Proton beam writing for producing holographic images
International Nuclear Information System (INIS)
Ow, Y.S.; Breese, M.B.H.; Bettiol, A.A.
2009-01-01
This work reports on the writing of computer generated hologram diffraction patterns using focused 2 MeV proton beam irradiation. These patterns were designed using a ray tracing algorithm and written directly into a thick polymethylmethacrylate layer. When the developed holographic pattern was illuminated with a 650 nm laser it produced a good reconstructed image. This work provides means of forming high-resolution, high aspect ratio holographic images in polymers for applications in data storage using switchable holography.
Magnonic holographic imaging of magnetic microstructures
Energy Technology Data Exchange (ETDEWEB)
Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A.D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khivintsev, Y.; Filimonov, Y. [Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Saratov 410019 (Russian Federation); Saratov State University, Saratov 410012 (Russian Federation); Garay, J.; Lake, R.; Balandin, A.A. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khitun, A., E-mail: akhitun@engr.ucr.edu [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States)
2017-04-15
We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot – the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe{sub 12}O{sub 19} and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe{sub 12}O{sub 19} powder. The imaging was accomplished on a Y{sub 3}Fe{sub 2}(FeO{sub 4}){sub 3} testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed. - Highlights: • A technique for magnetic microstructure imaging via their interaction with propagating spin waves is proposed. • In this technique, magnetic structures appear as 3D objects. • Several holographic images of magnetic microstructures are presented.
Magnonic holographic imaging of magnetic microstructures
Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A. D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C.; Khivintsev, Y.; Filimonov, Y.; Garay, J.; Lake, R.; Balandin, A. A.; Khitun, A.
2017-04-01
We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot - the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe12O19 and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe12O19 powder. The imaging was accomplished on a Y3Fe2(FeO4)3 testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed.
Quantitative measurement of holographic image quality using Adobe Photoshop
International Nuclear Information System (INIS)
Wesly, E
2013-01-01
Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.
Quantitative measurement of holographic image quality using Adobe Photoshop
Wesly, E.
2013-02-01
Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.
Circularly polarized antennas for active holographic imaging through barriers
McMakin, Douglas L [Richland, WA; Severtsen, Ronald H [Richland, WA; Lechelt, Wayne M [West Richland, WA; Prince, James M [Kennewick, WA
2011-07-26
Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.
Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry
DEFF Research Database (Denmark)
Miller, Arne; McLaughlin, W. L.
1975-01-01
Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....
Phase-image-based content-addressable holographic data storage
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
Coherent imaging with incoherent light in digital holographic microscopy
Chmelik, Radim
2012-01-01
Digital holographic microscope (DHM) allows for imaging with a quantitative phase contrast. In this way it becomes an important instrument, a completely non-invasive tool for a contrast intravital observation of living cells and a cell drymass density distribution measurement. A serious drawback of current DHMs is highly coherent illumination which makes the lateral resolution worse and impairs the image quality by a coherence noise and a parasitic interference. An uncompromising solution to this problem can be found in the Leith concept of incoherent holography. An off-axis hologram can be formed with arbitrary degree of light coherence in systems equipped with an achromatic interferometer and thus the resolution and the image quality typical for an incoherent-light wide-field microscopy can be achieved. In addition, advanced imaging modes based on limited coherence can be utilized. The typical example is a coherence-gating effect which provides a finite axial resolution and makes DHM image similar to that of a confocal microscope. These possibilities were described theoretically using the formalism of three-dimensional coherent transfer functions and proved experimentally by the coherence-controlled holographic microscope which is DHM based on the Leith achromatic interferometer. Quantitative-phase-contrast imaging is demonstrated with incoherent light by the living cancer cells observation and their motility evaluation. The coherence-gating effect was proved by imaging of model samples through a scattering layer and living cells inside an opalescent medium.
Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto
2014-08-01
To expand upon our previous report [Appl. Phys. Express 5, 064101 (2012) 064101], we provide here the modified poly(4-diphenylaminostyrene) (PDAS)-based photorefractive (PR) device on the basis of wavelength dependency, and demonstrate dynamic holographic images by using the PDAS-based PR device under the obtained appropriate conditions. The PR devices containing the triphenylamine unit have potential application to dynamic holographic images, which will be useful for real-time holographic displays.
Holographic atom imaging from experimental photoelectron angular distribution patterns
International Nuclear Information System (INIS)
Terminello, L.J.; Lapiano-Smith, D.A.; Barton, J.J.; Shirley, D.A.
1993-11-01
One of the most challenging areas of materials research is the imaging of technologically relevant materials with microscopic and atomic-scale resolution. As part of the development of these methods, near-surface atoms in single crystals were imaged using core-level photoelectron holograms. The angle-dependent electron diffraction patterns that constitute an electron hologram were two-dimensionally transformed to create a three dimensional, real-space image of the neighboring scattering atoms. They have made use of a multiple-wavenumber, phased-summing method to improve the atom imaging capabilities of experimental photoelectron holography using the Cu(001) and Pt(111) prototype systems. These studies are performed to evaluate the potential of holographic atom imaging methods as structural probes of unknown materials
Holographic images reconstructed from GMR-based fringe pattern
Directory of Open Access Journals (Sweden)
Kikuchi Hiroshi
2013-01-01
Full Text Available We have developed a magneto-optical spatial light modulator (MOSLM using giant magneto-resistance (GMR structures for realizing a holographic three-dimensional (3D display. For practical applications, reconstructed image of hologram consisting of GMR structures should be investigated in order to study the feasibility of the MOSLM. In this study, we fabricated a hologram with GMR based fringe-pattern and demonstrated a reconstructed image. A fringe-pattern convolving a crossshaped image was calculated by a conventional binary computer generated hologram (CGH technique. The CGH-pattern has 2,048 × 2,048 with 5 μm pixel pitch. The GMR stack consists of a Tb-Fe-Co/CoFe pinned layer, a Ag spacer, a Gd-Fe free layer for light modulation, and a Ru capping layer, was deposited by dc-magnetron sputtering. The GMR hologram was formed using photo-lithography and Krion milling processes, followed by the deposition of a Tb-Fe-Co reference layer with large coercivity and the same Kerr-rotation angle compared to the free layer, and a lift-off process. The reconstructed image of the ON-state was clearly observed and successfully distinguished from the OFF-state by switching the magnetization direction of the free-layer with an external magnetic field. These results indicate the possibility of realizing a holographic 3D display by the MOSLM using the GMR structures.
Digital Holographic Microscopy: Quantitative Phase Imaging and Applications in Live Cell Analysis
Kemper, Björn; Langehanenberg, Patrik; Kosmeier, Sebastian; Schlichthaber, Frank; Remmersmann, Christian; von Bally, Gert; Rommel, Christina; Dierker, Christian; Schnekenburger, Jürgen
The analysis of complex processes in living cells creates a high demand for fast and label-free methods for online monitoring. Widely used fluorescence methods require specific labeling and are often restricted to chemically fixated samples. Thus, methods that offer label-free and minimally invasive detection of live cell processes and cell state alterations are of particular interest. In combination with light microscopy, digital holography provides label-free, multi-focus quantitative phase imaging of living cells. In overview, several methods for digital holographic microscopy (DHM) are presented. First, different experimental setups for the recording of digital holograms and the modular integration of DHM into common microscopes are described. Then the numerical processing of digitally captured holograms is explained. This includes the description of spatial and temporal phase shifting techniques, spatial filtering based reconstruction, holographic autofocusing, and the evaluation of self-interference holograms. Furthermore, the usage of partial coherent light and multi-wavelength approaches is discussed. Finally, potentials of digital holographic microscopy for quantitative cell imaging are illustrated by results from selected applications. It is shown that DHM can be used for automated tracking of migrating cells and cell thickness monitoring as well as for refractive index determination of cells and particles. Moreover, the use of DHM for label-free analysis in fluidics and micro-injection monitoring is demonstrated. The results show that DHM is a highly relevant method that allows novel insights in dynamic cell biology, with applications in cancer research and for drugs and toxicity testing.
Holographic particle image velocimetry using Bacteriorhodopsin
Koek, W.D.
2006-01-01
To gain better insight into the behaviour of turbulent flow there is a demand for a practical measurement instrument to perform three-dimensional flow measurements. Holography is a three-dimensional imaging technique, and as such is ideally suited for this purpose. Because flow media (such as water
Human genome sequencing with direct x-ray holographic imaging
International Nuclear Information System (INIS)
Rhodes, C.K.
1993-01-01
Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization
Yi, Faliu; Moon, Inkyu; Javidi, Bahram
2017-01-01
In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078
Holographic Particle Image Velocimetry and its Application in Engine Development
International Nuclear Information System (INIS)
Coupland, J M; Garner, C P; Alcock, R D; Halliwell, N A
2006-01-01
This paper reviews Holographic Particle Image Velocimetry (HPIV) as a means to make three-component velocity measurements throughout a three-dimensional flow-field of interest. A simplified treatment of three-dimensional scalar wave propagation is outlined and subsequently used to illustrate the principles of complex correlation analysis. It is shown that this type of analysis provides the three-dimensional correlation of the propagating, monochromatic fields recorded by the hologram. A similar approach is used to analyse the Object Conjugate Reconstruction (OCR) technique to resolve directional ambiguity by introducing an artificial image shift to the reconstructed particle images. An example of how these methods are used together to measure the instantaneous flow fields within a motored Diesel engine is then described
System and carrier for optical images and holographic information recording
International Nuclear Information System (INIS)
Andries, A.; Bivol, V.; Iovu, M
2002-01-01
The invention relates to the semiconducting silverless photography, in particular to the technique for optical information recording and may be used in microphotography for manifacture of microfiches, microfilms, storage disks, i the multiplication and copying technique, in holography, in micro- and optoelectronics, cinematography etc. The system for optical images and holographic information recording includes an optical exposure system, an information carrier , containing a dielectric substrate with the first electrode, a photosensitive element and the second electrode, arranged in consecutive order, a constant and impulse voltage source, a means for climbing and movement of the information carrier, a control unit for connection of the voltage source to the electroconducting strate, a personal computer, connected to the control unit of the recording modes ,to the exposure system and the information carrier, an electrooptical transparency, connected to the computer by means of the matching unit. The carrier for optical images and holographic information recording contains a dielectric substrate, a photosensitive element formed of a layer of the vitreous chalcogenic semiconductor and a layer of the crystalline or amorphous semiconductor, forming a heterojunction, the photosensitive element is arranged between two electrodes , one of which is made transparent , in such case rge layer of the vitreous chalcogenic semiconductor comes into contact with the superior transparent electrode, subjected to exposure
Fourier transform digital holographic adaptive optics imaging system
Liu, Changgeng; Yu, Xiao; Kim, Myung K.
2013-01-01
A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541
Quantitative phase imaging with scanning holographic microscopy: an experimental assesment
Directory of Open Access Journals (Sweden)
Tada Yoshitaka
2006-11-01
Full Text Available Abstract This paper demonstrates experimentally how quantitative phase information can be obtained in scanning holographic microscopy. Scanning holography can operate in both coherent and incoherent modes, simultaneously if desired, with different detector geometries. A spatially integrating detector provides an incoherent hologram of the object's intensity distribution (absorption and/or fluorescence, for example, while a point detector in a conjugate plane of the pupil provides a coherent hologram of the object's complex amplitude, from which a quantitative measure of its phase distribution can be extracted. The possibility of capturing simultaneously holograms of three-dimensional specimens, leading to three-dimensional reconstructions with absorption contrast, reflectance contrast, fluorescence contrast, as was previously demonstrated, and quantitative phase contrast, as shown here for the first time, opens up new avenues for multimodal imaging in biological studies.
Image improvement and three-dimensional reconstruction using holographic image processing
Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.
1977-01-01
Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.
Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K
2008-09-15
A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.
Model-based magnetization retrieval from holographic phase images
Energy Technology Data Exchange (ETDEWEB)
Röder, Falk, E-mail: f.roeder@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Vogel, Karin [Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Wolf, Daniel [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); Triebenberg Labor, Institut für Strukturphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Hellwig, Olav [Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, Bautzner Landstr. 400, D-01328 Dresden (Germany); AG Magnetische Funktionsmaterialien, Institut für Physik, Technische Universität Chemnitz, D-09126 Chemnitz (Germany); HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wee, Sung Hun [HGST, A Western Digital Company, 3403 Yerba Buena Rd., San Jose, CA 95135 (United States); Wicht, Sebastian; Rellinghaus, Bernd [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)
2017-05-15
The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO{sub 3} substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. - Highlights: • Retrieval of the magnetization from holographic phase images. • Magnetostatic model constructed for a magnetic nano-structure. • Decomposition into homogeneously magnetized components. • Discretization of a each component by elementary cuboids. • Analytic solution for the phase of a magnetized cuboid considered. • Fitting a set of magnetization vectors to experimental phase images.
International Nuclear Information System (INIS)
Gao Hong-Yue; Liu Pan; Zeng Chao; Yao Qiu-Xiang; Zheng Zhiqiang; Liu Jicheng; Zheng Huadong; Yu Ying-Jie; Zeng Zhen-Xiang; Sun Tao
2016-01-01
We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. (special topic)
All-dielectric meta-holograms with holographic images transforming longitudinally
Wang, Qiu; Xu, Quan; Zhang, Xueqian; Tian, Chunxiu; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2017-01-01
Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.
All-dielectric meta-holograms with holographic images transforming longitudinally
Wang, Qiu
2017-11-22
Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.
Acoustical holographic recording with coherent optical read-out and image processing
Liu, H. K.
1980-10-01
New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.
International Nuclear Information System (INIS)
Reichelt, Stephan; Leister, Norbert
2013-01-01
In dynamic computer-generated holography that utilizes spatial light modulators, both hologram synthesis and hologram representation are essential in terms of fast computation and high reconstruction quality. For hologram synthesis, i.e. the computation step, Fresnel transform based or point-source based raytracing methods can be applied. In the encoding step, the complex wave-field has to be optimally represented by the SLM with its given modulation capability. For proper hologram reconstruction that implies a simultaneous and independent amplitude and phase modulation of the input wave-field by the SLM. In this paper, we discuss full complex hologram representation methods on SLMs by considering inherent SLM parameter such as modulation type and bit depth on their reconstruction performance such as diffraction efficiency and SNR. We review the three implementation schemes of Burckhardt amplitude-only representation, phase-only macro-pixel representation, and two-phase interference representation. Besides the optical performance we address their hardware complexity and required computational load. Finally, we experimentally demonstrate holographic reconstructions of different representation schemes as obtained by functional prototypes utilizing SeeReal's viewing-window holographic display technology. The proposed hardware implementations enable a fast encoding of complex-valued hologram data and thus will pave the way for commercial real-time holographic 3D imaging in the near future.
Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.
Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro
2017-05-01
A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.
Effect of spatial coherence of LED sources on image resolution in holographic displays
Pourreza Ghoushchi, Vahid; Aas, Mehdi; Ulusoy, Erdem; Ürey, Hakan
2017-01-01
Holographic Displays (HDs) provide 3D images with all natural depth cues via computer generated holograms (CGHs) implemented on spatial light modulators (SLMs). HDs are coherent light processing systems based on interference and diffraction, thus they generally use laser light. However, laser
Ultra wide band radar holographic imaging of buried waste at DOE sites
International Nuclear Information System (INIS)
Collins, H.D.; Gribble, R.P.; Hall, T.E.; Lechelt, W.M.
1995-04-01
Ultra wideband linear array holography is a unique real-time imaging technique for in-situ inspection of buried waste at various DOE sites. The array can be mounted on various platforms such as crane booms, pickup trucks, ATVs, and scanned generating ''3-D'' subsurface images in real time. Inspection speeds are 0.5 to 2 meters/sec, if the image is viewed in real time, greater for off-line processing. The Ground Penetrating Holographic (GPH) system developed for inspection of DOE sites employs two 32element arrays of tapered-slot antenna operating at 5-GHz and 2.5-GHz center frequencies. The GPH system, which is mounted on a small trailer with a computer image processor, display, and power supply, is capable of imaging a wide swath (1 to 2 meters) with its linear arrays. The lower frequency array will be used at INEL (for greater depth penetration) because of high soil attenuation. Recent holographic ''3-D'' images of buried waste container lids and dielectrics obtained in Hanford sand and INEL soils at various depths graphically illustrate the unique image resolution capabilities of the system. Experimental results using the 5-GHz array will be presented showing the excellent holographic image quality of various subsurface targets in sand and INEL soil
Carrier for registration of optical images and holographic information
International Nuclear Information System (INIS)
Andries, A.; Bivol, V.; Iovu, M.
2000-01-01
The invention relates to the field of registration of optical information including the holographic one and may be used in the holography, cinematography, micro- and optical electronics, computer engineering. Summary of the invention consists in, that in the carrier containing a dielectric substrate on which there are placed in sequence the first electrode, photoinjection substrate, registration substrate of the chalcogenide vitreous semiconductor and the second electrode, the photoinjection substrate is fabricated of the monocrystalline germanium of the n-type conductivity and the relation of the registration substrate conductivity, during illumination to the photoinjection substrate conductivity in darkness is 0,001. The technical result consists in increasing the carrier photosensibility and in diffraction effectiveness of the information registered on the carrier
An external interface for processing 3-D holographic and X-ray images
International Nuclear Information System (INIS)
Jueptner, W.; Kreis, T.
1989-01-01
The aim of the ESPRIT project 898 is the development of an external interface system, that links physically generated 3-D images to inspection and analysis procedures. While this has to be a general and flexible system, it is used in this project for holographic interferograms and X-ray radiographs for applications in areas such as real time testing and inspection and 3-D measurment. For this task, optical and electronic methods have to be combined in order to extract the relevant information from multiple 3-D images. A further aim of the project is the automation of the holographic interferometry and the X-ray radioscopy for on-line testing in the manufacturing process. (orig./HP)
Improvement of image quality of holographic projection on tilted plane using iterative algorithm
Pang, Hui; Cao, Axiu; Wang, Jiazhou; Zhang, Man; Deng, Qiling
2017-12-01
Holographic image projection on tilted plane has an important application prospect. In this paper, we propose a method to compute the phase-only hologram that can reconstruct a clear image on tilted plane. By adding a constant phase to the target image of the inclined plane, the corresponding light field distribution on the plane that is parallel to the hologram plane is derived through the titled diffraction calculation. Then the phase distribution of the hologram is obtained by the iterative algorithm with amplitude and phase constrain. Simulation and optical experiment are performed to show the effectiveness of the proposed method.
Acoustical holographic Siamese image technique for imaging radial cracks in reactor piping
International Nuclear Information System (INIS)
Collins, H.D.; Gribble, R.P.
1985-04-01
This paper describes a unique technique (i.e., ''Siamese imaging'') for imaging quasi-vertical defects in reactor pipe weldments. The Siamese image is a bi-symmetrical view of the inner surface defect. Image construction geometry consists of two probes (i.e., source/receiver) operating either from opposite sides or the same side of the defect to be imaged. As the probes are scanned across a lower surface connected defect, they encounter two images - first the normal upright image and then the inverted image. The final integrated image consists of two images connected along their baselines, thus we call it a ''Siamese image.'' The experimental imaging results on simulated and natural cracks in reactor piping weldments graphically illustrate this unique technique. Excellent images of mechanical fatique and thermal cracks were obtained on ferritic and austenitic piping
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen
2017-02-01
The major problem of Digital Holographic Microscopy (DHM) long term live cell imaging is that over time most of the tracked cells move out of the image area and other ones move in. Therefore, most of the cells are lost for the evaluation of individual cellular processes. Here, we present an effective solution for this crucial problem of long-term microscopic live cell analysis. We have generated functionalized slides containing areas of 250 μm per 200 μm. These micropatterned biointerfaces consist of passivating polyaclrylamide brushes (PAAm). Inner areas are backfilled with octadecanthiol (ODT), which allows cell attachment. The fouling properties of these surfaces are highly controllable and therefore the defined areas designed for the size our microscopic image areas were effective in keeping all cells inside the rectangles over the selected imaging period.
McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)
2001-01-01
A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.
Mori, Yutaka; Nomura, Takanori
2013-06-01
In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.
Holographic observation of magnetic resonance image CT of intracranial tumors
International Nuclear Information System (INIS)
Iwata, Kinjiro; Watanabe, Saburo; Yuasa, Hiromi; Yamada, Takahisa; Hoshino, Daisaku; Suzuki, Masane; Saito, Takayuki.
1987-01-01
In 1975, we developed a new method of 3-dimensional observation of CT pictures using Gabor's holography principle. In this study, we are reporting our experience with the multi-tomogram holography using magnetic resonance image CT in order to reconstruct 3-dimensional viewing of the central nervous system and intracranial lesions. (J.P.N.)
Kwon, Ki-Chul; Lim, Young-Tae; Shin, Chang-Won; Erdenebat, Munkh-Uchral; Hwang, Jae-Moon; Kim, Nam
2017-08-15
We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded. The experimental results confirm that the DoF of the integral imaging microscopy system is extended successfully by using the bifocal MLA.
Singh, Mandeep; Khare, Kedar
2018-05-01
We describe a numerical processing technique that allows single-shot region-of-interest (ROI) reconstruction in image plane digital holographic microscopy with full pixel resolution. The ROI reconstruction is modelled as an optimization problem where the cost function to be minimized consists of an L2-norm squared data fitting term and a modified Huber penalty term that are minimized alternately in an adaptive fashion. The technique can provide full pixel resolution complex-valued images of the selected ROI which is not possible to achieve with the commonly used Fourier transform method. The technique can facilitate holographic reconstruction of individual cells of interest from a large field-of-view digital holographic microscopy data. The complementary phase information in addition to the usual absorption information already available in the form of bright field microscopy can make the methodology attractive to the biomedical user community.
Holographic Imaging of Evolving Laser-Plasma Structures
Energy Technology Data Exchange (ETDEWEB)
Downer, Michael [Univ. of Texas, Austin, TX (United States); Shvets, G. [Univ. of Texas, Austin, TX (United States)
2014-07-31
In the 1870s, English photographer Eadweard Muybridge captured motion pictures within one cycle of a horse’s gallop, which settled a hotly debated question of his time by showing that the horse became temporarily airborne. In the 1940s, Manhattan project photographer Berlin Brixner captured a nuclear blast at a million frames per second, and resolved a dispute about the explosion’s shape and speed. In this project, we developed methods to capture detailed motion pictures of evolving, light-velocity objects created by a laser pulse propagating through matter. These objects include electron density waves used to accelerate charged particles, laser-induced refractive index changes used for micromachining, and ionization tracks used for atmospheric chemical analysis, guide star creation and ranging. Our “movies”, like Muybridge’s and Brixner’s, are obtained in one shot, since the laser-created objects of interest are insufficiently repeatable for accurate stroboscopic imaging. Our high-speed photographs have begun to resolve controversies about how laser-created objects form and evolve, questions that previously could be addressed only by intensive computer simulations based on estimated initial conditions. Resolving such questions helps develop better tabletop particle accelerators, atmospheric ranging devices and many other applications of laser-matter interactions. Our photographic methods all begin by splitting one or more “probe” pulses from the laser pulse that creates the light-speed object. A probe illuminates the object and obtains information about its structure without altering it. We developed three single-shot visualization methods that differ in how the probes interact with the object of interest or are recorded. (1) Frequency-Domain Holography (FDH). In FDH, there are 2 probes, like “object” and “reference” beams in conventional holography. Our “object” probe surrounds the light-speed object, like a fleas swarming around a
Image scale measurement with correlation filters in a volume holographic optical correlator
Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan
2013-08-01
A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.
Lee, KyeoReh; Park, YongKeun
2016-10-31
The word 'holography' means a drawing that contains all of the information for light-both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
Field, Jeffrey J; Winters, David G; Bartels, Randy A
2015-11-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.
Intelligent holographic databases
Barbastathis, George
Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features
Luther, Ed; Mendes, Livia; Pan, Jiayi; Costa, Daniel; Sarisozen, Can; Torchilin, Vladimir
2018-02-01
We rely on in vitro cellular cultures to evaluate the effects of the components of multifunctional nano-based formulations under development. We employ an incubator-adapted, label-free holographic imaging cytometer HoloMonitor M4® (Phase Holographic Imaging, Lund, Sweden) to obtain multi-day time-lapse sequences at 5- minute intervals. An automated stage allows hand-free acquisition of multiple fields of view. Our system is based on the Mach-Zehnder interferometry principle to create interference patterns which are deconvolved to produce images of the optical thickness of the field of view. These images are automatically segmented resulting in a full complement of quantitative morphological features, such as optical volume, thickness, and area amongst many others. Precise XY cell locations and the time of acquisition are also recorded. Visualization is best achieved by novel 4-Dimensional plots, where XY position is plotted overtime time (Z-directions) and cell-thickness is coded as color or gray scale brightness. Fundamental events of interest, i.e., cells undergoing mitosis or mitotic dysfunction, cell death, cell-to-cell interactions, motility are discernable. We use both 2D and 3D models of the tumor microenvironment. We report our new analysis method to track feature changes over time based on a 4-sample version of the Kolmogorov-Smirnov test. Feature A is compared to Control A, and Feature B is compared to Control B to give a 2D probability plot of the feature changes over time. As a result, we efficiently obtain vectors quantifying feature changes over time in various sample conditions, i.e., changing compound concentrations or multi-compound combinations.
