are based on superpositions of convolution-bound $n$-tuples, but the $n$-tuples cannot be regarded as vectors since the formalism is basis dependent. This is why HRR cannot be associated with geometric structures. Replacing convolutions by geometric products one arrives at reduced representations analogous to HRR but interpretable in terms of geometry. Variable bindings occurring in both HRR and its geometric analogue mathematically correspond to two ...

  18. Magnonic holographic imaging of magnetic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A.D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khivintsev, Y.; Filimonov, Y. [Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Saratov 410019 (Russian Federation); Saratov State University, Saratov 410012 (Russian Federation); Garay, J.; Lake, R.; Balandin, A.A. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khitun, A., E-mail: akhitun@engr.ucr.edu [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States)

    2017-04-15

    We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot – the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe{sub 12}O{sub 19} and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe{sub 12}O{sub 19} powder. The imaging was accomplished on a Y{sub 3}Fe{sub 2}(FeO{sub 4}){sub 3} testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed. - Highlights: • A technique for magnetic microstructure imaging via their interaction with propagating spin waves is proposed. • In this technique, magnetic structures appear as 3D objects. • Several holographic images of magnetic microstructures are presented.

  19. Prehistory of holographic art: a personal view

    Science.gov (United States)

    Benyon, Margaret

    1998-02-01

    The history of art contains works by artists that may be seen as `holographic' in their aesthetic, philosophic and formal implications. This paper briefly explores some of these parallels, chosen for their interest as preholographic images. Examples are taken from works of Eastern and Western visionary art, works by individual artists such as Rembrandt and Marcel Duchamp, and from early 20th century art movements.

  20. Holographic entanglement entropy close to crossover/phase transition in strongly coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shao-Jun, E-mail: sjzhang84@hotmail.com

    2017-03-15

    We investigate the behavior of entanglement entropy in the holographic QCD model proposed by Gubser et al. By choosing suitable parameters of the scalar self-interaction potential, this model can exhibit various types of phase structures: crossover, first order and second order phase transitions. We use entanglement entropy to probe the crossover/phase transition, and find that it drops quickly/suddenly when the temperature approaches the critical point which can be seen as a signal of confinement. Moreover, the critical behavior of the entanglement entropy suggests that we may use it to characterize the corresponding phase structures.

  1. Flat bands and enigma of metamagnetic quantum critical regime in Sr{sub 3}Ru{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.ru [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation); Clark Atlanta University, Atlanta, GA 30314 (United States); Msezane, A.Z. [Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Clark, J.W. [McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States); Zverev, M.V. [Russian Research Centre Kurchatov Institute, Moscow 123182 (Russian Federation); Moscow Institute of Physics and Technology, Moscow 123098 (Russian Federation); Khodel, V.A. [Russian Research Centre Kurchatov Institute, Moscow 123182 (Russian Federation); McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2013-11-22

    Understanding the nature of field-tuned metamagnetic quantum criticality in the ruthenate Sr{sub 3}Ru{sub 2}O{sub 7} has presented a significant challenge within condensed matter physics. It is known from experiments that the entropy within the ordered phase forms a peak, and is unexpectedly higher than that outside, while the magnetoresistivity experiences steep jumps near the ordered phase. We find a challenging connection between Sr{sub 3}Ru{sub 2}O{sub 7} and heavy-fermion metals expressing universal physics that transcends microscopic details. Our construction of the T–B phase diagram of Sr{sub 3}Ru{sub 2}O{sub 7} permits us to explain main features of the experimental one, and unambiguously implies an interpretation of its extraordinary low-temperature thermodynamic in terms of fermion condensation quantum phase transition leading to the formation of a flat band at the restricted range of magnetic fields B. We show that it is the flat band that generates both the entropy peak and the resistivity jumps at the QCPs.

