WorldWideScience

Sample records for holographic berezinskii-kosterlitz-thouless transitions

  1. Charge Berezinskii-Kosterlitz-Thouless transition in superconducting NbTiN films

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Alexey Yu.; Silevitch, Daniel M.; Proslier, Thomas; Postolova, Svetlana V.; Burdastyh, Maria V.; Gutakovskii, Anton K.; Rosenbaum, Thomas F.; Vinokur, Valerii V.; Baturina, Tatyana I.

    2018-03-06

    Three decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality-the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT-has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition. Finally, we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned approach to the superconductor-insulator transition.

  2. Possible observation of the Berezinskii-Kosterlitz-Thouless transition in boron-doped diamond films

    Science.gov (United States)

    Coleman, Christopher; Bhattacharyya, Somnath

    2017-11-01

    The occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition is investigated in heavily boron-doped nanocrystalline diamond films through a combination of current-voltage and resistance measurements. We observe transport features suggesting a robust BKT transition along with transport features related to vortex pinning in nanocrystalline diamond films with smaller grain size. The vortex core energy determined through analysis of the resistance temperature curves was found to be anti-correlated to the BKT transition temperatures. It is also observed that the higher BKT temperature is related to an increased vortex-antivortex binding energy derived from the activated transport regions. Further, the magnetic field induced superconductor insulator transition shows the possibility of the charge glass state. The consequences of granularity such as localization and vortex pinning can lead to tuneable BKT temperatures and strongly affects the field induced insulating state.

  3. Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion

    Science.gov (United States)

    Shimizu, Yuya; Kuramashi, Yoshinobu

    2018-02-01

    We have made a detailed study of the phase structure for the lattice Schwinger model with one flavor of Wilson fermion on the (m ,g ) plane. For numerical investigation, we develop a decorated tensor renormalization method for lattice gauge theories with fermions incorporating the Grassmann tensor renormalization. Our algorithm manifestly preserves rotation and reflection symmetries. We find not only a parity-broken phase but also a Berezinskii-Kosterlitz-Thouless (BKT) transition by evaluating the central charge and an expectation value of a projection operator into the parity-odd subspace. The BKT phase boundaries converge into the degenerated doubler pole (m ,g )=(-2 ,0 ), while the parity-breaking transition line ends at the physical pole (m ,g )=(0 ,0 ). In addition, our analysis of scaling dimensions indicates that a conformal field theory with SU(2) symmetry arises on the line of m =-2 .

  4. Effect of population imbalance on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid Fermi gas

    International Nuclear Information System (INIS)

    Tempere, J.; Klimin, S. N.; Devreese, J. T.

    2009-01-01

    The Berezinskii-Kosterlitz-Thouless (BKT) mechanism describes the breakdown of superfluidity in a two-dimensional Bose gas or a two-dimensional gas of paired fermions. In the latter case, a population imbalance between the two pairing partners in the Fermi mixture is known to influence pairing characteristics. Here, we investigate the effects of imbalance on the two-dimensional BKT superfluid transition and show that superfluidity is even more sensitive to imbalance than for three-dimensional systems. Finite-temperature phase diagrams are derived using the functional integral formalism in combination with a hydrodynamic action functional for the phase fluctuations. This allows to identify a phase-separation region and tricritical points due to imbalance. In contrast to superfluidity in the three-dimensional case, the effect of imbalance is also pronounced in the strong-coupling regime.

  5. 1D goes 2D: A Berezinskii-Kosterlitz-Thouless transition in superconducting arrays of 4-Angstrom carbon nanotubes

    KAUST Repository

    Wang, Zhe

    2010-10-01

    We report superconducting resistive transition characteristics for array(s) of coupled 4-Angstrom single wall carbon nanotubes embedded in aluminophosphate-five zeolite. The transition was observed to initiate at 15 K with a slow resistance decrease switching to a sharp, order of magnitude drop between 7.5 and 6.0 K with strong (anisotropic) magnetic field dependence. Both the sharp resistance drop and its attendant nonlinear IV characteristics are consistent with the manifestations of a Berezinskii-Kosterlitz-Thouless transition that establishes quasi long range order in the plane transverse to the c-axis of the nanotubes, leading to an inhomogeneous system comprising 3D superconducting regions connected by weak links. Global coherence is established at below 5 K with the appearance of a well-defined supercurrent gap/low resistance region at 2 K. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas.

    Science.gov (United States)

    Hadzibabic, Zoran; Krüger, Peter; Cheneau, Marc; Battelier, Baptiste; Dalibard, Jean

    2006-06-29

    Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.

  7. Evidence of a field-induced Berezinskii-Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system.

    Science.gov (United States)

    Tutsch, U; Wolf, B; Wessel, S; Postulka, L; Tsui, Y; Jeschke, H O; Opahle, I; Saha-Dasgupta, T; Valentí, R; Brühl, A; Remović-Langer, K; Kretz, T; Lerner, H-W; Wagner, M; Lang, M

    2014-10-27

    Two-dimensional (2D) systems with continuous symmetry lack conventional long-range order because of thermal fluctuations. Instead, as pointed out by Berezinskii, Kosterlitz and Thouless (BKT), 2D systems may exhibit so-called topological order driven by the binding of vortex-antivortex pairs. Signatures of the BKT mechanism have been observed in thin films, specially designed heterostructures, layered magnets and trapped atomic gases. Here we report on an alternative approach for studying BKT physics by using a chemically constructed multilayer magnet. The novelty of this approach is to use molecular-based pairs of spin S=½ ions, which, by the application of a magnetic field, provide a gas of magnetic excitations. On the basis of measurements of the magnetic susceptibility and specific heat on a so-designed material, combined with density functional theory and quantum Monte Carlo calculations, we conclude that these excitations have a distinct 2D character, consistent with a BKT scenario, implying the emergence of vortices and antivortices.

  8. Sensitive Measurement of the Kosterlitz-Thouless Transition

    Science.gov (United States)

    Ben-Ezra, Shalva; Glaberson, William I.

    2006-09-01

    We have developed a new technique for probing the Kosterlitz - Thouless transition in thin helium films. The technique is based on operation of a single quartz crystal microbalance at two different harmonic frequencies simultaneously. The technique is insensitive to surface effects, and provides the means for monitoring the heating of the film. By suppressing heating and surface effects we were able to systematically compare the results with the existing theories of ANHS, Bowley, Armour and Benedict, and Armour and Bowley. Substantial agreement with the last model of Armour and Bowley was observed. To the best our knowledge this is the first time that the experimental data in the frequency range 10-30MHz is compared to theoretical models.

  9. Kosterlitz-Thouless transition in high-Tc superconductor films

    International Nuclear Information System (INIS)

    Davis, L.C.; Beasley, M.R.; Scalapino, D.J.

    1990-01-01

    Dynamical theory for the polarization of bound vortex-antivortex pairs near the Kosterlitz-Thouless transition (T KT =88.4 K) has been applied to thin films of YBa 2 Cu 3 O 7 . Calculations show that the correct order of magnitude is predicted for the loss function ωG/c 2 at T KT , but the temperature dependence below the transition is wrong. The theoretical value drops much more rapidly with decreasing temperature than observed experimentally. Similar disagreement is found for the penetration depth λ(T). Estimates of the loss function at microwave frequencies show rather large effects near the critical temperature, but these become negligible by 80 K. The performance of microwave devices operating at liquid-N 2 temperature should not be degraded by vortex-antivortex pairs

  10. A hierarchical model exhibiting the Kosterlitz-Thouless fixed point

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.; Perez, J.F.

    1985-01-01

    A hierarchical model for 2-d Coulomb gases displaying a line stable of fixed points describing the Kosterlitz-Thouless phase transition is constructed. For Coulomb gases corresponding to Z sub(N)- models these fixed points are stable for an intermediate temperature interval. (Author) [pt

  11. Macroscopic weak superconductivity of an NXN Josephson junction array below the Kosterlitz-Thouless transition

    International Nuclear Information System (INIS)

    Shenoy, S.R.; Karlsruhe Univ.

    1983-07-01

    A two-dimensional NXN array of coupled Josephson junctions, each of size tau 0 and Josephson length lambdasub(JO)>>tau 0 , is shown to exhibit macroscopic weak superconductivity. The Josephson phase coherence here extends across the array, vanishing discontinuously at the Kosterlitz-Thouless transition temperature. The transverse size Ntau 0 must be smaller than a few times the effective Josephson screening length lambdasub(J)sup(eff) proportional to lambdasub(JO), for a sharp transition to be seen. (author)

  12. Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    International Nuclear Information System (INIS)

    Castelnovo, Claudio; Chamon, Claudio; Mudry, Christopher; Pujol, Pierre

    2007-01-01

    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interaction that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram

  13. Machine learning vortices at the Kosterlitz-Thouless transition

    Science.gov (United States)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  14. YBCO single crystals I-V characteristics nonlinearity and Nelson-Kosterlitz jump

    International Nuclear Information System (INIS)

    Kuzmichev, N.D.; Vasyutin, M.A.; Golovashkin, A.I.

    2007-01-01

    Temperature dependences of I-V characteristics and voltage harmonics V n (T) (n = 2, 3, ...) have been investigated in magnetic fields up to 200 Oe for single crystals YBa 2 Cu 3 O 7-x . It was shown that V n (T) had asymmetric peak form with maximum at T* = 92.0 K. Amplitudes of V n (T) were decreased in magnetic fields. The results were explained on the base of the Berezinskii-Kosterlitz-Thouless (BKT) transition model. It was shown that T* coincided with the BKT transition temperature T BKT . The asymmetric peaks of V n (T) are a consequence of the Nelson-Kosterlitz jump

  15. Observation of Kosterlitz-Thouless phase transition in the composite superconductor (NbTi)-Cu

    International Nuclear Information System (INIS)

    Fischer, E.; Khukhareva, I.S.

    1989-01-01

    Results are reported of an experimental investigation of the resistive behavior of a composite superconductor carrying a current perpendicular to the superconducting filaments. The sample resistance exhibits in this case, depending on the temperature and on the measurement current, a number of peculiarities, and in particular a two-step transition to the superconducting state. On the basis of an analysis of the laws governing these peculiarities, a model is developed for topological Kosterlitz-Thouless phase transitions in bulk systems. Topological defects of a new type, current-stimulated excitations, are considered. The deduced empirical relations scale with var-epsilon = I/I c . A correlation is established between the characteristic values for two- and three-dimensional systems

  16. Kosterlitz-Thouless superfluid transition for thin helium-4 films adsorbed in porous media

    International Nuclear Information System (INIS)

    Kotsubo, V.Y.

    1985-01-01

    Thin helium-4 films adsorbed in porous media with small grain sizes are studied in an attempt to understand size effects on the thin-film superfluid transition. Films were adsorbed in 500A, 3000A, and 1μ diameter packed alumina powders, and the superfluidity density was probed using third sound. The main features observed are a broadening of the transition and a reduction of third sound attenuation as the grain sizes are reduced. To explain the results, the flat-substrate Kosterlitz-Thouless theory is adapted to a finite-size system. The model, which is based on the behavior of thermally excited vortices, qualitatively agrees with the experimental results. Fits to the sound velocity data produces reasonable values for the parameters of the vortices, but quantitative agreement with the attenuation data could not be achieved. The overall results of this study suggests that the transition evolves continuously as the geometry changes form the flat substrate down to this small scale systems

  17. 40 years of Berezinskii-Kosterlitz-Thouless theory

    CERN Document Server

    José, Jorge V

    2013-01-01

    On the 40th anniversary of the Berezinskii–Kosterlitz–Thouless Theory (BKT), this informative volume looks back at some of the developments and achievements and varied physics applications which ensued from the beautiful BKT vortex-unbinding seminal idea. During the last four decades, BKT theory, which is undeniably one of the most important developments in condensed matter and theoretical physics of the second half of the twentieth century, has expanded widely. It has been used and extended from many different theoretical and experimental perspectives. New and unexpected features have been uncovered from the BKT theory. Since its inception, apart from applications in condensed matter physics, the theory has been actively applied in other branches of physics, such as high energy physics, atomic physics, nuclear physics, statistical physics, nonlinear systems, etc. This makes the theory an indispensable topic for all who are involved in physics. An international team of experts, each of whom has left his...

  18. On a phase transition of a Kosterlitz-thouless-type in the d=4, U(1)-lattice gauge theory

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.; Perez, J.F.

    1986-12-01

    The d=4, U(1)-lattice gauge theory with the Villain action may be represented as a locally neutral gas of topological (plaquette) charges which interact via a logarithmically confining potential, is shown. Using this representation a renormalization group analysis to show the existence of a phase transition of the Kosterlitz-Thouless-type was performed. An improved hierarchical version of the model which displays (unlike the usual Migdal-Kadanoff approach) a stable line of gaussian fixed points at low temperatures, which should correspond to the usual deconfining region of these systems is presented. (Author) [pt

  19. Superfluid transition of homogeneous and trapped two-dimensional Bose gases.

    Science.gov (United States)

    Holzmann, Markus; Baym, Gordon; Blaizot, Jean-Paul; Laloë, Franck

    2007-01-30

    Current experiments on atomic gases in highly anisotropic traps present the opportunity to study in detail the low temperature phases of two-dimensional inhomogeneous systems. Although, in an ideal gas, the trapping potential favors Bose-Einstein condensation at finite temperature, interactions tend to destabilize the condensate, leading to a superfluid Kosterlitz-Thouless-Berezinskii phase with a finite superfluid mass density but no long-range order, as in homogeneous fluids. The transition in homogeneous systems is conveniently described in terms of dissociation of topological defects (vortex-antivortex pairs). However, trapped two-dimensional gases are more directly approached by generalizing the microscopic theory of the homogeneous gas. In this paper, we first derive, via a diagrammatic expansion, the scaling structure near the phase transition in a homogeneous system, and then study the effects of a trapping potential in the local density approximation. We find that a weakly interacting trapped gas undergoes a Kosterlitz-Thouless-Berezinskii transition from the normal state at a temperature slightly below the Bose-Einstein transition temperature of the ideal gas. The characteristic finite superfluid mass density of a homogeneous system just below the transition becomes strongly suppressed in a trapped gas.

  20. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  1. Unconventional phase transitions in liquid crystals

    Science.gov (United States)

    Kats, E. I.

    2017-12-01

    According to classical textbooks on thermodynamics or statistical physics, there are only two types of phase transitions: continuous, or second-order, in which the latent heat L is zero, and first-order, in which L ≠ 0. Present-day textbooks and monographs also mention another, stand-alone type—the Berezinskii-Kosterlitz-Thouless transition, which exists only in two dimensions and shares some features with first- and second-order phase transitions. We discuss examples of non-conventional thermodynamic behavior (i.e., which is inconsistent with the theoretical phase transition paradigm now universally accepted). For phase transitions in smectic liquid crystals, mechanisms for nonconventional behavior are proposed and the predictions they imply are examined.

  2. Vortex dynamics in superconducting transition edge sensors

    Science.gov (United States)

    Ezaki, S.; Maehata, K.; Iyomoto, N.; Asano, T.; Shinozaki, B.

    2018-02-01

    The temperature dependence of the electrical resistance (R-T) and the current-voltage (I-V) characteristics has been measured and analyzed in a 40 nm thick Ti thin film, which is used as a transition edge sensor (TES). The analyses of the I-V characteristics with the vortex-antivortex pair dissociation model indicate the possible existence of the Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional superconducting Ti thin films. We investigated the noise due to the vortices' flow in TESs. The values of the current noise spectral density in the TESs were estimated by employing the vortex dynamics caused by the BKT transition in the Ti thin films. The estimated values of the current noise spectral density induced by the vortices' flow were in respectable agreement with the values of excess noise experimentally observed in the TESs with Ti/Au bilayer.

  3. Topological excitations in semiconductor heterostructures

    International Nuclear Information System (INIS)

    Koushik, R.; Mukerjee, Subroto; Ghosh, Arindam; Baenninger, Matthias; Narayan, Vijay; Pepper, Michael; Farrer, Ian; Ritchie, David A.

    2013-01-01

    Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements

  4. Ginzburg-Landau equation and vortex liquid phase of Fermi liquid superconductors

    International Nuclear Information System (INIS)

    Ng, T-K; Tse, W-T

    2007-01-01

    In this paper we study the Ginzburg-Landau (GL) equation for Fermi liquid superconductors with strong Landau interactions F 0s and F 1s . We show that Landau interactions renormalize two parameters entering the GL equation, leading to the renormalization of the compressibility and superfluid density. The renormalization of the superfluid density in turn leads to an unconventional (2D) Berezinskii-Kosterlitz-Thouless (BKT) transition and vortex liquid phase. Application of the GL equation to describe underdoped high-T c cuprates is discussed

  5. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    Science.gov (United States)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  6. Long-ranged interactions in thin TiN films at the superconductor-insulator transition?