A review on noise suppression and aberration compensation in holographic particle image velocimetry
Directory of Open Access Journals (Sweden)
K.F. Tamrin
2016-12-01
Full Text Available Understanding three-dimensional (3D fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.
Directory of Open Access Journals (Sweden)
Ye Zhang
2017-10-01
Full Text Available In this paper, a fast three-dimensional (3-D frequency scaling algorithm (FSA with large depth of focus is presented for near-field planar millimeter-wave (MMW holographic imaging. Considering the cross-range range coupling term which is neglected in the conventional range migration algorithm (RMA, we propose an algorithm performing the range cell migration correction for de-chirped signals without interpolation by using a 3-D frequency scaling operation. First, to deal with the cross-range range coupling term, a 3-D frequency scaling operator is derived to eliminate the space variation of range cell migration. Then, a range migration correction factor is performed to compensate for the residual range cell migration. Finally, the imaging results are obtained by matched filtering in the cross-range direction. Compared with the conventional RMA, the proposed algorithm is comparable in accuracy but more efficient by using only chirp multiplications and fast Fourier transforms (FFTs. The algorithm has been tested with satisfying results by both simulation and experiment.
Makowski, Piotr L; Zaperty, Weronika; Kozacki, Tomasz
2018-01-01
A new framework for in-plane transformations of digital holograms (DHs) is proposed, which provides improved control over basic geometrical features of holographic images reconstructed optically in full color. The method is based on a Fourier hologram equivalent of the adaptive affine transformation technique [Opt. Express18, 8806 (2010)OPEXFF1094-408710.1364/OE.18.008806]. The solution includes four elementary geometrical transformations that can be performed independently on a full-color 3D image reconstructed from an RGB hologram: (i) transverse magnification; (ii) axial translation with minimized distortion; (iii) transverse translation; and (iv) viewing angle rotation. The independent character of transformations (i) and (ii) constitutes the main result of the work and plays a double role: (1) it simplifies synchronization of color components of the RGB image in the presence of mismatch between capture and display parameters; (2) provides improved control over position and size of the projected image, particularly the axial position, which opens new possibilities for efficient animation of holographic content. The approximate character of the operations (i) and (ii) is examined both analytically and experimentally using an RGB circular holographic display system. Additionally, a complex animation built from a single wide-aperture RGB Fourier hologram is presented to demonstrate full capabilities of the developed toolset.
Boissonnet, Philippe
2013-02-01
The French philosopher M Merleau-Ponty captured the dynamic of perception with his idea of the intertwining of perceiver and perceived. Light is what links them. In the case of holographic images, not only is spatial and colour perception the pure product of light, but this light information is always in the process of self-construction with our eyes, according to our movements and the point of view adopted. According to the aesthetic reception of a work of art, Holographic images vary greatly from those of cinema, photography and even every kind of digital 3D animation. This particular image's status truly makes perceptually apparent the "co-emergence" of light and our gaze. But holography never misleads us with respect to the precarious nature of our perceptions. We have no illusion as to the limits of our empirical understanding of the perceived reality. Holography, like our knowledge of the visible, thus brings to light the phenomenon of reality's "co-constitution" and contributes to a dynamic ontology of perceptual and cognitive processes. The cognitivist Francico Varela defines this as the paradigm of enaction,i which I will adapt and apply to the appearance/disappearance context of holographic images to bring out their affinities on a metaphorical level.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Menglin; Lin, Shiwei, E-mail: linsw@hainu.edu.cn; Jiang, Wenkai; Pan, Nengqian
2014-08-30
Highlights: • High-quality holographic images were replicated in large-area shrink film. • Surface morphology evolution was analyzed in films embossed at different temperatures. • Optical, mechanical, and thermal characteristics were systematically analyzed. - Abstract: Diffraction grating-based holographic images have been successfully replicated in biaxially oriented polypropylene (BOPP) shrink films through large-area roll-to-roll nanoimprint technique. Such hot embossing of holographic images on BOPP films represents a promising means of creating novel security features in packaging applications. The major limitation of the high-quality replication is the relatively large thermal shrinkage of BOPP shrink film. However, although an appropriate shrinkage is demanded after embossing, over-shrinking not only causes distortion in embossed images, but also reduces the various properties of BOPP shrink films mainly due to the disappearance of orientation. The effects of embossing temperature on the mechanical, thermal and optical properties as well as polymer surface morphologies were systematically analyzed. The results show that the optimal process parameters are listed as follows: the embossing temperature at 104–110 °C, embossing force 6 kg/cm{sup 2} and film speed 32 m/min. The variation in flow behavior of polymer surface during hot embossing process is highly dependent on the temperature. In addition, the adhesion from the direct contact between the rubber press roller and polymer surfaces is suggested to cause the serious optical properties failure.
Giga-pixel lensfree holographic microscopy and tomography using color image sensors.
Directory of Open Access Journals (Sweden)
Serhan O Isikman
Full Text Available We report Giga-pixel lensfree holographic microscopy and tomography using color sensor-arrays such as CMOS imagers that exhibit Bayer color filter patterns. Without physically removing these color filters coated on the sensor chip, we synthesize pixel super-resolved lensfree holograms, which are then reconstructed to achieve ~350 nm lateral resolution, corresponding to a numerical aperture of ~0.8, across a field-of-view of ~20.5 mm(2. This constitutes a digital image with ~0.7 Billion effective pixels in both amplitude and phase channels (i.e., ~1.4 Giga-pixels total. Furthermore, by changing the illumination angle (e.g., ± 50° and scanning a partially-coherent light source across two orthogonal axes, super-resolved images of the same specimen from different viewing angles are created, which are then digitally combined to synthesize tomographic images of the object. Using this dual-axis lensfree tomographic imager running on a color sensor-chip, we achieve a 3D spatial resolution of ~0.35 µm × 0.35 µm × ~2 µm, in x, y and z, respectively, creating an effective voxel size of ~0.03 µm(3 across a sample volume of ~5 mm(3, which is equivalent to >150 Billion voxels. We demonstrate the proof-of-concept of this lensfree optical tomographic microscopy platform on a color CMOS image sensor by creating tomograms of micro-particles as well as a wild-type C. elegans nematode.
Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R
2014-11-01
Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Off-axis low coherence digital holographic interferometry for quantitative phase imaging with an LED
Guo, Rongli; Wang, Fan; Hu, Xiaoying; Yang, Wenqian
2017-11-01
Off-axis digital holographic interferometry with the light source of a light emitting diode (LED) is presented and its application for quantitative phase imaging in a large range with low noise is demonstrated. The scheme is implemented in a grating based Mach-Zehnder interferometer. To achieve off-axis interferometry, firstly, the collimated beam emitted from an LED is diffracted into multiple orders by a grating and they are split into two copies by a beam splitter; secondly, in the object arm the zero order of one copy is filtered in the Fourier plane and is reshaped to illuminate the sample, while in the reference arm one of its first order of another copy is selected to serve as the reference beam, and then an off-axis hologram can be obtained at the image plane. The main advantage stemming from an LED illumination is its high spatial phase resolution, due to the subdued speckle effect. The off-axis geometry enables one-shot recording of the hologram in the millisecond scale. The utility of the proposed setup is illustrated with measurements of a resolution target and part of a wing of green-lacewing, and dynamic evaporation process of an ethanol film.
International Nuclear Information System (INIS)
Feldmann, O.; Gebhard, P.; Mayinger, F.
1998-01-01
This study deals with the application of the pulsed laser holography and the digital image processing in the analysis of flashing sprays. Both the information about the macroscopic structures of a spray, such as the breakup-length and the spray-angle, and about its microscopic structures, such as the number, the size, and the location of the generated droplets is stored three-dimensionally on a single pulsed hologram. In addition to that, the velocity of the droplets can be obtained from double pulsed holograms. In every experiment, two holograms are taken, resulting in two three-dimensional reconstructions of the test section, seen from different directions. These reconstructions are scanned by video-cameras with a small depth of field and subdivided into several two-dimensional images. These images are digitized and binarized, and the information about the droplets depicted sharply on each image is saved. In case of a double pulsed hologram, a Fourier-analysis based algorithm creates a search volume to determine the droplets' second position and thus their velocity in each view. A stereo matching modulus correlates both views and determines the position and/or the velocity of each droplet highly accurate. The applicability of the employed holographic technique and the filtering and correlating moduli is proven by the presented results. (author)
DEFF Research Database (Denmark)
Ramanujam, P.S.; Berg, R.H.; Hvilsted, Søren
1999-01-01
A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...
Problems on holographic imaging technique and adapt lasers for bubble chambers
International Nuclear Information System (INIS)
Bjelkhagen, H.
1982-01-01
Different types of holographic recording technique for bubble chambers are presented and compared. The influence of turbulence on resolution is discussed as well as the demand on laser equipment. Experiments on a test model of HOLEBC using a pulsed ruby laser are also presented. (orig.)
Chen, Shaojie; Meyer, Elliot; Wright, Shelley A.; Moore, Anna M.; Larkin, James E.; Maire, Jerome; Mieda, Etsuko; Simard, Luc
2014-07-01
Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% decrease at J-band when 5° deviation from the Bragg angle.
The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space
Institute of Scientific and Technical Information of China (English)
LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang
2011-01-01
@@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.
Khmaladze, Alexander
2017-11-01
Cellular apoptosis is a unique, organized series of events, leading to programmed cell death. In this work, we present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy measurements of live cell cultures yield information about cell shape and volume, changes to which are indicative of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopic measurements provide complementary information about cells, such as protein, lipid and nucleic acid content, and the spectral signatures associated with structural changes in molecules. Our work indicates that the chemical changes in proteins, which were detected by Raman measurements, preceded morphological changes, which were seen with digital holographic microscopy.
Image plane digital holographic microscope for the inspection of ferroelectric single crystals.
Czech Academy of Sciences Publication Activity Database
Psota, Pavel; Mokrý, Pavel; Lédl, Vít; Vojtíšek, Petr
2016-01-01
Roč. 55, č. 12 (2016), č. článku 121731. ISSN 0091-3286 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Digital holography * barium titanate * domain pattern * ferroelectric crystals * holographic microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.082, year: 2016 http://dx.doi.org/10.1117/1.OE.55.12.121731
Holographic Entanglement Entropy
Rangamani, Mukund
2016-01-01
We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...
International Nuclear Information System (INIS)
Akbari, Homaira.
1988-01-01
Particle interactions were recorded holographically in a large volume of the 15-foot Bubble Chamber at Fermilab. This cryogenic bubble chamber was filled with a heavy Neon-Hydrogen mixture and was exposed to a wideband neutrino beam with mean energy of 150 GeV. The use of holography in combination with conventional photography provides a powerful tool for direct detection of short-lived particles. Holography gives a high resolution over a large depth of field which can not be achieved with conventional photography. A high-power pulsed ruby laser was used as the holographic light source. Since short pulses of some 50 ns duration at the required energy were found to give rise to boiling during the chamber's expansion, a reduction of the instantaneous power at a given energy was required to suppress this unwanted after-effect. This was achieved by developing a unique technique for stretching the pulses using an electro-optic feedback loop. One hundred thousand holograms were produced during a wide-band neutrino experiment (E-632, 1985) using a dark-field holographic system. Analysis of a sample of holograms shows a resolution of 150 μm was achieved in an ovoidal shape fiducial volume of 0.48 m 3 % of the 14 m 3 total fiducial volume of the chamber
Resolution enhancement of holographic printer using a hogel overlapping method.
Hong, Keehoon; Park, Soon-gi; Yeom, Jiwoon; Kim, Jonghyun; Chen, Ni; Pyun, Kyungsuk; Choi, Chilsung; Kim, Sunil; An, Jungkwuen; Lee, Hong-Seok; Chung, U-in; Lee, Byoungho
2013-06-17
We propose a hogel overlapping method for the holographic printer to enhance the lateral resolution of holographic stereograms. The hogel size is directly related to the lateral resolution of the holographic stereogram. Our analysis by computer simulation shows that there is a limit to decreasing the hogel size while printing holographic stereograms. Instead of reducing the size of hogel, the lateral resolution of holographic stereograms can be enhanced by printing overlapped hogels, which makes it possible to take advantage of multiplexing property of the volume hologram. We built a holographic printer, and recorded two holographic stereograms using the conventional and proposed overlapping methods. The images and movies of the holographic stereograms experimentally captured were compared between the conventional and proposed methods. The experimental results confirm that the proposed hogel overlapping method improves the lateral resolution of holographic stereograms compared to the conventional holographic printing method.
Marquet, P.
2016-05-03
Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Talbot, Michael
1991-01-01
'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.
Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn
2017-02-01
The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.
Rossi, Vincent M; Jacques, Steven L
2016-06-13
Goniometry and optical scatter imaging have been used for optical determination of particle size based upon optical scattering. Polystyrene microspheres in suspension serve as a standard for system validation purposes. The design and calibration of a digital Fourier holographic microscope (DFHM) are reported. Of crucial importance is the appropriate scaling of scattering angle space in the conjugate Fourier plane. A detailed description of this calibration process is described. Spatial filtering of the acquired digital hologram to use photons scattered within a restricted angular range produces an image. A pair of images, one using photons narrowly scattered within 8 - 15° (LNA), and one using photons broadly scattered within 8 - 39° (HNA), are produced. An image based on the ratio of these two images, OSIR = HNA/LNA, following Boustany et al. (2002), yields a 2D Optical Scatter Image (OSI) whose contrast is based on the angular dependence of photon scattering and is sensitive to the microsphere size, especially in the 0.5-1.0µm range. Goniometric results are also given for polystyrene microspheres in suspension as additional proof of principle for particle sizing via the DFHM.
Holographic optical security systems
Fagan, William F.
1990-06-01
One of the most successful applications of Holography,in recent years,has been its use as an optical security technique.Indeed the general public's awareness of holograms has been greatly enhanced by the incorporation of holographic elements into the VISA and MASTERCHARGE credit cards.Optical techniques related to Holography,are also being used to protect the currencies of several countries against the counterfeiter. The mass production of high quality holographic images is by no means a trivial task as a considerable degree of expertise is required together with an optical laboratory and embossing machinery.This paper will present an overview of the principal holographic and related optical techniques used for security purposes.Worldwide, over thirty companies are involved in the production of security elements utilising holographic and related optical technologies.Counterfeiting of many products is a major criminal activity with severe consequences not only for the manufacturer but for the public in general as defective automobile parts,aircraft components,and pharmaceutical products, to cite only a few of the more prominent examples,have at one time or another been illegally copied.
Adventures in holographic dimer models
International Nuclear Information System (INIS)
Kachru, Shamit; Karch, Andreas; Yaida, Sho
2011-01-01
We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.
Smartphone-based quantitative measurements on holographic sensors.
Khalili Moghaddam, Gita; Lowe, Christopher Robin
2017-01-01
The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI), i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.
Smartphone-based quantitative measurements on holographic sensors.
Directory of Open Access Journals (Sweden)
Gita Khalili Moghaddam
Full Text Available The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI, i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.
Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.
Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro
2017-09-01
The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Joglekar, M.; Shah, H.; Trivedi, V.; Mahajan, S.; Chhaniwal, V.; Leitgeb, R.; Javidi, B.; Anand, A.
2017-07-01
Adequate supply of oxygen to the body is the most essential requirement. In vertebrate species this function is performed by Hemoglobin contained in red blood cells. The mass concentration of the Hb determines the oxygen carrying capacity of the blood. Thus it becomes necessary to determine its concentration in the blood, which helps in monitoring the health of a person. If the amount of Hb crosses certain range, then it is considered critical. As the Hb constitutes upto 96% of red blood cells dry content, it would be interesting to examine various physical and mechanical parameters of RBCs which depends upon its concentration. Various diseases bring about significant variation in the amount of hemoglobin which may alter certain parameters of the RBC such as surface area, volume, membrane fluctuation etc. The study of the variations of these parameters may be helpful in determining Hb content which will reflect the state of health of a human body leading to disease diagnosis. Any increase or decrease in the amount of Hb will change the density and hence the optical thickness of the RBCs, which affects the cell membrane and thereby changing its mechanical and physical properties. Here we describe the use of lateral shearing digital holographic microscope for quantifying the cell parameters for studying the change in biophysical properties of cells due to variation in hemoglobin concentration.
Holographic Optical Data Storage
Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)
2000-01-01
Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising
Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol
2018-04-01
We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.
Ian, Richard; King, Elisabeth
1988-01-01
Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.
Micro patterned surfaces allow long-term digital holographic microscopy live cell imaging
Mues, Sarah; Lilge, Inga; Schönherr, Holger; Kemper, Björn; Schnekenburger, Jürgen
2017-07-01
During long-term imaging, cells move out of the field of view. We have generated functionalized substrates containing rectangular areas, which were capable in keeping cells over the whole observation period.
Moving through a multiplex holographic scene
Mrongovius, Martina
2013-02-01
This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.
High resolution x-ray lensless imaging by differential holographic encoding
Energy Technology Data Exchange (ETDEWEB)
Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.
2009-11-02
X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.
High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding
Energy Technology Data Exchange (ETDEWEB)
Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
2010-07-01
X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.
Enhancement of the optical image with a DC blocked spiral holographic pattern
International Nuclear Information System (INIS)
Hwang, Sung-In; Lee, Jung-Kyun; Song, Dong-Hoon; Choi, Dae-Sik; Ko, Do-Kyeong
2011-01-01
A modification of microscopy using a spiral phase plate, which enhanced the optical image by blocking the DC part of the object spectrum is presented. In conventional differential-interference-contrast microscopy, enhancement of optical images is achieved by interference of mutual coherent beams which experience different optical phases. This method increases the contrast of the optical image compared to normal microscopy, but the image still has some blurring around the edge of the sample. Our modification consists of placing a DC blocking region on an optical spatial filter, which allows us to achieve a sharp edge compared to the conventional one. By patterning the grating of the circular area in the center with a different direction (π/4 in our case), we could redirect the DC part of the Fourier component that passed through the center of the phase plate. By eliminating the DC part of the object spectrum, we could get a highly enhanced image and clearly observed the inside of the cheek cell, which was invisible otherwise.
Directory of Open Access Journals (Sweden)
Cornelia Denz
2000-05-01
Full Text Available Volume holography represents a promising alternative to existing storage technologies. Its parallel data storage leads to high capacities combined with short access times and high transfer rates. The design and realization of a compact volume holographic storage demonstrator is presented. The technique of phase-coded multiplexing implemented to superimpose many data pages in a single location enables to store up to 480 holograms per storage location without any moving parts. Results of analog and digital data storage are shown and real time optical image processing is demonstrated.
The evolution of phase holographic imaging from a research idea to publicly traded company
Egelberg, Peter
2018-02-01
Recognizing the value and unmet need for label-free kinetic cell analysis, Phase Holograhic Imaging defines its market segment as automated, easy to use and affordable time-lapse cytometry. The process of developing new technology, meeting customer expectations, sources of corporate funding and R&D adjustments prompted by field experience will be reviewed. Additionally, it is discussed how relevant biological information can be extracted from a sequence of quantitative phase images, with negligible user assistance and parameter tweaking, to simultaneously provide cell culture characteristics such as cell growth rate, viability, division rate, mitosis duration, phagocytosis rate, migration, motility and cell-cell adherence without requiring any artificial cell manipulation.
Ultrafast Holographic Image Recording by Single Shot Femtosecond Spectral Hole Burning
National Research Council Canada - National Science Library
Rebane, Aleksander
2001-01-01
.... This allowed us to record image holograms with 150-fs duration pulses without need to accumulate the SHB effect from many exposures. Results of this research show that it is possible to perform optical recording of data in frequency-domain on ultrafast time scale. These results can be used also as a new diagnostic tool for femtosecond dynamics in various ultrafast optical interactions.
X-ray holographic imaging of magnetic order in meander domain structures
Directory of Open Access Journals (Sweden)
Jaouen Nicolas
2013-01-01
Full Text Available We performed x-ray holography experiments using synchrotron radiation. By analyzing the scattering of coherent circularly polarized x-rays tuned at the Co-2p resonance, we imaged perpendicular magnetic domains in a Co/Pd multilayer. We compare results obtained for continuous and laterally confined films.
Stepped frequency imaging for flaw monitoring: Final report
International Nuclear Information System (INIS)
Hildebrand, B.P.
1988-09-01
This report summarizes the results of research into the usefulness of stepped frequency imaging (SFI) to nuclear power plant inspection. SFI is a method for producing ultrasonic holographic images without the need to sweep a two-dimensional aperture with the transducer. Instead, the transducer may be translated along a line. At each position of the transducer the frequency is stepped over a finite preselected bandwidth. The frequency stepped data is then processed to synthesize the second dimension. In this way it is possible to generate images in regions that are relatively inaccessible to two-dimensional scanners. This report reviews the theory and experimental work verifying the technique, and then explores its possible applications in the nuclear power industry. It also outlines how this new capability can be incorporated into the SDL-1000 Imaging System previously developed for EPRI. The report concludes with five suggestions for uses for the SFI method. These are: monitoring suspect or repaired regions of feedwater nozzles; monitoring pipe cracks repaired by weld overlay; monitoring crack depth during test block production; imaging flaws where access is difficult; and imaging flaws through cladding without distortion
Off-axis holographic laser speckle contrast imaging of blood vessels in tissues
Abdurashitov, Arkady; Bragina, Olga; Sindeeva, Olga; Sergey, Sindeev; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.
2017-09-01
Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 μm of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.
Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig
2017-05-17
We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.
Marquet, Pierre
2014-09-22
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method
Directory of Open Access Journals (Sweden)
Kuang Tsan Lin
2014-01-01
Full Text Available The Rivest-Shamir-Adleman (RSA encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matrix holographic image contain seven groups of codes used for reconstructing the covert image. The seven groups of codes are identification codes, covert-image dimension codes, covert-image graylevel codes, pre-RSA bit number codes, RSA key codes, post-RSA bit number codes, and information codes. The reconstructed covert image derived from the dot-matrix holographic image and the original covert image are exactly the same.
The traveltime holographic principle
Huang, Y.; Schuster, Gerard T.
2014-01-01
Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.
The traveltime holographic principle
Huang, Y.
2014-11-06
Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.
The traveltime holographic principle
Huang, Yunsong; Schuster, Gerard T.
2015-01-01
Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the `traveltime holographic principle', by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.
Holographic equipartition from first order action
Wang, Jingbo
2017-12-01
Recently, the idea that gravity is emergent has attract many people's attention. The "Emergent Gravity Paradigm" is a program that develop this idea from the thermodynamical point of view. It expresses the Einstein equation in the language of thermodynamics. A key equation in this paradigm is the holographic equipartition which says that, in all static spacetimes, the degrees of freedom on the boundary equal those in the bulk. And the time evolution of spacetime is drove by the departure from the holographic equipartition. In this paper, we get the holographic equipartition and its generalization from the first order formalism, that is, the connection and its conjugate momentum are considered to be the canonical variables. The final results have similar structure as those from the metric formalism. It gives another proof of holographic equipartition.
Jiang, Yan-xiu; Bayanheshig; Yang, Shuo; Zhao, Xu-long; Wu, Na; Li, Wen-hao
2016-03-01
To making the high resolution grating, a numerical calculation was used to analyze the effect of recording parameters on groove density, focal curve and imaging performance of the grating and their compensation. Based on Fermat' s principle, light path function and aberration, the effect on imaging performance of the grating was analyzed. In the case of fixed using parameters, the error of the recording angle has a greater influence on imaging performance, therefore the gain of the weight of recording angle can improve the accuracy of the recording angle values in the optimization; recording distance has little influence on imaging performance; the relative errors of recording parameters cause the change of imaging performance of the grating; the results indicate that recording parameter errors can be compensated by adjusting its corresponding parameter. The study can give theoretical guidance to the fabrication for high resolution varied-line-space plane holographic grating in on-line spectral diagnostic and reduce the alignment difficulty by analyze the main error effect the imaging performance and propose the compensation method.
International Nuclear Information System (INIS)
McFadden, Paul; Skenderis, Kostas
2011-01-01
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work
Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin
Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.
2005-01-01
We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the
Small space object imaging : LDRD final report.
Energy Technology Data Exchange (ETDEWEB)
Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick
2009-10-01
We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.
Sciammarella, C. A.; Sainov, Ventseslav; Simova, Eli
1990-04-01
Theoretical analysis and experimental results on holographic moire contouring (HMC) of difussely reflecting objects are presented. The sensitivity and application constraints of the method are discussed. A high signal-to-noise ratio and contrast of the fringes is achieved through the use of high quality silver halide holographic plates HP-650. A good agreement between theoretical and experimental results is observed.
Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu
2017-04-01
We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.