  2. Fourier RGB synthetic aperture color holographic capture for wide angle holographic display

    Science.gov (United States)

    Gołoś, Anna; Zaperty, Weronika; Finke, Grzegorz; Makowski, Piotr; Kozacki, Tomasz

    2016-09-01

    In this work we present a high pixel count color holographic registration system that is designed to provide 3D holographic content of real-world large objects. Captured data is dedicated for holographic displays with a wide-viewing angle. The registration in color is realized by means of sequential recording with the use of three RGB laser light sources. The applied Fourier configuration of capture system gives large viewing angle and an optimal coverage of the detector resolution. Moreover, it enables to filter out zero order and twin image. In this work the captured Fourier holograms are transformed to general Fresnel type that is more suitable for 3D holographic displays. High resolution and large pixel count of holographic data and its spatial continuity is achieved through synthetic aperture concept with camera scanning and subpixel correlation based stitching. This grants an access to many tools of numerical hologram processing e.g. continuous viewing angle adjustment, and control of 3D image position and size. In this paper the properties of 1D synthetic aperture (60000 x 2500 pixels) are investigated. Each of the RGB 1D SA holograms is composed of 71 frames, which after stitching result in approx. 150 Megapixel hologram pixel count and 12° angular field of view. In experimental part high quality numerical reconstructions for each type of the hologram are shown. Moreover, the captured holograms are used for generation of hybrid hologram that is assembled from a set of RGB holograms of different color statues of height below 20 cm. In the final experiment this hybrid hologram as well as RGB hologram of a single object are reconstructed in the color holographic display.

  3. Drawing Lines with Light in Holographic Space

    Science.gov (United States)

    Chang, Yin-Ren; Richardson, Martin

    2013-02-01

    This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.

  4. Holographic Hall conductivities from dyonic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Jonathan [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, I 34136 Trieste (Italy); Taliotis, Anastasios; Vanhoof, Joris [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-07-20

    We develop a general framework for computing the holographic 2-point functions and the corresponding conductivities in asymptotically locally AdS backgrounds with an electric charge density, a constant magentic field, and possibly non-trivial scalar profiles, for a broad class of Einstein-Maxwell-Axion-Dilaton theories, including certain Chern-Simons terms. Holographic renormalization is carried out for any theory in this class and the computation of the renormalized AC conductivities at zero spatial momentum is reduced to solving a single decoupled first order Riccati equation. Moreover, we develop a first order fake supergravity formulalism for dyonic renormalization group flows in four dimensions, allowing us to construct analytically infinite families of such backgrounds by specifying a superpotential at will. These RG flows interpolate between AdS{sub 4} in the UV and a hyperscaling violating Lifshitz geometry in the IR with exponents 1holographic 1- and 2-point functions and the corresponding transport coefficients in any dyonic background, both in the context of AdS/CMT and AdS/QCD.

  5. Holographic Video Disc And Laser Scanning Optics.

    Science.gov (United States)

    Weingartner, I.; Rosenbruch, K. J.

    1983-10-01

    Holographic optical elements or systems of holographic elements may replace glass optical imaging systems or may be used for the correction of glass optics. The main advantages of such systems are their low weight, small and compact construction, and their simple and inexpensive manufacture. The disadvantages to be overcome are mainly the low light through-put and chromatic aberrations. In the special case of optics for video discs we present an optical imaging system which is capable of giving the required high resolution for illumination with polychromatic radiation of limited bandwidth in the case of semiconductor laser diodes. Optimization programs based on ray tracing yield highly corrected imaging systems by comparably simple holographic means. The use of only two surfaces gives very compact and lightweight systems, the image quality of which is described for monochromatic and polychro-matic irradiance by means of optical transfer functions. The holograms are recorded on photo-resist material with short wavelength laser radiation. Such holograms have almost no scatter light and do not alter their properties with time or under radiation. These holograms generate wavefronts for the correction of aberrations which, in the case of glass optics, could only be achieved by aspherical surfaces.

  6. Holographic renormalization as a canonical transformation

    CERN Document Server

    Papadimitriou, Ioannis

    2010-01-01

    The gauge/string dualities have drawn attention to a class of variational problems on a boundary at infinity, which are not well defined unless a certain boundary term is added to the classical action. In the context of supergravity in asymptotically AdS spaces these problems are systematically addressed by the method of holographic renormalization. We argue that this class of a priori ill defined variational problems extends far beyond the realm of holographic dualities. As we show, exactly the same issues arise in gravity in non asymptotically AdS spaces, in point particles with certain unbounded from below potentials, and even fundamental strings in flat or AdS backgrounds. We show that the variational problem in all such cases can be made well defined by the following procedure, which is intrinsic to the system in question and does not rely on the existence of a holographically dual theory: (i) The first step is the construction of the space of the most general asymptotic solutions of the classical equati...

  7. Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources.

    Science.gov (United States)

    Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan

    2016-04-01

    In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods.

  8. Phase control during reconstruction of holographically recorded flow fields using real-time holographic interferometry

    Science.gov (United States)

    Burner, A. W.; Goad, W. K.