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk (Russian Federation)

    2015-07-01

    We measured IV-characteristics and magnetoresistance of square TiN-films in the vicinity of the disorder-tuned superconductor-insulator transition (SIT) for different sizes (5 μm to 240 μm). While the films are superconducting at zero magnetic field, at finite fields a SIT occurs. The resistance shows thermally activated behaviour on both sides of the SIT. Deep in the superconducting regime the activation energy grows linear with the sample size as expected for a size-independent critical current density. Closer to the SIT the activation energy becomes clearly size independent. On the insulating side the magnetoresistance maximum and the activation energy both grow logarithmically with sample size which is consistent with a size-limited charge BKT (Berezinskii-Kosterlitz-Thouless) scenario. In order to test for the presence of long-ranged interactions in our films, we investigate the influence of a topgate. It is expected to screen the possible long-ranged interactions as the distance of the film to the gate is much shorter than the electrostatic screening length deduced from the size-dependent activation energy.

  7. Nonlinear sigma models with compact hyperbolic target spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gubser, Steven [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Saleem, Zain H. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); National Center for Physics, Quaid-e-Azam University Campus,Islamabad 4400 (Pakistan); Schoenholz, Samuel S. [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Stokes, James [Department of Physics and Astronomy, University of Pennsylvania,Philadelphia, PA 19104 (United States)

    2016-06-23

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  8. Nonlinear sigma models with compact hyperbolic target spaces

    International Nuclear Information System (INIS)

    Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James

    2016-01-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model V.L. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems, Sov. Phys. JETP 34 (1972) 610. J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [http://inspirehep.net/search?p=find+J+%22J.Phys.,C6,1181%22]. . Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.

  9. XY model with higher-order exchange.

    Science.gov (United States)

    Žukovič, Milan; Kalagov, Georgii

    2017-08-01

    An XY model, generalized by inclusion of up to an infinite number of higher-order pairwise interactions with an exponentially decreasing strength, is studied by spin-wave theory and Monte Carlo simulations. At low temperatures the model displays a quasi-long-range-order phase characterized by an algebraically decaying correlation function with the exponent η=T/[2πJ(p,α)], nonlinearly dependent on the parameters p and α that control the number of the higher-order terms and the decay rate of their intensity, respectively. At higher temperatures the system shows a crossover from the continuous Berezinskii-Kosterlitz-Thouless to the first-order transition for the parameter values corresponding to a highly nonlinear shape of the potential well. The role of topological excitations (vortices) in changing the nature of the transition is discussed.

  10. Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.

    Science.gov (United States)

    Martin, Lee; Lopez, Jordan R; Akutsu, Hiroki; Nakazawa, Yasuhiro; Imajo, Shusaku

    2017-11-20

    A new molecular superconductor, β″-(BEDT-TTF) 2 [(H 2 O)(NH 4 ) 2 Cr(C 2 O 4 ) 3 ]·18-crown-6, has been synthesized from the organic donor molecule BEDT-TTF with the anion Cr(C 2 O 4 ) 3 3- . The crystal structure consists of conducting organic layers of BEDT-TTF molecules which adopt the β″ packing motif (layer A), layers of NH 4 + and Λ-Cr(C 2 O 4 ) 3 3- (layer B), layers of (H 2 O)(NH 4 )18-crown-6 (layer C), and layers of NH 4 + and Δ-Cr(C 2 O 4 ) 3 3- (layer D) which produce a superstructure with a repeating pattern of ABCDABCDA. As a result of this packing arrangement, this is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is present (β″). Superconducting critical temperatures at ambient pressure observed by electrical transport and magnetic measurements are 4.0-4.9 and 2.5 K, respectively. The strong 2D nature of this system, the broad transition to T zero at 1.8K, and the transition of α of V ∝ I α from 1 to 3 on I-V curves strongly suggest that the superconducting transition is very close to a Kosterlitz-Thouless transition. The magnetic field dependence of the superconducting critical temperature parallel to the conducting plane gives an upper critical field μ 0 H c2∥ > 8 T, which is over the calculated Pauli-Clogston limit for this material.

  11. Renormalization group study of the melting of a two-dimensional system of collapsing hard disks

    Science.gov (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.

    2017-06-01

    We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.

  12. Influence of vacancies on the melting transition of hard disks in two dimensions

    NARCIS (Netherlands)

    Bates, M.A.; Frenkel, D.

    1999-01-01

    We present the results of molecular dynamics simulations of two-dimensional (2D) hard disk systems in the vicinity of melting. The simulations are used to calculate the elastic constants, which can be used to estimate the location of the Kosterlitz-Thouless dislocation unbinding transition.

  13. Superfluidity of a dipolar Fermi gas in 2D optical lattices bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Guardian, A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)

    2016-12-15

    Ultracold Fermi molecules lying in 2D square optical lattices bilayers with its dipole moment perpendicularly aligned to the layers, having interlayer finite range s-wave interactions, are shown to form superfluid phases, both, in the Bardeen, Cooper and Schrieffer (BCS) regime of Cooper pairs, and in the condensate regime of bound dimeric molecules. We demonstrate this result using a functional integral scheme within the Ginzburg-Landau theory. For the deep Berezinskii-Kosterlitz-Thouless (BKT) phase transition, we predict critical temperatures around 5 nK and 20 nK for {sup 23}Na{sup 40}K and OH molecules, which are within reach of current experiments [J. W. Park, S. Will and M. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)]. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Superconducting properties of clustered PbBi films

    International Nuclear Information System (INIS)

    Lobb, C.J.; Tinkham, M.; Klapwijk, T.M.; Smith, A.D.; Harvard Univ., Cambridge, MA

    1981-01-01

    Superconducting films with high resistance/square have been widely studied as a model of the Kosterlitz-Thouless transition. We show that the behavior of high R clean films near the thickness at which electrical conduction begins is dominated by a few paths across the film and thus should not be interpreted as a Kosterlitz-Thouless transition. Instead, this behavior is consistent with a simple percolation model for the connectivity fluctuations across the film. (orig.)

  15. Comparison of renormalization group schemes for sine-Gordon-type models

    International Nuclear Information System (INIS)

    Nandori, I.; Nagy, S.; Sailer, K.; Trombettoni, A.

    2009-01-01

    The scheme dependence of the renormalization group (RG) flow has been investigated in the local potential approximation for two-dimensional periodic, sine-Gordon type field-theoretic models discussing the applicability of various functional RG methods in detail. It was shown that scheme-independent determination of such physical parameters is possible as the critical frequency (temperature) at which Kosterlitz-Thouless-Berezinskii type phase transition takes place in the sine-Gordon and the layered sine-Gordon models, and the critical ratio characterizing the Ising-type phase transition of the massive sine-Gordon model. For the latter case, the Maxwell construction represents a strong constraint on the RG flow, which results in a scheme-independent infrared value for the critical ratio. For the massive sine-Gordon model also the shrinking of the domain of the phase with spontaneously broken periodicity is shown to take place due to the quantum fluctuations.

  16. Conformality lost

    International Nuclear Information System (INIS)

    Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.

    2009-01-01

    We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.

  17. Resistive transition in two-dimensional array of proximity-coupled superconducting weak links

    International Nuclear Information System (INIS)

    Gao Peng; Yu Zheng; Wei Wang; Yao Xi-xian

    1988-01-01

    The Kosterlitz Thouless transition in two-dimensional arrays of proximity-coupled superconducting weak links has been studied in this paper. The samples were prepared by application of the vacuum-evaporation/photoengraving/chemical-etching technique. The experimental results of measurements on some samples of array film showed the existence of the K-T transition in these samples and were consistent with the theory of Lobb, Abraham, and Tinkham

  18. Fluctuation mechanisms in superconductors nanowire single-photon counters, enabled by effective top-down manufacturing

    CERN Document Server

    Bartolf, Holger

    2016-01-01

    Holger Bartolf discusses state-of-the-art detection concepts based on superconducting nanotechnology as well as sophisticated analytical formulæ that model dissipative fluctuation-phenomena in superconducting nanowire single-photon detectors. Such knowledge is desirable for the development of advanced devices which are designed to possess an intrinsic robustness against vortex-fluctuations and it provides the perspective for honorable fundamental science in condensed matter physics. Especially the nanowire detector allows for ultra-low noise detection of signals with single-photon sensitivity and GHz repetition rates. Such devices have a huge potential for future technological impact and might enable unique applications (e.g. high rate interplanetary deep-space data links from Mars to Earth). Contents Superconducting Single-Photon Detectors Nanotechnological Manufacturing; Scale: 10 Nanometer Berezinskii-Kosterlitz Thouless (BKT) Transition, Edge-Barrier, Phase Slips Target Groups Researchers and students of...

  19. On the theory of point vortices in two-dimensional Bose liquids

    International Nuclear Information System (INIS)

    Speliotopoulos, A.D.

    1991-01-01

    The physics and structure of the Kosterlitz-Thouless phase transition, as it is applied to superfluidity in two dimensions, will be studied by looking at the origins and properties of point vortices in a Bose Liquid. A lagrangian for the two-dimensional vortex gas is derived from a general microscopic lagrangian for 4 He atoms on an arbitrary compact Riemann Surface without boundary. In the contrast density limit the vortex hamiltonian obtained from this lagrangian is found to be the same as the Kosterlitz and Thouless coulombic interaction hamiltonian. The dynamics and symmetries of the vortex gas on compact Riemann Surfaces are analyzed using lagrangian dynamics and Dirac's theory of constraints is used to formulate the hamiltonian dynamics for the system. The superfluid phase transition of the general vortex gas, in which the circulations may be any non-zero integer, is studied. When the net circulation of the system is not zero the absence of a superfluid phase is shown. When the net circulation of the vortices vanishes, presence of off-diagonal long range order is demonstrated and the existence of an order parameter is proposed. The transition temperature for general vortex gas is shown to be the Kosterlitz-Thouless temperature. An upper bound for the average vortex number density is established for the general vortex gas and an exact expression is derived for the Kosterlitz-Thouless ensemble

  20. Topological order and thermal equilibrium in polariton condensates

    Science.gov (United States)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; de Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N.; Gigli, Giuseppe; Laussy, Fabrice P.; Szymańska, Marzena H.; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  1. Topological order and thermal equilibrium in polariton condensates.

    Science.gov (United States)

    Caputo, Davide; Ballarini, Dario; Dagvadorj, Galbadrakh; Sánchez Muñoz, Carlos; De Giorgi, Milena; Dominici, Lorenzo; West, Kenneth; Pfeiffer, Loren N; Gigli, Giuseppe; Laussy, Fabrice P; Szymańska, Marzena H; Sanvitto, Daniele

    2018-02-01

    The Berezinskii-Kosterlitz-Thouless phase transition from a disordered to a quasi-ordered state, mediated by the proliferation of topological defects in two dimensions, governs seemingly remote physical systems ranging from liquid helium, ultracold atoms and superconducting thin films to ensembles of spins. Here we observe such a transition in a short-lived gas of exciton-polaritons, bosonic light-matter particles in semiconductor microcavities. The observed quasi-ordered phase, characteristic for an equilibrium two-dimensional bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. This is made possible thanks to long polariton lifetimes in high-quality samples and in a reservoir-free region. Our results show that the joint measurement of coherence both in space and time is required to characterize driven-dissipative phase transitions and enable the investigation of topological ordering in open systems.

  2. Screening, Aharonov - Bohm effect, and linking number in spin systems

    International Nuclear Information System (INIS)

    Borisenko, O.; Petrov, K.; Faber, M.

    2000-01-01

    Screening mechanisms and related effects are studied in a variety of spin systems coupled to an external magnetic field. We use a special order parameter which can distinguish between screening due to the kinetic energy of spin excitations and screening due to the magnetic field. The action of this order parameter is based on an analog of the Aharonov - Bohm (AB) effect. The order parameter may test the realization of discrete symmetries embedded into the group symmetry of the theory via probing a nontrivial discrete charge. As simple examples, we study the Gaussian and Ising models. For the latter, we performed also Monte-Carlo simulations for a constant magnetic field. We then apply our results to spin systems with abelian and nonabelian global symmetries in two dimensions and argue that the order parameter proposed could serve as a tool to detect the Berezinskii - Kosterlitz - Thouless (BKT) phase transition

  3. Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime

    Science.gov (United States)

    Ota, Miki; Stringari, Sandro

    2018-03-01

    Using Landau's theory of two-fluid hydrodynamics, we investigate first and second sounds propagating in a two-dimensional (2D) Bose gas. We study the temperature and interaction dependence of both sound modes and show that their behavior exhibits a deep qualitative change as the gas evolves from the weakly interacting to the strongly interacting regime. Special emphasis is placed on the jump of both sounds at the Berezinskii-Kosterlitz-Thouless transition, caused by the discontinuity of the superfluid density. We find that the excitation of second sound through a density perturbation becomes weaker and weaker as the interaction strength increases as a consequence of the decrease in the thermal expansion coefficient. Our results could be relevant for future experiments on the propagation of sound on the Bose-Einstein condensate (BEC) side of the BCS-BEC crossover of a 2D superfluid Fermi gas.

  4. Integral equation and simulation studies of a planar nematogenic liquid in crossed external fields

    International Nuclear Information System (INIS)

    Lado, F; Lomba, E; MartIn, C; Almarza, N G

    2005-01-01

    We study a fluid of nematogenic molecules with centres of mass constrained to lie in a plane but with axes free to rotate in any direction. An external disorienting field perpendicular to the plane along with a second orienting field in the plane induce an in-plane order-disorder transition. We analyse the behaviour of this simple biaxial model using a well-established generalization of molecular integral equation methods built upon specially tailored basis functions that maintain orthogonality in the presence of anisotropy. Computer simulation and integral equation calculations predict an isotropic-nematic transition at low temperatures in zero field and an in-plane transition at somewhat higher temperatures in the presence of the disorienting field. The oriented states obtained in the presence of both fields can subsequently be used as input to uncover in detail first the transition in the absence of the in-plane orienting field and finally the spontaneous transition in the absence of any field. According to the simulation, the transition apparently belongs to the Berezinskii-Kosterlitz-Thouless defect-mediated type, whereas the theory reproduces a weak first-order transition

  5. Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion

    Science.gov (United States)

    Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori

    2018-05-01

    We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.

  6. Absence of vortex condensation in a two dimensional fermionic XY model

    International Nuclear Information System (INIS)

    Cecile, D. J.; Chandrasekharan, Shailesh

    2008-01-01

    Motivated by a puzzle in the study of two-dimensional lattice quantum electrodynamics with staggered fermions, we construct a two-dimensional fermionic model with a global U(1) symmetry. Our model can be mapped into a model of closed packed dimers and plaquettes. Although the model has the same symmetries as the XY model, we show numerically that the model lacks the well-known Kosterlitz-Thouless phase transition. The model is always in the gapless phase showing the absence of a phase with vortex condensation. In other words the low energy physics is described by a noncompact U(1) field theory. We show that by introducing an even number of layers one can introduce vortex condensation within the model and thus also induce a Kosterlitz-Thouless transition.

  7. Continuous stochastic approach to birth and death processes and co-operative behaviour of systems far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R.; Lutovinov, V.S.

    1986-09-11

    The continuous stochastic formalism for the description of systems with birth and death processes randomly distributed in space is developed with the use of local birth and death operators and local generalization of the corresponding Chapman-Kolmogorov equation. The functional stochastic equation for the evolution of the probability functional is derived and its modifications for evolution of the characteristic functional and the first passage time problem are given. The corresponding evolution equations for equal-time correlators are also derived. The results are generalized then on the exothermic and endothermic chemical reactions. As examples of the particular applications of the results the small fluctuations near stable equilibrium state and fluctuations in mono-molecular reactions, Lotka-Volterra model, Schloegl reaction and brusselator are considered. It is shown that the two-dimensional Lotka-Volterra model may exhibit synergetic phase transition analogous to the topological transition of the Kosterlitz-Thouless-Berezinskii type. At the end of the paper some general consequences from stochastic evolution of the birth and death processes are discussed and the arguments on their importance in evolution of populations, cellular dynamics and in applications to various chemical and biological problems are presented.