Wapenaar, Kees; Thorbecke, Jan; van der Neut, Joost
2016-04-01
Green's theorem plays a fundamental role in a diverse range of wavefield imaging applications, such as holographic imaging, inverse scattering, time-reversal acoustics and interferometric Green's function retrieval. In many of those applications, the homogeneous Green's function (i.e. the Green's function of the wave equation without a singularity on the right-hand side) is represented by a closed boundary integral. In practical applications, sources and/or receivers are usually present only on an open surface, which implies that a significant part of the closed boundary integral is by necessity ignored. Here we derive a homogeneous Green's function representation for the common situation that sources and/or receivers are present on an open surface only. We modify the integrand in such a way that it vanishes on the part of the boundary where no sources and receivers are present. As a consequence, the remaining integral along the open surface is an accurate single-sided representation of the homogeneous Green's function. This single-sided representation accounts for all orders of multiple scattering. The new representation significantly improves the aforementioned wavefield imaging applications, particularly in situations where the first-order scattering approximation breaks down.
Polychromatic holographic plasma diagnostics
International Nuclear Information System (INIS)
Zhiglinskij, A.G.; Morozov, A.O.
1992-01-01
Review of holographic interferometry properties is performed and advantages of this method by plasma diagnostics are indicated. Main results obtained by the method of holographic interferometry in studies of various-type plasmas are considered. Special attention is paid to multiwave plasma diagnostics, the necessity of which is related as a rule to multicomponent composition of plasma. The eight laser and gas-discharge sources and holographic schemes, which make it possible to realize plasma polychromatic and holographic interferometry, are considered. The advantages of the method are demonstrated by examples of polychromatic holographic diagnostics of arc discharge and discharge in a hollow cathode. Review of theoretical works determining the applicability area of resonance polychromatic interferometry is carried out
Research on copying system of dynamic multiplex holographic stereograms
Fu, Huaiping; Yang, Hong; Zheng, Tong
2003-05-01
The most important advantage of holographic stereograms over conventional hologram is that they can produce 3D images at any desired scale with movement, holographers in many countries involved in the studies towards it. We began our works in the early 80's and accomplished two research projects automatic system for making synthetic holograms and multiplex synthetic rainbow holograms, Based on these works, a large scale holographic stereogram of an animated goldfish was made by us for practical advertisement. In order to meet the needs of the market, a copying system for making multiplex holographic stereograms, and a special kind of silver halide holographic film developed by us recently. The characteristic of the copying system and the property of the special silver-halide emulsion are introduced in this paper.
Holographic characterization of colloidal particles in turbid media
Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.
2017-10-01
Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.
Interacting holographic dark energy with logarithmic correction
International Nuclear Information System (INIS)
Jamil, Mubasher; Farooq, M. Umar
2010-01-01
The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy
Use of holographic environment in business and educational application
International Nuclear Information System (INIS)
Rajput, A.Q.K.; Shaikh, M.Z.; Khanzada, T.J.S.
2003-01-01
Holographic environment is based on high-equipped Multimedia information systems. These are based on the evolving powers of computers to handle huge volume of information. Holographic environment is a simulated environment that allows the user to touch and interact with projections, which are derived from the distant real environment. A new communications technology is being developed that will facilitate to interact inside a simulated environment, even if you are thousands of miles apart. This is done with enhancing the electro-holography, which is the computer based generation of diffraction fringes from 3D input data and the display of the reconstructed object in real-time. This research paper presents the design and development of holographic environment for reduction of distances in business and educational applications. The Holographic Environment development with the use of multimedia information systems is discussed. In Particular the characteristics of holographic data and the current research results in the area of real time holographic display systems are spanned. The Technical components of holographic system are also encountered. Finally, issues of improvement in efficiency of Holographic Environments by compression of data are presented along with its utilization for educational and business applications. (author)
Pulse holographic measurement techniques
International Nuclear Information System (INIS)
Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun
1992-01-01
With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)
Holographic anyonic superfluidity
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2013-10-01
Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.
Osabe, Keiichi; Kawai, Kotaro
2017-03-01
In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.
Review of Random Phase Encoding in Volume Holographic Storage
Directory of Open Access Journals (Sweden)
Wei-Chia Su
2012-09-01
Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.
Holographic entropy inequalities and gapped phases of matter
Energy Technology Data Exchange (ETDEWEB)
Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Cao, ChunJun [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Walter, Michael [Stanford Institute for Theoretical Physics,Stanford University, Stanford, CA 94305 (United States); Wang, Zitao [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)
2015-09-29
We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.
Holographic entropy inequalities and gapped phases of matter
International Nuclear Information System (INIS)
Bao, Ning; Cao, ChunJun; Walter, Michael; Wang, Zitao
2015-01-01
We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.
Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, Christian; Jourdain, P.; Magistretti, Pierre J.
2016-01-01
parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Real-time laser holographic interferometry for aerodynamics
International Nuclear Information System (INIS)
Lee, G.
1987-01-01
Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references
Computer generated holographic microtags
International Nuclear Information System (INIS)
Sweatt, W.C.
1998-01-01
A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs
On new proposal for holographic BCFT
Energy Technology Data Exchange (ETDEWEB)
Chu, Chong-Sun; Miao, Rong-Xin [Department of Physics, National Tsing-Hua University,Hsinchu 30013, Taiwan (China); Physics Division, National Center for Theoretical Sciences,National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Guo, Wu-Zhong [Physics Division, National Center for Theoretical Sciences,National Tsing-Hua University, Hsinchu 30013, Taiwan (China)
2017-04-14
This paper is an extended version of our short letter on a new proposal for holographic boundary conformal field, i.e., BCFT. By using the Penrose-Brown-Henneaux (PBH) transformation, we successfully obtain the expected boundary Weyl anomaly. The obtained boundary central charges satisfy naturally a c-like theorem holographically. We then develop an approach of holographic renormalization for BCFT, and reproduce the correct boundary Weyl anomaly. This provides a non-trivial check of our proposal. We also investigate the holographic entanglement entropy of BCFT and find that our proposal gives the expected orthogonal condition that the minimal surface must be normal to the spacetime boundaries if they intersect. This is another support for our proposal. We also find that the entanglement entropy depends on the boundary conditions of BCFT and the distance to the boundary; and that the entanglement wedge behaves a phase transition, which is important for the self-consistency of AdS/BCFT. Finally, we show that the proposal of https://arxiv.org/abs/1105.5165 is too restrictive that it always make vanishing some of the boundary central charges.
Holographic memories with encryption-selectable function
Su, Wei-Chia; Lee, Xuan-Hao
2006-03-01
Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.
Holographic renormalization and supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)
2017-02-27
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
Energy Technology Data Exchange (ETDEWEB)
Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)
2015-09-21
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
International Nuclear Information System (INIS)
Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael
2015-01-01
We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.
Properties of multilayer nonuniform holographic structures
International Nuclear Information System (INIS)
Pen, E F; Rodionov, Mikhail Yu
2010-01-01
Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko
2015-01-01
Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631
Directory of Open Access Journals (Sweden)
Stefan Kalies
Full Text Available Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy.
HOMES - Holographic Optical Method for Exoplanet Spectroscopy
National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...
Real-time holographic endoscopy
Smigielski, Paul; Albe, Felix; Dischli, Bernard
1992-08-01
Some new experiments concerning holographic endoscopy are presented. The quantitative measurements of deformations of objects are obtained by the double-exposure and double- reference beam method, using either a cw-laser or a pulsed laser. Qualitative experiments using an argon laser with time-average holographic endoscopy are also presented. A video film on real-time endoscopic holographic interferometry was recorded with the help of a frequency-doubled YAG-laser working at 25 Hz for the first time.
Deriving covariant holographic entanglement
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)
2016-11-07
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
International Nuclear Information System (INIS)
Andersen, G.
2000-01-01
Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km
Flowing holographic anyonic superfluid
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2014-10-01
We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.
Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging
Energy Technology Data Exchange (ETDEWEB)
Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
2017-04-10
The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.
A holographic waveguide based eye tracker
Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng
2018-02-01
We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.
Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.
Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K
2015-01-01
Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.
Holographic interferometry of high pressure
International Nuclear Information System (INIS)
McIlwain, M.E.
1987-01-01
Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented
A holographic color camera for recording artifacts
International Nuclear Information System (INIS)
Jith, Abhay
2013-01-01
Advent of 3D televisions has created a new wave of public interest in images with depth. Though these technologies create moving pictures with apparent depth, it lacks the visual appeal and a set of other positive aspects of color holographic images. The above new wave of interest in 3D will definitely help to fuel popularity of holograms. In view of this, a low cost and handy color holography camera is designed for recording color holograms of artifacts. It is believed that such cameras will help to record medium format color holograms outside conventional holography laboratories and to popularize color holography. The paper discusses the design and the results obtained.
A holographic bound for D3-brane
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)
2017-06-15
In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)
Hiding a Covert Digital Image by Assembling the RSA Encryption Method and the Binary Encoding Method
Kuang Tsan Lin; Sheng Lih Yeh
2014-01-01
The Rivest-Shamir-Adleman (RSA) encryption method and the binary encoding method are assembled to form a hybrid hiding method to hide a covert digital image into a dot-matrix holographic image. First, the RSA encryption method is used to transform the covert image to form a RSA encryption data string. Then, all the elements of the RSA encryption data string are transferred into binary data. Finally, the binary data are encoded into the dot-matrix holographic image. The pixels of the dot-matri...
Development of an optoelectronic holographic platform for otolaryngology applications
Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael
2010-08-01
In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.
Ficnar, Andrej
In this dissertation we study the phenomenon of jet quenching in quark-gluon plasma using the AdS/CFT correspondence. We start with a weakly coupled, perturbative QCD approach to energy loss, and present a Monte Carlo code for computation of the DGLV radiative energy loss of quarks and gluons at an arbitrary order in opacity. We use the code to compute the radiated gluon distribution up to n=9 order in opacity, and compare it to the thin plasma (n=1) and the multiple soft scattering (n=infinity) approximations. We furthermore show that the gluon distribution at finite opacity depends in detail on the screening mass mu and the mean free path lambda. In the next part, we turn to the studies of how heavy quarks, represented as "trailing strings" in AdS/CFT, lose energy in a strongly coupled plasma. We study how the heavy quark energy loss gets modified in a "bottom-up" non-conformal holographic model, constructed to reproduce some properties of QCD at finite temperature and constrained by fitting the lattice gauge theory results. The energy loss of heavy quarks is found to be strongly sensitive to the medium properties. We use this model to compute the nuclear modification factor RAA of charm and bottom quarks in an expanding plasma with Glauber initial conditions, and comment on the range of validity of the model. The central part of this thesis is the energy loss of light quarks in a strongly coupled plasma. Using the standard model of "falling strings", we present an analytic derivation of the stopping distance of light quarks, previously available only through numerical simulations, and also apply it to the case of Gauss-Bonnet higher derivative gravity. We then present a general formula for computing the instantaneous energy loss in non-stationary string configurations. Application of this formula to the case of falling strings reveals interesting phenomenology, including a modified Bragg-like peak at late times and an approximately linear path dependence. Based
Drawing Lines with Light in Holographic Space
International Nuclear Information System (INIS)
Chang, Yin-Ren; Richardson, Martin
2013-01-01
This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.
Optical studies in the holographic ground station
Workman, Gary L.
1991-01-01
The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Geller, Michael; Telem, Ofri
2015-05-15
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.
Geller, Michael; Telem, Ofri
2015-05-01
We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at mKK , naturally allowing for mKK beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.
Laser adaptive holographic hydrophone
Energy Technology Data Exchange (ETDEWEB)
Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)
2016-03-31
A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)
Holographic magnetisation density waves
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)
2016-10-10
We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.
International Nuclear Information System (INIS)
Lippert, Matthew
2009-01-01
We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.
Constraints on holographic dark energy from type Ia supernova observations
International Nuclear Information System (INIS)
Zhang Xin; Wu Fengquan
2005-01-01
In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant
Higher-curvature corrections to holographic entanglement with momentum dissipation
Energy Technology Data Exchange (ETDEWEB)
Tanhayi, M.R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Vazirian, R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of)
2018-02-15
We study the effects of Gauss-Bonnet corrections on some nonlocal probes (entanglement entropy, n-partite information and Wilson loop) in the holographic model with momentum relaxation. Higher-curvature terms as well as scalar fields make in fact nontrivial corrections to the coefficient of the universal term in entanglement entropy. We use holographic methods to study such corrections. Moreover, holographic calculation indicates that mutual and tripartite information undergo a transition beyond which they identically change their values. We find that the behavior of the transition curves depends on the sign of the Gauss-Bonnet coupling λ. The transition for λ > 0 takes place in larger separation of subsystems than that of λ < 0. Finally, we examine the behavior of modified part of the force between external point-like objects as a function of Gauss-Bonnet coupling and its sign. (orig.)
Development of holographic interferometer for non-destructive testing
International Nuclear Information System (INIS)
Kim, Cheol Jung; Baik, Sung Hoon; Shin, Jang Soo; Cho, Jai Wan; Kim, Duk Hyeon; Hong, Suck Kyoung; Lee, Sang Kil; Kim, Heon Jun; Park, Chang Jin
1993-02-01
This project sets the goal at development of holographic interferometer. In this interferometer, fringe localization and imaging of object are considered. And collimated beam and wedge are used for the high-speed recording and formation of carrier fringes, respectively. With this real-time holographic interferometer, not only experiments were conducted on natural convection and flame jet, but also on high speed flow phenomena such as shock wave propagation. Visualization of high-speed flow is recorded in high-speed camera with framing rate ∼ 35000f/s. And to analyze axis symmetric phase object, analysis program was developed. (Author)
Holographic gratings for spectrographic applications: Study of aberrations
Bhatia, M. S.
1975-01-01
The design and fabrication of holographic gratings requires an understanding of Fermat's principle. This principle states that the path of a light ray from one point to another is that which requires the least time. The aberrant, optical path of an object point to an image was studied using Fermat principles.
Final Report - DOE Center for Laser Imaging and Cancer Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Alfano, Robert R.; Koutcher, Jason A.
2002-10-31
This Final Report summarizes the significant progress made by the researchers, students and staff of the Center for Laser Imaging and Cancer Diagnostics (CLICD) from January 1998 through May 2002. During this period, the Center supported several projects. Most projects were proposed initially, some were added subsequently as their relevance and importance to the DOE mission became evident. DOE support has been leveraged to obtain continuing funding for some projects. Leveraged funds come from various sources, including NIH, Army, NSF and the Air Force. The goal of the Center was to develop laser-based instruments for use in the detection and diagnosis of major diseases, with an emphasis on detection and diagnosis of various cancers. Each of the supported projects is a collaborative effort between physicists and laser scientists and the City College of New York and noted physicians, surgeons, pathologists, and biologists located at medical centers in the Metropolitan area. The participating institutions were: City College of New York Institute for Ultrafast Lasers and Spectroscopy, Hackensack University Medical Center, Lawrence Livermore National Laboratory, Memorial Sloan Kettering Cancer Center, and New York Eye and Ear Institute. Each of the projects funded by the Center is grouped into one of four research categories: a) Disease Detection, b) Non-Disease Applications, c) New Diagnostic Tools, and, d) Education, Training, Outreach and Dissemination. The progress achieved by the multidisciplinary teams was reported in 51 publications and 32 presentations at major national conferences. Also, one U.S. patent was obtained and six U.S. patent applications have been filed for innovations resulting from the projects sponsored by the Center.
Future of photorefractive based holographic 3D display
Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.
2010-02-01
The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.
Exploring neural cell dynamics with digital holographic microscopy
Marquet, Pierre; Depeursinge, Christian D.; Magistretti, Pierre J.
2013-01-01
In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.
Exploring neural cell dynamics with digital holographic microscopy
Marquet, Pierre
2013-07-11
In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.
Computer assisted holographic moire contouring
Sciammarella, Cesar A.
2000-01-01
Theoretical analyses and experimental results on holographic moire contouring on diffusely reflecting objects are presented. The sensitivity and limitations of the method are discussed. Particular emphasis is put on computer-assisted data retrieval, processing, and recording.
Theta dependence in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Bartolini, Lorenzo [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Bigazzi, Francesco [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bolognesi, Stefano [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Manenti, Andrea [Institute of Physics, EPFL,Rte de la Sorge, BSP 728, CH-1015 Lausanne (Switzerland)
2017-02-07
We study the effects of the CP-breaking topological θ-term in the large N{sub c} QCD model by Witten, Sakai and Sugimoto with N{sub f} degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N{sub f}=2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ḡ{sub πNN}, finding that it is zero to leading order in the large N{sub c} limit.
Sebesta, Mikael; Egelberg, Peter J.; Langberg, Anders; Lindskov, Jens-Henrik; Alm, Kersti; Janicke, Birgit
2016-03-01
Live-cell imaging enables studying dynamic cellular processes that cannot be visualized in fixed-cell assays. An increasing number of scientists in academia and the pharmaceutical industry are choosing live-cell analysis over or in addition to traditional fixed-cell assays. We have developed a time-lapse label-free imaging cytometer HoloMonitorM4. HoloMonitor M4 assists researchers to overcome inherent disadvantages of fluorescent analysis, specifically effects of chemical labels or genetic modifications which can alter cellular behavior. Additionally, label-free analysis is simple and eliminates the costs associated with staining procedures. The underlying technology principle is based on digital off-axis holography. While multiple alternatives exist for this type of analysis, we prioritized our developments to achieve the following: a) All-inclusive system - hardware and sophisticated cytometric analysis software; b) Ease of use enabling utilization of instrumentation by expert- and entrylevel researchers alike; c) Validated quantitative assay end-points tracked over time such as optical path length shift, optical volume and multiple derived imaging parameters; d) Reliable digital autofocus; e) Robust long-term operation in the incubator environment; f) High throughput and walk-away capability; and finally g) Data management suitable for single- and multi-user networks. We provide examples of HoloMonitor applications of label-free cell viability measurements and monitoring of cell cycle phase distribution.
International Nuclear Information System (INIS)
Khoury, Justin; Parikh, Maulik
2009-01-01
Mach's principle is the proposition that inertial frames are determined by matter. We put forth and implement a precise correspondence between matter and geometry that realizes Mach's principle. Einstein's equations are not modified and no selection principle is applied to their solutions; Mach's principle is realized wholly within Einstein's general theory of relativity. The key insight is the observation that, in addition to bulk matter, one can also add boundary matter. Given a space-time, and thus the inertial frames, we can read off both boundary and bulk stress tensors, thereby relating matter and geometry. We consider some global conditions that are necessary for the space-time to be reconstructible, in principle, from bulk and boundary matter. Our framework is similar to that of the black hole membrane paradigm and, in asymptotically anti-de Sitter space-times, is consistent with holographic duality.
International Nuclear Information System (INIS)
Estes, John; Jensen, Kristan; O’Bannon, Andy; Tsatis, Efstratios; Wrase, Timm
2014-01-01
We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions
Holographic Chiral Magnetic Spiral
International Nuclear Information System (INIS)
Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung
2010-06-01
We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)
Compact Holographic Data Storage
Chao, T. H.; Reyes, G. F.; Zhou, H.
2001-01-01
NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
International Nuclear Information System (INIS)
Bzdek, Bryan R.; Reid, Jonathan P.; Collard, Liam; Sprittles, James E.; Hudson, Andrew J.
2016-01-01
We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
Energy Technology Data Exchange (ETDEWEB)
Bzdek, Bryan R.; Reid, Jonathan P., E-mail: j.p.reid@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Collard, Liam [Department of Mathematics, University of Leicester, Leicester LE1 7RH (United Kingdom); Sprittles, James E. [Mathematics Institute, University of Warwick, Coventry CV4 7AL (United Kingdom); Hudson, Andrew J. [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)
2016-08-07
We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.
Imaging the risks - risking the image: Social impact assessment of the final disposal facility
International Nuclear Information System (INIS)
Avolahti, J.; Vira, J.
1999-01-01
there on the basis of their work position. Even if the participation was restricted, the interaction programme produced a clear list of priorities for social impact assessment. Of paramount interest on all candidate sites was the study of the impact on local image. Based on a variety of different study approaches different aspects of the possible impact on image were proposed and assessed. The picture obtained can be used to understand the various interrelationships and constituents of the image, but it hardly gives any final explanation of how the image is formed or how precisely the image would look like in reality in future. Even so, the experience obtained from the studies conducted and the discussions undertaken in the context of the EIA strongly suggests that the attempts to confine the nuclear waste issue in discussion of associated safety risks may not bring along real progress in solving the issue. What people think and feel about the nuclear waste disposal is not reducible to a single number of estimated risk
Imaging the risks - risking the image: Social impact assessment of the final disposal facility
Energy Technology Data Exchange (ETDEWEB)
Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)
1999-12-01
who were there on the basis of their work position. Even if the participation was restricted, the interaction programme produced a clear list of priorities for social impact assessment. Of paramount interest on all candidate sites was the study of the impact on local image. Based on a variety of different study approaches different aspects of the possible impact on image were proposed and assessed. The picture obtained can be used to understand the various interrelationships and constituents of the image, but it hardly gives any final explanation of how the image is formed or how precisely the image would look like in reality in future. Even so, the experience obtained from the studies conducted and the discussions undertaken in the context of the EIA strongly suggests that the attempts to confine the nuclear waste issue in discussion of associated safety risks may not bring along real progress in solving the issue. What people think and feel about the nuclear waste disposal is not reducible to a single number of estimated risk.
Digital Holographic Microscopy Principles, Techniques, and Applications
Kim, Myung K
2011-01-01
Digital holography is an emerging field of new paradigm in general imaging applications. By replacing the photochemical procedures with electronic imaging and having a direct numerical access to the complex optical field, a wide range of new imaging capabilities become available, many of them difficult or infeasible in conventional holography. An increasing number of researchers—not only in optical physics and optical engineering, but also in diverse applications areas such as microbiology, medicine, marine science, particle analysis, microelectromechanics, and metrology—are realizing and exploiting the new capabilities of digital holography. Digital Holographic Microscopy: Principles, Techniques, and Applications, by Dr. Myung K. Kim, is intended to provide a brief but consistent introduction to the principles of digital holography as well as to give an organized overview of the large number of techniques and applications being developed. This will also shed some light on the range of possibilities for f...
Holography and holographic dark energy model
International Nuclear Information System (INIS)
Gong Yungui; Zhang Yuanzhong
2005-01-01
The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived
Robust holographic storage system design.
Watanabe, Takahiro; Watanabe, Minoru
2011-11-21
Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America
Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System
Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.
2018-02-01
We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.
2013-05-30
... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...
Imaging data analyses for hazardous waste applications. Final report
International Nuclear Information System (INIS)
David, N.; Ginsberg, I.W.
1995-12-01
The paper presents some examples of the use of remote sensing products for characterization of hazardous waste sites. The sites are located at the Los Alamos National Laboratory (LANL) where materials associated with past weapons testing are buried. Problems of interest include delineation of strata for soil sampling, detection and delineation of buried trenches containing contaminants, seepage from capped areas and old septic drain fields, and location of faults and fractures relative to hazardous waste areas. Merging of site map and other geographic information with imagery was found by site managers to produce useful products. Merging of hydrographic and soil contaminant data aided soil sampling strategists. Overlays of suspected trench on multispectral and thermal images showed correlation between image signatures and trenches. Overlays of engineering drawings on recent and historical photos showed error in trench location and extent. A thermal image showed warm anomalies suspected to be areas of water seepage through an asphalt cap. Overlays of engineering drawings on multispectral and thermal images showed correlation between image signatures and drain fields. Analysis of aerial photography and spectral signatures of faults/fractures improved geologic maps of mixed waste areas
An elementary research on wireless transmission of holographic 3D moving pictures
Takano, Kunihiko; Sato, Koki; Endo, Takaya; Asano, Hiroaki; Fukuzawa, Atsuo; Asai, Kikuo
2009-05-01
In this paper, a transmitting process of a sequence of holograms describing 3D moving objects over the communicating wireless-network system is presented. A sequence of holograms involves holograms is transformed into a bit stream data, and then it is transmitted over the wireless LAN and Bluetooth. It is shown that applying this technique, holographic data of 3D moving object is transmitted in high quality and a relatively good reconstruction of holographic images is performed.
Nonvolatile Rad-Hard Holographic Memory
Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay
2001-01-01
We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.
Gauge invariance and holographic renormalization
Directory of Open Access Journals (Sweden)
Keun-Young Kim
2015-10-01
Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.
Sensor influence in digital 3λ holographic interferometry
International Nuclear Information System (INIS)
Desse, J M; Picart, P; Tankam, P
2011-01-01
In digital holographic interferometry, the resolution of the reconstructed hologram depends on the pixel size and pixel number of the sensor used for recording. When different wavelengths are simultaneously used as a luminous source for the interferometer, the shape and the overlapping of three filters of a color sensor strongly influence the three reconstructed images. This problem can be directly visualized in 2D Fourier planes on red, green and blue channels. To better understand this problem and to avoid parasitic images generated at the reconstruction, three different sensors have been tested: a CCD sensor equipped with a Bayer filter, a Foveon sensor and a 3CCD sensor. The first one is a Bayer mosaic where one half of the pixels detect the green color and only one-quarter detect the red or blue color. As the missing data are interpolated among color detection positions, offsets and artifacts are generated. The second one is a specific sensor constituted with three stacked photodiode layers. Its technology is different from that of the classical color mosaic sensor because each pixel location detects the three colors simultaneously. So, the three colors are recorded simultaneously with identical spatial resolution, which corresponds to the spatial resolution of the sensor. However, the spectral curve of the sensor is large along each wavelength since the color segmentation is based on the penetration depth of the photons in silicon. Finally, with a 3CCD sensor, each image is recorded on three different sensors with the same resolution. In order to test the sensor influence, we have developed a specific optical bench which allows the near wake flow around a circular cylinder at Mach 0.45 to be characterized. Finally, best results have been obtained with the 3CDD sensor
Meylan, B.; Ciani, D.; Zhang, B.; Cuche, E.; Wasmer, K.