    1981-01-01

    A technique of phase control during reconstruction of holographic interferograms is demonstrated in which the recorded scene beam with disturbance present is made to interfere with the real-time scene beam after the disturbance is removed. The reference phase is adjusted during reconstruction by manipulating either the scene or reference beams. Comparisons are made between the present technique and the two-reference-beam and two-plate techniques, more commonly used for phase control during reconstruction of holographic interferograms for flow visualization.

  9. Structure of Vector Mesons in Holographic Model with Linear Confinement

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin; Hovhannes Grigoryan

    2007-11-01

    We investigate wave functions and form factors of vector mesons in the holographic dual model of QCD with oscillator-like infrared cutoff. We introduce wave functions conjugate to solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are very similar to those of a quantum-mechanical oscillator. For the lowest bound state (rho-meson), we show that all its elastic form factors can be built from the basic form factor which, in this model, exhibits a perfect vector meson dominance, i.e., is given by the rho-pole contribution alone. We calculate the electric radius of the rho-meson and find the value _C = 0.655 fm, which is larger than in the case of the hard-wall cutoff. We calculate the coupling constant f_rho and find that the experimental value is in the middle between the values given by the oscillator and hard-wall models.

  10. Holographic renormalization of 3D minimal massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Qaemmaqami, Mohammad M.; Naseh, Ali [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Department of Physics, Isfahan University of Technology,P.O.Box 84156-83111, Isfahan (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-19

    We study holographic renormalization of 3D minimal massive gravity using the Chern-Simons-like formulation of the model. We explicitly present Gibbons- Hawking term as well as all counterterms needed to make the action finite in terms of dreibein and spin-connection. This can be used to find correlation functions of stress tensor of holographic dual field theory.

  11. Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin

    NARCIS (Netherlands)

    Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.

    2005-01-01

    We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the

  12. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqi; Gong, Yungui [School of Physics, Huazhong University of Science and Technology,Wuhan, Hubei 430074 (China); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai 200240 (China)

    2016-02-17

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T{sub c}, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  13. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  14. Holographic Duality with a View Toward Many-Body Physics

    Directory of Open Access Journals (Sweden)

    John McGreevy

    2010-01-01

    Full Text Available These are notes based on a series of lectures given at the KITP workshop Quantum Criticality and the AdS/CFT Correspondence in July, 2009. The goal of the lectures was to introduce condensed matter physicists to the AdS/CFT correspondence. Discussion of string theory and of supersymmetry is avoided to the extent possible.

  15. Field-Induced Quantum Critical Point and Nodal Superconductivity in the Heavy-Fermion Superconductor Ce_{2}PdIn_{8}

    Directory of Open Access Journals (Sweden)

    J. K. Dong

    2011-09-01

    Full Text Available The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce_{2}PdIn_{8} single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2}, is demonstrated from the ρ(T∼T near H_{c2} and ρ(T∼T^{2} when further increasing the field. The large residual linear term κ_{0}/T at zero field and the rapid increase of κ(H/T at low field give evidence for nodal superconductivity in Ce_{2}PdIn_{8}. The jump of κ(H/T near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn_{5} superconductor, implying that Ce_{2}PdIn_{8} may be another interesting compound to investigate for the interplay between magnetism and superconductivity.

  16. Quantum field theory competitive models

    CERN Document Server

    Tolksdorf, Jürgen; Zeidler, Eberhard

    2009-01-01

    For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...

  17. Quantum cosmic models and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F; Rozas-Fernandez, Alberto [Colina de los Chopos, Centro de Fisica ' Miguel A Catalan' , Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)], E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es, E-mail: a.rozas@cfmac.csic.es

    2008-09-07

    The current accelerating phase of the evolution of the universe is considered by constructing the most economical cosmic models that use just general relativity and some dominating quantum effects associated with the probabilistic description of quantum physics. Two such models are explicitly analyzed. They are based on the existence of a sub-quantum potential and correspond to a generalization of the spatially flat exponential model of de Sitter space. The thermodynamics of these two cosmic solutions is discussed, using the second principle as a guide to choose which among the two is more feasible. The paper also discusses the relativistic physics on which the models are based, their holographic description, some implications from the classical energy conditions and an interpretation of dark energy in terms of the entangled energy of the universe.