  8. Nonlinear effects in low-dimensional magnetism: Solitons and vortices

    International Nuclear Information System (INIS)

    Bishop, A.R.; Kawabata, C.; Mertens, F.G.; Wysin, G.M.

    1987-07-01

    The report outlines recent results on the dynamics of easy-plane classical ferromagnetic spin in two spatial dimensions emphasising possible signatures of unbound vortices above the Kosterlitz-Thouless topological phase transition. 18 refs, 1 fig

  9. Emergent Criticality and Ricci Flow in a 2D Frustrated Heisenberg Model

    Science.gov (United States)

    Orth, Peter P.

    2014-03-01

    In most systems that exhibit order at low temperatures, the order occurs in the elementary degrees of freedom such as spin or charge. Prominent examples are magnetic or superconducting states of matter. In contrast, emergent order describes the phenomenon where composite objects exhibit longer range correlations. Such emergent order has been suspected to occur in a range of correlated materials. One specific example are spin systems with competing interactions, where long-range discrete order in the relative orientation of spins may occur. Interestingly, this order parameter may induce other phase transitions as is the case for the nematic transition in the iron pnictides. In this talk, we introduce and discuss a system with emergent Z6 symmetry, a two-dimensional frustrated Heisenberg antiferromagnet on the windmill lattice consisting of interpenetrating honeycomb and triangular lattices. The multiple spin stiffnesses can be captured in terms of a four-dimensional metric tensor, and the renormalization group flow of the stiffnesses is described by the Ricci flow of the metric tensor. The key result is a decoupling of an emergent collective degree of freedom given by the relative phase of spins on different sublattices. In particular, our results reveal a sequence of two Berezinskii-Kosterlitz-Thouless phase transitions that bracket a critical phase.

  10. Charge ordering in two-dimensional ionic liquids

    Science.gov (United States)

    Perera, Aurélien; Urbic, Tomaz

    2018-04-01

    The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.

  11. Vortices on the string and superstring world sheets

    International Nuclear Information System (INIS)

    Abrikosov, A.A.; Kogan, Ya.I.

    1989-01-01

    The world-sheet dynamics of the first quantized string propagating in non-simply connected space is considered. Presence of the vortices on the world sheet lead to Berezinsky-Kosterlitz-Thouless(BKT) phase transition. Bosonic and superstring cases are discussed. 20 refs.; 2 figs

  12. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks.

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L; Carr, Lincoln D

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z_{2}, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  13. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    Science.gov (United States)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  14. Fulltext PDF

    Indian Academy of Sciences (India)

    Physics. “for theoretical discoveries of topological phase transitions and topological phases of matter” to. David J Thouless, University of Washington, Seattle, WA, USA. F Duncan M Haldane, Princeton University, Princeton, NJ, USA. J Michael Kosterlitz, Brown University, Providence, RI, USA. Chemistry. “for the design and ...

  15. Topological phase transition in the two-dimensional anisotropic Heisenberg model: A study using the Replica Exchange Wang-Landau sampling

    Science.gov (United States)

    Figueiredo, T. P.; Rocha, J. C. S.; Costa, B. V.

    2017-12-01

    Although the topological Berezinskii-Kosterlitz-Thouless transition was for the first time described by 40 years ago, it is still a matter of discussion. It has been used to explain several experiments in the most diverse physical systems. In contrast with the ordinary continuous phase transitions the BKT-transition does not break any symmetry. However, in some contexts it can easily be confused with other continuous transitions, in general due to an insufficient data analysis. The two-dimensional XY (or sometimes called planar rotator) spin model is the fruit fly model describing the BKT transition. As demonstrated by Bramwell and Holdsworth (1993) the finite-size effects are more important in two-dimensions than in others due to the logarithmic system size dependence of the properties of the system. Closely related is the anisotropic two dimensional Heisenberg model (AH). Although they have the same Hamiltonian the spin variable in the former has only two degrees of freedom while the AH has three. Many works treat the AH model as undergoing a transition in the same universality class as the XY model. However, its characterization as being in the BKT class of universality deserve some investigation. This paper has two goals. First, we describe an analytical evidence showing that the AH model is in the BKT class of universality. Second, we make an extensive simulation, using the numerical Replica Exchange Wang-Landau method that corroborate our analytical calculations. From our simulation we obtain the BKT transition temperature as TBKT = 0 . 6980(10) by monitoring the susceptibility, the two point correlation function and the helicity modulus. We discuss the misuse of the fourth order Binder's cumulant to locate the transition temperature. The specific heat is shown to have a non-critical behavior as expected in the BKT transition. An analysis of the two point correlation function at low temperature, C(r) ∝r - η(T), shows that the exponent, η, is consistent

  16. Finite-size scaling method for the Berezinskii–Kosterlitz–Thouless transition

    International Nuclear Information System (INIS)

    Hsieh, Yun-Da; Kao, Ying-Jer; Sandvik, Anders W

    2013-01-01

    We test an improved finite-size scaling method for reliably extracting the critical temperature T BKT of a Berezinskii–Kosterlitz–Thouless (BKT) transition. Using known single-parameter logarithmic corrections to the spin stiffness ρ s at T BKT in combination with the Kosterlitz–Nelson relation between the transition temperature and the stiffness, ρ s (T BKT ) = 2T BKT /π, we define a size-dependent transition temperature T BKT (L 1 ,L 2 ) based on a pair of system sizes L 1 ,L 2 , e.g., L 2 = 2L 1 . We use Monte Carlo data for the standard two-dimensional classical XY model to demonstrate that this quantity is well behaved and can be reliably extrapolated to the thermodynamic limit using the next expected logarithmic correction beyond the ones included in defining T BKT (L 1 ,L 2 ). For the Monte Carlo calculations we use GPU (graphical processing unit) computing to obtain high-precision data for L up to 512. We find that the sub-leading logarithmic corrections have significant effects on the extrapolation. Our result T BKT = 0.8935(1) is several error bars above the previously best estimates of the transition temperature, T BKT ≈ 0.8929. If only the leading log-correction is used, the result is, however, consistent with the lower value, suggesting that previous works have underestimated T BKT because of the neglect of sub-leading logarithms. Our method is easy to implement in practice and should be applicable to generic BKT transitions. (paper)

  17. Holographic entanglement entropy in two-order insulator/superconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan, E-mail: yanpengphy@163.com; Liu, Guohua

    2017-04-10

    We study holographic superconductor model with two orders in the five dimensional AdS soliton background away from the probe limit. We disclose properties of phase transitions mostly from the holographic topological entanglement entropy approach. Our results show that the entanglement entropy is useful in investigating transitions in this general model and in particular, there is a new type of first order phase transition in the insulator/superconductor system. We also give some qualitative understanding and obtain the analytical condition for this first order phase transition to occur. As a summary, we draw the complete phase diagram representing effects of the scalar charge on phase transitions.

  18. Thouless energy as a unifying concept for Josephson junctions tuned through the Mott metal-insulator transition

    Science.gov (United States)

    Tahvildar-Zadeh, A. N.; Freericks, J. K.; Nikolić, B. K.

    2006-05-01

    The Thouless energy was introduced in the 1970s as a semiclassical energy for electrons diffusing through a finite-sized conductor. It turns out to be an important quantum-mechanical energy scale for many systems ranging from disordered metals to quantum chaos to quantum chromodynamics. In particular, it has been quite successful in describing the properties of Josephson junctions when the barrier is a diffusive normal-state metal. The Thouless energy concept can be generalized to insulating barriers by extracting an energy scale from the two-probe Kubo conductance of a strongly correlated electron system (metallic or insulating) via a generalized definition of the quantum-mechanical level spacing to many-body systems. This energy scale is known to determine the crossover from tunneling to Ohmic (thermally activated) transport in normal tunnel junctions. Here we use it to illustrate how the quasiclassical picture of transport in Josephson junctions is modified as the strongly correlated barrier passes through the Mott transition. Surprisingly, we find the quasiclassical form holds well beyond its putative realm of validity.

  19. Ordering phenomena in a heterostructure of frustrated and unfrustrated triangular-lattice Ising layers

    Science.gov (United States)

    Žukovič, Milan; Tomita, Yusuke; Kamiya, Y.

    2017-07-01

    We study critical and magnetic properties of a bilayer Ising system consisting of two triangular planes A and B, with the antiferromagnetic (AF) coupling JA and the ferromagnetic (FM) one JB for the respective layers, which are coupled by the interlayer interaction JAB by using Monte Carlo simulations. When JA and JB are of the same order, the unfrustrated FM plane orders first at a high temperature Tc 1˜JB . The spontaneous FM order then exerts influence on the other frustrated AF plane as an effective magnetic field, which subsequently induces a ferrimagnetic order in this plane at low temperatures below Tc 2. When short-range order is developed in the AF plane while the influence of the FM plane is still small, there appears a preemptive Berezinskii-Kosterlitz-Thouless-type pseudocritical crossover regime just above the ferrimagnetic phase transition point, where the short-distance behavior up to a rather large length scale exponentially diverging in ∝JA/T is controlled by a line of Gaussian fixed points at T =0 . In the crossover region, a continuous variation in the effective critical exponent 4/9 ≲ηeff≲1/2 is observed. The phase diagram by changing the ratio JA/JB is also investigated.

  20. Holographic entanglement entropy in superconductor phase transition with dark matter sector

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2015-11-01

    Full Text Available In this paper, we investigate the holographic phase transition with dark matter sector in the AdS black hole background away from the probe limit. We discuss the properties of phases mostly from the holographic topological entanglement entropy of the system. We find the entanglement entropy is a good probe to the critical temperature and the order of the phase transition in the general model. The behaviors of entanglement entropy at large strip size suggest that the area law still holds when including dark matter sector. We also conclude that the holographic topological entanglement entropy is useful in detecting the stability of the phase transitions. Furthermore, we derive the complete diagram of the effects of coupled parameters on the critical temperature through the entanglement entropy and analytical methods.

  1. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    Science.gov (United States)

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  2. Holographic metal-insulator transition in higher derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Zhou, Zhenhua, E-mail: zhouzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-10

    We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  3. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  4. Tuning across Universalities with a Driven Open Condensate

    Directory of Open Access Journals (Sweden)

    A. Zamora

    2017-10-01

    Full Text Available Driven-dissipative systems in two dimensions can differ substantially from their equilibrium counterparts. In particular, a dramatic loss of off-diagonal algebraic order and superfluidity has been predicted to occur because of the interplay between coherent dynamics and external drive and dissipation in the thermodynamic limit. We show here that the order adopted by the system can be substantially altered by a simple, experimentally viable tuning of the driving process. More precisely, by considering the long-wavelength phase dynamics of a polariton quantum fluid in the optical parametric oscillator regime, we demonstrate that simply changing the strength of the pumping mechanism in an appropriate parameter range can substantially alter the level of effective spatial anisotropy induced by the driving laser and move the system into distinct scaling regimes. These include (i the classic algebraically ordered superfluid below the Berezinskii-Kosterlitz-Thouless (BKT transition, as in equilibrium; (ii the nonequilibrium, long-wavelength-fluctuation-dominated Kardar-Parisi-Zhang (KPZ phase; and the two associated topological-defect-dominated disordered phases caused by proliferation of (iii entropic BKT vortex-antivortex pairs or (iv repelling vortices in the KPZ phase. Furthermore, by analyzing the renormalization group flow in a finite system, we examine the length scales associated with these phases and assess their observability in current experimental conditions.

  5. Vortices and vortex lattices in quantum ferrofluids

    Science.gov (United States)

    Martin, A. M.; Marchant, N. G.; O'Dell, D. H. J.; Parker, N. G.

    2017-03-01

    The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of superfluids is that they are constrained to rotate through vortices with quantized circulation. In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing magnetostriction and instabilities, and also affect the structural properties of vortices and vortex lattices. Here we give a review of the theory of vortices in dipolar Bose-Einstein condensates, exploring the interplay of magnetism with vorticity and contrasting this with the established behaviour in non-dipolar condensates. We cover single vortex solutions, including structure, energy and stability, vortex pairs, including interactions and dynamics, and also vortex lattices. Our discussion is founded on the mean-field theory provided by the dipolar Gross-Pitaevskii equation, ranging from analytic treatments based on the Thomas-Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for generating vortices in dipolar condensates are discussed, with particular attention paid to rotating condensates, where surface instabilities drive the nucleation of vortices, and lead to the emergence of rich and varied vortex lattice structures. We also present an outlook, including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal systems and the Berezinskii-Kosterlitz-Thouless transition.

  6. Exact results for the O( N ) model with quenched disorder

    Science.gov (United States)

    Delfino, Gesualdo; Lamsen, Noel

    2018-04-01

    We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.

  7. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    Science.gov (United States)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  8. Numerical insights into the phase diagram of p-atic membranes with spherical topology

    DEFF Research Database (Denmark)

    Hansen, Allan Grønhøj; Ramakrishnan, N.; Sunil Kumar, P. B.

    2017-01-01

    Abstract.: The properties of self-avoiding p-atic membranes restricted to spherical topology have been studied by Monte Carlo simulations of a triangulated random surface model. Spherically shaped p-atic membranes undergo a Kosterlitz-Thouless transition as expected with topology induced mutually...... of disclinations. We confirm the proposed buckling of disclinations in the p-atic ordered phase, while the expected associated disordering (crumpling) transition at low bending rigidities is absent in the phase diagram. Graphical abstract: [Figure not available: see fulltext.]...

  9. High Precision Renormalization Group Study of the Roughening Transition

    CERN Document Server

    Hasenbusch, M; Pinn, K

    1994-01-01

    We confirm the Kosterlitz-Thouless scenario of the roughening transition for three different Solid-On-Solid models: the Discrete Gaussian model, the Absolute-Value-Solid-On-Solid model and the dual transform of the XY model with standard (cosine) action. The method is based on a matching of the renormalization group flow of the candidate models with the flow of a bona fide KT model, the exactly solvable BCSOS model. The Monte Carlo simulations are performed using efficient cluster algorithms. We obtain high precision estimates for the critical couplings and other non-universal quantities. For the XY model with cosine action our critical coupling estimate is $\\beta_R^{XY}=1.1197(5)$. For the roughening coupling of the Discrete Gaussian and the Absolute-Value-Solid-On-Solid model we find $K_R^{DG}=0.6645(6)$ and $K_R^{ASOS}=0.8061(3)$, respectively.

  10. The Kosterlitz-thouless phase transition in two-dimensional hierarchical Coulomb gases

    International Nuclear Information System (INIS)

    Marchetti, D.H.U.; Perez, J.F.

    1988-11-01

    A hierarchical version of two-dimensional lattice Coulomb gases is investigated. For β>β c = 8Π there is a locally stable line of fixed points for the Renormalization Group ('block charges') transformations. For β>β - c (β c ≤β - c ≤3Π/2 β c ), these fixed points are globally stable. As a consequence, there is no screening of external charges for any activity if β > β - c . At β c a supercritical bifurcation takes place and the behavior of the model for β c as to show a weak form of screening, is investigated. (author) [pt

  11. Possibility of the vortex-antivortex transition temperature of a thin-film superconductor being renormalized by disorder

    International Nuclear Information System (INIS)

    Hebard, A.F.; Kotliar, G.

    1989-01-01

    The universal relation between the Kosterlitz-Thouless transition temperature T/sub c/ and the superfluid sheet density of thin-film superconductors with mean-field transition temperature T/sub c/ 0 results in a monotonically decreasing dependence of the ratio T/sub c//T/sub c0/ on the normal-state sheet resistance R/sub n/. Ambiguity in the experimental definition of R/sub n/ in highly disordered thin-film superconductors is addressed by reexamining previously published data on amorphous composite In/InO/sub x/ films. Arguments are presented in favor of using the zero-temperature value of R/sub n/, a quantity obtained by extrapolation. The dependence of T/sub c//T/sub c0/ on R/sub n/ that results from such a choice is in agreement with theory for dirty superconductors and thus suggests that additional corrections to T/sub c/ in the presence of extreme disorder are not required

  12. P-wave holographic superconductor/insulator phase transitions affected by dark matter sector

    International Nuclear Information System (INIS)

    Rogatko, Marek; Wysokinski, Karol I.

    2016-01-01

    The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ_D. For ρ_D>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ_c for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ_D and for μ_D=0 is a decreasing function of α.