2017-12-01
This contribution presents a new ball-on-disk vacuum tribometer with in situ measurement of the wear track by digital holographic microscopy. This new tribometer allows observation of the evolution of the wear track in situ and in real-time. The method combines a high vacuum high temperature ball-on-disk tribometer with a digital holographic microscope (DHM). The machine was tested and validated by taking DHM images during wear tests at room temperature and in vacuum at 2 · 10-6 of polished 100Cr6 steel disks. We demonstrated that the DHM system is well suited to monitor the evolution of the wear track during sliding. We found that, with an acquisition time of 0.1 ms for the DHM, the maximal linear speed is 10 cm s-1 to have reliable images. We proved, via scanning electron microscope (SEM) pictures, that the lines in the sliding direction in all DHM images exist. We also validated the new tribometer by having an excellent correlation between the images and profiles of the wear track taken by the DHM with the ones from a confocal microscope. Finally, the new tribometer combined with the DHM has four advantages. It can test under vacuum and various atmospheric conditions. The evolution of the wear track is measured in situ and in real-time. Hence, the problem of replacing the sample is avoided. Thanks to the DHM technology, the vertical accuracy of the topographical measurement is 4 nm.
Holographic inspection of nuclear plant
International Nuclear Information System (INIS)
Gordon, A.L.; Armour, I.A.; Glanville, R.; Malcolm, G.J.; Wright, D.G.
1988-01-01
The high resolution, enormous depth of field and high tolerance to radiation of holography mean that it has great potential as an inspection tool in the nuclear industry. In addition, the ability of double-pulse holography to yield detailed information on vibration over the whole field of both large and small structures provides measurements that often cannot be obtained in any other way. This paper reviews the development of equipment for the holographic inspection of nuclear fuel elements; a portable holocamera for use inside reactors; and the application of holographic techniques for vibration measurements in a nuclear power station. (author)
Holographic quenches towards a Lifshitz point
Energy Technology Data Exchange (ETDEWEB)
Camilo, Giancarlo [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil); Cuadros-Melgar, Bertha [Escola de Engenharia de Lorena, Universidade de São Paulo,Estrada Municipal do Campinho S/N, CEP: 12602-810, Lorena (Brazil); Abdalla, Elcio [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil)
2016-02-01
We use the holographic duality to study quantum quenches of a strongly coupled CFT that drive the theory towards a non-relativistic fixed point with Lifshitz scaling. We consider the case of a Lifshitz dynamical exponent z close to unity, where the non-relativistic field theory can be understood as a specific deformation of the corresponding CFT and, hence, the standard holographic dictionary can be applied. On the gravity side this amounts to finding a dynamical bulk solution which interpolates between AdS and Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is always formed in the final state. This indicates that it is impossible to reach the vacuum state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling symmetry is also probed using both local and non-local observables. In particular, we conclude that the equilibration process happens in a top-down manner, i.e., the symmetry is broken faster for UV modes.
Ricci-Gauss-Bonnet holographic dark energy
Saridakis, Emmanuel N.
2018-03-01
We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.
A Curious Conundrum; The State of Holographic Portraiture in the 21st Century
International Nuclear Information System (INIS)
Taylor, R
2013-01-01
The technology of producing (true) hologram portraits was first introduced in the late 1960's. From this time, a number of individuals and organizations worldwide have specialized in providing holographic portraiture services with varying degrees of achievement. Yet today, some 45 years later, holographic portraiture remains an obscure and niche form of displaying an individual's likeness. Despite all of this technology's promising and unique attributes, and the astonishing fact of holography being the most accurate and realistic form of imaging available today; true holographic portraits continues to be a form of portraiture largely unknown to the general public and has never achieved large-scale commercial success. This paper will present a brief history of holographic portraiture, designating the different types of 3-D hologram portraits available today, and their uses. Emphasis will be given to true holographic pulsed portraiture in which the subject itself is recorded holographically using high-energy pulsed lasers. Possible cause and effect for explaining the present demise of this type of portrait making will be discussed along with recent advancements and future developments in this fledgling field which could ultimately lead to a 'tipping point' in large-scale consumer and commercial awareness and desirability of the medium. The author will share his experiences in operating pulsed holographic portraiture studios for over the last 15 years including the vision of a new type of holographic portrait studio for the 21st century which he hopes will attain the level of success enabling a next generation of commercially viable holographic portrait studios for the future.
Experimental research of digital holographic microscopic measuring
Zhu, Xueliang; Chen, Feifei; Li, Jicheng
2013-06-01
Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.
Synfograms: a new generation of holographic applications
Meulien Öhlmann, Odile; Öhlmann, Dietmar; Zacharovas, Stanislovas J.
2008-04-01
The new synthetic Four-dimensional printing technique (Syn4D) Synfogram is introducing time (animation) into spatial configuration of the imprinted three-dimensional shapes. While lenticular solutions offer 2 to 9 stereoscopic images Syn4D offers large format, full colors true 3D visualization printing of 300 to 2500 frames imprinted as holographic dots. This past 2 years Syn4D high-resolution displays proved to be extremely efficient for museums presentation, engineering design, automobile prototyping, and advertising virtual presentation as well as, for portrait and fashion applications. The main advantages of syn4D is that it offers a very easy way of using a variety of digital media, like most of 3D Modelling programs, 3D scan system, video sequences, digital photography, tomography as well as the Syn4D camera track system for life recording of spatial scenes changing in time. The use of digital holographic printer in conjunction with Syn4D image acquiring and processing devices separates printing and imaging creation in such a way that makes four-dimensional printing similar to a conventional digital photography processes where imaging and printing are usually separated in space and time. Besides making content easy to prepare, Syn4D has also developed new display and lighting solutions for trade show, museum, POP, merchandising, etc. The introduction of Synfograms is opening new applications for real life and virtual 4D displays. In this paper we will analyse the 3D market, the properties of the Synfograms and specific applications, the problems we encounter, solutions we find, discuss about customers demand and need for new product development.
Prospects of linear reconstruction in atomic resolution electron holographic tomography
International Nuclear Information System (INIS)
Krehl, Jonas; Lubk, Axel
2015-01-01
Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction
Prospects of linear reconstruction in atomic resolution electron holographic tomography
Energy Technology Data Exchange (ETDEWEB)
Krehl, Jonas, E-mail: Jonas.Krehl@triebenberg.de; Lubk, Axel
2015-03-15
Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction.
Digital Double-Pulse Holographic Interferometry for Vibration Analysis
Directory of Open Access Journals (Sweden)
H.J. Tiziani
1996-01-01
Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.
Photopolymer holographic recording material
Lawrence, J. R.; O'Neill, F. T.; Sheridan, J. T.
Photopolymers are promising materials for use in holography. They have many advantages, such as ease of preparation, and are capable of efficiencies of up to 100%. A disadvantage of these materials is their inability to record high spatial frequency gratings when compared to other materials such as dichromated gelatin and silver halide photographic emulsion. Until recently, the drop off at high spatial frequencies of the material response was not predicted by any of the diffusion based models available. It has recently been proposed that this effect is due to polymer chains growing away from their initiation point and causing a smeared profile to be recorded. This is termed a non-local material response. Simple analytic expressions have been derived using this model and fits to experimental data have allowed values to be estimated for material parameters such as the diffusion coefficient of monomer, the ratio of polymerisation rate to diffusion rate and the distance that the polymer chains spread during holographic recording. The model predicts that the spatial frequency response might be improved by decreasing the mean polymer chain lengths and/or by increasing the mobility of the molecules used in the material. The experimental work carried out to investigate these predictions is reported here. This work involved (a) the changing of the molecular weights of chemical components within the material (dyes and binders) and (b) the addition of a chemical retarder in order to shorten the polymer chains, thereby decreasing the extent of the non-local effect. Although no significant improvement in spatial frequency response was observed the model appears to offer an improved understanding of the operation of the material.
Imaging and Targeted Therapy of Multidrug Resistance. Final Report
International Nuclear Information System (INIS)
Piwnica-Worms, David
2009-01-01
One focus area of DOE Office of Science was the Imaging of Gene Expression in Health and Disease in real time in tissue culture, whole animals and ultimately patients. Investigators of the Molecular Imaging Group, Washington University Medical School, ascribed to this objective and a major focus of this group directly tied into the DOE program through their efforts targeting the multidrug resistance gene (MDR1). Our plans for continuation of the program were to extend and build on this line of investigation, incorporating new molecular tools into our methodology to selectively inhibit MDR1 gene expression with novel modulation strategies. Two approaches were to be pursued: (1) high throughput screening of compounds that disrupted mutant p53 transactivation of the MDR1 promoter, and (2) knockdown of MDR1 messenger RNA with retroviral-mediated delivery of small interfering RNA constructs. These would be combined with our continuing effort to synthesize ligands and examine structure-activity relationships of bis-salicylaldehydes labeled with gallium-68 to generate PET agents for imaging MDR1 P-glycoprotein function. We would be uniquely positioned to correlate therapeutic modulation of MDR1 gene expression and protein function in the same systems in vivo using PET and bioluminescence reporters. Use of animal models such as the mdr1a/1b(-/-) gene deleted mice would also have enabled refined analysis of modulation and tracer pharmacokinetics in vivo. Overall, this DOE program and resultant tools would enable direct monitoring of novel therapeutic strategies and the MDR phenotype in relation to gene expression and protein function in vivo.
Dark Energy Studies with LSST Image Simulations, Final Report
International Nuclear Information System (INIS)
Peterson, John Russell
2016-01-01
This grant funded the development and dissemination of the Photon Simulator (PhoSim) for the purpose of studying dark energy at high precision with the upcoming Large Synoptic Survey Telescope (LSST) astronomical survey. The work was in collaboration with the LSST Dark Energy Science Collaboration (DESC). Several detailed physics improvements were made in the optics, atmosphere, and sensor, a number of validation studies were performed, and a significant number of usability features were implemented. Future work in DESC will use PhoSim as the image simulation tool for data challenges used by the analysis groups.
X-ray Fourier-transform holographic microscope
International Nuclear Information System (INIS)
Haddad, W.S.; Cullen, D.; Solem, J.C.; Boyer, K.; Rhodes, C.K.
1988-01-01
The properties of an x-ray Fourier-transform holographic instrument suitable for imaging hydrated biological samples are described. Recent advances in coherent x-ray source technology are making diffraction-limited holograms of microscopic structures, with corresponding high spatial resolution, a reality. A high priority application of snapshot x-ray holography is the study of microscopic biological structures in the hydrated living state. X-rays offer both high resolution and high contrast for important structures within living organisms, thereby rendering unnecessary the staining of specimens, essential for optical and electron microscopy. If the wavelength is properly chosen. Furthermore, the snapshot feature, arising from picosecond or subpicosecond exposure times, eliminates blurring occurring from either thermal heating or normal biological activity of the sample. Finally, with sufficiently high photon fluxes, such as those available from x-ray lasers, the x-ray snapshot can be accomplished with a single pulse, thereby yielding complete three-dimensional information on a sample having normal biological integrity at the moment of exposure. 10 refs., 6 figs
Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons
Directory of Open Access Journals (Sweden)
Takaaki Musha
2012-08-01
Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.
Holographic diffuser by use of a silver halide sensitized gelatin process
Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man
2003-05-01
Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.
International Nuclear Information System (INIS)
Novaro, Marc
The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr
Music holographic physiotherapy by laser
Liao, Changhuan
1996-09-01
Based on the relationship between music and nature, the paper compares laser and light with music sound on the principles of synergetics, describes music physically and objectively, and proposes a music holographic therapy by laser. Maybe it will have certain effects on mechanism study and clinical practice of the music therapy.
Conformal symmetry and holographic cosmology
Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of
Holographic complexity and spacetime singularities
Energy Technology Data Exchange (ETDEWEB)
Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2016-01-15
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Holographic complexity and spacetime singularities
International Nuclear Information System (INIS)
Barbón, José L.F.; Rabinovici, Eliezer
2016-01-01
We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.
Electromagnetic Imaging of Fluids in the San Andreas Fault; FINAL
International Nuclear Information System (INIS)
Martyn Unsworth
2002-01-01
OAK 270 - Magnetotelluric data were collected on six profiles across the san Andreas Fault at Cholame,Parkfield, and Hollister in Central California. On each profile, high electrical resistivities were imaged west of the fault, and are due to granitic rocks of the Salinian block. East of the fault, lower electrical resistivities are associated with rocks of the Fanciscan formation. On the seismically active Parkfield and Hollister segments, a region of low resistivity was found in the fault zone that extends to a depth of several kilometers. This is due to a zone of fracturing (the damaged zone) that has been infiltrated by saline ground water. The shallowest micro-earthquakers occur at a depth that is coincident with the base of the low resistivity wedge. This strongly suggests that above this depth, the fault rocks are too weak to accumulate sufficient stress for earthquake rupture to occur and fault motion is accommodated through aseismic creep
Digital Holographic Capture and Optoelectronic Reconstruction for 3D Displays
Directory of Open Access Journals (Sweden)
Damien P. Kelly
2010-01-01
Full Text Available The application of digital holography as a viable solution to 3D capture and display technology is examined. A review of the current state of the field is presented in which some of the major challenges involved in a digital holographic solution are highlighted. These challenges include (i the removal of the DC and conjugate image terms, which are features of the holographic recording process, (ii the reduction of speckle noise, a characteristic of a coherent imaging process, (iii increasing the angular range of perspective of digital holograms (iv and replaying captured and/or processed digital holograms using spatial light modulators. Each of these challenges are examined theoretically and several solutions are put forward. Experimental results are presented that demonstrate the validity of the theoretical solutions.
Holographic considerations on a Machian Universe
Energy Technology Data Exchange (ETDEWEB)
Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br [Grupo de Física Teórica e Matemática Física, Departamento de Física, Universidade Federal Rural do Rio de Janeiro, BR 465-07, 23890-971, Seropédica, RJ (Brazil); Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil); Ananias Neto, Jorge, E-mail: jorge@fisica.ufjf.br [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG (Brazil)
2014-12-15
MOND theory explains the rotation curves of the galaxies. Verlinde’s ideas establish an entropic origin for gravitational forces and Tsallis principle generalizes the theory of Boltzmann–Gibbs. In this work we have promoted a connection between these recent approaches, that at first sight seemed to have few or no points in common, using the Mach’s principle as the background. In this way we have used Tsallis formalism to calculate the main parameters of the Machian Universe including the Hubble parameter and the age of the Universe. After that, we have also obtained a new value for the Tsallis parameter via Mach’s principle. Using Verlinde’s entropic gravity we have obtained new forms for MOND’s well established ingredients. Finally, based on the relations between particles and bits obtained here, we have discussed the idea of bits entanglement in the holographic screen.
Linearized holographic isotropization at finite coupling
Energy Technology Data Exchange (ETDEWEB)
Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-06-15
We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)
Cellular Dynamics Revealed by Digital Holographic Microscopy☆
Marquet, P.; Depeursinge, Christian; Jourdain, P.
2016-01-01
Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.
Cellular Dynamics Revealed by Digital Holographic Microscopy☆
Marquet, P.
2016-11-22
Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.
International Nuclear Information System (INIS)
Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G.; Pawlik, Michael T.
2015-01-01
To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wiesinger, Isabel; Scharf, Gregor; Platz, Natascha; Dendl, Lena M.; Stroszczynski, Christian; Schreyer, Andreas G. [University Hospital Regensburg, Institute of Radiology, Regensburg (Germany); Pawlik, Michael T. [Intensive Care and Emergency Medicine, Institute of Anaesthesiology, Regensburg (Germany)
2015-05-01
To evaluate the clinical value and impact of radiological imaging in published medial case reports. We analysed 671 consecutively published case reports of a peer-reviewed medical journal for case reports. The general use of radiological imaging as well as the specific imaging modality used in each case (ultrasound, x-ray, fluoroscopy, CT, MRI) was documented, and most importantly the 'final problem solver', i.e. the diagnostic modality giving the final clue to the patient's diagnosis, was identified. In 511 of 671 (76.1 %) analysed case reports at least one radiological modality was used in the diagnostic cascade. In 28.6 % of all cases the final diagnosis was achieved by radiological imaging. All other cases were solved by the patient's history and physical examination (15.2 %), histology (12.4 %), and blood analysis (9.6 %). When radiology was the 'final problem solver', it was mainly CT (51.6 %) and MRI (30.6 %). In 52.2 % of the case reports the radiological image was included in the article. In case reports published in a prominent general medical journal radiological imaging is an important key player in the diagnostic process. In many cases, it is also the diagnostic tool which ultimately leads to determining the final diagnosis. (orig.)
Intelligent interaction based on holographic personalized portal
Directory of Open Access Journals (Sweden)
Yadong Huang
2017-06-01
Full Text Available Purpose – The purpose of this paper is to study the architecture of holographic personalized portal, user modeling, commodity modeling and intelligent interaction. Design/methodology/approach – In this paper, the authors propose crowd-science industrial ecological system based on holographic personalized portal and its interaction. The holographic personality portal is based on holographic enterprises, commodities and consumers, and the personalized portal consists of accurate ontology, reliable supply, intelligent demand and smart cyberspace. Findings – The personalized portal can realize the information acquisition, characteristic analysis and holographic presentation. Then, the intelligent interaction, e.g. demand decomposition, personalized search, personalized presentation and demand prediction, will be implemented within the personalized portal. Originality/value – The authors believe that their work on intelligent interaction based on holographic personalized portal, which has been first proposed in this paper, is innovation focusing on the interaction between intelligence and convenience.
Experimental teaching and training system based on volume holographic storage
Jiang, Zhuqing; Wang, Zhe; Sun, Chan; Cui, Yutong; Wan, Yuhong; Zou, Rufei
2017-08-01
The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.
Holographic complexity in gauge/string superconductors
Directory of Open Access Journals (Sweden)
Davood Momeni
2016-05-01
Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T
Homodyne detection of holographic memory systems
Urness, Adam C.; Wilson, William L.; Ayres, Mark R.
2014-09-01
We present a homodyne detection system implemented for a page-wise holographic memory architecture. Homodyne detection by holographic memory systems enables phase quadrature multiplexing (doubling address space), and lower exposure times (increasing read transfer rates). It also enables phase modulation, which improves signal-to-noise ratio (SNR) to further increase data capacity. We believe this is the first experimental demonstration of homodyne detection for a page-wise holographic memory system suitable for a commercial design.
Holographic kinetic k-essence model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl
2009-08-31
We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)
Holographic three-dimensional telepresence using large-area photorefractive polymer.
Blanche, P-A; Bablumian, A; Voorakaranam, R; Christenson, C; Lin, W; Gu, T; Flores, D; Wang, P; Hsieh, W-Y; Kathaperumal, M; Rachwal, B; Siddiqui, O; Thomas, J; Norwood, R A; Yamamoto, M; Peyghambarian, N
2010-11-04
Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
Holographic duality: Stealing dimensions from metals
Zaanen, Jan
2013-10-01
Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.
Holographic Two-Photon Induced Photopolymerization
Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...
Real-time Holographic Display Based on a Super Fast Response Thin Film
International Nuclear Information System (INIS)
Gao, Hongyue; Li, Xiao; He, Zhenghong; Su, Yikai; Poon, Ting-Chung
2013-01-01
Real-time dynamic holographic display is obtained with super fast response in a thin film without any applied electric field. Holograms can be refreshed in the order of a millisecond and there is no cross talk between the recorded holograms because the hologram formed in the film is transient and can be completely self erased, and the hologram formation time and self-erasure time are both ∼1 ms. Holographic video display is achieved, which shows the real-time holographic image display capability of the thin film, and its much higher resolution than those of commercially available spatial light modulators. Furthermore, multiplexed hologram display using two polarization directions of a recorded light and multiple color holographic display at different laser wavelengths are presented, which demonstrate the feasibility of a RGB color holographic three-dimensional display with the thin film. Because the sample is easy to be fabricated into a large size screen and needs no external applied electric field, we think that the film can be developed into a large-size, dynamic, and color holographic three-dimensional display in the future.
Holographic Renormalization in Dense Medium
International Nuclear Information System (INIS)
Park, Chanyong
2014-01-01
The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space
Weak-interacting holographic QCD
International Nuclear Information System (INIS)
Gazit, D.; Yee, H.-U.
2008-06-01
We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)
Holographic models with anisotropic scaling
Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.
2013-12-01
We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.
Holographic Chern-Simons defects
International Nuclear Information System (INIS)
Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki
2016-01-01
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.
Baryon physics in holographic QCD
Directory of Open Access Journals (Sweden)
Alex Pomarol
2009-03-01
Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.
Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.
2014-01-01
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent
Magnetic phenomena in holographic superconductivity with Lifshitz scaling
Directory of Open Access Journals (Sweden)
Aldo Dector
2015-09-01
Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.
Constructive use of holographic projections
International Nuclear Information System (INIS)
Schroer, Bert
2008-01-01
Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)
Constructive use of holographic projections
Energy Technology Data Exchange (ETDEWEB)
Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)
2008-07-01
Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)
Holographic multiverse and conformal invariance
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)
2009-11-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.
Holographic multiverse and conformal invariance
International Nuclear Information System (INIS)
Garriga, Jaume; Vilenkin, Alexander
2009-01-01
We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV
Holographic interferometry in construction analysis
Energy Technology Data Exchange (ETDEWEB)
Hartikainen, T.
1995-12-31
In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)
Adaptive nonseparable vector lifting scheme for digital holographic data compression.
Xing, Yafei; Kaaniche, Mounir; Pesquet-Popescu, Béatrice; Dufaux, Frédéric
2015-01-01
Holographic data play a crucial role in recent three-dimensional imaging as well as microscopic applications. As a result, huge amounts of storage capacity will be involved for this kind of data. Therefore, it becomes necessary to develop efficient hologram compression schemes for storage and transmission purposes. In this paper, we focus on the shifted distance information, obtained by the phase-shifting algorithm, where two sets of difference data need to be encoded. More precisely, a nonseparable vector lifting scheme is investigated in order to exploit the two-dimensional characteristics of the holographic contents. Simulations performed on different digital holograms have shown the effectiveness of the proposed method in terms of bitrate saving and quality of object reconstruction.
Zetsche, E.-M.; El Mallahi, A.; Meysman, F.J.R.
2016-01-01
Recent advances in optical components, computational hardware and image analysis algorithms have led to the development of a powerful new imaging tool, digital holographic microscopy (DHM). So far, DHM has been predominantly applied in the life sciences and medical research, and here, we evaluate
Energy Technology Data Exchange (ETDEWEB)
Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Ting [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, Sirui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-05-10
Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismic data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.
Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy
International Nuclear Information System (INIS)
Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.
1993-01-01
Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM
Wu, Yichen; Ozcan, Aydogan
2018-03-01
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Yichen; Ozcan, Aydogan
2017-01-01
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.
Wu, Yichen
2017-08-31
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.
Volume Holographic Storage of Digital Data Implemented in Photorefractive Media
Heanue, John Frederick
extended for use in a two-dimensional page format memory. The effectiveness of the technique in a system corrupted by intersymbol interference is investigated both experimentally and through numerical simulations. The experimental implementation of a fully-automated multiple page digital holographic storage system is described. Finally, projections of the performance limits of holographic data storage are made taking into account typical noise sources.
Toward a holographic theory for general spacetimes
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.
2017-04-01
We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.
Desmond, Timothy
In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they
Holographic complexity for time-dependent backgrounds
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2016-11-10
In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.
Adjustable liquid aperture to eliminate undesirable light in holographic projection.
Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua
2016-02-08
In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.
Fourth sound of holographic superfluids
International Nuclear Information System (INIS)
Yarom, Amos
2009-01-01
We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.
Holographic conductivity of holographic superconductors with higher-order corrections
Energy Technology Data Exchange (ETDEWEB)
Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2018-02-15
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)
Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.
2001-02-01
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.