  18. A simple holographic scenario for gapped quenches

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Esperanza; Bosch, Guillermo Milans del [Instituto de Física Teórica IFT UAM/CSIC, Universidad Autónoma de Madrid,28049 Cantoblanco, Madrid (Spain)

    2017-02-24

    We construct gravitational backgrounds dual to a family of field theories parameterized by a relevant coupling. They combine a non-trivial scalar field profile with a naked singularity. The naked singularity is necessary to preserve Lorentz invariance along the boundary directions. The singularity is however excised by introducing an infrared cutoff in the geometry. The holographic dictionary associated to the infrared boundary is developed. We implement quenches between two different values of the coupling. This requires considering time dependent boundary conditions for the scalar field both at the AdS boundary and the infrared wall.

  19. Persistent superconductor currents in holographic lattices.

    Science.gov (United States)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  20. Holographic collisions in non-conformal theories

    Science.gov (United States)

    Attems, Maximilian; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2017-01-01

    We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.

  1. Holographic Investigation of Solid Propellant Combustion

    Science.gov (United States)

    1988-12-01

    IITLE (B=m* £Se-T) CaruatwICi, HOLOGRAPHIC INIL’ESTIGWI’ION OF SOLZ ’PROPELLANT COMBUSTION 12 PERSONAL AUTHOR(S) -Butler, Albert G. 13a TYPE OF REPORT...Speckle 19 ABSTRACT (Ccin1,rn WI ree~rse if IlCCenr~y anld ,dentify by blod number) An Investigcation into the behavior of aissmnied solid propellant...required to obtain a good quality hologram. Nuetral density filters, :3 placed in the scene beam for collimated type transmission holograms or in the

  2. Holographic Quark Matter and Neutron Stars.

    Science.gov (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  3. Heavy quarkonium in a holographic basis

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-07-01

    Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.

  4. Analytical study of holographic superconductor in Born–Infeld electrodynamics with backreaction

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-03-01

    Full Text Available We extend the analytical studies on the properties of s-wave holographic superconductors in the presence of Born–Infeld nonlinear electrodynamics by taking the backreaction into account. We find that even in the case of nonlinear electrodynamics, one can still employ the analytical method when the backreaction is turned on. In our calculations, we use the variational method which is based on the Sturm–Liouville eigenvalue problem. For this system, we obtain the relation between the critical temperature and the charge density. We find that both backreaction and Born–Infeld parameters decrease the critical temperature of the superconductor and make the condensation harder. Finally, we compute the critical exponent associated with the condensation near the critical temperature and find that it equals 1/2 which is the universal value in the mean field theory.

  5. Analytical study of holographic superconductor in Born–Infeld electrodynamics with backreaction

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhi, A., E-mail: asheykhi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Shaker, F. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2016-03-10

    We extend the analytical studies on the properties of s-wave holographic superconductors in the presence of Born–Infeld nonlinear electrodynamics by taking the backreaction into account. We find that even in the case of nonlinear electrodynamics, one can still employ the analytical method when the backreaction is turned on. In our calculations, we use the variational method which is based on the Sturm–Liouville eigenvalue problem. For this system, we obtain the relation between the critical temperature and the charge density. We find that both backreaction and Born–Infeld parameters decrease the critical temperature of the superconductor and make the condensation harder. Finally, we compute the critical exponent associated with the condensation near the critical temperature and find that it equals 1/2 which is the universal value in the mean field theory.

  6. The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael

    2009-01-01

    to be suitable for holographic storage applications. However, they still present several problems, mainly those related with light sensitivity, response time and stability of the stored information. In this article we review the work performed on volume holographic storage using azobenzene containing polymers......Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem...

  7. Volume holographic storage in photorefractives: material peculiarities and memory performances

    Science.gov (United States)

    Tao, Shiquan

    1998-08-01

    In this paper we review the currently achievable performances of holographic memories stored in photorefractive crystals. We discuss the dependence of the memory performances on the material peculiarities in three major aspects: storage capacity, data transfer rate,and image fidelity. In the recent years the research at Beijing Polytechnic University on the photorefractive holographic storage has been focused to the optimization of the storage capacity and diffraction efficiency, as well as the influence of noises on the fidelity of reconstructed images. Our research shows again that the realization of volume holographic storage technology requests materials with perfect properties.

  8. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  9. Holographic paramagnetism–ferromagnetism phase transition in the Born–Infeld electrodynamics

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2016-09-01

    Full Text Available In the probe limit, we investigate the effects of the Born–Infeld electrodynamics on the holographic paramagnetism–ferromagnetism phase transition in the background of a Schwarzschild–AdS black hole spacetime. We find that the presence of Born–Infeld scale parameter b decreases the critical temperature and makes the magnetic moment harder to form in the case of without external field. Furthermore, the increase of b will result in extending the period of the external magnetic field.