  13. Effect of the Temperature, External Magnetic Field, and Transport Current on Electrical Properties, Vortex Structure Evolution Processes, and Phase Transitions in Subsystems of Superconducting Grains and "Weak Links" of Granular Two-Level High-Temperature Superconductor YBa2Cu3O7-δ

    Science.gov (United States)

    Derevyanko, V. V.; Sukhareva, T. V.; Finkel', V. A.

    2018-03-01

    The temperature dependences of the resistivity of granular high-temperature superconductor YBa2Cu3O7-δ ρ( T) are measured at various transverse external magnetic fields 0 ≤ H ext ≤ 100 Oe in the temperature range from the resistivity onset temperature T ρ = 0 to the superconducting transition critical temperature T c at the transport current density from 50 to 2000 mA/cm2. The effect of the external magnetic field and transport current density on the kinetics of phase transitions in both subsystems of granular two-level HTSC ( T = T c2J, T c1g, T c ) is determined. The feasibility of the topological phase transition, i.e., the Berezinsky-Kosterlitz-Thouless transition, in the Josephson medium at T c2J < T BKT < T c1g "in transport current" is established, and its feasibility conditions are studied.

  14. Kosterlitz-Thouless transitions in simple spin-models with strongly varying vortex densities

    NARCIS (Netherlands)

    Himbergen, J.E.J.M. van

    1985-01-01

    A generalized XY-model, consisting of a family of nearest neighbour potentials of varying shape, for classical planar spins on a two-dimensional square lattice is analysed by a combination of Migdal-Kadanoff real-space renormalization and Monte Carlo simulations on a sequence of finite lattices of

  15. On holographic disorder-driven metal-insulator transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2017-01-10

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with a new direct coupling between the gauge field and the metric that is allowed when gravity is massive. We show that the effect of this coupling is to decrease the DC electrical conductivity generically. This gives a nontrivial check that holographic massive gravity can be consistently interpreted as disorder from the CFT perspective. The suppression of the conductivity happens to such an extent that it does not obey any lower bound and it can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  16. On holographic disorder-driven metal-insulator transitions

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2017-01-01

    We give a minimal holographic model of a disorder-driven metal-insulator transition. It consists in a CFT with a charge sector and a translation-breaking sector that interact in the most generic way allowed by the symmetries and by dynamical consistency. In the gravity dual, it reduces to a Massive Gravity-Maxwell model with a new direct coupling between the gauge field and the metric that is allowed when gravity is massive. We show that the effect of this coupling is to decrease the DC electrical conductivity generically. This gives a nontrivial check that holographic massive gravity can be consistently interpreted as disorder from the CFT perspective. The suppression of the conductivity happens to such an extent that it does not obey any lower bound and it can be very small in the insulating phase. In some cases, the large disorder limit produces gradient instabilities that hint at the formation of modulated phases.

  17. Superconductivity of the two-dimensional Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2001-01-01

    Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)

  18. Resistive transition of superconducting-wire networks. Influence of pinning and fluctuations

    International Nuclear Information System (INIS)

    Giroud, M.; Buisson, O.; Wang, Y.Y.; Pannetier, B.; Mailly, D.

    1992-01-01

    The authors studied the resistive transition of several 2-D superconducting-wire networks of various coupling strengths, which they characterize in terms of the Kosterlitz-Thouless transition temperature and the ratio ξ/a of the coherence length to the array period. In the extreme strong-coupling limit where the mesh size is of the order of the zero-temperature coherence length, the superconducting behavior is well described by the mean-field properties of the superconducting wave function. Extending to 2-D array, the 1-D phase-slippage model explains the dissipative regime observed above the Ginzburg-Landau depairing critical current. On the other hand, when the coupling is weak, phase fluctuations below the Ginzburg-Landau transition and vortex depinning dominate the resistive behavior. An activated dissipation is observed even below the depairing critical current. Results obtained in this regime for critical temperature, magnetoresistance, or critical current versus temperature, and magnetic field are shown; their periodic oscillations are discussed in terms of depinning of vortices on the array. A simple periodic pinning potential for a vortex in a wire network is calculated, and compared with the case of pinning in Josephson junction arrays. It is shown that this model explains qualitatively the experimental results observed for small ξ/a

  19. Equilibrium vortex motion in two- and three-dimensional superconductors studied with a dc SQUID

    International Nuclear Information System (INIS)

    Shaw, T.J.; Lawrence Berkeley National Lab., CA

    1997-10-01

    The equilibrium motion of vortices in two- and three-dimensional superconductors has been studied with a dc Superconducting QUantum Interference Device (SQUID). This technique has the advantage of probing the system in a non-invasive manner as well as providing dynamic information over many decades in frequency. Through measurements of the spectral density of magnetic flux noise, S Φ (ω), as a function of temperature and applied magnetic field, the effects of proton and heavy ion irradiation on flux noise in crystals of YBa 2 Cu 3 O 7-δ have been measured and compared with the effects on the critical current, J c . Both proton and heavy ion irradiation proved effective at reducing S Φ (ω), with proton irradiation having a larger effect. Measurement of S Φ (ω) due to the equilibrium Kosterlitz-Thouless-Berezinskii transition in two-dimensional Josephson Junction Arrays (JJAs) was studied as a function of temperature for three different arrays and using three different sensors. S Φ is shown to obey dynamic scaling over as many as five decades in frequency, and estimates are made for the dynamic critical exponent z. An analytic theory for the high- and low-frequency behavior of S Φ (ω) is presented and compared to the measured data, with the result that the low-frequency behavior is well described by the theory but the high-frequency behavior is not. Other theories and numerical simulations are described and compared with the data, but none are completely satisfactory. Lastly, suggestions for necessary further theoretical work and possible future experimental work are suggested

  20. Studies of a general flat space/boson star transition model in a box through a language similar to holographic superconductors

    Science.gov (United States)

    Peng, Yan

    2017-07-01

    We study a general flat space/boson star transition model in quasi-local ensemble through approaches familiar from holographic superconductor theories. We manage to find a parameter ψ 2, which is proved to be useful in disclosing properties of phase transitions. In this work, we explore effects of the scalar mass, scalar charge and Stückelberg mechanism on the critical phase transition points and the order of transitions mainly from behaviors of the parameter ψ 2. We mention that properties of transitions in quasi-local gravity are strikingly similar to those in holographic superconductor models. We also obtain an analytical relation ψ 2 ∝ ( μ - μ c )1/2, which also holds for the condensed scalar operator in the holographic insulator/superconductor system in accordance with mean field theories.

  1. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  2. Anisotropic Defect-Mediated Melting of Two-Dimensional Colloidal Crystals

    Science.gov (United States)

    Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.

    2004-09-01

    The melting transition of anisotropic two-dimensional (2D) crystals is studied in a model system of superparamagnetic colloids. The anisotropy of the induced dipole-dipole interaction is varied by tilting the external magnetic field off the normal to the particle plane. By analyzing the time-dependent Lindemann parameter as well as translational and orientational order we observe a 2D smecticlike phase. The Kosterlitz-Thouless-Halperin-Nelson-Young scenario of isotropic melting is modified: dislocation pairs and dislocations appear with different probabilities depending on their orientation with respect to the in-plane field.

  3. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H2O)2SO4 and Cu(tn)Cl2

    International Nuclear Information System (INIS)

    Baranová, Lucia; Orendáčová, Alžbeta; Čižmár, Erik; Tarasenko, Róbert; Tkáč, Vladimír; Orendáč, Martin; Feher, Alexander

    2016-01-01

    Organo-metallic compounds Cu(en)(H 2 O) 2 SO 4 (en=C 2 H 8 N 2 ) and Cu(tn)Cl 2 (tn=C 3 H 10 N 2 ) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k B ≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H 2 O) 2 SO 4 at T C =0.9 K while hidden in Cu(tn)Cl 2 . A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H 2 O) 2 SO 4 (1) and Cu(tn)Cl 2 (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  4. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  5. Non-equilibrium physics at a holographic chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nick; Kim, Keun-young [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Kavli Institute for Theoretical Physics China, Beijing (China); Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  6. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    Science.gov (United States)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  7. Evidence of hexatic phase formation in two-dimensional Lennard-Jones binary arrays

    International Nuclear Information System (INIS)

    Li, M.; Johnson, W.L.; Goddard, W.A. III

    1996-01-01

    We report evidence of the hexatic phase formation in Lennard-Jones binary substitutional random arrays from isothermal-isobaric molecular-dynamics simulations. The hexatic phase is analogous to those predicted in Kosterlitz-Thouless theory of melting that is characterized by short-range translational order and quasi-long-range orientational order. At the crystal to hexatic phase transition, dislocation pairs are observed to unbind into isolated dislocations. Further disordering of the hexatic phase, however, does not lead to dissociation of dislocations into disclinations. Instead, the dislocations become clustered and form dislocation networks which results in formation of amorphous phases. copyright 1996 The American Physical Society

  8. Second order phase transition in thermodynamic geometry and holographic superconductivity in low-energy stringy black holes

    Science.gov (United States)

    Rizwan, C. L. Ahmed; Vaid, Deepak

    2018-05-01

    We study holographic superconductivity in low-energy stringy Garfinkle-Horowitz-Strominger (GHS) dilaton black hole background. We finds that superconducting properties are much similar to s-wave superconductors. We show that the second-order phase transition indicated from thermodynamic geometry is not different from superconducting phase transition.

  9. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Science.gov (United States)

    Kord Zangeneh, Mahdi; Ong, Yen Chin; Wang, Bin

    2017-08-01

    Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  10. Levitation of atoms by interference and Two-dimensional transport in the presence of disorder

    International Nuclear Information System (INIS)

    Robert De Saint Vincent, M.

    2010-12-01

    This thesis presents two experiments of atomic physics, realized on an ultra-cold sample of Rubidium 87. We tackle the topics of atom interferometry, and of the transport properties in disordered medium. In the first experiment, we demonstrate a technique for suspending atoms against gravity, which could help increase the interrogation time of atom interferometers. The atoms are periodically diffracted on a light standing wave, used as Bragg mirror to reflect the atoms and thus prevent their fall. However, when getting close to the thin grating limit, the matter wave-packet is split into many trajectories that periodically recombine. We show that the interference between these multiple components can be used to cancel the losses towards falling channels. This original interferometer could be an interesting alternative to suspend an inertial sensor or an atom clock in a limited volume, whilst allowing simultaneous measurement of the forces acting on the atoms. The second experiment is devoted to the study of the transport properties in a 2-dimensional (2D) disordered medium. In particular, matter wave interference can prevent the transport - a phenomenon known as Anderson Localization. The atoms are confined between two repulsive sheets of light, and the disorder is generated by a speckle pattern shined onto the cloud. We observe a diffusive expansion in these potentials, and extract diffusion coefficients in agreement with a numerical simulation. We then explore the dynamic at lower energies, where sub-diffusion, classical trapping under the percolation threshold, and Anderson Localization may be observed. Finally, the study of the interplay between disorder and the Berezinskii-Kosterlitz-Thouless transition in 2D is now within reach. (author)

  11. Monte Carlo studies of two-dimensional random-anisotropy magnets

    Science.gov (United States)

    Denholm, D. R.; Sluckin, T. J.

    1993-07-01

    We have carried out a systematic set of Monte Carlo simulations of the Harris-Plischke-Zuckermann lattice model of random magnetic anisotropy on a two-dimensional square lattice, using the classical Metropolis algorithm. We have considered varying temperature T, external magnetic field H (both in the reproducible and irreproducible limits), time scale of the simulation τ in Monte Carlo steps and anisotropy ratio D/J. In the absence of randomness this model reduces to the XY model in two dimensions, which possesses the familiar Kosterlitz-Thouless low-temperature phase with algebraic but no long-range order. In the presence of random anisotropy we find evidence of a low-temperature phase with some disordered features, which might be identified with a spin-glass phase. The low-temperature Kosterlitz-Thouless phase survives at intermediate temperatures for low randomness, but is no longer present for large D/J. We have also studied the high-H approach to perfect order, for which there are theoretical predictions due to Chudnovsky.

  12. Finite-size scaling in two-dimensional superfluids

    International Nuclear Information System (INIS)

    Schultka, N.; Manousakis, E.

    1994-01-01

    Using the x-y model and a nonlocal updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two-dimensional superfluid on large-size square lattices LxL up to 400x400. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of L values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization-group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson renormalization group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments

  13. Holographic entanglement entropy close to crossover/phase transition in strongly coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shao-Jun, E-mail: sjzhang84@hotmail.com

    2017-03-15

    We investigate the behavior of entanglement entropy in the holographic QCD model proposed by Gubser et al. By choosing suitable parameters of the scalar self-interaction potential, this model can exhibit various types of phase structures: crossover, first order and second order phase transitions. We use entanglement entropy to probe the crossover/phase transition, and find that it drops quickly/suddenly when the temperature approaches the critical point which can be seen as a signal of confinement. Moreover, the critical behavior of the entanglement entropy suggests that we may use it to characterize the corresponding phase structures.

  14. Fingerprints of field-induced Berezinskii–Kosterlitz–Thouless transition in quasi-two-dimensional S=1/2 Heisenberg magnets Cu(en)(H{sub 2}O){sub 2}SO{sub 4} and Cu(tn)Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baranová, Lucia [Civil Engineering Faculty, Department of Applied Mathematics, Technical University of Košice, Vysokoškolská 4 SK-042 00, Košice (Slovakia); Orendáčová, Alžbeta, E-mail: alzbeta.orendacova@upjs.sk [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Čižmár, Erik [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Tarasenko, Róbert; Tkáč, Vladimír [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia); Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5 12116, Prague (Czech Republic); Orendáč, Martin; Feher, Alexander [Center of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9 SK-041 54, Košice (Slovakia)

    2016-04-15

    Organo-metallic compounds Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (en=C{sub 2}H{sub 8}N{sub 2}) and Cu(tn)Cl{sub 2} (tn=C{sub 3}H{sub 10}N{sub 2}) representing S=1/2 quasi-two-dimensional Heisenberg antiferromagnets with an effective intra-layer exchange coupling J/k{sub B}≈3 K, have been examined by specific heat measurements at temperatures down to nominally 50 mK and magnetic fields up to 14 T. A comparative analysis of magnetic specific heat in zero magnetic field revealed nearly identical contribution of short-range magnetic correlations and significant differences were observed at lowest temperatures. A phase transition to long-range order was observed in Cu(en)(H{sub 2}O){sub 2}SO{sub 4} at T{sub C}=0.9 K while hidden in Cu(tn)Cl{sub 2}. A response of both compounds to the application of magnetic field has rather universal features characteristic for a field-induced Berezinskii–Kosterlitz–Thouless transition theoretically predicted for ideal two-dimensional magnets. - Highlights: • Magnetic specific heat of Cu(en)(H{sub 2}O){sub 2}SO{sub 4} (1) and Cu(tn)Cl{sub 2} (2) was analysed. • In zero magnetic field, (1) and (2) behave as quasi-two-dimensional magnets. • We observed universal thermodynamic response of (1) and (2) to applied field. • Features of field-induced Berezinskii–Kosterlitz–Thouless transition were detected.

  15. Modified spin-wave theory with ordering vector optimization: frustrated bosons on the spatially anisotropic triangular lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Meditarranean Technology Park, E-08860 Castelldefels, Barcelona (Spain); Roscilde, Tommaso [Laboratoire de Physique, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69007 Lyon (France); Murg, Valentin; Ignacio Cirac, J; Schmied, Roman, E-mail: Philipp.Hauke@icfo.e [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2010-05-15

    We investigate a system of frustrated hardcore bosons, modeled by an XY antiferromagnet on the spatially anisotropic triangular lattice, using Takahashi's modified spin-wave (MSW) theory. In particular, we implement ordering vector optimization on the ordered reference state of MSW theory, which leads to significant improvement of the theory and accounts for quantum corrections to the classically ordered state. The MSW results at zero temperature compare favorably to exact diagonalization (ED) and projected entangled-pair state (PEPS) calculations. The resulting zero-temperature phase diagram includes a one-dimensional (1D) quasi-ordered phase, a 2D Neel ordered phase and a 2D spiraling ordered phase. Strong indications coming from the ED and PEPS calculations, as well as from the breakdown of MSW theory, suggest that the various ordered or quasi-ordered phases are separated by spin-liquid phases with short-range correlations, in analogy to what has been predicted for the Heisenberg model on the same lattice. Within MSW theory, we also explore the finite-temperature phase diagram. In agreement with the Berezinskii-Kosterlitz-Thouless (BKT) theory, we find that zero-temperature long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition temperature), while zero-temperature quasi-ordered phases become short-range correlated at finite temperature. These results show that, despite its simplicity, MSW theory is very well suited to describing ordered and quasi-ordered phases of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero and finite temperatures. While MSW theory, just as other theoretical methods, cannot describe spin-liquid phases, its breakdown provides a fast and reliable method for singling out Hamiltonians that may feature these intriguing quantum phases. We thus suggest a tool for guiding our search for interesting systems whose properties are necessarily studied with a physical quantum simulator

  16. Adventures in holographic dimer models

    International Nuclear Information System (INIS)

    Kachru, Shamit; Karch, Andreas; Yaida, Sho

    2011-01-01

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  17. Thouless-Valatin rotational moment of inertia from linear response theory

    Science.gov (United States)

    Petrík, Kristian; Kortelainen, Markus

    2018-03-01

    Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.