Demonstration of a real-time implementation of the ICVision holographic stereogram display
Kulick, Jeffrey H.; Jones, Michael W.; Nordin, Gregory P.; Lindquist, Robert G.; Kowel, Stephen T.; Thomsen, Axel
1995-07-01
There is increasing interest in real-time autostereoscopic 3D displays. Such systems allow 3D objects or scenes to be viewed by one or more observers with correct motion parallax without the need for glasses or other viewing aids. Potential applications of such systems include mechanical design, training and simulation, medical imaging, virtual reality, and architectural design. One approach to the development of real-time autostereoscopic display systems has been to develop real-time holographic display systems. The approach taken by most of the systems is to compute and display a number of holographic lines at one time, and then use a scanning system to replicate the images throughout the display region. The approach taken in the ICVision system being developed at the University of Alabama in Huntsville is very different. In the ICVision display, a set of discrete viewing regions called virtual viewing slits are created by the display. Each pixel is required fill every viewing slit with different image data. When the images presented in two virtual viewing slits separated by an interoccular distance are filled with stereoscopic pair images, the observer sees a 3D image. The images are computed so that a different stereo pair is presented each time the viewer moves 1 eye pupil diameter (approximately mm), thus providing a series of stereo views. Each pixel is subdivided into smaller regions, called partial pixels. Each partial pixel is filled with a diffraction grating that is just that required to fill an individual virtual viewing slit. The sum of all the partial pixels in a pixel then fill all the virtual viewing slits. The final version of the ICVision system will form diffraction gratings in a liquid crystal layer on the surface of VLSI chips in real time. Processors embedded in the VLSI chips will compute the display in real- time. In the current version of the system, a commercial AMLCD is sandwiched with a diffraction grating array. This paper will discuss
Thermalization in a holographic confining gauge theory
International Nuclear Information System (INIS)
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2015-01-01
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory’s most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
Thermalization in a holographic confining gauge theory
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2015-08-01
Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory's most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
Application of DuPont photopolymer films to automotive holographic display
Nakazawa, Norihito; Ono, Motoshi; Takeuchi, Shoichi; Sakurai, Hiromi; Hirano, Masahiro
1998-03-01
Automotive holographic head-up display (HUD) systems employing DuPont holographic photopolymer films are presented. Holographic materials for automotive application are exposed to severe environmental conditions and are required high performance. This paper describes the improvement of DuPont photopolymer films for the automotive use, critical technical issues such as optical design, external color and stray light. The holographic HUD combiner embedded in a windshield of an automobile has peculiar problems called external color. Diffraction light from holographic combiner makes its external color tone stimulative. We have introduced RGB three color recording and color simulation in order to improve the external color. A moderate external color tone was realized by the optimization in terms of wavelengths and diffraction efficiencies of the combiner hologram. The stray light called flare arises from a reflection by glass surface of windshield. We have developed two techniques to avoid the flare. First is a diffuser type trap beam guard hologram which reduces the intensity of the flare. Second is the optimization of the design of hologram so that the incident direction of flare is lower than the horizon line. As an example of automotive display a stand-alone type holographic HUD system attached on the dashboard of an automobile is demonstrated, which provides useful driving information such as route guidance. The display has a very simple optical system that consists of only a holographic combiner and a vacuum fluorescent display. Its thin body is only 35 mm high and does not obstruct driver's view. The display gives high contrast and wide image.
Wide field of view common-path lateral-shearing digital holographic interference microscope.
Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun
2017-12-01
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Energy Technology Data Exchange (ETDEWEB)
Stojanoff, C.G.; Froehlich, K.; Froening, P.; Schulat, J.; Schuette, H.; Wagemann, E.U.
1997-06-30
The aim of the research project is the development of a technique for value for money mass-production of large area holographic focussers made of dichromate gelatine for photo-electrics. The holograms act simultaneously as spectrally dispersing and focussing optical elements, which focus the sunlight in discrete bands on the spectrally matched solar cells. The three marked characteristics of the holographic focussers are the diffraction efficiency, the spectral bandwidth and the central working wavelength. The optimum values of these parameters depend on the variation of the layer thickness and the index of refraction over the aperture of the hologram, and on the ability of the DCG layer to provide great modulation of the index of refraction. Mass-production of large format holographic lenses (transmission holograms) and mirrors (reflection holograms) demands precise coating of the supporting substrate (glass or PET foil) with dichromate gelatine. Mass-production of the holographic lenses requires a matrix hologram with 50% diffraction efficiency and is done with two copier plants developed in the project. (orig./AKF) [Deutsch] Ziel des Forschungsvorhabens ist die Entwicklung einer Technologie fuer die preiswerte serielle Herstellung von grossflaechigen holographischen Konzentratoren in Dichromatgelatine fuer die Photovoltaik. Die Hologramme wirken gleichzeitig als spektral dispergierende und fokussierende optische Elemente, die das Sonnenlicht in diskreten Baendern auf spektral angepasste Solarzellen konzentrieren. Die drei kennzeichnenden Charakteristiken der holographischen Konzentratoren sind die Beugungseffizienz, die spektrale Bandbreite und die zentrale Arbeitswellenlaenge. Die optimalen Werte dieser Parameter sind durch die Variation der Schichtdicke und des Brechnungsindexes ueber die Apertur des Hologramms, sowie durch die Faehigkeit der DCG-Schicht grosse Brechungsindexmodulation zu ermoeglichen, eindeutig bedingt. Die serielle Fertigung der
Exploring holographic Composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)
2016-07-13
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.
Fidelity susceptibility as holographic PV-criticality
Energy Technology Data Exchange (ETDEWEB)
Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2017-02-10
It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.
Holographic dark energy from fluid/gravity duality constraint by cosmological observations
Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.
2018-06-01
In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.
Application of holographic interferometry to the vibrational analysis of the harpsichord
Bryanston-Cross, P. J.; Gardner, J. W.
1988-08-01
This paper presents an original piece of research using holographic interferometry as a quantitative optical diagnostic. The object under investigation was the soundboard of a harpsichord. The results obtained show that it is possible to measure the spatial vibrational behaviour of the whole soundboard with an accuracy of better than 170 nm. Several features which characterize the vibration behaviour of the soundboard have been visualized including a discontinuity created by a crack which has resulted in a phase change of the interferometric fringes. Finally, the theoretical model response of the harpsichord soundboard is determined and compared to our holographic measurement.
Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.
2008-11-01
We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.
The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model
Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.
2018-02-01
By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.
Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong
2018-05-01
Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.
Optical superimposed vortex beams generated by integrated holographic plates with blazed grating
Zhang, Xue-Dong; Su, Ya-Hui; Ni, Jin-Cheng; Wang, Zhong-Yu; Wang, Yu-Long; Wang, Chao-Wei; Ren, Fei-Fei; Zhang, Zhen; Fan, Hua; Zhang, Wei-Jie; Li, Guo-Qiang; Hu, Yan-Lei; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru
2017-08-01
In this paper, we demonstrate that the superposition of two vortex beams with controlled topological charges can be realized by integrating two holographic plates with blazed grating. First, the holographic plate with blazed grating was designed and fabricated by laser direct writing for generating well-separated vortex beam. Then, the relationship between the periods of blazed grating and the discrete angles of vortex beams was systemically investigated. Finally, through setting the discrete angle and different revolving direction of the holographic plates, the composite fork-shaped field was realized by the superposition of two vortex beams in a particular position. The topological charges of composite fork-shaped field (l = 1, 0, 3, and 4) depend on the topological charges of compositional vortex beams, which are well agreed with the theoretical simulation. The method opens up a wide range of opportunities and possibilities for applying in optical communication, optical manipulations, and photonic integrated circuits.
Phase-measuring laser holographic interferometer for use in high speed flows
Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig
Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.
Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert
2010-05-01
Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.
Dual conformal transformations of smooth holographic Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Dekel, Amit [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)
2017-01-19
We study dual conformal transformations of minimal area surfaces in AdS{sub 5}×S{sup 5} corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the dual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.
Origin of holographic dark energy models
International Nuclear Information System (INIS)
Myung, Yun Soo; Seo, Min-Gyun
2009-01-01
We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of δl≥l p α l α-1 . It was argued that the case of α=2/3 could describe the dark energy with infinite statistics, while the case of α=1/2 can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales
Some applications of holographic interferometry in biomechanics
Ebbeni, Jean P. L.
1992-03-01
Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.
IR sensitive photorefractive polymers, the first updateable holographic three-dimensional display
Tay, Savas
This work presents recent advances in the development of infra-red sensitive photorefractive polymers, and updateable near real-time holographic 3D displays based on photorefractive polymers. Theoretical and experimental techniques used for design, fabrication and characterization of photorefractive polymers are outlined. Materials development and technical advances that made possible the use of photorefractive polymers for infra-red free-space optical communications, and 3D holographic displays are presented. Photorefractive polymers are dynamic holographic materials that allow recording of highly efficient reversible holograms. The longest operation wavelength for a photorefractive polymer before this study has been 950nm, far shorter than 1550nm, the wavelength of choice for optical communications and medical imaging. The polymers shown here were sensitized using two-photon absorption, a third order nonlinear effect, beyond the linear absorption spectrum of organic dyes, and reach 40% diffraction efficiency with a 35ms response time at this wavelength. As a consequence of two-photon absorption sensitization they exhibit non-destructive readout, which is an important advantage for applications that require high signal-to-noise ratios. Holographic 3D displays provide highly realistic images without the need for special eyewear, making them valuable tools for applications that require "situational awareness" such as medical, industrial and military imaging. Current commercially available holographic 3D displays employ photopolymers that lack image updating capability, resulting in their restricted use and high cost per 3D image. The holographic 3D display shown here employs photorefractive polymers with nearly 100% diffraction efficiency and fast writing time, hours of image persistence, rapid erasure and large area, a combination of properties that has not been shown before. The 3D display is based on stereography and utilizes world's largest photorefractive
Information retrieval from holographic interferograms: Fundamentals and problems
Vest, Charles M.
1987-01-01
Holographic interferograms can contain large amounts of information about flow and temperature fields. Their information content can be very high because they can be viewed from many different directions. This multidirectionality, and fringe localization add to the information contained in the fringe pattern if diffuse illumination is used. Additional information, and increased accuracy can be obtained through the use of dual reference wave holography to add reference fringes or to effect discrete phase shift or hetrodyne interferometry. Automated analysis of fringes is possible if interferograms are of simple structure and good quality. However, in practice a large number of practical problems can arise, so that a difficult image processing task results.
Digital holographic reconstruction detection of localized corrosion arising from scratches
Directory of Open Access Journals (Sweden)
LIANG WANG
2010-04-01
Full Text Available In this study, electrochemical methods and the digital holographic reconstruction technique were combined to detect the localized scratch-induced corrosion process of Alloy 690 in 0.50 mol dm-3 H2SO4 containing 0.10 mol dm-3 NaCl. The numerical reconstruction method has been proved to be an effective technique to detect changes of solution concentration. One can obtain direct information from the reconstructed images and capture subtle more revealing changes. It provides a method to detect localized corrosion arising from scratches.
Entanglement entropy and complexity for one-dimensional holographic superconductors
Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin
2017-08-01
Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.
International Nuclear Information System (INIS)
Cvetič, Mirjam; Papadimitriou, Ioannis
2016-01-01
We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger http://dx.doi.org/10.1007/JHEP05(2013)152, in agreement with the results of Castro and Song http://arxiv.org/abs/1411.1948. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 ×S 2 or conformally AdS 2 ×S 2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide
AdS{sub 2} holographic dictionary
Energy Technology Data Exchange (ETDEWEB)
Cvetič, Mirjam [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104-6396 (United States); Center for Applied Mathematics and Theoretical Physics,University of Maribor, SI2000 Maribor (Slovenia); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, 34136 Trieste (Italy)
2016-12-02
We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger http://dx.doi.org/10.1007/JHEP05(2013)152, in agreement with the results of Castro and Song http://arxiv.org/abs/1411.1948. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS{sub 2}×S{sup 2} or conformally AdS{sub 2}×S{sup 2} solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton
Deuteron transverse densities in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-05-15
We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)
International Nuclear Information System (INIS)
Potchen, E.J.
1975-01-01
An important task relating to anatomic imaging with radionuclides is the determination of factors which effect the use of imaging procedures. This is important to reduce radiation exposure in the population, to improve the efficacy of diagnostic imaging procedures and finally to provide a basis for evaluating the potential effects of proposed regulation of use rates. In this report we describe a methodology for obtaining clinical data relating to the use of the brain scan in an inner city teaching hospital. The development of a questionnaire suitable for use in a clinical setting and providing both prospective and retrospective data is presented. The results of the use of the questionnaire at the Johns Hopkins Hospital during a three month period in 1974 are shown and discussed. Some preliminary results from these data are given and a method for further analysis is indicated
Developments in holographic-based scanner designs
Rowe, David M.
1997-07-01
Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.
Sparsity-based multi-height phase recovery in holographic microscopy
Rivenson, Yair; Wu, Yichen; Wang, Hongda; Zhang, Yibo; Feizi, Alborz; Ozcan, Aydogan
2016-11-01
High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6-8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.
Sparsity-based multi-height phase recovery in holographic microscopy
Rivenson, Yair
2016-11-30
High-resolution imaging of densely connected samples such as pathology slides using digital in-line holographic microscopy requires the acquisition of several holograms, e.g., at >6–8 different sample-to-sensor distances, to achieve robust phase recovery and coherent imaging of specimen. Reducing the number of these holographic measurements would normally result in reconstruction artifacts and loss of image quality, which would be detrimental especially for biomedical and diagnostics-related applications. Inspired by the fact that most natural images are sparse in some domain, here we introduce a sparsity-based phase reconstruction technique implemented in wavelet domain to achieve at least 2-fold reduction in the number of holographic measurements for coherent imaging of densely connected samples with minimal impact on the reconstructed image quality, quantified using a structural similarity index. We demonstrated the success of this approach by imaging Papanicolaou smears and breast cancer tissue slides over a large field-of-view of ~20 mm2 using 2 in-line holograms that are acquired at different sample-to-sensor distances and processed using sparsity-based multi-height phase recovery. This new phase recovery approach that makes use of sparsity can also be extended to other coherent imaging schemes, involving e.g., multiple illumination angles or wavelengths to increase the throughput and speed of coherent imaging.
Soft Pomeron in Holographic QCD
Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko
2016-01-01
We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.
Defect CFTs and holographic multiverse
Energy Technology Data Exchange (ETDEWEB)
Fiol, Bartomeu, E-mail: bfiol@ub.edu [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain)
2010-07-01
We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS{sub 4} × S{sup 7}, and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory.
Defect CFTs and holographic multiverse
International Nuclear Information System (INIS)
Fiol, Bartomeu
2010-01-01
We investigate some aspects of a recent proposal for a holographic description of the multiverse. Specifically, we focus on the implications on the suggested duality of the fluctuations of a bubble separating two universes with different cosmological constants. We do so by considering a similar problem in a 2+1 CFT with a codimension one defect, obtained by an M5-brane probe embedding in AdS 4 × S 7 , and studying its spectrum of fluctuations. Our results suggest that the kind of behavior required by the spectrum of bubble fluctuations is not likely to take place in defect CFTs with an AdS dual, although it might be possible if the defect supports a non-unitary theory
Emergent Spacetime and Holographic CFTs
El-Showk, Sheer
2012-01-01
We discuss universal properties of conformal field theories with holographic duals. A central feature of these theories is the existence of a low-lying sector of operators whose correlators factorize. We demonstrate that factorization can only hold in the large central charge limit. Using conformal invariance and factorization we argue that these operators are naturally represented as fields in AdS as this makes the underlying linearity of the system manifest. In this class of CFTs the solution of the conformal bootstrap conditions can be naturally organized in structures which coincide with Witten diagrams in the bulk. The large value of the central charge suggests that the theory must include a large number of new operators not captured by the factorized sector. Consequently we may think of the AdS hologram as an effective representation of a small sector of the CFT, which is embedded inside a much larger Hilbert space corresponding to the black hole microstates.
Survey of holographic security systems
Kontnik, Lewis T.; Lancaster, Ian M.
1990-04-01
The counterfeiting of products and financial instruments is a major problem throughout the world today. The dimensions of the problem are growing, accelerated by the expanding availability of production technologies to sophisticated counterfeiters and the increasing capabilities of these technologies. Various optical techniques, including holography, are beingused in efforts to mark authentic products and to distinguish them from copies. Industry is recognizing that the effectiveness of these techniques depends on such factors as the economics of the counterfeiting process and the distribution channels for the products involved, in addition to the performance of the particular optical security technologies used. This paper surveys the nature of the growing counterfeit market place and reviews the utility of holographic optical security systems. In particular, we review the use of holograms on credit cards and other products; and outline certain steps the holography industry should take to promote these application.
Recent advancements in photorefractive holographic imaging
International Nuclear Information System (INIS)
Lynn, B; Blanche, P-A; Bablumian, A; Rankin, R; Voorakaranam, R; Hilaire, P St; LaComb, L Jr; Peyghambarian, N; Yamamoto, M
2013-01-01
We have recently demonstrated several improvements in material properties and optical design to increase the resolution, size, brightness, and color range of updatable holograms using photorefractive materials. A compact system has been developed that is capable of producing holograms with brightness in excess of 2,500 cd/m 2 using less than 20mW of CW laser power. The size of the hologram has been increased to 300mm × 150mm with a writing time of less than 8 seconds using a 50 Hz pulse laser. Optical improvements have been implemented to reduce the hogel size to less than 200 μm. We have optimized the color gamut to extend beyond the NTSC CIE color space through a combination of spatial and polarization multiplexing. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.
Evaluation of Laser Stabilization and Imaging Systems for LCLS-II - Final Paper
Energy Technology Data Exchange (ETDEWEB)
Barry, Matthew [Auburn Univ., AL (United States)
2015-08-20
By combining the top performing commercial laser beam stabilization system with the most ideal optical imaging configuration, the beamline for the Linear Accelerator Coherent Light Source II (LCLS-II) will deliver the highest quality and most stable beam to the cathode. To determine the optimal combination, LCLS-II beamline conditions were replicated and the systems tested with a He-Ne laser. The Guidestar-II and MRC active laser beam stabilization systems were evaluated for their ideal positioning and stability. Both a two and four lens optical imaging configuration was then evaluated for beam imaging quality, magnification properties, and natural stability. In their best performances when tested over fifteen hours, Guidestar-II kept the beam stable over approximately 70-110um while the MRC system kept it stable over approximately 90-100um. During short periods of time, Guidestar-II kept the beam stable between 10-20um, but was more susceptible to drift over time, while the MRC system maintained the beam between 30-50um with less overall drift. The best optical imaging configuration proved to be a four lens system that images to the iris located in the cathode room and from there, imaged to the cathode. The magnification from the iris to the cathode was 2:1, within an acceptable tolerance to the expected 2.1:1 magnification. The two lens configuration was slightly more stable in small periods of time (less than 10 minutes) without the assistance of a stability system, approximately 55um compared to approximately 70um, but the four lens configurations beam image had a significantly flatter intensity distribution compared to the two lens configuration which had a Gaussian distribution. A final test still needs to be run with both stability systems running at the same time through the four lens system. With this data, the optimal laser beam stabilization system can be determined for the beamline of LCLS-II.
Gravity packaging final waste recovery based on gravity separation and chemical imaging control.
Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco
2017-02-01
Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantum quenches in a holographic Kondo model
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
Quantum quenches in a holographic Kondo model
Energy Technology Data Exchange (ETDEWEB)
Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)
2017-04-10
We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.
Comparing holographic dark energy models with statefinder
International Nuclear Information System (INIS)
Cui, Jing-Lei; Zhang, Jing-Fei
2014-01-01
We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)
Dynamical stability of the holographic system with two competing orders
Energy Technology Data Exchange (ETDEWEB)
Du, Yiqiang [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Lan, Shan-Quan [Department of Physics, Beijing Normal University,Beijing 100875 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Science,Beijing 100190 (China); Zhang, Hongbao [Department of Physics, Beijing Normal University,Beijing 100875 (China); Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)
2016-01-04
We investigate the dynamical stability of the holographic system with two order parameters, which exhibits competition and coexistence of condensations. In the linear regime, we have developed the gauge dependent formalism to calculate the quasi-normal modes by gauge fixing, which turns out be considerably convenient. Furthermore, by giving different Gaussian wave packets as perturbations at the initial time, we numerically evolve the full nonlinear system until it arrives at the final equilibrium state. Our results show that the dynamical stability is consistent with the thermodynamical stability. Interestingly, the dynamical evolution, as well as the quasi-normal modes, shows that the relaxation time of this model is generically much longer than the simplest holographic system. We also find that the late time behavior can be well captured by the lowest lying quasi-normal modes except for the non-vanishing order towards the single ordered phase. To our knowledge, this exception is the first counter example to the general belief that the late time behavior towards a final stable state can be captured by the lowest lying quasi-normal modes. In particular, a double relation is found for this exception in certain cases.
Bruder, Friedrich-Karl; Fäcke, Thomas; Hagen, Rainer; Hansen, Sven; Manecke, Christel; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Walze, Günther
2017-06-01
The main function of any augmented reality system is to seamlessly merge the real world perception of a viewer with computer generated images and information. Besides real-time head-tracking and room-scanning capabilities the combiner optics, which optically merge the natural with the artificial visual information, represent a key component for those systems. Various types of combiner optics are known to the industry, all with their specific advantages and disadvantages. Beside the well-established solutions based on refractive optics or surface gratings, volume Holographic Optical Elements (vHOEs) are a very attractive alternative in this field. The unique characteristics of these diffractive grating structures - being lightweight, thin, flat and invisible in Off Bragg conditions - make them perfectly suitable for their use in integrated and compact combiners. For any consumer application it is paramount to build unobtrusive and lightweight augmented reality displays, for which those volume holographic combiners are ideally suited. Due to processing challenges of (historic) holographic recording materials mass production of vHOE holographic combiners was not possible. Therefore vHOE based combiners found use in military applications only by now. The new Bayfol® HX instant developing holographic photopolymer film provides an ideal technology platform to optimize the performance of vHOEs in a wide range of applications. Bayfol® HX provides full color capability and adjustable diffraction efficiency as well as an unprecedented optical clarity when compared to classical holographic recording materials like silver halide emulsions (AgHX) or dichromated gelatin (DCG). Bayfol® HX film is available in industrial scale and quality. Its properties can be tailored for various diffractive performances and integration methods. Bayfol® HX film is easy to process without any need for chemical or thermal development steps, offering simplified contact-copy mass production
Characterization of the Micro-shell Surface Using Holographic Measurements
Energy Technology Data Exchange (ETDEWEB)
Sandras, F.; Hermerel, C.; Choux, A.; Merillot, P.; Pin, G.; Jeannot, L. [CEA Valduc, Dept Rech Mat Nucl, Serv Microcibles, 21 - Is-sur-Tille (France)
2009-05-15
To characterize the shape, the quality, and the roughness of micro-shells, typically used technologies are scanning electron microscopy, scanning interferometric microscopy, or atomic force microscopy. One of the drawbacks of these techniques is that they are generally slow because of their scanning process. Digital holographic microscopy technology is an innovation that can offer ability adapted to these studies. It captures holograms instead of intensity images, as done by conventional microscopes. The holograms are then digitally interpreted (10 per second) to reconstruct a double image, one for the intensity and another one for the phase. Using a rotation axis, the bump counting for the complete micro-shell surface is possible with a very high speed. Using an image stitching software, mapping can be done in a few minutes. Wavelets such as 'Mexican hat' are used to model the bumps. Each bump can then be characterized on the map by its position, diameter, and height. (authors)
Multispectral digital lensless holographic microscopy: from femtosecond laser to white light LED
International Nuclear Information System (INIS)
Garcia-Sucerquia, J
2015-01-01
The use of femtosecond laser radiation and super bright white LED in digital lensless holographic microscopy is presented. For the ultrafast laser radiation two different configurations of operation of the microscope are presented and the dissimilar performance of each one analyzed. The microscope operating with a super bright white light LED in combination with optical filters shows very competitive performance as it is compared with more expensive optical sources. The broadband emission of both radiation sources allows the multispectral imaging of biological samples to obtain spectral responses and/or full color images of the microscopic specimens; sections of the head of a Drosophila melanogaster fly are imaged in this contribution. The simple, solid, compact, lightweight, and reliable architecture of digital lensless holographic microscopy operating with broadband light sources to image biological specimens exhibiting micrometer-sized details is evaluated in the present contribution. (paper)
Holography Experiments on Optical Imaging.
Bonczak, B.; Dabrowski, J.
1979-01-01
Describes experiments intended to produce a better understanding of the holographic method of producing images and optical imaging by other optical systems. Application of holography to teaching physics courses is considered. (Author/SA)
Directory of Open Access Journals (Sweden)
N.S. Mazhari
2017-03-01
Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.
Energy Technology Data Exchange (ETDEWEB)
Mazhari, N.S., E-mail: najmemazhari86@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)
2017-03-10
The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.
On effective holographic Mott insulators
Energy Technology Data Exchange (ETDEWEB)
Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)
2016-12-20
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
An automatic holographic adaptive phoropter
Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam
2017-08-01
Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.
On effective holographic Mott insulators
International Nuclear Information System (INIS)
Baggioli, Matteo; Pujolàs, Oriol
2016-01-01
We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.