  10. Solitonic approach to holographic nuclear physics

    Science.gov (United States)

    Baldino, Salvatore; Bolognesi, Stefano; Gudnason, Sven Bjarke; Koksal, Deniz

    2017-08-01

    We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large 't Hooft coupling λ . In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1 /Nc and 1 /λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.

  11. Holographic superconductor on a novel insulator

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Wu, Meng-He

    2018-01-01

    We construct a holographic superconductor model, based on a gravity theory, which exhibits novel metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity. This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high {T}{{c}} cuprates. We expect that this work can shed light on understanding the mechanism of high {T}{{c}} superconductivity from the holographic side. Supported by Natural Science Foundation of China (11575195, 11775036, 11305018), Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by Natural Science Foundation of Liaoning Province (201602013)

  12. The holographic dual of the Penrose transform

    Science.gov (United States)

    Neiman, Yasha

    2018-01-01

    We consider the holographic duality between type-A higher-spin gravity in AdS4 and the free U( N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these "square root" spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a "square root" of CPT.

  13. Archiving Saudi heritage using the holographic medium

    Science.gov (United States)

    Althagafi, A.; Richardson, M.

    2015-03-01

    This paper focuses on the use of the Yuri Nikolaevich DENISYUK holographic recording process to document, archive and display Saudi heritage. The goal of this research is to develop a technique of archiving heritage by using a high-tech holographic process to capture a three-dimensional presentation of ancient jewelry artifacts of the Saudi Heritage in particular. This study concentrates on five particular items of handmade authentic ancient metal jewelry from different parts of Saudi Arabia. When conducting this research experiments were conducted using both red-green sensitive plates sensitive to 633 nm and 532 nm respectively. Material thickness ranged between 1.5 and 3 millimeters were used, consequently in the dark room, varied chemicals for developing the holograms were employed. Red and green laser devices were also used with exposure times between 8 to 18 seconds of laser light dispersion through diffused surfaces in reflection holography. The outcome in each case was varied. The holograms captured the jewelry pieces with all the engravings and minute details, thus archiving the Saudi Heritage of that time. What makes holograms a revolutionary method for presenting valuable and/or ancient artifacts is the fact that they offer a more practical and convenient solution to travel around the world than displaying the originals items. Thus, museum visitors can enjoy and appreciate the precious artifacts otherwise unseen and lost without holography.

  14. Setting up of holographic optical tweezer arrays

    Science.gov (United States)

    Gupta, Deepak K.; Tata, B. V. R.; Ravindran, T. R.

    2017-05-01

    Optical tweezers use tightly focused laser beams to hold and move microscopic objects in a solvent. However, many applications require simultaneous control over multitude of particles, positioning them in 3D space at desired locations with desired symmetry, which is made possible by the use of holographic optical tweezers using the technique of beam shaping and holography. We have designed and developed a holographic optical tweezer set-up using a phase only liquid crystal, reflective spatial light modulator. We employ the technique of phase modulation to modulate the phase of the beam by generating holograms using Random Superposition (RS) and weighted Gerchberg Saxton algorithm (WGS) algorithm for generating desired patterns of light at the trapping plane. A 4×4 array of beams with square symmetry was generated using WGS algorithm and trapped polystyrene particles of size 1.2 micron in a 4×4 two dimensional array. There were uniformity issues among the trap intensities, as we move away from the zeroth order spot. This was corrected by taking into account diffraction effects due to the pixelated nature of SLM modulating the intensity of the trap spots and the ghost order suppression by spatial disorder.

  15. Noncontact holographic detection for photoacoustic tomography

    Science.gov (United States)

    Buj, Christian; Münter, Michael; Schmarbeck, Benedikt; Horstmann, Jens; Hüttmann, Gereon; Brinkmann, Ralf

    2017-10-01

    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 μm up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed.