  18. Holographic (de)confinement transitions in cosmological backgrounds

    International Nuclear Information System (INIS)

    Erdmenger, Johanna; Ghoroku, Kazuo; Meyer, Rene

    2011-01-01

    For type IIB supergravity with a running axio-dilaton, we construct bulk solutions which admit a cosmological background metric of Friedmann-Robertson-Walker type. These solutions include both a dark radiation term in the bulk as well as a four-dimensional (boundary) cosmological constant, while gravity at the boundary remains nondynamical. We holographically calculate the stress-energy tensor, showing that it consists of two contributions: The first one, generated by the dark radiation term, leads to the thermal fluid of N=4 SYM theory, while the second, the conformal anomaly, originates from the boundary cosmological constant. Conservation of the boundary stress-tensor implies that the boundary cosmological constant is time-independent, such that there is no exchange between the two stress-tensor contributions. We then study (de)confinement by evaluating the Wilson loop in these backgrounds. While the dark radiation term favors deconfinement, a negative cosmological constant drives the system into a confined phase. When both contributions are present, we find an oscillating universe with negative cosmological constant which undergoes periodic (de)confinement transitions as the scale of three-space expands and recontracts.

  19. Phases of kinky holographic nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)

    2016-10-17

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  20. Holographic Van der Waals-like phase transition in the Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    He, Song, E-mail: hesong17@gmail.com [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm (Germany); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China)

    2017-02-15

    The Van der Waals-like phase transition is observed in temperature–thermal entropy plane in spherically symmetric charged Gauss–Bonnet–AdS black hole background. In terms of AdS/CFT, the non-local observables such as holographic entanglement entropy, Wilson loop, and two point correlation function of very heavy operators in the field theory dual to spherically symmetric charged Gauss–Bonnet–AdS black hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge parameter or Gauss–Bonnet parameter in such gravity background. Further, with choosing various values of charge or Gauss–Bonnet parameter, the equal area law and the critical exponent of the heat capacity are found to be consistent with phase structures in temperature–thermal entropy plane.

  1. On the theory of twinning plane superconductivity

    International Nuclear Information System (INIS)

    Mishonov, T.M.

    1988-01-01

    The thermodynamic potential of the superconducting layer in the twinning plane (TP) vicinity for the type I superconductors is found. The corrections to the surface tension in powers of the Ginsburg-Landau parameter κ are obtained. The corresponding states law for the supercooling field for the type I twinning plane superconductivity (TPS) is obtained, as well as the critical field law for the type II TPS. A review of experimental and theoretical works on TPS and some similar systems is given. The conditions for the Berezinski-Kosterlitz-Thouless transition for the proximity effect are discussed, as well as the possible mechanisms for the conducting phase transition TPS in Nb and the pinning forces close to the twinning plane. The obtained order parameter distribution can be used for description of the superlattices from normal and superconducting metals as well. 6 figs., 44 refs

  2. Spiky higher genus strings

    International Nuclear Information System (INIS)

    Ambjoern, J.; Bellini, A.; Johnston, D.

    1990-10-01

    It is clear from both the non-perturbative and perturbative approaches to two-dimensional quantum gravity that a new strong coupling regime is setting in at d=1, independent of the genus of the worldsheet being considered. It has been suggested that a Kosterlitz-Thouless (KT) phase transition in the Liouville theory is the cause of this behaviour. However, it has recently been pointed out that the XY model, which displays a KT transition on the plane and the sphere, is always in the strong coupling, disordered phase on a surface of constant negative curvature. A higher genus worldsheet can be represented as a fundamental region on just such a surface, which might seem to suggest that the KT picture predicts a strong coupling region for arbitrary d, contradicting the known results. We resolve the apparent paradox. (orig.)

  3. Analytical study on holographic superfluid in AdS soliton background

    International Nuclear Information System (INIS)

    Lai, Chuyu; Pan, Qiyuan; Jing, Jiliang; Wang, Yongjiu

    2016-01-01

    We analytically study the holographic superfluid phase transition in the AdS soliton background by using the variational method for the Sturm–Liouville eigenvalue problem. By investigating the holographic s-wave and p-wave superfluid models in the probe limit, we observe that the spatial component of the gauge field will hinder the phase transition. Moreover, we note that, different from the AdS black hole spacetime, in the AdS soliton background the holographic superfluid phase transition always belongs to the second order and the critical exponent of the system takes the mean-field value in both s-wave and p-wave models. Our analytical results are found to be in good agreement with the numerical findings.

  4. Fluctuations in two-dimensional six-vertex systems

    International Nuclear Information System (INIS)

    Youngblood, R.W.; Axe, J.D.; McCoy, B.M.

    1979-01-01

    The character of polarization correlations in six-vertex systems is discussed. With the aid of a connection between the 1-d Heisenberg--Ising chain and the six-vertex problem, existing results for the chain correlations are used to obtain information about long-wavelength polarization correlations in six-vertex models. These results are compared with a neutron scattering study of 2-d polarization correlations in the layered compound copper formate tetrahydrate. Because the six-vertex model is equivalent to a particular roughening model, these results also explicitly predict the critical behavior of that roughening model just above its roughening temperature. The results correspond to the predictions of Kosterlitz and Thouless for the phase transition in the 2-d Coulomb gas. 5 figures

  5. Higher-curvature corrections to holographic entanglement with momentum dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Tanhayi, M.R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Vazirian, R. [Islamic Azad University Central Tehran Branch (IAUCTB), Department of Physics, Faculty of Basic Science, Tehran (Iran, Islamic Republic of)

    2018-02-15

    We study the effects of Gauss-Bonnet corrections on some nonlocal probes (entanglement entropy, n-partite information and Wilson loop) in the holographic model with momentum relaxation. Higher-curvature terms as well as scalar fields make in fact nontrivial corrections to the coefficient of the universal term in entanglement entropy. We use holographic methods to study such corrections. Moreover, holographic calculation indicates that mutual and tripartite information undergo a transition beyond which they identically change their values. We find that the behavior of the transition curves depends on the sign of the Gauss-Bonnet coupling λ. The transition for λ > 0 takes place in larger separation of subsystems than that of λ < 0. Finally, we examine the behavior of modified part of the force between external point-like objects as a function of Gauss-Bonnet coupling and its sign. (orig.)

  6. Role of cell deformability in the two-dimensional melting of biological tissues

    Science.gov (United States)

    Li, Yan-Wei; Ciamarra, Massimo Pica

    2018-04-01

    The size and shape of a large variety of polymeric particles, including biological cells, star polymers, dendrimes, and microgels, depend on the applied stresses as the particles are extremely soft. In high-density suspensions these particles deform as stressed by their neighbors, which implies that the interparticle interaction becomes of many-body type. Investigating a two-dimensional model of cell tissue, where the single particle shear modulus is related to the cell adhesion strength, here we show that the particle deformability affects the melting scenario. On increasing the temperature, stiff particles undergo a first-order solid/liquid transition, while soft ones undergo a continuous solid/hexatic transition followed by a discontinuous hexatic/liquid transition. At zero temperature the melting transition driven by the decrease of the adhesion strength occurs through two continuous transitions as in the Kosterlitz, Thouless, Halperin, Nelson, and Young scenario. Thus, there is a range of adhesion strength values where the hexatic phase is stable at zero temperature, which suggests that the intermediate phase of the epithelial-to-mesenchymal transition could be hexatic type.

  7. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  8. Holographic RG flows on curved manifolds and quantum phase transitions

    Science.gov (United States)

    Ghosh, J. K.; Kiritsis, E.; Nitti, F.; Witkowski, L. T.

    2018-05-01

    Holographic RG flows dual to QFTs on maximally symmetric curved manifolds (dS d , AdS d , and S d ) are considered in the framework of Einstein-dilaton gravity in d + 1 dimensions. A general dilaton potential is used and the flows are driven by a scalar relevant operator. The general properties of such flows are analyzed and the UV and IR asymptotics computed. New RG flows can appear at finite curvature which do not have a zero curvature counterpart. The so-called `bouncing' flows, where the β-function has a branch cut at which it changes sign, are found to persist at finite curvature. Novel quantum first-order phase transitions are found, triggered by a variation in the d-dimensional curvature in theories allowing multiple ground states.

  9. Note on the butterfly effect in holographic superconductor models

    International Nuclear Information System (INIS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-01-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  10. Note on the butterfly effect in holographic superconductor models

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2017-05-10

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  11. Third sound measurements of superfluid 4He films on multiwall carbon nanotubes below 1 K

    International Nuclear Information System (INIS)

    Menachekanian, Emin; Abraham, John B S; Chen, Bob; Iaia, Vito; Li, Andrew; Williams, Gary A

    2014-01-01

    Third sound is studied for superfluid films of 4He adsorbed on multiwall carbon nanotubes packed into an annular resonator. The third sound is generated with mechanical oscillation of the cell, and detected with carbon bolometers. A filling curve at temperatures near 250 mK shows oscillations in the third sound velocity, with maxima at the completion of the 4th and 5th atomic layers. Sharp changes in the Q factor of the third sound are found at partial layer fillings. Temperature sweeps at a number of fill points show strong broadening effects on the Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in qualitative agreement with the predictions of Machta and Guyer. At the 4th layer completion there is a sudden reduction of the transition temperature T KT , and then a recovery back to linear variation with temperature, although the slope is considerably smaller than the KT prediction

  12. Note on the butterfly effect in holographic superconductor models

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-05-01

    Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  13. The holographic Weyl semi-metal

    Directory of Open Access Journals (Sweden)

    Karl Landsteiner

    2016-02-01

    Full Text Available We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.

  14. The holographic Weyl semi-metal

    Energy Technology Data Exchange (ETDEWEB)

    Landsteiner, Karl, E-mail: karl.landsteiner@csic.es; Liu, Yan, E-mail: yan.liu@csic.es

    2016-02-10

    We present a holographic model of a Weyl semi-metal. We show the evidences that upon varying a mass parameter the model undergoes a sharp crossover at small temperature from a topologically non-trivial state to a trivial one. The order parameter is the anomalous Hall effect (AHE) and we find that it is very strongly suppressed above a critical value of the mass parameter. This can be taken as a hint for an underlying topological quantum phase transition. We give an interpretation of the results in terms of a holographic RG flow and compare to a weakly coupled field theoretical model. Since there are no fermionic quasiparticle excitations in the strongly coupled holographic model the presence of an anomalous Hall effect cannot be bound to notions of topology in momentum spaces.

  15. Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2015-07-01

    Full Text Available The aim of the present letter is to find the holographic entanglement entropy (HEE in 2D holographic superconductors (HSC. Indeed, it is possible to compute the exact form of this entropy due to an advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression for HEE is obtained. In case the software cannot calculate minimal surface integrals analytically, it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We see that HEE changes linearly with belt angle. It's due to the extensivity of this type of entropy and the emergent of an entropic force. We find that the wider belt angle corresponds to a larger holographic surface. Another remarkable observation is that no “confinement/deconfinement” phase transition point exists in our 2D dual field theory. Furthermore, we observe that the slope of the HEE with respect to the temperature dSdT decreases, thanks to the emergence extra degree of freedom(s in low temperature system. A first order phase transition is detected near the critical point.

  16. Interacting holographic dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.

  17. Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

    Science.gov (United States)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-05-01

    We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

  18. Holographic superconductor in the analytic hairy black hole

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Park, Chanyong

    2011-01-01

    We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstroem-AdS (HRNAdS) black holes. However, this transition unlikely occurs. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

  19. On new proposal for holographic BCFT

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Chong-Sun; Miao, Rong-Xin [Department of Physics, National Tsing-Hua University,Hsinchu 30013, Taiwan (China); Physics Division, National Center for Theoretical Sciences,National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Guo, Wu-Zhong [Physics Division, National Center for Theoretical Sciences,National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

    2017-04-14

    This paper is an extended version of our short letter on a new proposal for holographic boundary conformal field, i.e., BCFT. By using the Penrose-Brown-Henneaux (PBH) transformation, we successfully obtain the expected boundary Weyl anomaly. The obtained boundary central charges satisfy naturally a c-like theorem holographically. We then develop an approach of holographic renormalization for BCFT, and reproduce the correct boundary Weyl anomaly. This provides a non-trivial check of our proposal. We also investigate the holographic entanglement entropy of BCFT and find that our proposal gives the expected orthogonal condition that the minimal surface must be normal to the spacetime boundaries if they intersect. This is another support for our proposal. We also find that the entanglement entropy depends on the boundary conditions of BCFT and the distance to the boundary; and that the entanglement wedge behaves a phase transition, which is important for the self-consistency of AdS/BCFT. Finally, we show that the proposal of https://arxiv.org/abs/1105.5165 is too restrictive that it always make vanishing some of the boundary central charges.

  20. Shape and Symmetry Determine Two-Dimensional Melting Transitions of Hard Regular Polygons

    Directory of Open Access Journals (Sweden)

    Joshua A. Anderson

    2017-04-01

    Full Text Available The melting transition of two-dimensional systems is a fundamental problem in condensed matter and statistical physics that has advanced significantly through the application of computational resources and algorithms. Two-dimensional systems present the opportunity for novel phases and phase transition scenarios not observed in 3D systems, but these phases depend sensitively on the system and, thus, predicting how any given 2D system will behave remains a challenge. Here, we report a comprehensive simulation study of the phase behavior near the melting transition of all hard regular polygons with 3≤n≤14 vertices using massively parallel Monte Carlo simulations of up to 1×10^{6} particles. By investigating this family of shapes, we show that the melting transition depends upon both particle shape and symmetry considerations, which together can predict which of three different melting scenarios will occur for a given n. We show that systems of polygons with as few as seven edges behave like hard disks; they melt continuously from a solid to a hexatic fluid and then undergo a first-order transition from the hexatic phase to the isotropic fluid phase. We show that this behavior, which holds for all 7≤n≤14, arises from weak entropic forces among the particles. Strong directional entropic forces align polygons with fewer than seven edges and impose local order in the fluid. These forces can enhance or suppress the discontinuous character of the transition depending on whether the local order in the fluid is compatible with the local order in the solid. As a result, systems of triangles, squares, and hexagons exhibit a Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY predicted continuous transition between isotropic fluid and triatic, tetratic, and hexatic phases, respectively, and a continuous transition from the appropriate x-atic to the solid. In particular, we find that systems of hexagons display continuous two-step KTHNY melting. In

  1. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2016-09-15

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  2. Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy

    International Nuclear Information System (INIS)

    Lepe, Samuel; Pena, Francisco

    2016-01-01

    We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities). (orig.)

  3. Single-Crystal Diffraction from Two-Dimensional Block Copolymer Arrays

    International Nuclear Information System (INIS)

    Stein, G. E.; Kramer, E. J.; Li, X.; Wang, J.

    2007-01-01

    The structure of oriented 2D block copolymer single crystals is characterized by grazing-incidence small-angle x-ray diffraction, demonstrating long-range sixfold orientational order. From line shape analysis of the higher-order Bragg diffraction peaks, we determine that translational order decays algebraically with a decay exponent η=0.2, consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young theory for a 2D crystal with a shear modulus μ=2x10 -4 N/m

  4. Holographic Chern-Simons defects

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-01-01

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  5. Non-perturbative effects in two-dimensional lattice O(N) models

    International Nuclear Information System (INIS)

    Ogilvie, M.C.; Maryland Univ., College Park

    1981-01-01

    Non-abelian analogues of Kosterlitz-Thouless vortices may have important effects in two-dimensional lattice spin systems with O(N) symmetries. Renormalization group equations which include these effects are developed in two ways. The first set of equations extends the renormalization group equations of Kosterlitz to 0(N) spin systems, in a form suggested by Cardy and Hamber. The second is derived from a Villain-type 0(N) model using Migdal's recursion relations. Using these equations, the part played by topological excitations int he crossover from weak to strong coupling behavior is studied. Another effect which influences crossover behavior is also discussed; irrelevant operators which occur naturally in lattice theories can make important contributions to the renormalization group flow in the crossover region. When combined with conventional perturbative results, these two effects may explain the observed crossover behavior of these models. (orig.)