Holographic cutoff on inflationary universes
International Nuclear Information System (INIS)
Santos, Fabio M. de N.; Cunha, Bruno Carneiro da
2011-01-01
Full text: Cosmological Inflation has been widely accepted as the standard explanation of the onset of Big-Bang Cosmology. However, many critiques have been made about the lack of an account of quantum gravity degrees of freedom in cosmology. There is no definite consensus in the literature if we should consider the influence of pre-Plackian modes, for example, in inflationary models. We propose here a general approach to take quantum gravity into account by imposing a holographic cutoff on the number of states of cosmological theories. We apply the method to inflationary scalar field models coupled to a generic potential V (φ). This thermodynamic cutoff allow us to assess the relative volume of phase space which inflates for the particular model where V (φ) = m 2 φ 2 /2. The density of states of the model is defined by taking the coincidence limit of the Hadamard Green function G (1) and we use the point-splitting method to regulate the expression. Our conclusion is that inflation has probability very close to one. (author)
Linearity of holographic entanglement entropy
Energy Technology Data Exchange (ETDEWEB)
Almheiri, Ahmed [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States); Dong, Xi [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Swingle, Brian [Stanford Institute for Theoretical Physics, Department of Physics,Stanford University, Stanford, CA 94305 (United States)
2017-02-14
We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula. We investigate this property by computing the entanglement entropy, via the replica trick, in states dual to superpositions of macroscopically distinct geometries and find it consistent with evaluating the expectation value of the area operator within such states. However, we find that this fails once the number of semi-classical states in the superposition grows exponentially in the central charge of the CFT. Moreover, in certain such scenarios we find that the choice of surface on which to evaluate the area operator depends on the density matrix of the entire CFT. This nonlinearity is enforced in the bulk via the homology prescription of Ryu-Takayanagi. We thus conclude that the homology constraint is not a linear property in the CFT. We also discuss the existence of ‘entropy operators’ in general systems with a large number of degrees of freedom.
Holographic duality in condensed matter physics
Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad
2015-01-01
A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...
The holographic Weyl semi-metal
Directory of Open Access Journals (Sweden)
Karl Landsteiner
2016-02-01
Full Text Available We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
The holographic Weyl semi-metal
Energy Technology Data Exchange (ETDEWEB)
Landsteiner, Karl, E-mail: karl.landsteiner@csic.es; Liu, Yan, E-mail: yan.liu@csic.es
2016-02-10
We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE) and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.
Holographic correlation functions in Critical Gravity
Anastasiou, Giorgos; Olea, Rodrigo
2017-11-01
We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.
Collapse and revival in holographic quenches
International Nuclear Information System (INIS)
Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-01-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Holographic dark energy in the DGP model
International Nuclear Information System (INIS)
Cruz, Norman; Lepe, Samuel; Pena, Francisco; Avelino, Arturo
2012-01-01
The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: ε=±1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)
Holographic dark energy in the DGP model
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)
2012-09-15
The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)
Holographic subregion complexity for singular surfaces
Energy Technology Data Exchange (ETDEWEB)
Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)
2017-10-15
Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)
Anomalous transport and holographic momentum relaxation
Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio
2017-09-01
The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.
Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope
Shin, Sanghoon; Yu, Younghun
2018-04-01
For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.
Bulk viscosity in holographic Lifshitz hydrodynamics
International Nuclear Information System (INIS)
Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron
2014-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent
Numerical processing of ultrasonic holographic data
International Nuclear Information System (INIS)
Langenberg, K.J.; Kiefer, R.; Wosnitza, M.; Schmitz, V.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Saarbruecken
1980-01-01
Reconstructing ultrasonic holographic data numerically, the well-known Fresnel approximation is a first step in evaluating the Rayleigh-Sommerfeld diffraction formula, that is to say, a one- or two-dimensional Fourier-transform of the holographic data multiplied by a complex phase factor has to be computed. The present contribution investigates the relation between flaw depth and aperture size yielding the more advantageous use of the spatial frequency approach where the advantage is in terms of the number of samples and hence computation time in evaluating Fourier transforms numerically. (orig.) [de
Holographic corrections to meson scattering amplitudes
Energy Technology Data Exchange (ETDEWEB)
Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk
2017-06-15
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Real-time wideband holographic surveillance system
Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.
1996-09-17
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.
Holographic Aspects of a Relativistic Nonconformal Theory
Directory of Open Access Journals (Sweden)
Chanyong Park
2013-01-01
Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.
Entropy-Corrected Holographic Dark Energy
International Nuclear Information System (INIS)
Wei Hao
2009-01-01
The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)
Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics
Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin
2018-06-01
We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.
Computer analysis of holographic interferograms for NDT applications
International Nuclear Information System (INIS)
Tichenor, D.A.; Madsen, V.P.
1978-01-01
Holographic interferometry (or holometry) is a non-destructive technique that measures the microscopic displacement of all points on the surface of a test object. The displacement field is represented by a pattern of interference fringes superimposed on the image of the test object. Each fringe can be interpreted as a contour line representing points of equal displacement normal to the image plane. The displacement interval between adjacent fringes is half of the optical wavelength used in recording the hologram. For many NDT applications the fringe density information alone is sufficient to identify all defects of interest. Also fringe density is more easily extracted from the interferogram than is the complete deformation map. An algorithm to generate local estimates of fringe density and determine acceptability of product based on this data is described
A smart-pixel holographic competitive learning network
Slagle, Timothy Michael
-multiplexed PCM readout, and gains of up to 60 were observed when a time-sequential read-out technique was used. Finally, the optical competitive learning laboratory system is described, including some necessary modifications to the previous architectures, and the data acquisition and control system developed for the system. Experimental results showing phase conjugation of the WTA outputs, holographic interconnect storage, associative storage between input images and WTA neuron outputs, and WTA array switching are presented, demonstrating the functions necessary for the operation of the optical learning system.
Wu, Jingjing; Wu, Xinming; Li, Pengfei; Li, Nan; Mao, Xiaomei; Chai, Lihe
2017-04-01
Meridian system is not only the basis of traditional Chinese medicine (TCM) method (e.g. acupuncture, massage), but also the core of TCM's basic theory. This paper has introduced a new informational perspective to understand the reality and the holographic field of meridian. Based on maximum information entropy principle (MIEP), a dynamic equation for the holographic field has been deduced, which reflects the evolutionary characteristics of meridian. By using self-organizing artificial neural network as algorithm, the evolutionary dynamic equation of the holographic field can be resolved to assess properties of meridians and clinically diagnose the health characteristics of patients. Finally, through some cases from clinical patients (e.g. a 30-year-old male patient, an apoplectic patient, an epilepsy patient), we use this model to assess the evolutionary properties of meridians. It is proved that this model not only has significant implications in revealing the essence of meridian in TCM, but also may play a guiding role in clinical assessment of patients based on the holographic field of meridians.
Towards automated electron holographic tomography for 3D mapping of electrostatic potentials
Energy Technology Data Exchange (ETDEWEB)
Wolf, Daniel, E-mail: Daniel.Wolf@Triebenberg.de [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Lubk, Axel; Lichte, Hannes [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Friedrich, Heiner [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht (Netherlands)
2010-04-15
Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography with electron tomography, was successfully applied for the quantitative 3D mapping of electrostatic potentials at the nanoscale. Here we present the first software package (THOMAS) for semi-automated acquisition of holographic tilt series, a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by a factor of five on average, compared to the previous, completely manual approaches. Moreover, the existing software packages for retrieving amplitude and phase information from electron holograms have been extended, now including a one-step procedure for holographic tilt series reconstruction. Furthermore, a modified SIRT algorithm (WSIRT) was implemented for the quantitative 3D reconstruction of the electrostatic potential from the aligned phase tilt series. Finally, the application of EHT to a polystyrene latex sphere test-specimen and a pn-doped Ge 'needle'-shaped specimen are presented, illustrating the quantitative character of EHT. For both specimens the mean inner potential (MIP) values were accurately determined from the reconstructed 3D potential. For the Ge specimen, additionally the 'built-in' voltage across the pn junction of 0.5 V was obtained.
Applying field mapping refractive beam shapers to improve holographic techniques
Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim
2012-03-01
Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.
High speed digital holographic interferometry for hypersonic flow visualization
Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.
2013-06-01
Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.
Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.
2002-03-01
Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.
The impact of a final disposal facility for spent nuclear fuel on a municipality's image
International Nuclear Information System (INIS)
Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T.
1999-02-01
The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities' point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality's image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter 'which does not concern me', provided that the facility will not be placed too near one's own home. Among those interviewed the subject seemed not to be of any 'great interest and did not arouse spontaneous feelings for or against'. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to
Directory of Open Access Journals (Sweden)
Jeffrey Lutkenhaus
2016-04-01
Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.
New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.
New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995
International Nuclear Information System (INIS)
1995-01-01
The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing of PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson's and Huntington's disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology
Phases of kinky holographic nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)
2016-10-17
Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.
Monopole correlations in holographically flavored liquids
Iqbal, N.
2015-01-01
Many-body systems with a conserved U(1) current in (2+1) dimensions may be probed by weakly gauging this current and studying correlation functions of magnetic monopole operators in the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental
Electronic holographic moire in the micron range
Sciammarella, Cesar A.; Sciammarella, Federico M.
2001-06-01
The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.
A holographic model for black hole complementarity
Energy Technology Data Exchange (ETDEWEB)
Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)
2016-12-07
We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.
Gravitation from entanglement in holographic CFTs
Energy Technology Data Exchange (ETDEWEB)
Faulkner, Thomas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Guica, Monica [Department of Physics and Astronomy, University of Pennsylvania,209 S. 33rd St., Philadelphia, PA 19104-6396 (United States); Hartman, Thomas [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street N., Waterloo, Ontario N2L 2Y5 (Canada); Raamsdonk, Mark Van [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, B.C. V6T 1W9 (Canada)
2014-03-11
Entanglement entropy obeys a ‘first law’, an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such constraints for all ball-shaped spatial regions in the CFT is exactly equivalent to the requirement that the dual geometry satisfy the gravitational equations of motion, linearized about pure AdS. For theories with entanglement entropy computed by the Ryu-Takayanagi formula S=A/(4G{sub N}), we obtain the linearized Einstein equations. For theories in which the vacuum entanglement entropy for a ball is computed by more general Wald functionals, we obtain the linearized equations for the associated higher-curvature theories. Using the first law, we also derive the holographic dictionary for the stress tensor, given the holographic formula for entanglement entropy. This method provides a simple alternative to holographic renormalization for computing the stress tensor expectation value in arbitrary higher derivative gravitational theories.
Pattern recognition with magnonic holographic memory device
International Nuclear Information System (INIS)
Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Gertz, F.; Khitun, A.
2015-01-01
In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed
Holographic entanglement entropy and gravitational anomalies
Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.
2014-01-01
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal
Generalized exact holographic mapping with wavelets
Lee, Ching Hua
2017-12-01
The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.
Holographic applications of logarithmic conformal field theories
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-01-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in
Holographic Lovelock gravities and black holes
de Boer, J.; Kulaxizi, M.; Parnachev, A.
2010-01-01
We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on
Scalar Condensation of Holographic Superconductors using ...
Indian Academy of Sciences (India)
Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...
Photopolymer for Optical Holography and Holographic Interferometry
Czech Academy of Sciences Publication Activity Database
Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.
2010-01-01
Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf
A New Approach for Speckle Reduction in Holographic 3D printer
International Nuclear Information System (INIS)
Utsugi, Takeru; Yamaguchi, Masahiro
2013-01-01
A Holographic 3D printer produces a high quality 3D image reproduced by a full-color, full-parallax holographic stereogram with high-density light-ray recording. But speckle-pattern noise localized behind the reconstructed image is causing a loss of the display quality. This noise is originated from the speckle generated by a diffuser for equalizing the intensity distribution of the object light on the recording medium. We analyze some conventional ways for speckle reduction using a band-limited diffuser, and it is found that these ways cannot reduce the noise sufficiently. Then we propose two methods, one introduces a moving diffuser and the other introduces multiple exposures and a digital diffuser called as 4L-PRPS.
Tamamitsu, Miu; Zhang, Yibo; Wang, Hongda; Wu, Yichen; Ozcan, Aydogan
2017-01-01
of sparsity metrics used in SoG, specifically, the Gini index (GI) and the Tamura coefficient (TC), for holographic autofocusing on dense/connected or sparse samples. We provide a theoretical analysis predicting that for uniformly distributed image data, TC
Digital holographic microscopy for toxicity testing and cell culture quality control
Kemper, Björn
2018-02-01
For the example of digital holographic microscopy (DHM), it is illustrated how label-free biophysical parameter sets can be extracted from quantitative phase images of adherent and suspended cells, and how the retrieved data can be applied for in-vitro toxicity testing and cell culture quality assessment. This includes results from the quantification of the reactions of cells to toxic substances as well as data from sophisticated monitoring of cell alterations that are related to changes of cell culture conditions.
Schwalenberg, Simon
2005-06-01
The present work represents a first attempt to perform computations of output intensity distributions for different parametric holographic scattering patterns. Based on the model for parametric four-wave mixing processes in photorefractive crystals and taking into account realistic material properties, we present computed images of selected scattering patterns. We compare these calculated light distributions to the corresponding experimental observations. Our analysis is especially devoted to dark scattering patterns as they make high demands on the underlying model.
Directory of Open Access Journals (Sweden)
V. N. Manoharan
2011-09-01
Full Text Available Digital holographic microscopy (DHM can measure the 3D positions as well as the scattering properties of colloidal particles in a single 2D image. We describe DHM and our analysis of recorded holograms with exact scattering solutions, which permit the measurement of 3D particle positions with ∼10 nm precision and millisecond time resolution, and discuss studies of the Brownian dynamics of clusters of spheres with DHM.
Transport Coefficients for Holographic Hydrodynamics at Finite Energy Scale
International Nuclear Information System (INIS)
Ge, Xian-Hui; Fang, Li Qing; Yang, Guo-Hong; Leng, Hong-Qiang
2014-01-01
We investigate the relations between black hole thermodynamics and holographic transport coefficients in this paper. The formulae for DC conductivity and diffusion coefficient are verified for electrically single-charged black holes. We examine the correctness of the proposed expressions by taking charged dilatonic and single-charged STU black holes as two concrete examples, and compute the flows of conductivity and diffusion coefficient by solving the linear order perturbation equations. We then check the consistence by evaluating the Brown-York tensor at a finite radial position. Finally, we find that the retarded Green functions for the shear modes can be expressed easily in terms of black hole thermodynamic quantities and transport coefficients
Weyl holographic superconductor in the Lifshitz black hole background
International Nuclear Information System (INIS)
Mansoori, S. A. Hosseini; Mirza, B.; Mokhtari, A.; Dezaki, F. Lalehgani; Sherkatghanad, Z.
2016-01-01
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω_g/T_c.
Weyl holographic superconductor in the Lifshitz black hole background
Energy Technology Data Exchange (ETDEWEB)
Mansoori, S. A. Hosseini [Department of Physics, Boston University,590 Commonwealth Ave., Boston, MA 02215 (United States); Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mirza, B. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of); Mokhtari, A. [Department of Physics, Tarbiat Modares University,Tehran 14155-4838 (Iran, Islamic Republic of); Dezaki, F. Lalehgani; Sherkatghanad, Z. [Department of Physics, Isfahan University of Technology,Isfahan 84156-83111 (Iran, Islamic Republic of)
2016-07-21
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω{sub g}/T{sub c}.
Weyl holographic superconductor in the Lifshitz black hole background
Mansoori, S. A. Hosseini; Mirza, B.; Mokhtari, A.; Dezaki, F. Lalehgani; Sherkatghanad, Z.
2016-07-01
We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω g /T c .
Holographic acoustic elements for manipulation of levitated objects
Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram
2015-10-01
Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.
Eigenmode multiplexing with SLM for volume holographic data storage
Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru
2017-08-01
The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.
The AdS/CFT Correspondence and Holographic QCD
International Nuclear Information System (INIS)
Erlich, J.
2012-01-01
Holographic QCD is an extra-dimensional approach to modeling QCD resonances and their interactions. Holographic models encode information about chiral symmetry breaking, Weinberg sum rules, vector meson dominance, and other phenomenological features of QCD. There are two complementary approaches to holographic model building: a top-down approach which begins with string-theory brane configurations, and a bottom-up approach which is more phenomenological. In this talk I will describe the AdS/CFT correspondence, which motivates Holographic QCD, and the techniques used to build holographic models of QCD and to calculate observables in those models. I will also discuss an intriguing light cone approach to Holographic QCD discovered by Brodsky and De Teramond. (author)
Deriving Particle Distributions from In-Line Fraunhofer Holographic Data
International Nuclear Information System (INIS)
Ciarcia, C.A.; Johnson, D.E.; Sorenson, D.S.; Frederickson, R.H.; Delanoy, A.D.; Malone, R.M.; Tunnel, T.W.
1997-01-01
Holographic data are acquired during hydrodynamic experiments at the Pegasus Pulsed Power Facility at the Los Alamos National Laboratory. These experiments produce a fine spray of fast-moving particles. Snapshots of the spray are captured using in-line Fraunhofer holographic techniques. Roughly one cubic centimeter is recorded by the hologram. Minimum detectable particle size in the data extends down to 2 microns. In a holography reconstruction system, a laser illuminates the hologram as it rests in a three-axis actuator, recreating the snapshot of the experiment. A computer guides the actuators through an orderly sequence programmed by the user. At selected intervals, slices of this volume are captured and digitized with a CCD camera. Intermittent on-line processing of the image data and computer control of the camera functions optimizes statistics of the acquired image data for off-line processing. Tens of thousands of individual data frames (30 to 40 gigabytes of data) are required to recreate a digital representation of the snapshot. Throughput of the reduction system is 550 megabytes per hour (MB/hr). Objects and associated features from the data are subsequently extracted during off-line processing. Discrimination and correlation tests reject noise, eliminate multiple counting of particles, and build an error model to estimate performance. Objects surviving these tests are classified as particles. The particle distributions are derived from the data base formed by these particles, their locations and features. Throughput of the off-line processing exceeds 500 MB/hr. This paper describes the reduction system, outlines the off-line processing procedure, summarizes the discrimination and correlation tests, and reports numerical results for a sample data set
Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons
Energy Technology Data Exchange (ETDEWEB)
Yang, Haori; Hayward, Jason; Can, Liao; Liu, Zhengzhi
2018-03-31
The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.
Single beam Fourier transform digital holographic quantitative phase microscopy
Energy Technology Data Exchange (ETDEWEB)
Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)
2014-03-10
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.
Higher order corrections to holographic black hole chemistry
Sinamuli, Musema; Mann, Robert B.
2017-10-01
We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.
Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications
Directory of Open Access Journals (Sweden)
Augusto Beléndez
2012-05-01
Full Text Available Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material.
The compact and inexpensive arrowhead setup for holographic interferometry
Energy Technology Data Exchange (ETDEWEB)
Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)
2011-07-15
Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.
Holographic associative memories in document retrieval systems
International Nuclear Information System (INIS)
Becker, P.J.; Bolle, H.; Keller, A.; Kistner, W.; Riecke, W.D.; Wagner, U.
1979-03-01
The objective of this work was the implementation of a holographic memory with associative readout for a document retrieval system. Taking advantage of the favourable properties of holography - associative readout of the memory, parallel processing in the response store - may give shorter response times than sequentially organized data memories. Such a system may also operate in the interactive mode including chain associations. In order to avoid technological difficulties, the experimental setup made use of commercially available components only. As a result an improved holographic structure is proposed which uses volume holograms in photorefractive crystals as storage device. In two chapters of appendix we give a review of the state of the art of electrooptic devices for coherent optical data processing and of competing technologies (semiconductor associative memories and associative program systems). (orig.) [de
Holographic mutual information of two disjoint spheres
Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong
2018-04-01
We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.
Holographic models and the QCD trace anomaly
International Nuclear Information System (INIS)
Goity, Jose L.; Trinchero, Roberto C.
2012-01-01
Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.
Reheating of the Universe as holographic thermalization
Energy Technology Data Exchange (ETDEWEB)
Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)
2016-08-10
Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Reheating of the Universe as holographic thermalization
Directory of Open Access Journals (Sweden)
Shinsuke Kawai
2016-08-01
Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.
Holographic entanglement for Chern-Simons terms
International Nuclear Information System (INIS)
Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng
2017-01-01
We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS 2k+1 . This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS 7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.
Holographic entanglement for Chern-Simons terms
Energy Technology Data Exchange (ETDEWEB)
Azeyanagi, Tatsuo [Département de Physique, Ecole Normale Supérieure, CNRS,24 rue Lhomond, 75005 Paris (France); Loganayagam, R. [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Ng, Gim Seng [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada)
2017-02-01
We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS{sub 2k+1}. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS{sub 7} and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.
Holographic entanglement for Chern-Simons terms
Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng
2017-02-01
We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.
Towards understanding Regge trajectories in holographic QCD
International Nuclear Information System (INIS)
Cata, Oscar
2007-01-01
We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD
Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction
Li, Ran; Zi, Tieguang; Zhang, Hongbao
2018-04-01
We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T process is then holographically dual to the dynamical superconducting phase transition process in the boundary theory. Furthermore, we also study the effect of the scalar self-interaction on time evolution of superconducting condensate operator, event and apparent horizon areas of the final hairy black hole.
Thermodynamics and CP-odd transport in holographic QCD with finite magnetic field
Energy Technology Data Exchange (ETDEWEB)
Drwenski, Tara; Gürsoy, Umut [Institute for Theoretical Physics, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Iatrakis, Ioannis [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York 11794-3800 (United States)
2016-12-13
We consider a bottom-up holographic model of QCD at finite temperature T and magnetic field B, and study dependence of thermodynamics and CP-odd transport on these variables. As the magnetic field couples to the flavor sector only, one should take the Veneziano limit where the number of flavors and colors are large while their ratio is kept fixed. We investigate the corresponding holographic background in the approximation where the ratio of flavors to colors is finite but small. We demonstrate that B-dependence of the entropy of QCD is in qualitative agreement with the recent lattice studies. Finally we study the CP-odd transport properties of this system. In particular, we determine the Chern-Simons decay rate at finite B and T, that is an important ingredient in the Chiral Magnetic Effect.
Interacting holographic dark energy with logarithmic correction
Jamil, Mubasher; Farooq, M. Umar
2010-01-01
The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of s...
Holographic nondestructive testing in bone biomechanics
Silvennoinen, Raimo V. J.; Nygren, Kaarlo; Karna, Markku
1992-08-01
Holographic nondestructive testing (HNDT) is used to investigate the complex structures of bones of various shapes and sizes subjected to forces. During the course of the present study three antlered deer skulls of different species were investigated, and significant species- specific differences were observed. The HNDT method was also used to verify the advanced healing of an osteosynthetized sheep jawbone. Radioulnar bones of normal and orphaned moose calves were subjected to the bending test. Different bending dynamics were observed.
Holographic Location of Distant Points (PREPRINT)
2010-06-01
respects and the nonimaging systems have significant advantages. This paper shows how to use holograms to construct a flat, solid, small, accurate, small... nonimaging point location system. 15. SUBJECT TERMS imagery, holographic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18...respects and the nonimaging systems we have discussed earlier (1, 2) have significant advantages. This paper shows how to use holograms to construct a
Holographic processing of track chamber data
Energy Technology Data Exchange (ETDEWEB)
Bykovsky, Y A; Larkin, A I; Markilov, A A; Starikov, S N [Moskovskij Fiziko-Tekhnicheskij Inst. (USSR)
1975-12-01
The holographic pattern recognition method was applied for processing of track chamber photographs. Experiments on detection of such events as a definitely directed track, an angle formed by two tracks, a three-pronged star, a definitely curved track were performed by using models. It is proposed to recognize these events in a filmshot by the shape of correlation signals. The experiment to recognize the event in a real bubble chamber filmshot was realized; requirements to the processing films were determined.
Shrinkage measurement for holographic recording materials
Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.
2017-05-01
There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).
Holographic cosmological models on the braneworld
Energy Technology Data Exchange (ETDEWEB)
Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)
2009-01-26
In this Letter we have studied a closed universe which a holographic energy on the brane whose energy density is described by {rho}(H)=3c{sup 2}H{sup 2} and we obtain an equation for the Hubble parameter. This equation gave us different physical behavior depending if c{sup 2}>1 or c{sup 2}<1 against of the sign of the brane tension.
Holographic Superconductivity with Gauss-Bonnet gravity
Gregory, Ruth
2010-01-01
I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.
Diffused holographic information storage and retrieval using photorefractive optical materials
McMillen, Deanna Kay
Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and
Constraining holographic cosmology using Planck data
Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas
2017-06-01
Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.
Waking and scrambling in holographic heating up
Ageev, D. S.; Aref'eva, I. Ya.
2017-10-01
Using holographic methods, we study the heating up process in quantum field theory. As a holographic dual of this process, we use absorption of a thin shell on a black brane. We find the explicit form of the time evolution of the quantum mutual information during heating up from the temperature Ti to the temperature T f in a system of two intervals in two-dimensional space-time. We determine the geometric characteristics of the system under which the time dependence of the mutual information has a bell shape: it is equal to zero at the initial instant, becomes positive at some subsequent instant, further attains its maximum, and again decreases to zero. Such a behavior of the mutual information occurs in the process of photosynthesis. We show that if the distance x between the intervals is less than log 2/2π T i, then the evolution of the holographic mutual information has a bell shape only for intervals whose lengths are bounded from above and below. For sufficiently large x, i.e., for x < log 2/2π T i, the bell-like shape of the time dependence of the quantum mutual information is present only for sufficiently large intervals. Moreover, the zone narrows as T i increases and widens as T f increases.
Entanglement from dissipation and holographic interpretation
Energy Technology Data Exchange (ETDEWEB)
Cantcheff, M.B. [IFLP-CONICET CC 67, La Plata, Buenos Aires (Argentina); Gadelha, Alexandre L. [Universidade Federal da Bahia, Instituto de Fisica, Salvador, BA (Brazil); Marchioro, Dafni F.Z.; Nedel, Daniel Luiz [Universidade Federal da Integracao Latino-Americana, Instituto Latino-Americano de Ciencias da Vida e da Natureza, Foz do Iguacu, PR (Brazil)
2018-02-15
In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacuum state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017). (orig.)