  16. Sonorous images through digital holographic images

    Science.gov (United States)

    Azevedo, Isabel; Sandford-Richardson, Elizabeth

    2017-03-01

    The art of the last fifty years has significantly surrounded the presence of the body, the relationship between human and interactive technologies. Today in interactive art, there are not only representations that speak of the body but actions and behaviours that involve the body. In holography, the image appears and disappears from the observer's vision field; because the holographic image is light, we can see multidimensional spaces, shapes and colours existing on the same time, presence and absence of the image on the holographic plate. And the image can be flowing in front of the plate that sometimes people try touching it with his hands. That means, to the viewer will be interactive events, with no beginning or end that can be perceived in any direction, forward or backward, depending on the relative position and the time the viewer spends in front of the hologram. To explore that feature we are proposing an installation with four holograms, and several sources of different kind of sounds connected with each hologram. When viewers will move in front of each hologram they will activate different sources of sound. The search is not only about the images in the holograms, but also the looking for different types of sounds that this demand will require. The digital holograms were produced using the HoloCam Portable Light System with the 35 mm camera Canon 700D to capture image information, it was then edited on computer using the Motion 5 and Final Cut Pro X programs.

  17. From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.

    Science.gov (United States)

    Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas

    2017-01-27

    We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.

  18. Ultrasonic investigation close to quantum critical point in YbTr{sub 2}Zn{sub 20} (Tr: Co, Rh, and Ir)

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Y; Kamiyama, T; Ito, K; Nakamura, M; Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Saiga, Y [Graduate School of Advanced Sciences of Matter, Hiroshima University, HigashiHiroshima 739-8530 (Japan); Kosaka, M [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Uwatoko, Y, E-mail: yoshiki@iwate-u.ac.j [Institute for Solid State Physics, University of Tokyo, Kashiwa 227-8581 (Japan)

    2010-01-15

    We performed ultrasonic measurements on high quality single crystals of the Yb-based heavy fermion compounds YbTr{sub 2}Zn{sub 20} (Tr: Co, Rh and Ir) over a temperature range from 200 K to 0.5 K, which seem to be close to a quantum critical point (QCP). A sharp contrast of the temperature dependence of elastic constants was found at low temperature among the three compounds, reflecting the 4f electronic state stemmed from Yb ion. The results indicate that a crystalline electric field (CEF) effect seems to be dominant in the systems YbRh{sub 2}Zn{sub 20} and YbIr{sub 2}Zn{sub 20} at low temperatures. On the other hand, the CEF effect is much less, but an additional effect would be dominant which is most probably ascribable to non Fermi liquid characteristics formed close to the QCP. We discuss briefly each 4f electronic state developed at the low temperatures and physical parameters relating to a renormalized band model in YbTr{sub 2}Zn{sub 20} in the framework of a deformation potential approximation.

  19. Scaling behavior near the itinerant ferromagnetic quantum critical point (FQCP) of NiCoCrx for 0.8

    Science.gov (United States)

    Sales, Brian; Jin, Ke; Bei, Hongbin; Nichols, John; Chisholm, Matthew; May, Andrew; McGuire, Michael

    Low temperature magnetization, resistivity and heat capacity data are reported for the concentrated solid solution NiCoCrx as a function of temperature and magnetic field. In the quantum critical region the low field (0.001-0.01 T) magnetic susceptibility, Chi, diverges as T- 1 / 2 and the magnetization data exhibits T/B scaling from 0.001 2 Tesla, the crossover temperature from the QC to Fermi liquid regime is no longer linear in B, and is better described by B0.75. This scaling behavior is particularly accurate in describing the normalized magnetoresistance data [Rho(B,T)-Rho(0,T)]/T, which is equivalent to the ratio of relaxation rates associated with magnetic field and temperature TauT/TauB. The location of the QCP is sensitive to the composition x and the strain generated during synthesis. These medium-entropy alloys are interesting model systems to explore the role of chemical disorder at FQCP. Research supported by the DOE Office of Science, Materials Science and Engineering Division, and the Energy Dissipation to Defect Evolution EFRC.

  20. Holographic entanglement entropy and the extended phase structure of STU black holes

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Nguyen, Phuc H.; Pedraza, Juan F. [Theory Group, Department of Physics, University of Texas,Austin, TX 78712 (United States); Texas Cosmology Center, University of Texas,Austin, TX 78712 (United States)

    2015-09-28

    We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropriate critical exponents and show that they coincide. Thus, the entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the physical interpretation of the extended space in terms of the boundary QFT and construct various holographic heat engines dual to STU black holes.