  6. Phases of Holographic QCD

    International Nuclear Information System (INIS)

    Lippert, Matthew

    2009-01-01

    We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.

  7. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan, E-mail: yanpengphy@163.com [School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165 (China); School of Mathematics and Computer Science, Shaanxi Sci-Tech University, Hanzhong, Shaanxi 723000 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Liu, Yunqi, E-mail: liuyunqi@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2017-02-15

    We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  8. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    International Nuclear Information System (INIS)

    Peng, Yan; Pan, Qiyuan; Liu, Yunqi

    2017-01-01

    We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  9. A general holographic insulator/superconductor model with dark matter sector away from the probe limit

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2017-02-01

    Full Text Available We investigate holographic phase transitions with dark matter sector in the AdS soliton background away from the probe limit. In cases of weak backreaction, we find that the larger coupling parameter α makes the gap of condensation shallower and the critical chemical potential keeps as a constant. In contrast, for very heavy backreaction, the dark matter sector could affect the critical chemical potential and the order of phase transitions. We also find the jump of the holographic topological entanglement entropy corresponds to a first order transition between superconducting states in this model with dark matter sector. More importantly, for certain sets of parameters, we observe novel phenomenon of retrograde condensation. In a word, the dark matter sector provides richer physics in the phase structure and the holographic superconductor properties are helpful in understanding dark matter.

  10. Gardner Transition in Physical Dimensions

    Science.gov (United States)

    Hicks, C. L.; Wheatley, M. J.; Godfrey, M. J.; Moore, M. A.

    2018-06-01

    The Gardner transition is the transition that at mean-field level separates a stable glass phase from a marginally stable phase. This transition has similarities with the de Almeida-Thouless transition of spin glasses. We have studied a well-understood problem, that of disks moving in a narrow channel, which shows many features usually associated with the Gardner transition. We show that some of these features are artifacts that arise when a disk escapes its local cage during the quench to higher densities. There is evidence that the Gardner transition becomes an avoided transition, in that the correlation length becomes quite large, of order 15 particle diameters, even in our quasi-one-dimensional system.

  11. Holographic p-wave superconductor models with Weyl corrections

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2015-04-01

    Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.

  12. Functional renormalization-group approach to the Pokrovsky-Talapov model via the modified massive Thirring fermions

    Science.gov (United States)

    Nosov, P. A.; Kishine, Jun-ichiro; Ovchinnikov, A. S.; Proskurin, I.

    2017-12-01

    We consider a possibility of the topological Kosterlitz-Thouless (KT) transition in the two-dimensional Pokrovsky-Talapov model with a finite misfit parameter and discuss its relevance to the theory of critical behavior in thin films of monoaxial chiral helimagnets. For this purpose, the initial model is reformulated in terms of the two-dimensional relativistic model of massive Thirring fermions and the Wetterich's functional renormalization-group (RG) approach is employed. In the new formalism, the misfit parameter corresponds to an effective gauge field that can be included in the RG scheme on an equal footing with the other parameters of the theory. Our main result is that the presence of the misfit parameter, which may be attributed to the Dzyaloshinskii-Moriya interaction in the magnetic system, rules out the KT transition. To support this finding, we provide an additional intuitive explanation of the KT scenario breakdown by using the mapping onto the Coulomb gas model. In the framework of the model, the misfit parameter has a meaning of an effective in-plane electric field that prevents a formation of bound vortex-antivortex pairs.

  13. Holographic Phonons

    Science.gov (United States)

    Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol

    2018-04-01

    We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.

  14. Emergent Gauge Fields in Holographic Superconductors

    CERN Document Server

    Domènech, Oriol; Pomarol, Alex; Salvio, Alberto; Silva, Pedro J

    2010-01-01

    Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identif...

  15. Effect of quintessence on holographic fermionic spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Xiao-Mei [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Wu, Jian-Pin [Bohai University, Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Jinzhou (China)

    2017-10-15

    In this letter, we investigate the holographic fermionic spectrum without/with dipole coupling dual to the Reissner-Nordstroem anti-de Sitter (RN-AdS) black brane surrounded by quintessence. We find that the low energy excitation of this fermionic system without dipole coupling behaves as a non-Fermi liquid. In particular, the introduction of quintessence aggravates the degree of deviation from a Fermi liquid. For the system with dipole coupling, the phase transition from (non-)Fermi liquid to Mott phase can be observed. The ratio between the width of gap and the critical temperature, beyond which the gap closes, is also worked out. We find that this ratio is larger than that of the holographic fermionic system dual to the RN-AdS black brane and even the material of V O{sub 2}. It means that our holographic system with quintessence can model new phenomena of the condensed matter system and provide some new insights in their regard. (orig.)

  16. Holographic non-Gaussianity

    International Nuclear Information System (INIS)

    McFadden, Paul; Skenderis, Kostas

    2011-01-01

    We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work

  17. Two-point functions in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i2, which is characteristic of a Kondo resonance.

  18. Two-point functions in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, D-97074 Würzburg (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany); Hoyos, Carlos [Department of Physics, Universidad de Oviedo, Avda. Calvo Sotelo 18, 33007, Oviedo (Spain); O’Bannon, Andy [STAG Research Centre, Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste, Via Bonomea 265, I 34136 Trieste (Italy); Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Wu, Jackson M.S. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2017-03-07

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0+1)-dimensional impurity spin of a gauged SU(N) interacting with a (1+1)-dimensional, large-N, strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU(N)-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O{sup †}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1+1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0+1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green’s function of the form −i〈O〉{sup 2}, which is characteristic of a Kondo resonance.

  19. Layers of deformed instantons in holographic baryonic matter

    Energy Technology Data Exchange (ETDEWEB)

    Preis, Florian [Institut für Theoretische Physik, Technische Universität Wien,1040 Vienna (Austria); Schmitt, Andreas [Mathematical Sciences and STAG Research Centre, University of Southampton,Southampton SO17 1BJ (United Kingdom)

    2016-07-01

    We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.

  20. Does quasi-long-range order in the two-dimensional XY model really survive weak random phase fluctuations?

    International Nuclear Information System (INIS)

    Mudry, Christopher; Wen Xiaogang

    1999-01-01

    Effective theories for random critical points are usually non-unitary, and thus may contain relevant operators with negative scaling dimensions. To study the consequences of the existence of negative-dimensional operators, we consider the random-bond XY model. It has been argued that the XY model on a square lattice, when weakly perturbed by random phases, has a quasi-long-range ordered phase (the random spin wave phase) at sufficiently low temperatures. We show that infinitely many relevant perturbations to the proposed critical action for the random spin wave phase were omitted in all previous treatments. The physical origin of these perturbations is intimately related to the existence of broadly distributed correlation functions. We find that those relevant perturbations do enter the Renormalization Group equations, and affect critical behavior. This raises the possibility that the random XY model has no quasi-long-range ordered phase and no Kosterlitz-Thouless (KT) phase transition

  1. Excitonic condensation for the surface states of topological insulator bilayers

    International Nuclear Information System (INIS)

    Wang Zhigang; Fu Zhenguo; Zhang Ping; Hao Ningning

    2012-01-01

    We propose a generic topological insulator bilayer (TIB) system to study the excitonic condensation with self-consistent mean-field (SCMF) theory. We show that the TIB system presents the crossover behavior from the Bardeen-Cooper-Schrieffer (BCS) limit to the Bose-Einstein condensation (BEC) limit. Moreover, in comparison with traditional semiconductor systems, we find that for the present system the superfluid property in the BEC phase is more sensitive to electron-hole density imbalance and the BCS phase is more robust. Applying this TIB model to the Bi 2 Se 3 -family material, we find that the BEC phase is most likely to be observed in experiment. We also calculate the critical temperature for the Bi 2 Se 3 -family TIB system, which is ∼100 K. More interestingly, one can expect this relative high-temperature excitonic condensation, since our calculated SCMF critical temperature is approximately equal to the Kosterlitz-Thouless transition temperature. (paper)

  2. Breakdown of the equal area law for holographic entanglement entropy

    Science.gov (United States)

    McCarthy, Fiona; Kubizňák, David; Mann, Robert B.

    2017-11-01

    We investigate a holographic version of Maxwell's equal area law analogous to that for the phase transition in the black hole temperature/black hole entropy plane of a charged AdS black hole. We consider proposed area laws for both the black hole temperature/holographic entanglement entropy plane and the black hole temperature/2- point correlation function plane. Despite recent claims to the contrary, we demonstrate numerically that neither proposal is valid. We argue that there is no physical reason to expect such a construction in these planes.

  3. Constraints on holographic dark energy from type Ia supernova observations

    International Nuclear Information System (INIS)

    Zhang Xin; Wu Fengquan

    2005-01-01

    In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant

  4. Holographic multiverse and conformal invariance

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08193 Barcelona (Spain); Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, 212 College Ave., Medford, MA 02155 (United States)

    2009-11-01

    We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV.

  5. Holographic multiverse and conformal invariance

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander

    2009-01-01

    We consider a holographic description of the inflationary multiverse, according to which the wave function of the universe is interpreted as the generating functional for a lower dimensional Euclidean theory. We analyze a simple model where transitions between inflationary vacua occur through bubble nucleation, and the inflating part of spacetime consists of de Sitter regions separated by thin bubble walls. In this model, we present some evidence that the dual theory is conformally invariant in the UV

  6. Holographic study of the QCD matter under external conditions

    Directory of Open Access Journals (Sweden)

    Katanaeva Alisa

    2017-01-01

    We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.

  7. Zeroth order phase transition in a holographic superconductor with single impurity

    NARCIS (Netherlands)

    Zeng, Hua Bi; Zhang, Hai-Qing

    We investigate the single normal impurity effect in a superconductor by the holographic method. When the size of impurity is much smaller than the host superconductor, we can reproduce the Anderson theorem, which states that a conventional s-wave superconductor is robust to a normal (non-magnetic)

  8. Vortex lines in layered superconductors. I. From 3D to 2D behaviour

    Science.gov (United States)

    Feinberg, D.

    1994-02-01

    The fundamental aspects of vortices in layered superconductors (natural or artificial multilayered materials) are reviewed, focusing on the role of anisotropy and very short coherence lengths. These materials divide into three classes, with increasing T_c's : chalcogenides, organic superconductors and high-T_c copper oxides. The first part of the paper summarizes the quantitative features of the vortex lattice, due to the incorporation of anisotropy in the 3D Ginzburg-Landau or London descriptions : anisotropy of critical fields and vortex lattice, elastic coefficients and melting. This kind of model describes most of the properties of moderately anisotropic compounds as Y : 123. The second part concerns the Josephson-coupled layered systems and identifies in which regimes vortices exhibit a quasi-2D character. Qualitatively new features as Josephson vortices, 2D vortices, Kosterlitz-Thouless transition and lock-in of vortices are reviewed. This analysis is adapted to compounds as Bi : 2212 or multilayers, but also to Y : 123 for some aspects. On passe en revue les aspects fondamentaux des vortex dans les supraconducteurs lamellaires (naturels ou superréseaux artificiels), en mettant l'accent sur le rôle de l'anisotropie et des très courtes longueurs de cohérence. Ces composés se divisent en trois classes, de T_c croissants : chalcogénures, supraconducteurs organiques et oxydes de cuivre à haut T_c. La première partie de l'article résume les aspects quantitatifs dus à l'incorporation de l'anisotropie dans les descriptions 3D Ginzburg-Landau ou London du réseau de vortex.: anisotropie des champs critiques et du réseau de vortex, coefficients élastiques et fusion. Ce type de modèle décrit une grande partie des propriétés des composés modérément anisotropes tels que Y : 123. La seconde partie concerne les systèmes lamellaires à couplage Josephson et identifie dans quels régimes les vortex présentent un caractère quasi-2D. Des effets

  9. Polychromatic holographic plasma diagnostics

    International Nuclear Information System (INIS)

    Zhiglinskij, A.G.; Morozov, A.O.

    1992-01-01

    Review of holographic interferometry properties is performed and advantages of this method by plasma diagnostics are indicated. Main results obtained by the method of holographic interferometry in studies of various-type plasmas are considered. Special attention is paid to multiwave plasma diagnostics, the necessity of which is related as a rule to multicomponent composition of plasma. The eight laser and gas-discharge sources and holographic schemes, which make it possible to realize plasma polychromatic and holographic interferometry, are considered. The advantages of the method are demonstrated by examples of polychromatic holographic diagnostics of arc discharge and discharge in a hollow cathode. Review of theoretical works determining the applicability area of resonance polychromatic interferometry is carried out

  10. Holographic memories

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Berg, R.H.; Hvilsted, Søren

    1999-01-01

    A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...

  11. Holographic entanglement entropy and the extended phase structure of STU black holes

    International Nuclear Information System (INIS)

    Caceres, Elena; Nguyen, Phuc H.; Pedraza, Juan F.

    2015-01-01

    We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropriate critical exponents and show that they coincide. Thus, the entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the physical interpretation of the extended space in terms of the boundary QFT and construct various holographic heat engines dual to STU black holes.

  12. Phenomenological approach to the statistics and dynamics of model systems

    International Nuclear Information System (INIS)

    Choi, M.Y.

    1985-01-01

    This thesis investigates the equilibrium and nonequilibrium properties of some model systems, and consists of two parts. Part 1 deals with phase transitions in frustrated xy models, which can serve as a model for the coupled Josephson junction arrays. The Hubbard-Stratanovich transform is developed to construct the Landau-Ginzburg-Wilson Hamiltonians for uniformly frustrated xy models both on a square lattice and on a triangular lattice, which reflect the formation of various superlattices according to the frustration f. Near the critical point, the system with f equal to 1/4 on a triangular lattice is shown to belong to the same universality class as the fully frustrated system on a square lattice. By decomposing two mode systems into two coupled xy models and by applying the Migdal-Kadanoff approximation, the possibilities of Ising-like or three-state Potts-like transition are shown in addition to the Kosterlitz-Thouless-like ones. Part 2 considers the time evaluation of model systems with retarded interactions. For such systems, a master equation is derived with non-Markovian character. It is shown that in higher dimensions, the interplay between interaction strength and delay can lead to complicated behavior

  13. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field

  14. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  15. Nonvolatile Rad-Hard Holographic Memory

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay

    2001-01-01

    We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.

  16. A holographic bound for D3-brane

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)

    2017-06-15

    In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)

  17. Tractable approximations for probabilistic models: The adaptive Thouless-Anderson-Palmer mean field approach

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop an advanced mean held method for approximating averages in probabilistic data models that is based on the Thouless-Anderson-Palmer (TAP) approach of disorder physics. In contrast to conventional TAP. where the knowledge of the distribution of couplings between the random variables...... is required. our method adapts to the concrete couplings. We demonstrate the validity of our approach, which is so far restricted to models with nonglassy behavior? by replica calculations for a wide class of models as well as by simulations for a real data set....

  18. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    International Nuclear Information System (INIS)

    Elliot-Ripley, Matthew

    2017-01-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai–Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai–Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai–Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond. (paper)

  19. Renormalization of the Sine-Gordon model and nonconservation of the kink current

    International Nuclear Information System (INIS)

    Huang, K.; Polonyi, J.

    1991-01-01

    The authors of this paper renormalize the (1 + 1)-dimensional sine-Gordon model by placing it on a Euclidean lattice, and study the renormalization group flow. The authors start with a compactified theory with controllable vortex activity. In the continuum limit the theory has a phase in which the kink current is anomalous, with divergence given by the vortex density. The phase structure is quite complicated. Roughly speaking, the system is normal for small coupling T. At the Kosterlitz-Thouless point T = π/2, the current can become anomalous. At the Coleman point T = 8π either the current becomes anomalous or the theory becomes trivial

  20. Meson Transition Form Factors in Light-Front Holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.

    2011-06-22

    We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.