Holographic complexity and noncommutative gauge theory
Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei
2018-03-01
We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.
Entanglement from dissipation and holographic interpretation
Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz
2018-02-01
In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacumm state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017).
A shape dynamical approach to holographic renormalization
Energy Technology Data Exchange (ETDEWEB)
Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2015-01-01
We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)
Holographic patterning of luminescent photopolymer nanocomposites
International Nuclear Information System (INIS)
Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim
2008-01-01
Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated
Effect of quintessence on holographic fermionic spectrum
Energy Technology Data Exchange (ETDEWEB)
Kuang, Xiao-Mei [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Wu, Jian-Pin [Bohai University, Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Jinzhou (China)
2017-10-15
In this letter, we investigate the holographic fermionic spectrum without/with dipole coupling dual to the Reissner-Nordstroem anti-de Sitter (RN-AdS) black brane surrounded by quintessence. We find that the low energy excitation of this fermionic system without dipole coupling behaves as a non-Fermi liquid. In particular, the introduction of quintessence aggravates the degree of deviation from a Fermi liquid. For the system with dipole coupling, the phase transition from (non-)Fermi liquid to Mott phase can be observed. The ratio between the width of gap and the critical temperature, beyond which the gap closes, is also worked out. We find that this ratio is larger than that of the holographic fermionic system dual to the RN-AdS black brane and even the material of V O{sub 2}. It means that our holographic system with quintessence can model new phenomena of the condensed matter system and provide some new insights in their regard. (orig.)
Emergent Gauge Fields in Holographic Superconductors
Domènech, Oriol; Pomarol, Alex; Salvio, Alberto; Silva, Pedro J
2010-01-01
Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identif...
Holographic sensors for diagnostics of solution components
International Nuclear Information System (INIS)
Kraiskii, A V; Suitanov, T T; Postnikov, V A; Khamidulin, A V
2010-01-01
The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L -1 ). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking. (laser applications and other topics in quantum electronics)
Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes
Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza
2009-05-01
Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.
Ex-vivo holographic microscopy and spectroscopic analysis of head and neck cancer
Holler, Stephen; Wurtz, Robert; Auyeung, Kelsey; Auyeung, Kris; Paspaley-Grbavac, Milan; Mulroe, Brigid; Sobrero, Maximiliano; Miles, Brett
2015-03-01
Optical probes to identify tumor margins in vivo would greatly reduce the time, effort and complexity in the surgical removal of malignant tissue in head and neck cancers. Current approaches involve visual microscopy of stained tissue samples to determine cancer margins, which results in the excision of excess of tissue to assure complete removal of the cancer. Such surgical procedures and follow-on chemotherapy can adversely affect the patient's recovery and subsequent quality of life. In order to reduce the complexity of the process and minimize adverse effects on the patient, we investigate ex vivo tissue samples (stained and unstained) using digital holographic microscopy in conjunction with spectroscopic analyses (reflectance and transmission spectroscopy) in order to determine label-free, optically identifiable characteristic features that may ultimately be used for in vivo processing of cancerous tissues. The tissue samples studied were squamous cell carcinomas and associated controls from patients of varying age, gender and race. Holographic microscopic imaging scans across both cancerous and non-cancerous tissue samples yielded amplitude and phase reconstructions that were correlated with spectral signatures. Though the holographic reconstructions and measured spectra indicate variations even among the same class of tissue, preliminary results indicate the existence of some discriminating features. Further analyses are presently underway to further this work and extract additional information from the imaging and spectral data that may prove useful for in vivo surgical identification.
International Nuclear Information System (INIS)
Lee, Sang Joon; Seo, Kyung Won; Choi, Yong Seok; Sohn, Myong Hwan
2011-01-01
A digital holographic microscope is employed to measure the 3D motion of free-swimming microorganisms. The focus function used to quantify image sharpness provides a better depth-directional accuracy with a smaller depth-of-focus compared with the intensity method in determining the depth-directional position of spherical particles of various diameters. The focus function is then applied to measure the 3D positions of free-swimming microorganisms, namely dinoflagellates C. polykrikoides and P. minimum. Both automatic segmentation and proper selection of a focus function for a selected segment are important processes in measuring the positional information of two free-swimming microorganisms of different shapes with various width-to-length ratios. The digital holographic microscopy technique improved in this work is useful for measuring 3D swimming trajectories, velocities and attitudes of hundreds of microorganisms simultaneously. It also exhibits exceptional depth-directional accuracy
Compact holographic optical neural network system for real-time pattern recognition
Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.
1996-08-01
One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.
Three-Dimensional Identification of Microorganisms Using a Digital Holographic Microscope
Directory of Open Access Journals (Sweden)
Ning Wu
2013-01-01
Full Text Available This paper reports a method for three-dimensional (3D analysis of shift-invariant pattern recognition and applies to holographic images digitally reconstructed from holographic microscopes. It is shown that the sequential application of a 2D filter to the plane-by-plane reconstruction of an optical field is exactly equivalent to the application of a more general filter with a 3D impulse response. We show that any 3D filters with arbitrary impulse response can be implemented in this way. This type of processing is applied to the two-class problem of distinguishing different types of bacteria. It is shown that the proposed technique can be easily implemented using a modified microscope to develop a powerful and cost-effective system with great potential for biological screening.
Holographic method for site-resolved detection of a 2D array of ultracold atoms
Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes
2016-08-01
We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.
Innovative re-creation of realities in a holographic digital form
Wang, Shuo; Hebblewhite, Richard; Osanlou, Ardieshir; Excell, Peter; Di Gennaro, Sonia; Shi, Lishen
2014-02-01
Only nature can create, whereas humans can only re-create. This article is an exploration of synergies between art and science in digital holography in relation to art practice and the making of holograms as art works. This is achieved through involvement in the re-creation of a real object (a telescope) as a case study. A digital three-dimensional model suitable for holographic hard copy re-creation is produced. To explore special and immersive environment, real geographical landscape background from Google Earth is added to the model. After a brief introduction to visual art within the context of two and three-dimensional imaging in the form photography and holography, the whole process of producing the three-dimensional model and the environment in which it should be presented, ready for holographic printing is explained.
Elkatlawy, Saeid; Gomariz, María.; Soto-Sánchez, Cristina; Martínez Navarrete, Gema; Fernández, Eduardo; Fimia, Antonio
2014-05-01
In this paper we report on the use of digital holographic microscopy for 3D real time imaging of cultured neurons and neural networks, in vitro. Digital holographic microscopy is employed as an assessment tool to study the biophysical origin of neurodegenerative diseases. Our study consists in the morphological characterization of the axon, dendrites and cell bodies. The average size and thickness of the soma were 21 and 13 μm, respectively. Furthermore, the average size and diameter of some randomly selected neurites were 4.8 and 0.89 μm, respectively. In addition, the spatiotemporal growth process of cellular bodies and extensions was fitted to by a non-linear behavior of the nerve system. Remarkably, this non-linear process represents the relationship between the growth process of cellular body with respect to the axon and dendrites of the neurons.
X-ray holographic microscopy using the atomic-force microscope
International Nuclear Information System (INIS)
Howells, M.R.; Jacobsen, C.J.; Lindaas, S.
1993-09-01
The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach
A non-iterative twin image elimination method with two in-line digital holograms
Kim, Jongwu; Lee, Heejung; Jeon, Philjun; Kim, Dug Young
2018-02-01
We propose a simple non-iterative in-line holographic measurement method which can effectively eliminate a twin image in digital holographic 3D imaging. It is shown that a twin image can be effectively eliminated with only two measured holograms by using a simple numerical propagation algorithm and arithmetic calculations.
Holographic elements and curved slit used to enlarge field of view in rocket detection system
Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc
2006-09-01
Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.
Holographic representation of space-variant systems: system theory.
Marks Ii, R J; Krile, T F
1976-09-01
System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.
Holographic bounds on the UV cutoff scale in inflationary cosmology
DEFF Research Database (Denmark)
Keski-Vakkuri, Esko; Sloth, Martin Snoager
2003-01-01
We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating...
Liquid polymers for using in a holographic ionizing radiation dosimeter
International Nuclear Information System (INIS)
Nicolau-Rebigan, S.
1979-01-01
Some liquid polymeric systems for using in the holographic ionizing radiation dosimeter are presented. It is shown that the action of radiation on polymers leads to the destruction of the polymeric chains or to perform them, the both processes being applied in radiation dosimetry. Some advantages of the holographic dosimeter are outlined comparatively with those common used. (author)
Realization of an optical interferometer based on holographic optics ...
Indian Academy of Sciences (India)
The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is ...
Reflection mode holographic recording in methylene blue-sensitized ...
Indian Academy of Sciences (India)
2014-02-13
Feb 13, 2014 ... Thus, in recent years much attention has been centred on ... as bit-format holographic data storage [7] and visual indication of ... The characteristics of holographic recording material have great effects on the success- ... widely for display applications, for cover pages of books, magazines, pop art display,.
Range Compressed Holographic Aperture Ladar
2017-06-01
entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range
International Nuclear Information System (INIS)
Soria, J; Atkinson, C
2008-01-01
Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV
High accurate volume holographic correlator with 4000 parallel correlation channels
Ni, Kai; Qu, Zongyao; Cao, Liangcai; Su, Ping; He, Qingsheng; Jin, Guofan
2008-03-01
Volume holographic correlator allows simultaneously calculate the two-dimensional inner product between the input image and each stored image. We have recently experimentally implemented in VHC 4000 parallel correlation channels with better than 98% output accuracy in a single location in a crystal. The speckle modulation is used to suppress the sidelobes of the correlation patterns, allowing more correlation spots to be contained in the output plane. A modified exposure schedule is designed to ensure the hologram in each channel with unity diffraction efficiency. In this schedule, a restricted coefficient was introduced into the original exposure schedule to solve the problem that the sensitivity and time constant of the crystal will change as a time function when in high-capacity storage. An interleaving method is proposed to improve the output accuracy. By unifying the distribution of the input and stored image patterns without changing the inner products between them, this method could eliminate the impact of correlation pattern variety on calculated inner product values. Moreover, by using this method, the maximum correlation spot size is reduced, which decreases the required minimum safe clearance between neighboring spots in the output plane, allowing more spots to be parallely detected without crosstalk. The experimental results are given and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Cassimeris, Lynne, U.
2010-09-10
Lehigh University is establishing an interdisciplinary program in high resolution cellular and subcellular biological imaging for a range of applications including improved cancer detection. The completed DOE project added to Lehigh?s bio-imaging infrastructure through acquisition of a new confocal microscope system as well as upgrades to two pieces of existing equipment. Bio-imaging related research at Lehigh was also supported through two seed grants for initiation of new projects.
Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Liu, Yunqi; Gong, Yungui [School of Physics, Huazhong University of Science and Technology,Wuhan, Hubei 430074 (China); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai 200240 (China)
2016-02-17
We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T{sub c}, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.
A new approach for implementation of associative memory using volume holographic materials
Habibi, Mohammad; Pashaie, Ramin
2012-02-01
Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.
AC conductivity for a holographic Weyl semimetal
Energy Technology Data Exchange (ETDEWEB)
Grignani, Gianluca; Marini, Andrea; Peña-Benitez, Francisco; Speziali, Stefano [Dipartimento di Fisica e Geologia, Università di Perugia,I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy)
2017-03-23
We study the AC electrical conductivity at zero temperature in a holographic model for a Weyl semimetal. At small frequencies we observe a linear dependence in the frequency. The model shows a quantum phase transition between a topological semimetal (Weyl semimetal phase) with a non vanishing anomalous Hall conductivity and a trivial semimetal. The AC conductivity has an intermediate scaling due to the presence of a quantum critical region in the phase diagram of the system. The phase diagram is reconstructed using the scaling properties of the conductivity. We compare with the experimental data of https://www.doi.org/10.1103/PhysRevB.93.121110 obtaining qualitative agreement.
Combined constraints on holographic bosonic technicolor
International Nuclear Information System (INIS)
Carone, Christopher D.; Primulando, Reinard
2010-01-01
We consider a model of strong electroweak symmetry breaking in which the expectation value of an additional, possibly composite, scalar field is responsible for the generation of fermion masses. The dynamics of the strongly coupled sector is defined and studied via its holographic dual, and does not correspond to a simple, scaled-up version of QCD. We consider the bounds from perturbative unitarity, the S parameter, and the mass of the Higgs-like scalar. We show that the combination of these constraints leaves a relatively limited region of parameter space viable, and suggests the qualitative features of the model that might be probed at the LHC.
Holo-GPC: Holographic Generalized Phase Contrast
DEFF Research Database (Denmark)
Bañas, Andrew; Glückstad, Jesper
2017-01-01
Light shaping methods based on spatial phase-only modulation can be classified depending on whether they distribute multiple beams or shape the individual beams. Diffractive optics or holography can be classified as the former, as it spatially distributes a plurality of focal spots over a working...... of GPC in forming well-defined speckle-free shapes that can be distributed over an extended 3D volume through holographic means. The combined strengths of the two photon-efficient phase-only light shaping modalities open new possibilities for contemporary laser sculpting applications....
More on boundary holographic Witten diagrams
Sato, Yoshiki
2018-01-01
In this paper we discuss geodesic Witten diagrams in general holographic conformal field theories with boundary or defect. In boundary or defect conformal field theory, two-point functions are nontrivial and can be decomposed into conformal blocks in two distinct ways; ambient channel decomposition and boundary channel decomposition. In our previous work [A. Karch and Y. Sato, J. High Energy Phys. 09 (2017) 121., 10.1007/JHEP09(2017)121] we only consider two-point functions of same operators. We generalize our previous work to a situation where operators in two-point functions are different. We obtain two distinct decomposition for two-point functions of different operators.
Notes on the Holographic Lifshitz Theory
Directory of Open Access Journals (Sweden)
Chanyong Park
2014-01-01
Full Text Available On the Lifshitz black brane geometry of an Einstein-Maxwell-dilaton gravity, we holographically investigate electric DC conductivities and the role of impurity in a nonrelativistic Lifshitz medium with two different charge carriers, impurity and Lifshitz matter. The conductivity carried by Lifshitz matter is proportional to the square of temperature, while that carried by impurity crucially depends on the bulk coupling parameter γ. For γ<−2, impurity at high temperature can change the electric property of the Lifshitz medium significantly so that the Lifshitz matter with impurity can show a totally different electric property from the pure Lifshitz matter.
Holographic charged Rényi entropies
Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd
2013-12-01
We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.
Simple recipe for holographic Weyl anomaly
Energy Technology Data Exchange (ETDEWEB)
Bugini, F. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Diaz, D.E. [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,Autopista Concepción-Talcahuano 7100, Talcahuano (Chile)
2017-04-20
We propose a recipe — arguably the simplest — to compute the holographic type-B Weyl anomaly for general higher-derivative gravity in asymptotically AdS spacetimes. In 5 and 7 dimensions we identify a suitable basis of curvature invariants that allows to read off easily, without any further computation, the Weyl anomaly coefficients of the dual CFT. We tabulate the contributions from quadratic, cubic and quartic purely algebraic curvature invariants and also from terms involving derivatives of the curvature. We provide few examples, where the anomaly coefficients have been obtained by other means, to illustrate the effectiveness of our prescription.
Holographic collisions in non-conformal theories
International Nuclear Information System (INIS)
Attems, Maximilian; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel
2017-01-01
We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.
Holographic EPR Pairs, Wormholes and Radiation
Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2013-01-01
As evidence for the ER=EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determi...
A simple holographic scenario for gapped quenches
Energy Technology Data Exchange (ETDEWEB)
Lopez, Esperanza; Bosch, Guillermo Milans del [Instituto de Física Teórica IFT UAM/CSIC, Universidad Autónoma de Madrid,28049 Cantoblanco, Madrid (Spain)
2017-02-24
We construct gravitational backgrounds dual to a family of field theories parameterized by a relevant coupling. They combine a non-trivial scalar field profile with a naked singularity. The naked singularity is necessary to preserve Lorentz invariance along the boundary directions. The singularity is however excised by introducing an infrared cutoff in the geometry. The holographic dictionary associated to the infrared boundary is developed. We implement quenches between two different values of the coupling. This requires considering time dependent boundary conditions for the scalar field both at the AdS boundary and the infrared wall.
Holographic complexity of cold hyperbolic black holes
International Nuclear Information System (INIS)
Barbón, José L.F.; Martín-García, Javier
2015-01-01
AdS black holes with hyperbolic horizons provide strong-coupling descriptions of thermal CFT states on hyperboloids. The low-temperature limit of these systems is peculiar. In this note we show that, in addition to a large ground state degeneracy, these states also have an anomalously large holographic complexity, scaling logarithmically with the temperature. We speculate on whether this fact generalizes to other systems whose extreme infrared regime is formally controlled by Conformal Quantum Mechanics, such as various instances of near-extremal charged black holes.
Fluctuations and instabilities of a holographic metal
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2013-02-01
We analyze the quasinormal modes of the D2-D8' model of 2+1-dimensional, strongly-coupled, charged fermions in a background magnetic field and at non-zero density. The model is known to include a quantum Hall phase with integer filling fraction. As expected, we find a hydrodynamical diffusion mode at small momentum and the nonzero-temperature holographic zero sound, which becomes massive above a critical magnetic field. We confirm the previously-known thermodynamic instability. In addition, we discover an instability at low temperature, large mass, and in a charge density and magnetic field range near the quantum Hall phase to an inhomogeneous striped phase.
Magnetic properties of confined holographic QCD
Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew
2013-12-01
We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.
Holographic QCD beyond the leading order
International Nuclear Information System (INIS)
Kim, Youngman; Ko, P.; Wu, Xiao-Hong
2008-01-01
We consider a holographic QCD model for light mesons beyond the leading order in the context of 5-dim gauged linear sigma model on the interval in the AdS 5 space. We include two dimension-6 operators in addition to the canonical bulk kinetic terms, and study chiral dynamics of π, ρ, a 1 and some of their KK modes. As novel features of dim-6 operators, we get non-vanishing Br(a 1 → πγ), the electromagnetic form factor and the charge radius of a charged pion, which improve the leading order results significantly and agree well with the experimental results.
Heavy quarkonium in a holographic basis
Directory of Open Access Journals (Sweden)
Yang Li
2016-07-01
Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.
Holographic description of large N gauge theory
International Nuclear Information System (INIS)
Lee, Sung-Sik
2011-01-01
Based on the earlier work [S.-S. Lee, Nucl. Rev. B 832 (2010) 567], we derive a holographic dual for the D-dimensional U(N) lattice gauge theory from a first principle construction. The resulting theory is a lattice field theory of closed loops, dubbed as lattice loop field theory which is defined on a (D+1)-dimensional space. The lattice loop field theory is well defined non-perturbatively, and it becomes weakly coupled and local in the large N limit with a large 't Hooft coupling.
Holographic relaxation of finite size isolated quantum systems
International Nuclear Information System (INIS)
Abajo-Arrastia, Javier; Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographically the out of equilibrium dynamics of a finite size closed quantum system in 2+1 dimensions, modelled by the collapse of a shell of a massless scalar field in AdS_4. In global coordinates there exists a variety of evolutions towards final black hole formation which we relate with different patterns of relaxation in the dual field theory. For large scalar initial data rapid thermalization is achieved as a priori expected. Interesting phenomena appear for small enough amplitudes. Such shells do not generate a black hole by direct collapse, but quite generically, an apparent horizon emerges after enough bounces off the AdS boundary. We relate this bulk evolution with relaxation processes at strong coupling which delay in reaching an ergodic stage. Besides the dynamics of bulk fields, we monitor the entanglement entropy, finding that it oscillates quasi-periodically before final equilibration. The radial position of the travelling shell is brought in correspondence with the evolution of the pattern of entanglement in the dual field theory. We propose, thereafter, that the observed oscillations are the dual counterpart of the quantum revivals studied in the literature. The entanglement entropy is not only able to portrait the streaming of entangled excitations, but it is also a useful probe of interaction effects
Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm
International Nuclear Information System (INIS)
Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert
2006-01-01
The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant
Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.
Energy Technology Data Exchange (ETDEWEB)
Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert
2006-11-01
The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant
Simple concept for a wide-field lensless digital holographic microscope using a laser diode
Directory of Open Access Journals (Sweden)
Adinda-Ougba A.
2015-09-01
Full Text Available Wide-field, lensless digital holographic microscopy is a new microscopic imaging technique for telemedicine and for resource limited setting [1]. In this contribution we propose a very simple wide-field lensless digital holographic microscope using a laser diode. It is based on in-line digital holography which is capable to provide amplitude and phase images of a sample resulting from numerical reconstruction. The numerical reconstruction consists of the angular spectrum propagation method together with a phase retrieval algorithm. Amplitude and phase images of the sample with a resolution of ∽2 µm and with ∽24 mm2 field of view are obtained. We evaluate our setup by imaging first the 1951 USAF resolution test chart to verify the resolution. Second, we record holograms of blood smear and diatoms. The individual specimen can be easily identified after the numerical reconstruction. Our system is a very simple, compact and low-cost possibility of realizing a microscope capable of imaging biological samples. The availability of the phase provide topographic information of the sample extending the application of this system to be not only for biological sample but also for transparent microstructure. It is suitable for fault detection, shape and roughness measurements of these structures.
Acoustic imaging of underground storage tank wastes: A feasibility study. Final report
International Nuclear Information System (INIS)
Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.
1995-01-01
The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy
Effect of 18F-FDG dosage alternation on final PET image
International Nuclear Information System (INIS)
Yin Dayi; Yao Shulin; Chen Yingmao; Shao Mingzhe; Tian Jiahe
2002-01-01
Objective: To assess PET reconstructed image effected by different 18 F-FDG dosages with quantitative and qualitative analysis. Methods: To perform PET phantom acquisition by routine clinical parameters after filled with different doses of 18 F-FDG solution. An identical slice was extracted from reconstructed image for doing following analysis: the hot area standard uptake value (SUV), the ratio of hot area to cold area, the standard deviation on background area, the ratio of true coincidence to random. Results: 296 MBq: The image uniformity was terribly worse, T/R=0.83, other indexes were irregular. 148 MBq: The image presentation looked like the image without attenuation correction, T/R=1.64, other indexes were moderate. 74, 37 and 18.5 MBq: The images were with excellent uniformity, resolution and contrast, the background noise was suitable, all of the quantitative indexes were good. 9.25 and 4.625 MBq: The uniformity and resolution was degraded terribly because of the higher noise and lower information. Conclusion: Combining above results with other considerations, such as radiation exposure, information amount and acquisition time, the authors think the optimal dosage should be 4.625-11.1 MBq/kg
Cavity enhanced eigenmode multiplexing for volume holographic data storage
Miller, Bo E.; Takashima, Yuzuru
2017-08-01
Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.
A Holographic Microscope for Detection of Microorganisms on Icy Worlds
Lindensmith, C. A.; Nadeau, J. L.; Deming, J. W.; Showalter, G. M.; Rider, S.; Bedrossian, M.
2015-12-01
Holography is a well-established imaging technique that uses the interference of light to record and reproduce three-dimensional images of objects. Its use began in the 1960s with the invention of the laser. Digital holographic microscopy (DHM) has several advantages over ordinary imaging microscopy which make it ideal for field and astrobiology use, including no need for focus or scanning so that instruments are readily made autonomous. DHM can produce simultaneous bright-field and quantitative phase-contrast images of the same field, providing additional information about transparent objects, e.g., refractive index and/or thickness; thus it inherently supports effective label-free imaging. We have built a fieldable DHM for detection of microorganisms in bodies of water and in brines collected from sea ice. Ice that appears solid to the eye contains interconnected brine-filled microscopic pores and veins which are occupied by populations of prokaryotes and eukaryotes. The presence of life in "solid" ice has important implications for exploration of icy worlds, where it is unlikely that the first missions will be able to access the subsurface oceans. Using this new instrument, we examined several dozen samples from three different sites around Nuuk, Greenland. In all samples, mixed populations of both prokaryotic and eukaryotic microorganisms were observed. Many of the organisms were motile immediately upon extraction from sea ice, and others became motile after warming or addition of sugars and/or amino acids. Meaningful motility was readily distinguished from turbulence or fluid flow. The spatial resolution of the instrument was better than 1 μm, leading to unambiguous recognition of subcellular structures in eukaryotes, including nuclei and chloroplasts. We present mission scenrios for both orbiters and landers in which DHM may be used as a valuable complement to chemical-based life detection techniques for discovery of cellular life on icy worlds.