  1. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  2. Homes’ law in holographic superconductor with Q-lattices

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Chao; Kim, Keun-Young [School of Physics and Chemistry, Gwangju Institute of Science and Technology,Gwangju 61005 (Korea, Republic of)

    2016-10-26

    Homes’ law, ρ{sub s}=Cσ{sub DC}T{sub c}, is an empirical law satisfied by various superconductors with a material independent universal constant C, where ρ{sub s} is the superfluid density at zero temperature, T{sub c} is the critical temperature, and σ{sub DC} is the electric DC conductivity in the normal state close to T{sub c}. We study Homes’ law in holographic superconductor with Q-lattices and find that Homes’ law is realized for some parameter regime in insulating phase near the metal-insulator transition boundary, where momentum relaxation is strong. In computing the superfluid density, we employ two methods: one is related to the infinite DC conductivity and the other is related to the magnetic penetration depth. With finite momentum relaxation both yield the same results, while without momentum relaxation only the latter gives the superfluid density correctly because the former has a spurious contribution from the infinite DC conductivity due to translation invariance.

  3. Scan Quantum Mechanics: Quantum Inertia Stops Superposition

    CERN Document Server

    Gato-Rivera, Beatriz

    2015-01-01

    A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...

  4. Volume polarization holographic recording in thick photopolymer for optical memory.

    Science.gov (United States)

    Lin, Shiuan Huei; Cho, Sheng-Lung; Chou, Shin-Fu; Lin, June Hua; Lin, Chih Min; Chi, Sien; Hsu, Ken Yuh

    2014-06-16

    Based on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated. It is found that the circular polarization holographic recording possesses better dynamic range and material sensitivity, and a uniform spatial frequency response over a wide range. The performance is comparable to that of the intensity holographic recording in PQ/PMMA. Based on theoretical analyses and the material properties, a polarization multiplexing holographic memory using circularly polarization recording configuration for increasing storage capacity has been designed and experimentally demonstrated.

  5. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  6. Quantitative measurement of holographic image quality using Adobe Photoshop

    Science.gov (United States)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  7. A novel collinear optical setup for holographic data storage system

    Science.gov (United States)

    Horimai, Hideyoshi; Li, Jun

    2004-09-01

    In this paper, A novel collinear optical setup for holographic data storage system is presented. Simulated/experimental results are given. Combined with sub-page based data format, the system is simple and robust.

  8. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates

    DEFF Research Database (Denmark)

    Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco

    1999-01-01

    Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...

  9. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  10. Reflection mode holographic recording in methylene blue-sensitized ...

    Indian Academy of Sciences (India)

    2014-02-13

    out rates has increased considerably. Thus, in recent years much attention has been centred on three-dimensional (3D) holographic disks [1,2]. Many recent studies have focussed on the characterization and optimization of ...

  11. Holographic Renormalization of general dilaton-axion gravity

    CERN Document Server

    Papadimitriou, Ioannis

    2011-01-01

    We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.

  12. Coherent backlight unit using holographic optical elements for full-color flat-panel holographic display

    Science.gov (United States)

    Kim, Sun Il; Choi, Chil-Sung; An, Jungkwuen; Song, Hoon; Kim, Yunhee; Kim, Young; Sung, Geeyoung; Seo, Wontaek; Seo, Juwon; Kim, Yun-Tae; Kim, Hojung; Kim, Yongkyu; Lee, Hong-Seok; Hwang, Sungwoo

    2017-03-01

    We propose the coherent backlight unit (BLU) using Holographic Optical Element (HOE) for full-color flat-panel holographic display. The HOE BLU consists of two reflective type HOEs that change the optical beam path and shape by diffraction. The diverging incident beam is transformed to the collimated beam which has a very small diffraction angle (7.5°) by HOE 1 (H1) in order to illuminate the whole display. This collimated beam is converged to a point at a distance from the glass substrate by HOE 2 (H2). As a result, the diverging incident beam is converted to a point light by H1 and H2. When the high resolution Spatial Light Modulator (SLM) displaying Computer Generated Hologram (CGH) is illuminated by HOE BLU, the hologram image is displayed at a view point near focal point. Practically, we fabricated the full color HOE BLU for 5.5" flat panel holographic display by using the proposed design. At least 5.5" size of HOE is required to illuminate the whole panel. For this reason, we recorded 150 mm x 90 mm size HOE on the 10 mm thickness glass substrate. This HOE BLU exhibits a total efficiency of 8.0% at Red (660 nm), 7.7% at Green (532 nm), 3.2% at Blue (460 nm) using optimized recording conditions for each wavelength. Finally, a bright full color hologram image was achieved.

  13. Survival of time-evolved quantum correlations depending on whether quenching is across a critical point in an X Y spin chain

    Science.gov (United States)

    Mishra, Utkarsh; Rakshit, Debraj; Prabhu, R.