  1. Real-time holographic endoscopy

    Science.gov (United States)

    Smigielski, Paul; Albe, Felix; Dischli, Bernard

    1992-08-01

    Some new experiments concerning holographic endoscopy are presented. The quantitative measurements of deformations of objects are obtained by the double-exposure and double- reference beam method, using either a cw-laser or a pulsed laser. Qualitative experiments using an argon laser with time-average holographic endoscopy are also presented. A video film on real-time endoscopic holographic interferometry was recorded with the help of a frequency-doubled YAG-laser working at 25 Hz for the first time.

  2. Wilson loop's phase transition probed by non-local observable

    Directory of Open Access Journals (Sweden)

    Hui-Ling Li

    2018-04-01

    Full Text Available In order to give further insights into the holographic Van der Waals phase transition, it would be of great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to discussion on the hairy black hole's phase transition, and show that Wilson loop can serve as a probe to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate numerically the Maxwell's equal area construction; and for a second order phase transition, we also study the critical exponent in order to characterize the Wilson loop's phase transition.

  3. Holographic repulsion and confinement in gauge theory

    Science.gov (United States)

    Husain, Viqar; Kothawala, Dawood

    2013-02-01

    We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz

  4. Magnetic properties of confined holographic QCD

    Science.gov (United States)

    Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew

    2013-12-01

    We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.

  5. In-medium effects in the holographic quark-gluon plasma

    International Nuclear Information System (INIS)

    Rust, Felix Christian

    2009-01-01

    In this dissertation we use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N=4 gauge multiplet of supersymmetric Yang-Mills theory. As a key ingredient we develop a setup in which we can describe vector meson spectra in the holographic plasma at finite temperature and either baryon or isospin density. The description of vector meson excitations allows for a demonstration of the splitting of their spectrum at finite isospin chemical potential. In the effort to better understand transport processes in the QGP, we then study various diffusion coefficients in the quark-gluon plasma, including their dependence on temperature and particle density. In particular, we perform a simple calculation to obtain the diffusion coefficient of baryon charge and we derive expressions to obtain the isospin diffusion coefficient. Furthermore, we make use of an effective model to study the diffusion behavior of mesons in the plasma by setting up a kinetic model. Finally, we observe the implications of finite temperature and finite baryon or isospin density on the phase structure of fundamental matter in the holographic plasma. As one consequence we find a phase transition in the baryon diffusion coefficient which vanishes at a critical value of the particle density. The critical density we quantify matches the values of the according critical densities previously found in the phase transitions of other quantities. More important, we observe a new phase transition occurring when the isospin chemical potential excesses a

  6. In-medium effects in the holographic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rust, Felix Christian

    2009-08-05

    In this dissertation we use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as the N = 2 hypermultiplet in addition to the N=4 gauge multiplet of supersymmetric Yang-Mills theory. As a key ingredient we develop a setup in which we can describe vector meson spectra in the holographic plasma at finite temperature and either baryon or isospin density. The description of vector meson excitations allows for a demonstration of the splitting of their spectrum at finite isospin chemical potential. In the effort to better understand transport processes in the QGP, we then study various diffusion coefficients in the quark-gluon plasma, including their dependence on temperature and particle density. In particular, we perform a simple calculation to obtain the diffusion coefficient of baryon charge and we derive expressions to obtain the isospin diffusion coefficient. Furthermore, we make use of an effective model to study the diffusion behavior of mesons in the plasma by setting up a kinetic model. Finally, we observe the implications of finite temperature and finite baryon or isospin density on the phase structure of fundamental matter in the holographic plasma. As one consequence we find a phase transition in the baryon diffusion coefficient which vanishes at a critical value of the particle density. The critical density we quantify matches the values of the according critical densities previously found in the phase transitions of other quantities. More important, we observe a new phase transition occurring when the isospin chemical potential excesses a

  7. Holography and holographic dark energy model

    International Nuclear Information System (INIS)

    Gong Yungui; Zhang Yuanzhong

    2005-01-01

    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived

  8. Holographic Moire Contouring

    Science.gov (United States)

    Sciammarella, C. A.; Sainov, Ventseslav; Simova, Eli

    1990-04-01

    Theoretical analysis and experimental results on holographic moire contouring (HMC) of difussely reflecting objects are presented. The sensitivity and application constraints of the method are discussed. A high signal-to-noise ratio and contrast of the fringes is achieved through the use of high quality silver halide holographic plates HP-650. A good agreement between theoretical and experimental results is observed.

  9. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  10. Robust holographic storage system design.

    Science.gov (United States)

    Watanabe, Takahiro; Watanabe, Minoru

    2011-11-21

    Demand is increasing daily for large data storage systems that are useful for applications in spacecraft, space satellites, and space robots, which are all exposed to radiation-rich space environment. As candidates for use in space embedded systems, holographic storage systems are promising because they can easily provided the demanded large-storage capability. Particularly, holographic storage systems, which have no rotation mechanism, are demanded because they are virtually maintenance-free. Although a holographic memory itself is an extremely robust device even in a space radiation environment, its associated lasers and drive circuit devices are vulnerable. Such vulnerabilities sometimes engendered severe problems that prevent reading of all contents of the holographic memory, which is a turn-off failure mode of a laser array. This paper therefore presents a proposal for a recovery method for the turn-off failure mode of a laser array on a holographic storage system, and describes results of an experimental demonstration. © 2011 Optical Society of America

  11. Holographic QCD with topologically charged domain-wall/membranes

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2008-01-01

    We study the thermodynamical phase structures of holographic QCD with nontrivial topologically charged domain-wall/membranes which are originally related to the multiple θ-vacua in the large N c limit. We realize the topologically charged membranes as the holographic D6-brane fluxes in the Sakai-Sugimoto model. The D6-brane fluxes couple to the probe D8-D8-bar via Chern-Simon term, and act as the source for the baryonic current density of QCD. We find rich phase structures of the dual meson system by varying asymptotic separation of D8 and D8-bar. Especially, there can be a thermodynamically favored and stable phase of finite baryonic current density. This provides the supporting evidence for the discovery of the topologically charged membranes found in the lattice QCD calculations. We also find a crossover phase with the limiting baryonic current density and temperature which suggest a Hagedorn-like phase transition of meson dissociation.

  12. Holographic complexity for time-dependent backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-11-10

    In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.

  13. Intelligent holographic databases

    Science.gov (United States)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features

  14. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  15. Toward a holographic theory for general spacetimes

    Science.gov (United States)

    Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.

    2017-04-01

    We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.

  16. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  17. Holographic p-wave superfluid in Gauss–Bonnet gravity

    International Nuclear Information System (INIS)

    Liu, Shancheng; Pan, Qiyuan; Jing, Jiliang

    2017-01-01

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  18. Holographic p-wave superfluid in Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shancheng [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Pan, Qiyuan, E-mail: panqiyuan@126.com [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Jing, Jiliang, E-mail: jljing@hunnu.edu.cn [Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-02-10

    We construct the holographic p-wave superfluid in Gauss–Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss–Bonnet parameter and agree well with the Ginzburg–Landau prediction.

  19. The holographic universe

    CERN Document Server

    Talbot, Michael

    1991-01-01

    'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.

  20. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  1. Axial Hall effect and universality of holographic Weyl semi-metals

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl [Instituto de Física Teórica UAM/CSIC,c/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid (Spain)

    2017-02-28

    The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.

  2. Holographic renormalization and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)

    2017-02-27

    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.

  3. Holographic optical security systems

    Science.gov (United States)

    Fagan, William F.

    1990-06-01

    One of the most successful applications of Holography,in recent years,has been its use as an optical security technique.Indeed the general public's awareness of holograms has been greatly enhanced by the incorporation of holographic elements into the VISA and MASTERCHARGE credit cards.Optical techniques related to Holography,are also being used to protect the currencies of several countries against the counterfeiter. The mass production of high quality holographic images is by no means a trivial task as a considerable degree of expertise is required together with an optical laboratory and embossing machinery.This paper will present an overview of the principal holographic and related optical techniques used for security purposes.Worldwide, over thirty companies are involved in the production of security elements utilising holographic and related optical technologies.Counterfeiting of many products is a major criminal activity with severe consequences not only for the manufacturer but for the public in general as defective automobile parts,aircraft components,and pharmaceutical products, to cite only a few of the more prominent examples,have at one time or another been illegally copied.

  4. The holographic entropy cone

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Nezami, Sepehr [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Ooguri, Hirosi [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwa 277-8583 (Japan); Stoica, Bogdan [Walter Burke Institute for Theoretical Physics, California Institute of Technology,452-48, Pasadena, CA 91125 (United States); Sully, James [Theory Group, SLAC National Accelerator Laboratory, Stanford University,Menlo Park, CA 94025 (United States); Walter, Michael [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2015-09-21

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  5. The holographic entropy cone

    International Nuclear Information System (INIS)

    Bao, Ning; Nezami, Sepehr; Ooguri, Hirosi; Stoica, Bogdan; Sully, James; Walter, Michael

    2015-01-01

    We initiate a systematic enumeration and classification of entropy inequalities satisfied by the Ryu-Takayanagi formula for conformal field theory states with smooth holographic dual geometries. For 2, 3, and 4 regions, we prove that the strong subadditivity and the monogamy of mutual information give the complete set of inequalities. This is in contrast to the situation for generic quantum systems, where a complete set of entropy inequalities is not known for 4 or more regions. We also find an infinite new family of inequalities applicable to 5 or more regions. The set of all holographic entropy inequalities bounds the phase space of Ryu-Takayanagi entropies, defining the holographic entropy cone. We characterize this entropy cone by reducing geometries to minimal graph models that encode the possible cutting and gluing relations of minimal surfaces. We find that, for a fixed number of regions, there are only finitely many independent entropy inequalities. To establish new holographic entropy inequalities, we introduce a combinatorial proof technique that may also be of independent interest in Riemannian geometry and graph theory.

  6. Intelligent interaction based on holographic personalized portal

    Directory of Open Access Journals (Sweden)

    Yadong Huang

    2017-06-01

    Full Text Available Purpose – The purpose of this paper is to study the architecture of holographic personalized portal, user modeling, commodity modeling and intelligent interaction. Design/methodology/approach – In this paper, the authors propose crowd-science industrial ecological system based on holographic personalized portal and its interaction. The holographic personality portal is based on holographic enterprises, commodities and consumers, and the personalized portal consists of accurate ontology, reliable supply, intelligent demand and smart cyberspace. Findings – The personalized portal can realize the information acquisition, characteristic analysis and holographic presentation. Then, the intelligent interaction, e.g. demand decomposition, personalized search, personalized presentation and demand prediction, will be implemented within the personalized portal. Originality/value – The authors believe that their work on intelligent interaction based on holographic personalized portal, which has been first proposed in this paper, is innovation focusing on the interaction between intelligence and convenience.

  7. Holographic anyonic superfluidity

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  8. The AdS/CFT Correspondence and Holographic QCD

    International Nuclear Information System (INIS)

    Erlich, J.

    2012-01-01

    Holographic QCD is an extra-dimensional approach to modeling QCD resonances and their interactions. Holographic models encode information about chiral symmetry breaking, Weinberg sum rules, vector meson dominance, and other phenomenological features of QCD. There are two complementary approaches to holographic model building: a top-down approach which begins with string-theory brane configurations, and a bottom-up approach which is more phenomenological. In this talk I will describe the AdS/CFT correspondence, which motivates Holographic QCD, and the techniques used to build holographic models of QCD and to calculate observables in those models. I will also discuss an intriguing light cone approach to Holographic QCD discovered by Brodsky and De Teramond. (author)

  9. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  10. Entanglement entropy in a holographic p-wave superconductor model

    Directory of Open Access Journals (Sweden)

    Li-Fang Li

    2015-05-01

    Full Text Available In a recent paper, arXiv:1309.4877, a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  11. Entanglement entropy in a holographic p-wave superconductor model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Rong-Gen, E-mail: cairg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li, E-mail: liliphy@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Chao, E-mail: sc@nssc.ac.cn [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-05-15

    In a recent paper, (arXiv:1309.4877), a holographic p-wave model has been proposed in an Einstein–Maxwell-complex vector field theory with a negative cosmological constant. The model exhibits rich phase structure depending on the mass and the charge of the vector field. We investigate the behavior of the entanglement entropy of dual field theory in this model. When the above two model parameters change, we observe the second order, first order and zeroth order phase transitions from the behavior of the entanglement entropy at some intermediate temperatures. These imply that the entanglement entropy can indicate not only the occurrence of the phase transition, but also the order of the phase transition. The entanglement entropy is indeed a good probe to phase transition. Furthermore, the “retrograde condensation” which is a sub-dominated phase is also reflected on the entanglement entropy.

  12. Resolution enhancement of holographic printer using a hogel overlapping method.

    Science.gov (United States)

    Hong, Keehoon; Park, Soon-gi; Yeom, Jiwoon; Kim, Jonghyun; Chen, Ni; Pyun, Kyungsuk; Choi, Chilsung; Kim, Sunil; An, Jungkwuen; Lee, Hong-Seok; Chung, U-in; Lee, Byoungho

    2013-06-17

    We propose a hogel overlapping method for the holographic printer to enhance the lateral resolution of holographic stereograms. The hogel size is directly related to the lateral resolution of the holographic stereogram. Our analysis by computer simulation shows that there is a limit to decreasing the hogel size while printing holographic stereograms. Instead of reducing the size of hogel, the lateral resolution of holographic stereograms can be enhanced by printing overlapped hogels, which makes it possible to take advantage of multiplexing property of the volume hologram. We built a holographic printer, and recorded two holographic stereograms using the conventional and proposed overlapping methods. The images and movies of the holographic stereograms experimentally captured were compared between the conventional and proposed methods. The experimental results confirm that the proposed hogel overlapping method improves the lateral resolution of holographic stereograms compared to the conventional holographic printing method.

  13. Holographic Entanglement Entropy

    CERN Document Server

    Rangamani, Mukund

    2016-01-01

    We review the developments in the past decade on holographic entanglement entropy, a subject that has garnered much attention owing to its potential to teach us about the emergence of spacetime in holography. We provide an introduction to the concept of entanglement entropy in quantum field theories, review the holographic proposals for computing the same, providing some justification for where these proposals arise from in the first two parts. The final part addresses recent developments linking entanglement and geometry. We provide an overview of the various arguments and technical developments that teach us how to use field theory entanglement to detect geometry. Our discussion is by design eclectic; we have chosen to focus on developments that appear to us most promising for further insights into the holographic map. This is a preliminary draft of a few chapters of a book which will appear sometime in the near future, to be published by Springer. The book in addition contains a discussion of application o...

  14. Developments in holographic-based scanner designs

    Science.gov (United States)

    Rowe, David M.

    1997-07-01

    Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.

  15. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (Tholographic complexity will be divergent.

  16. Homodyne detection of holographic memory systems

    Science.gov (United States)

    Urness, Adam C.; Wilson, William L.; Ayres, Mark R.

    2014-09-01

    We present a homodyne detection system implemented for a page-wise holographic memory architecture. Homodyne detection by holographic memory systems enables phase quadrature multiplexing (doubling address space), and lower exposure times (increasing read transfer rates). It also enables phase modulation, which improves signal-to-noise ratio (SNR) to further increase data capacity. We believe this is the first experimental demonstration of homodyne detection for a page-wise holographic memory system suitable for a commercial design.

  17. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  18. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  19. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for probabilistic modeling

    DEFF Research Database (Denmark)

    Opper, Manfred; Winther, Ole

    2001-01-01

    We develop a generalization of the Thouless-Anderson-Palmer (TAP) mean-field approach of disorder physics. which makes the method applicable to the computation of approximate averages in probabilistic models for real data. In contrast to the conventional TAP approach, where the knowledge...... of the distribution of couplings between the random variables is required, our method adapts to the concrete set of couplings. We show the significance of the approach in two ways: Our approach reproduces replica symmetric results for a wide class of toy models (assuming a nonglassy phase) with given disorder...... distributions in the thermodynamic limit. On the other hand, simulations on a real data model demonstrate that the method achieves more accurate predictions as compared to conventional TAP approaches....

  20. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Directory of Open Access Journals (Sweden)

    N.S. Mazhari

    2017-03-01

    Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  1. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Mazhari, N.S., E-mail: najmemazhari86@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-03-10

    The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  2. Thermal Transport and Drag Force in Improved Holographic QCD

    CERN Document Server

    Gürsoy, Umut; Michalogiorgakis, Georgios; Nitti, Francesco; 10.1088

    2009-01-01

    We calculate the bulk viscosity, drag force and jet quenching parameter in Improved Holographic QCD. We find that the bulk viscosity rises near the phase transition but does not exceed the shear viscosity. The drag force shows the effects of asymptotic freedom both as a function of velocity and temperature. It indicates diffusion times of heavy quarks in rough agreement with data. The jet quenching parameter values computed via the light-like Wilson loop are in the lower range suggested by data.