Applications of holographic on-chip microscopy (Conference Presentation)
Ozcan, Aydogan
2017-02-01
My research focuses on the use of computation/algorithms to create new optical microscopy, sensing, and diagnostic techniques, significantly improving existing tools for probing micro- and nano-objects while also simplifying the designs of these analysis tools. In this presentation, I will introduce a set of computational microscopes which use lens-free on-chip imaging to replace traditional lenses with holographic reconstruction algorithms. Basically, 3D images of specimens are reconstructed from their "shadows" providing considerably improved field-of-view (FOV) and depth-of-field, thus enabling large sample volumes to be rapidly imaged, even at nanoscale. These new computational microscopes routinely generate benefit of this technology is that it lends itself to field-portable and cost-effective designs which easily integrate with smartphones to conduct giga-pixel tele-pathology and microscopy even in resource-poor and remote settings where traditional techniques are difficult to implement and sustain, thus opening the door to various telemedicine applications in global health. Through the development of similar computational imagers, I will also report the discovery of new 3D swimming patterns observed in human and animal sperm. One of this newly discovered and extremely rare motion is in the form of "chiral ribbons" where the planar swings of the sperm head occur on an osculating plane creating in some cases a helical ribbon and in some others a twisted ribbon. Shedding light onto the statistics and biophysics of various micro-swimmers' 3D motion, these results provide an important example of how biomedical imaging significantly benefits from emerging computational algorithms/theories, revolutionizing existing tools for observing various micro- and nano-scale phenomena in innovative, high-throughput, and yet cost-effective ways.
Holographic free energy and thermodynamic geometry
Ghorai, Debabrata; Gangopadhyay, Sunandan
2016-12-01
We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.
Holographic free energy and thermodynamic geometry
International Nuclear Information System (INIS)
Ghorai, Debabrata; Gangopadhyay, Sunandan
2016-01-01
We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)
Holographic free energy and thermodynamic geometry
Energy Technology Data Exchange (ETDEWEB)
Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)
2016-12-15
We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)
Commensurability effects in holographic homogeneous lattices
International Nuclear Information System (INIS)
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as “homogeneous holographic lattices.' Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
International Nuclear Information System (INIS)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao
2015-01-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model
Holographic photon production in heavy ion collisions
International Nuclear Information System (INIS)
Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun
2017-01-01
The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
The holographic dual of the Penrose transform
Neiman, Yasha
2018-01-01
We consider the holographic duality between type-A higher-spin gravity in AdS4 and the free U( N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these "square root" spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a "square root" of CPT.
Holographic photon production in heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Kiritsis, Elias [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Department of Physics, University of Crete,71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,71003 Heraklion (Greece); APC, Univ Paris Diderot, Sorbonne Paris Cité, APC, UMR 7164 CNRS,F-75205 Paris (France); Shen, Chun [Department of Physics, McGill University,3600 University Street, Montreal, QC, H3A 2T8 (Canada); Yang, Di-Lun [Theoretical Research Division, Nishina Center, RIKEN, Wako,Saitama 351-0198 (Japan)
2017-04-07
The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.
Vibration measurements by pulsed digital holographic endoscopy
Schedin, Staffan; Pedrini, Giancarlo; Perez-Lopez, Carlos; Mendoza Santoyo, Fernando
2005-02-01
Digital holographic interferometry in combination with a flexible fiber endoscope allows high precision measurements of deformations on hidden objects surfaces, inside cavities and objects with small access apertures. A digital holographic endoscopy system is described with a frequency-doubled, twin oscillator Q-switched pulsed Nd:YAG laser as light source. A sequence of digital hologram pairs are recorded with a maximum repetition rate of 260 ms. Each digital hologram is captured at separate video frames of a CCD-camera. The time separation between the laser pulses from each cavity can be set in the range from 50 to 500 μs. The digital holograms are transferred to a PC via a frame grabber and evaluated quantitatively by the Fourier transform method. The resulting phase fringe pattern has the information needed to evaluate quantitatively the amount of the deformation. Experimental results of vibration measurements of hidden mechanical and biological object surfaces are presented. The quality of the results obtained by mechanical object surfaces is usually higher than for biological surfaces. This can be explained easily by the fact that a biological surface is much more complex than a mechanical surface in the sense that some parts of the surface may reflect the light well whereas other parts may absorb the light. Also, biological surfaces are translucent, which means that part of the light may enter inside the sample where it may be absorbed or reflected.
Entanglement between two interacting CFTs and generalized holographic entanglement entropy
International Nuclear Information System (INIS)
Mollabashi, Ali; Shiba, Noburo; Takayanagi, Tadashi
2014-01-01
In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting N=4 super Yang-Mills theories by introducing a minimal surface in the S 5 direction, instead of the AdS 5 direction. This offers a possible generalization of holographic entanglement entropy
Holographic interferometry using a digital photo-camera
International Nuclear Information System (INIS)
Sekanina, H.; Hledik, S.
2001-01-01
The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)
Inflation via logarithmic entropy-corrected holographic dark energy model
Energy Technology Data Exchange (ETDEWEB)
Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)
2016-12-15
We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)
Covariant generalized holographic dark energy and accelerating universe
Nojiri, Shin'ichi; Odintsov, S. D.
2017-08-01
We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.
Design and evaluation of daylighting applications of holographic glazings
Energy Technology Data Exchange (ETDEWEB)
Papamichael, K.; Ehrlich, C.; Ward, G.
1996-12-01
According to the contractual agreement, BTP would develop a computer model of the POC holographic structures and then simulate the performance of alternative designs using the RADIANCE lighting and rendering computer program [Ward 1990]. The RADIANCE model would then be used to evaluate the daylight performance of alternative designs of holographic glazings in a prototypical office space. The simulation process would be validated against actual photometric measurements of holographic glazing samples developed by POC. The results would be used to evaluate the potential for increased electric lighting savings through increased daylight illuminance levels at distances more than 15 ft--20 ft (4.6 m--6.1 m ) from the window wall.
Inflation via logarithmic entropy-corrected holographic dark energy model
International Nuclear Information System (INIS)
Darabi, F.; Felegary, F.; Setare, M.R.
2016-01-01
We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kim, Eun-Hee; Jung, Yeon-Gil, E-mail: jungyg@changwon.ac.kr
2015-12-01
Simultaneous angular multiplexing of transmission gratings in a holographic polymer dispersed liquid crystal (HPDLC) film as a function of resin and film compositions, irradiation intensity, and cell thickness has been studied by exposing the material to three coherent laser beams. It was found that the diffraction efficiency monotonically increases with irradiation intensity and cell gap, whereas a maximum of 43% is obtained at specific compositions of trimethylolpropane triacrylate (TMPTA)/N-vinylpyrrolidone (NVP) = 8/1 and polymer/LC = 65/35. The multiplexed gratings have been captured using SEM imaging and the reconstructed images using a charge-coupled device camera, showing successful reconstructed images of gratings. - Highlights: • Multiplex images were well recorded using simultaneous angular method. • The periodic structures of the LC and polymer regions were well prepared. • The angular selectivity was variable nevertheless fabrication by three beams. • The images were successfully reconstructed in gratings of same spot.
International Nuclear Information System (INIS)
Kim, Eun-Hee; Jung, Yeon-Gil
2015-01-01
Simultaneous angular multiplexing of transmission gratings in a holographic polymer dispersed liquid crystal (HPDLC) film as a function of resin and film compositions, irradiation intensity, and cell thickness has been studied by exposing the material to three coherent laser beams. It was found that the diffraction efficiency monotonically increases with irradiation intensity and cell gap, whereas a maximum of 43% is obtained at specific compositions of trimethylolpropane triacrylate (TMPTA)/N-vinylpyrrolidone (NVP) = 8/1 and polymer/LC = 65/35. The multiplexed gratings have been captured using SEM imaging and the reconstructed images using a charge-coupled device camera, showing successful reconstructed images of gratings. - Highlights: • Multiplex images were well recorded using simultaneous angular method. • The periodic structures of the LC and polymer regions were well prepared. • The angular selectivity was variable nevertheless fabrication by three beams. • The images were successfully reconstructed in gratings of same spot.
International Nuclear Information System (INIS)
Mora Rodriguez, Patricia
2011-01-01
Mammography is the most used tool for early detection of breast cancer and reduce mortality from this cause. Studies with ionizing radiation it is important that be justified and provide a quality image to make the diagnosis, to get more benefits and fewer risks. The problem is the difficult to obtain an image of the breast. Therefore, the commitment to quality mammography is to maximize the contrast, definition, resolution and reliability, thus minimizing noise and dose. A mammogram performed without quality don't detect early breast cancer and the study doesn't have sense. Quality mammography requires trained and experienced staff, modern equipment and in good conditions, correct positioning, right technical factors and appropriate viewing conditions. In addition, quality programs are required to reach to ensure quality, control in testing techniques and image quality. (author) [es
International Nuclear Information System (INIS)
Houston, Paul L.
2005-01-01
Product imaging has been used to investigate several processes important to a fundamental understanding of combustion. The imaging technique produces a ''snapshot'' of the three-dimensional velocity distribution of a state-selected reaction product. Research in three main areas is planned or underway. First, product imaging has been used to investigate the reactive scattering of radicals or atoms with species important in combustion. These experiments, while more difficult than studies of inelastic scattering or photodissociation, are now becoming feasible. They provide both product distributions of important processes as well as angular information important to the interpretation of reaction mechanisms. Second, the imaging technique has been used to measure rotationally inelastic energy transfer on collision of closed-shell species with important combustion radicals. Such measurements improve our knowledge of intramolecular potentials and provide important tests of ab initio calculations. Finally, experiments using product imaging have explored the vacuum ultraviolet photodissociation of O2, N2O, SO2, CO2 and other important species. Little is known about the highly excited electronic states of these molecules and, in particular, how they dissociate. These studies provide product vibrational energy distributions as well as angular information that can aid in understanding the symmetry and crossings among the excited electronic states
Image Matrix Processor for Volumetric Computations Final Report CRADA No. TSB-1148-95
Energy Technology Data Exchange (ETDEWEB)
Roberson, G. Patrick [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Browne, Jolyon [Advanced Research & Applications Corporation, Sunnyvale, CA (United States)
2018-01-22
The development of an Image Matrix Processor (IMP) was proposed that would provide an economical means to perform rapid ray-tracing processes on volume "Giga Voxel" data sets. This was a multi-phased project. The objective of the first phase of the IMP project was to evaluate the practicality of implementing a workstation-based Image Matrix Processor for use in volumetric reconstruction and rendering using hardware simulation techniques. Additionally, ARACOR and LLNL worked together to identify and pursue further funding sources to complete a second phase of this project.
International Nuclear Information System (INIS)
Graham, M.M.
1987-01-01
This meeting provided an excellent overview of the state-of-the-art in perfusion imaging from the viewpoints of mathematical data analysis, radiochemical synthesis and evaluation, and instrumentation physics. The participants and audience had an opportunity to see how each of these aspects is essential for continued progress in this field
A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report
International Nuclear Information System (INIS)
Jernigan, J.G.
1987-01-01
An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)
Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2
Directory of Open Access Journals (Sweden)
Davood Momeni
2015-07-01
Full Text Available The aim of the present letter is to find the holographic entanglement entropy (HEE in 2D holographic superconductors (HSC. Indeed, it is possible to compute the exact form of this entropy due to an advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression for HEE is obtained. In case the software cannot calculate minimal surface integrals analytically, it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We see that HEE changes linearly with belt angle. It's due to the extensivity of this type of entropy and the emergent of an entropic force. We find that the wider belt angle corresponds to a larger holographic surface. Another remarkable observation is that no “confinement/deconfinement” phase transition point exists in our 2D dual field theory. Furthermore, we observe that the slope of the HEE with respect to the temperature dSdT decreases, thanks to the emergence extra degree of freedom(s in low temperature system. A first order phase transition is detected near the critical point.
Exploring Neural Cell Dynamics with Digital Holographic Microscopy
Marquet, Pierre; Jourdain, Pascal; Boss, Daniel; Depeursinge, Christian D.; Magistretti, Pierre J.
2013-01-01
In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.
The digital holographic interferometry in resonant acoustic spectroscopy
International Nuclear Information System (INIS)
GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.
2014-01-01
The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)
Dual-Wavelength Sensitized Photopolymer for Holographic Data Storage
Tao, Shiquan; Zhao, Yuxia; Wan, Yuhong; Zhai, Qianli; Liu, Pengfei; Wang, Dayong; Wu, Feipeng
2010-08-01
Novel photopolymers for holographic storage were investigated by combining acrylate monomers and/or vinyl monomers as recording media and liquid epoxy resins plus an amine harder as binder. In order to improve the holographic performances of the material at blue-green wavelength band two novel dyes were used as sensitizer. The methods of evaluating the holographic performances of the material, including the shrinkage and noise characteristics, are described in detail. Preliminary experiments show that samples with optimized composite have good holographic performances, and it is possible to record dual-wavelength hologram simultaneously in this photopolymer by sharing the same optical system, thus the storage density and data rate can be doubly increased.
LMM Holographic Optical Tweezers (HOT) Module, Phase I
National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...
Interacting holographic dark energy in Brans-Dicke theory
International Nuclear Information System (INIS)
Sheykhi, Ahmad
2009-01-01
We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.
Holographic Raman Tweezers Controlled by Hand Gestures and Voice Commands
Czech Academy of Sciences Publication Activity Database
Tomori, Z.; Antalík, M.; Kesa, P.; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Zemánek, Pavel
2013-01-01
Roč. 3, 2B (2013), s. 331-336 ISSN 2160-8881 Institutional support: RVO:68081731 Keywords : Holographic Optical Tweezers * Raman Tweezers * Natural User Interface * Leap Motion * Gesture Camera Subject RIV: BH - Optics, Masers, Lasers
A holographic perspective on phonons and pseudo-phonons
Energy Technology Data Exchange (ETDEWEB)
Amoretti, Andrea [Institute of Theoretical Physics and Astrophysics, University of Würzburg,97074 Würzburg (Germany); Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [Departamento de Física de Partículas, Universidade de Santiago de Compostelaand Instituto Galego de Física de Altas Enerxías (IGFAE),E-15782, Santiago de Compostela (Spain); Zayas, Leopoldo A. Pando [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2017-05-10
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Investigation of surface deformations by double exposure holographic interferometry
International Nuclear Information System (INIS)
Ecevit, F.N.; Guven, H.; Aydin, R.
1990-01-01
Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs
3D Holographic Technology and Its Educational Potential
Lee, Hyangsook
2013-01-01
This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.
Exploring Neural Cell Dynamics with Digital Holographic Microscopy
Marquet, Pierre
2013-04-21
In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.
REAL TIME MICRODISPLACEMENTS TESTING BY OPTO-DIGITAL HOLOGRAPHIC INTERFEROMETRY TECHNIQUE
Directory of Open Access Journals (Sweden)
L BOUAMAMA
2007-12-01
Since all the process is controlled numerically, it is possible to follow in real time using the holographic interferometry techniques, double exposure, real time or time average, any changes in the object under study and to start and stop the process at any time by adequate software. This can be done by subtracting a reference image by suitable software directly on the CCD camera. We show also, the ability of the technique to study in real time all evolutional phenomena.
Collados, Maria Victoria; Arias, Isabel; García, Ana; Atencia, Jesús; Quintanilla, Manuel
2003-02-01
In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.
Speckle-based off-axis holographic detection for non-contact photoacoustic tomography
Directory of Open Access Journals (Sweden)
Buj C.
2015-09-01
Full Text Available A very fast innovative holographic off-axis non-contact detection method for Photoacoustic Tomography (PAT is introduced. It overcomes the main problems of most state-of-the-art photoacoustic imaging approaches that are long acquisition times and the requirement of acoustic contact. In order to increase the acquisition speed significantly, the surface displacements of the object, caused by the photoacoustic pressure waves, are measured interferometrically in two dimensions. Phase alterations in the observed speckle field are used to identify changes in the object’s topography. A sampling rate of up to 80 MHz is feasible, which reduces the occurrence of motion artefacts.
Final report of the group research. Advanced Technology for Medical Imaging Research. 1996-2000 FY
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-03-01
This report involves the organization of the research groups (4 units of radiopharmaceutical chemistry, radiotracer and radiopharmacology, clinical imaging, and molecular informative research), 5 research reports and 38 published research papers. The research reports concern Fundamental researches on the availability and production of PET radiopharmaceuticals using the National Institute of Radiological Sciences (NIRS) cyclotron, Design and evaluation of in vivo radiopharmaceuticals for PET measurement (kinetics and metabolism in small animals and primates), Fundamental studies on development of technique radiation measurement, Clinical application of medical imaging technology in the fields of neuroscience, cardiovascular, cancer diagnosis and others, and A study to establish and evaluate a lung cancer screening system using spiral CT units which is in pilot-progress in Kanto and Kansai regions. (N.I.)
Miniature CCD X-Ray Imaging Camera Technology Final Report CRADA No. TC-773-94
Energy Technology Data Exchange (ETDEWEB)
Conder, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mummolo, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-10-19
The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.
Multispectral image analysis of the Palo Duro Basin, Texas: Final report
International Nuclear Information System (INIS)
Andre, C.G.
1986-09-01
The objectives of this remote sensing study of the Palo Duro Basin are to: (1) detect the surface expression of regional subsurface structure; (2) locate previously unrecognized fractures; (3) interpret the data in terms of the geologic history of the Palo Duro Basin. Linear and circular surface features were mapped from Landsat 4 Thematic Mapper and NOAA-7 Advanced Very High Resolution Radiometer digital images of visible, near-infrared and thermal infrared bands. The density and orientation of features mapped are shown to be related to geological features, such as faults, structural arches, paleoerosion topography and salt dissolution zones. The approximate area covered by the three 185 km /times/ 170 km Thematic Mapper images studied extends southward from the Canadian River Breaks to the Sand Hills and eastward from the western Mountains in Oklahoma. The day and night thermal infrared images from the NOAA-7 satellite encompass an area that includes the northern half of Texas and most of the surrounding states to the east, west and north. 4 refs
Holographic dark energy and f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2011-02-15
We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.
Holographic and acoustic emission evaluation of pressure vessels
International Nuclear Information System (INIS)
Boyd, D.M.
1980-01-01
Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality
Note on the butterfly effect in holographic superconductor models
Directory of Open Access Journals (Sweden)
Yi Ling
2017-05-01
Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Note on the butterfly effect in holographic superconductor models
International Nuclear Information System (INIS)
Ling, Yi; Liu, Peng; Wu, Jian-Pin
2017-01-01
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Note on the butterfly effect in holographic superconductor models
Energy Technology Data Exchange (ETDEWEB)
Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)
2017-05-10
In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.
Counterterms and dual holographic anomalies in CS gravity
Energy Technology Data Exchange (ETDEWEB)
Banados, Maximo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Theisen, Stefan [Max-Planck-Institut fuer Gravitationphysik, Albert-Einstein-Institut, 14476 Golm (Germany)
2005-10-15
The holographic Weyl anomaly associated to Chern-Simons gravity in 2n+1 dimensions is proportional to the Euler term in 2n dimensions, with no contributions from the Weyl tensor. We compute the holographic energy-momentum tensor associated to Chern-Simons gravity directly from the action, in an arbitrary odd-dimensional spacetime. We show, in particular, that the counterterms rendering the action finite contain only terms of the Lovelock type.
Universal formula for the holographic speed of sound
Anabalón, Andrés; Andrade, Tomás; Astefanesei, Dumitru; Mann, Robert
2018-06-01
We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO (3) × SO (3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.
Progress in high-resolution x-ray holographic microscopy
International Nuclear Information System (INIS)
Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.
1987-07-01
Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs
Progress in high-resolution x-ray holographic microscopy
Energy Technology Data Exchange (ETDEWEB)
Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.
1987-07-01
Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.
High quality digital holographic reconstruction on analog film
Nelsen, B.; Hartmann, P.
2017-05-01
High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)
2018-01-15
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)
Vibration Analysis Of Automotive Structures Using Holographic Interferometry
Brown, G. M.; Wales, R. R.
1983-10-01
Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-01-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations
Holographic entanglement entropy of surface defects
Energy Technology Data Exchange (ETDEWEB)
Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos [Department of Physics and Astronomy, University of California,Los Angeles, CA 90095 (United States)
2016-04-12
We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.
Holographic entanglement entropy of surface defects
International Nuclear Information System (INIS)
Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos
2016-01-01
We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena http://dx.doi.org/10.1007/JHEP05(2014)025 to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.
Entanglement entropy from the holographic stress tensor
International Nuclear Information System (INIS)
Bhattacharyya, Arpan; Sinha, Aninda
2013-01-01
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the time–time component of the Brown–York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean action methods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription. (paper)
Quantum corrections to holographic mutual information
International Nuclear Information System (INIS)
Agón, Cesar A.; Faulkner, Thomas
2016-01-01
We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.
Understanding the holographic principle via RG flow
Mukhopadhyay, Ayan
2016-01-01
This is a review of some recent works which demonstrate how the classical equations of gravity in AdS themselves hold the key to understanding their holographic origin in the form of a strongly coupled large $N$ QFT whose algebra of local operators can be generated by a few (single-trace) elements. I discuss how this can be realised by reformulating Einstein's equations in AdS in the form of a non-perturbative RG flow that further leads to a new approach towards constructing strongly interacting QFTs. In particular, the RG flow can self-determine the UV data that are otherwise obtained by solving classical gravity equations and demanding that the solutions do not have naked singularities. For a concrete demonstration, I focus on the hydrodynamic limit in which case this RG flow connects the AdS/CFT correspondence with the membrane paradigm, and also reproduces the known values of the dual QFT transport coefficients.
Biomechanical testing of isolated bones: holographic study
Silvennoinen, Raimo; Nygren, Kaarlo; Karna, Markku
1992-08-01
Holographic nondestructive testing (HNDT) is used to investigate the complex structures of bones of various shapes and sizes subjected to forces. Three antlered deer skulls of different species were investigated and significant species-specific differences were observed. The HNDT method was also used to verify the advanced healing of an osteosynthetized sheep jawbone. Radioulnar bones of a normal and an orphaned moose calf were subjected to a bending test. The undernourished calf showed torsio displacement combined with the bending of the bone, which was not seen in the normal calf. The effects of the masticatory forces on the moose skull surface were studied by simulating masseter muscle contractions with jawbones in occlusion. The fringe patterns showed fast-moving bone surfaces on the naso- maxillo-lacrimal region.
Holographic p-wave superconductor with disorder
International Nuclear Information System (INIS)
Areán, D.; Farahi, A.; Zayas, L.A. Pando; Landea, I. Salazar; Scardicchio, A.
2015-01-01
We implement the effects of disorder on a holographic p-wave superconductor by introducing a random chemical potential which defines the local energy of the charge carriers. Since there are various possibilities for the orientation of the vector order parameter, we explore the behavior of the condensate in the parallel and perpendicular directions to the introduced disorder. We clarify the nature of various branches representing competing solutions and construct the disordered phase diagram. We find that moderate disorder enhances superconductivity as determined by the value of the condensate. Though we mostly focus on uncorrelated noise, we also consider a disorder characterized by its spectral properties and study in detail its influence on the spectral properties of the condensate and charge density. We find fairly universal responses of the resulting power spectra characterized by linear functions of the disorder power spectrum.
Holographic repulsion and confinement in gauge theory
Husain, Viqar; Kothawala, Dawood
2013-02-01
We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz
Interpixel crosstalk cancellation on holographic memory
Ishii, Toshiki; Fujimura, Ryushi
2017-09-01
In holographic memory systems, there have been no practical techniques to minimize interpixel crosstalk thus far. We developed an interpixel crosstalk cancellation technique using a checkerboard phase pattern with a phase difference of π/2, which can decrease the size of the spatial filter along the Fourier plane with the signal-to-noise ratio (SNR) kept high. This interpixel crosstalk cancellation technique is simple because it requires only one phase plate in the signal beam path. We verified the effect of such a cancellation technique by simulation. The improvement of SNR is maximized to 6.5 dB when the filter size specified in the Nyquist areal ratio is approximately 1.05 in ideal optical systems with no other fixed noise. The proposed technique can improve SNR by 0.85 in an assumed monocular architecture at an actual noise intensity. This improvement of SNR is very useful for realizing high-density recording or enhancing system robustness.
Holographic EPR pairs, wormholes and radiation
Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2013-10-01
As evidence for the ER = EPR conjecture, it has recently been observed that the string that is holographically dual to an entangled quark-antiquark pair separating with (asymptotically) uniform acceleration has a wormhole on its worldsheet. We point out that a two-sided horizon and a wormhole actually appear for much more generic quark-antiquark trajectories, which is consistent with the fact that the members of an EPR pair need not be permanently out of causal contact. The feature that determines whether the causal structure of the string worldsheet is trivial or not turns out to be the emission of gluonic radiation by the dual quark and antiquark. In the strongly-coupled gauge theory, it is only when radiation is emitted that one obtains an unambiguous separation of the pair into entangled subsystems, and this is what is reflected on the gravity side by the existence of the worldsheet horizon.
Quantum corrections to holographic mutual information
Energy Technology Data Exchange (ETDEWEB)
Agón, Cesar A. [Martin Fisher School of Physics, Brandeis University,Waltham, MA 02453 (United States); Faulkner, Thomas [University of Illinois, Urbana-Champaign,Urbana, IL 61801-3080 (United States)
2016-08-22
We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.
Supersymmetric null-like holographic cosmologies
International Nuclear Information System (INIS)
Lin Fengli; Wen Wenyu
2006-01-01
We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic c function for the 2-dimensional dual field theory living on the corresponding null-like cosmology. We find that this c function runs in accordance with the c-theorem as the boundary universe evolves, this means that the number of degrees of freedom is divergent at big bang and suggests the possible resolution of big bang singularity