    2016-04-01

    The time dynamics of quantum correlations in the quantum transverse anisotropic X Y spin chain of infinite length is studied at zero and finite temperatures. The evolution occurs due to the instantaneous quenching of the coupling constant between the nearest-neighbor spins of the model, which is performed either within the same phase or across the quantum phase-transition point connecting the order-disorder phases of the model. We characterize the time-evolved quantum correlations, viz., entanglement and quantum discord, which exhibit varying behavior depending on the initial state and the quenching scheme. We show that the system is endowed with enhanced nearest-neighbor bipartite quantum correlations compared to that of the initial state, when quenched from the ordered to the deep disordered phase. However, nearest-neighbor quantum correlations are almost washed out when the system is quenched from the disordered to the ordered phase with the initial state being at the zero temperature. We also identify the condition for the occurrence of enhanced bipartite correlations when the system is quenched within the same phase. Moreover, we investigate the bipartite quantum correlations when the initial state is a thermal equilibrium state with finite temperature, which reveals the effects of thermal fluctuation on the phenomena observed at zero temperature. Finally, an analogous analysis is carried out for zero-temperature next-nearest-neighbor quantum correlations.

  14. Holographic model for dilepton production in p-p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ballon Bayona, C.A., E-mail: c.a.m.ballonbayona@durham.ac.uk [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, RJ 22290-180 (Brazil); Centre for Particle Theory, University of Durham, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Boschi-Filho, Henrique, E-mail: boschi@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil)

    2011-10-01

    We propose a holographic model for dilepton production in proton-proton collisions through the exchange of vector mesons. The holographic hard wall model is used to describe the dynamics and interactions of vector mesons and baryons. We estimate the parameters {lambda}, {mu}, {nu} that characterize the angular distribution of the produced dileptons in a region of q{sub T}{sup 2}<

  15. Handbook of Holographic Interferometry: Optical and Digital Methods

    Science.gov (United States)

    Kreis, Thomas

    2005-01-01

    The book presents the principles and methods of holographic interferometry - a coherent-optical measurement technique for deformation and stress analysis, for the determination of refractive-index distributions, or applied to non-destructive testing. Emphasis of the book is on the quantitative computer-aided evaluation of the holographic interferograms. Based upon wave-optics the evaluation methods, their implementation in computer-algorithms, and their applications in engineering are described.

  16. Holographic Refraction and the Measurement of Spherical Ametropia.

    Science.gov (United States)

    Nguyen, Nicholas Hoai Nam

    2016-10-01

    To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.

  17. Holographic superconductors in Einstein-æther gravity

    Science.gov (United States)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  18. Quantum Erasure: Quantum Interference Revisited

    OpenAIRE

    Walborn, Stephen P.; Cunha, Marcelo O. Terra; Pádua, Sebastião; Monken, Carlos H.

    2005-01-01

    Recent experiments in quantum optics have shed light on the foundations of quantum physics. Quantum erasers - modified quantum interference experiments - show that quantum entanglement is responsible for the complementarity principle.

  19. Are Quantum Theory Questions Epistemic?

    Directory of Open Access Journals (Sweden)

    Viviana Yaccuzzi Polisena

    2013-12-01

    Full Text Available How to displace-move quantum theory [Ǭ] questions-problems to philosophy? Seeing the collapse of our society’s cultural-intellectual-morals, the philosophy of the 21st century has to contribute to the formation of new principles-formalisms: the big task of the contemporary philosophy ©] is to innovate, to transform the building of the knowledge! Which is the role of the contemporary philosopher? (Noam Chomsky. Building science so that it is more human, out of the scientific mercantilism so that it does not continue transgressing that which is most precious: the thought-life. The ideas that I propose demand a deep cultural-epistemiologicscientific-philosophical-ethical rethinking that goes from quantum entities up to life in society. The starting idea is «the quantum [Ǭ], the paradigm of the contemporary science ©]» (Bernard D’Espagnat. I propose to displace-move questions of the quantum theory [Ǭ]: spin, measure, layering to the field of philosophy (φ to build generic symbols. Can the contemporary episteme model the collapse of the ? For a philosopher, can understanding the importance and the behaviour of the spin bring something new to philosophy ? Can information of the states of the spin be used to observe in a holographic way the pattern energy-information contained in the quantum entities? Is quantum [Ǭ] physics mechanical?

  20. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.