  3. Holographic equipartition from first order action

    Science.gov (United States)

    Wang, Jingbo

    2017-12-01

    Recently, the idea that gravity is emergent has attract many people's attention. The "Emergent Gravity Paradigm" is a program that develop this idea from the thermodynamical point of view. It expresses the Einstein equation in the language of thermodynamics. A key equation in this paradigm is the holographic equipartition which says that, in all static spacetimes, the degrees of freedom on the boundary equal those in the bulk. And the time evolution of spacetime is drove by the departure from the holographic equipartition. In this paper, we get the holographic equipartition and its generalization from the first order formalism, that is, the connection and its conjugate momentum are considered to be the canonical variables. The final results have similar structure as those from the metric formalism. It gives another proof of holographic equipartition.

  4. Origin of holographic dark energy models

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Seo, Min-Gyun

    2009-01-01

    We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of δl≥l p α l α-1 . It was argued that the case of α=2/3 could describe the dark energy with infinite statistics, while the case of α=1/2 can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales

  5. Use of holographic environment in business and educational application

    International Nuclear Information System (INIS)

    Rajput, A.Q.K.; Shaikh, M.Z.; Khanzada, T.J.S.

    2003-01-01

    Holographic environment is based on high-equipped Multimedia information systems. These are based on the evolving powers of computers to handle huge volume of information. Holographic environment is a simulated environment that allows the user to touch and interact with projections, which are derived from the distant real environment. A new communications technology is being developed that will facilitate to interact inside a simulated environment, even if you are thousands of miles apart. This is done with enhancing the electro-holography, which is the computer based generation of diffraction fringes from 3D input data and the display of the reconstructed object in real-time. This research paper presents the design and development of holographic environment for reduction of distances in business and educational applications. The Holographic Environment development with the use of multimedia information systems is discussed. In Particular the characteristics of holographic data and the current research results in the area of real time holographic display systems are spanned. The Technical components of holographic system are also encountered. Finally, issues of improvement in efficiency of Holographic Environments by compression of data are presented along with its utilization for educational and business applications. (author)

  6. Non-analyticity of holographic Rényi entropy in Lovelock gravity

    Science.gov (United States)

    Puletti, V. Giangreco M.; Pourhasan, Razieh

    2017-08-01

    We compute holographic Rényi entropies for spherical entangling surfaces on the boundary while considering third order Lovelock gravity with negative cosmological constant in the bulk. Our study shows that third order Lovelock black holes with hyperbolic event horizon are unstable, and at low temperatures those with smaller mass are favoured, giving rise to first order phase transitions in the bulk. We determine regions in the Lovelock parameter space in arbitrary dimensions, where bulk phase transitions happen and where boundary causality constraints are met. We show that each of these points corresponds to a dual boundary conformal field theory whose Rényi entropy exhibits a kink at a certain critical index n.

  7. AC conductivity for a holographic Weyl semimetal

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, Gianluca; Marini, Andrea; Peña-Benitez, Francisco; Speziali, Stefano [Dipartimento di Fisica e Geologia, Università di Perugia,I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy)

    2017-03-23

    We study the AC electrical conductivity at zero temperature in a holographic model for a Weyl semimetal. At small frequencies we observe a linear dependence in the frequency. The model shows a quantum phase transition between a topological semimetal (Weyl semimetal phase) with a non vanishing anomalous Hall conductivity and a trivial semimetal. The AC conductivity has an intermediate scaling due to the presence of a quantum critical region in the phase diagram of the system. The phase diagram is reconstructed using the scaling properties of the conductivity. We compare with the experimental data of https://www.doi.org/10.1103/PhysRevB.93.121110 obtaining qualitative agreement.

  8. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  9. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  10. Sol-Gel Glass Holographic Light-Shaping Diffusers

    Science.gov (United States)

    Yu, Kevin; Lee, Kang; Savant, Gajendra; Yin, Khin Swe (Lillian)

    2005-01-01

    Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.

  11. Gauge invariance and holographic renormalization

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2015-10-01

    Full Text Available We study the gauge invariance of physical observables in holographic theories under the local diffeomorphism. We find that gauge invariance is intimately related to the holographic renormalization: the local counter terms defined in the boundary cancel most of gauge dependences of the on-shell action as well as the divergences. There is a mismatch in the degrees of freedom between the bulk theory and the boundary one. We resolve this problem by noticing that there is a residual gauge symmetry (RGS. By extending the RGS such that it satisfies infalling boundary condition at the horizon, we can understand the problem in the context of general holographic embedding of a global symmetry at the boundary into the local gauge symmetry in the bulk.

  12. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  13. Holographic Optical Data Storage

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  14. Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction

    Science.gov (United States)

    Li, Ran; Zi, Tieguang; Zhang, Hongbao

    2018-04-01

    We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T process is then holographically dual to the dynamical superconducting phase transition process in the boundary theory. Furthermore, we also study the effect of the scalar self-interaction on time evolution of superconducting condensate operator, event and apparent horizon areas of the final hairy black hole.

  15. Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a 2D diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Beaud, P; Frey, H M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Resonant Holographic Interferometry is a method based on the anomalous dispersion of light having a frequency close to an electronic transition of a molecule. We propose a novel single-laser, two-colour setup for recording resonant holograms and apply it to 2D species concentration measurements. The second colour is generated by optical phase-conjugation from Stimulated Brillouin scattering in a cell. Phase-Conjugate Resonant Holographic Interferometry (PCRHI) is demonstrated in a 2D NH{sub 3}/O{sub 2} flame yielding interferograms that contain information on the NH radical distribution in the flame. Experimental results are quantified by applying a numerical computation of the Voigt profiles. (author) 1 fig., 3 refs.

  16. Phase transitions in two-dimensional uniformly frustrated XY models. I. antiferromagnetic model on a triangular lattice

    International Nuclear Information System (INIS)

    Korshunov, S.E.; Uimin, G.V.

    1986-01-01

    A most popular model in the family of two-dimensional uniformly-frustrated XY models is the antiferromagnetic model on a triangular lattice (AF XY(t) model). Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the ''generalized'' AF XY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-interger charges, equivalent to the AF XY(t) model with the Berezinskii-Villain interaction

  17. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  18. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  19. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  20. Higher order corrections to holographic black hole chemistry

    Science.gov (United States)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  1. Computer generated holographic microtags

    International Nuclear Information System (INIS)

    Sweatt, W.C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs

  2. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  3. Holographic interferometry using a digital photo-camera

    International Nuclear Information System (INIS)

    Sekanina, H.; Hledik, S.

    2001-01-01

    The possibilities of running digital holographic interferometry using commonly available compact digital zoom photo-cameras are studied. The recently developed holographic setup, suitable especially for digital photo-cameras equipped with an un detachable object lens, is used. The method described enables a simple and straightforward way of both recording and reconstructing of a digital holographic interferograms. The feasibility of the new method is verified by digital reconstruction of the interferograms acquired, using a numerical code based on the fast Fourier transform. Experimental results obtained are presented and discussed. (authors)

  4. Dual-Wavelength Sensitized Photopolymer for Holographic Data Storage

    Science.gov (United States)

    Tao, Shiquan; Zhao, Yuxia; Wan, Yuhong; Zhai, Qianli; Liu, Pengfei; Wang, Dayong; Wu, Feipeng

    2010-08-01

    Novel photopolymers for holographic storage were investigated by combining acrylate monomers and/or vinyl monomers as recording media and liquid epoxy resins plus an amine harder as binder. In order to improve the holographic performances of the material at blue-green wavelength band two novel dyes were used as sensitizer. The methods of evaluating the holographic performances of the material, including the shrinkage and noise characteristics, are described in detail. Preliminary experiments show that samples with optimized composite have good holographic performances, and it is possible to record dual-wavelength hologram simultaneously in this photopolymer by sharing the same optical system, thus the storage density and data rate can be doubly increased.

  5. Holographic correlation functions in Critical Gravity

    Science.gov (United States)

    Anastasiou, Giorgos; Olea, Rodrigo

    2017-11-01

    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

  6. Research on copying system of dynamic multiplex holographic stereograms

    Science.gov (United States)

    Fu, Huaiping; Yang, Hong; Zheng, Tong

    2003-05-01

    The most important advantage of holographic stereograms over conventional hologram is that they can produce 3D images at any desired scale with movement, holographers in many countries involved in the studies towards it. We began our works in the early 80's and accomplished two research projects automatic system for making synthetic holograms and multiplex synthetic rainbow holograms, Based on these works, a large scale holographic stereogram of an animated goldfish was made by us for practical advertisement. In order to meet the needs of the market, a copying system for making multiplex holographic stereograms, and a special kind of silver halide holographic film developed by us recently. The characteristic of the copying system and the property of the special silver-halide emulsion are introduced in this paper.

  7. Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, A. [Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ (Netherlands); Kaplis, N.; Krikun, A.; Schalm, K.; Zaanen, J. [Institute Lorentz ITP, Leiden University, PO Box 9506, Leiden 2300 RA (Netherlands)

    2016-11-09

    It is presently unknown how strong lattice potentials influence the fermion spectral function of the holographic strange metals predicted by the AdS/CFT correspondence. This embodies a crucial test for the application of holography to condensed matter experiments. We show that for one particular momentum direction this spectrum can be computed for arbitrary strength of the effective translational symmetry breaking potential of the so-called Bianchi-VII geometry employing ordinary differential equations. Deep in the strange metal regime we find rather small changes to the single-fermion response computed by the emergent quantum critical IR, even when the potential becomes relevant in the infra-red. However, in the regime where holographic quasi-particles occur, defining a Fermi surface in the continuum, they acquire a finite lifetime at any finite potential strength. At the transition from irrelevancy to relevancy of the Bianchi potential in the deep infra-red the quasi-particle remnants disappear completely and the fermion spectrum exhibits a purely relaxational behaviour.

  8. The cosmic QCD phase transition with dense matter and its gravitational waves from holography

    Science.gov (United States)

    Ahmadvand, M.; Bitaghsir Fadafan, K.

    2018-04-01

    Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.

  9. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications

    Directory of Open Access Journals (Sweden)

    Augusto Beléndez

    2012-05-01

    Full Text Available Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material.

  10. Investigation on effect of methylene spacer in holographic grating formation in eosin containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Manickasundaram, S. [Department of Chemistry, Anna University, Sardar Vallabai Patel Road, Chennai 600025 (India); Kannan, P. [Department of Chemistry, Anna University, Sardar Vallabai Patel Road, Chennai 600025 (India)]. E-mail: pakannan@annauniv.edu; Deepa, S. [Centre for Laser Technology, Department of Physics, Anna University, Chennai 600025 (India); Palanisamy, P.K. [Centre for Laser Technology, Department of Physics, Anna University, Chennai 600025 (India)

    2007-01-15

    A new series of eosin dye based poly(alkyloxymethacrylate)s was synthesized with an even number of side-chain methylene spacers by a free radical addition polymerization method for holographic optical data storage applications. These polymers were characterized by UV, IR and {sup 1}H NMR spectroscopy. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. As the spacer length increases in the side-chain, Tg, Tm and thermal stability of the polymers decrease, while a reverse trend was observed with film forming ability of the polymers. The optical characterization of the polymers was investigated by forming holographic grating using an Argon ion laser. The grating diffraction efficiency was found to depend not only on the concentration of polymeric film but also on the spacer length of the polymers.

  11. Investigation on effect of methylene spacer in holographic grating formation in eosin containing polymethacrylates

    International Nuclear Information System (INIS)

    Manickasundaram, S.; Kannan, P.; Deepa, S.; Palanisamy, P.K.

    2007-01-01

    A new series of eosin dye based poly(alkyloxymethacrylate)s was synthesized with an even number of side-chain methylene spacers by a free radical addition polymerization method for holographic optical data storage applications. These polymers were characterized by UV, IR and 1 H NMR spectroscopy. The glass transition temperature and thermal stability of the polymers were investigated by DSC and TGA, respectively. As the spacer length increases in the side-chain, Tg, Tm and thermal stability of the polymers decrease, while a reverse trend was observed with film forming ability of the polymers. The optical characterization of the polymers was investigated by forming holographic grating using an Argon ion laser. The grating diffraction efficiency was found to depend not only on the concentration of polymeric film but also on the spacer length of the polymers

  12. Holographic patterning of organic-inorganic photopolymerizable nanocomposites

    Science.gov (United States)

    Sakhno, Oksana V.; Goldenberg, Leonid M.; Smirnova, Tatiana N.; Stumpe, J.

    2009-09-01

    We present here novel easily processible organic-inorganic nanocomposites suitable for holographic fabrication of diffraction optical elements (DOE). The nanocomposites are based on photocurable acrylate monomers and inorganic nanoparticles (NP). The compatibility of inorganic NP with monomers was achieved by capping the NP surface with proper organic shells. Surface modification allows to introduce up to 50wt.% of inorganic NP in organic media. Depending on the NP nature (metal oxides, phosphates, semiconductors, noble metals) and their properties, the materials for both efficient DOE and multifunctional elements can be designed. Organic-inorganic composites prepared have been successfully used for the effective inscription of periodic volume refractive index structures using the holographic photopolymerization method. The nanocomposite preparation procedure, their properties and optical performance of holographic gratings are reported. The use of functional NP makes it possible to obtain effective holographic gratings having additional physical properties such as light-emission or NLO. Some examples of such functional polymer-NP structures and their possible application fields are presented. The combination of easy photo-patterning of soft organic compounds with physical properties of inorganic materials in new nanocomposites and the flexibility of the holographic patterning method allow the fabrication of mono- and multifunctional one- and multi-dimensional passive or active optical and photonic elements.

  13. Anomalous transport and holographic momentum relaxation

    Science.gov (United States)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio

    2017-09-01

    The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.

  14. Holographic data storage: science fiction or science fact?

    Science.gov (United States)

    Anderson, Ken; Ayres, Mark; Askham, Fred; Sissom, Brad

    2014-09-01

    To compete in the archive and backup industries, holographic data storage must be highly competitive in four critical areas: total cost of ownership (TCO), cost/TB, capacity/footprint, and transfer rate. New holographic technology advancements by Akonia Holographics have enabled the potential for ultra-high capacity holographic storage devices that are capable of world record bit densities of over 2-4Tbit/in2, up to 200MB/s transfer rates, and media costs less than $10/TB in the next few years. Additional advantages include more than a 3x lower TCO than LTO, a 3.5x decrease in volumetric footprint, 30ms random access times, and 50 year archive life. At these bit densities, 4.5 Petabytes of uncompressed user data could be stored in a 19" rack system. A demonstration platform based on these new advances has been designed and built by Akonia to progressively demonstrate bit densities of 2Tb/in2, 4Tb/in2, and 8Tb/in2 over the next year. Keywords: holographic

  15. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    Science.gov (United States)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  16. Holographic memories with encryption-selectable function

    Science.gov (United States)

    Su, Wei-Chia; Lee, Xuan-Hao

    2006-03-01

    Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.

  17. Gravitation from entanglement in holographic CFTs

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, Thomas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Guica, Monica [Department of Physics and Astronomy, University of Pennsylvania,209 S. 33rd St., Philadelphia, PA 19104-6396 (United States); Hartman, Thomas [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Myers, Robert C. [Perimeter Institute for Theoretical Physics,31 Caroline Street N., Waterloo, Ontario N2L 2Y5 (Canada); Raamsdonk, Mark Van [Department of Physics and Astronomy, University of British Columbia,6224 Agricultural Road, Vancouver, B.C. V6T 1W9 (Canada)

    2014-03-11

    Entanglement entropy obeys a ‘first law’, an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such constraints for all ball-shaped spatial regions in the CFT is exactly equivalent to the requirement that the dual geometry satisfy the gravitational equations of motion, linearized about pure AdS. For theories with entanglement entropy computed by the Ryu-Takayanagi formula S=A/(4G{sub N}), we obtain the linearized Einstein equations. For theories in which the vacuum entanglement entropy for a ball is computed by more general Wald functionals, we obtain the linearized equations for the associated higher-curvature theories. Using the first law, we also derive the holographic dictionary for the stress tensor, given the holographic formula for entanglement entropy. This method provides a simple alternative to holographic renormalization for computing the stress tensor expectation value in arbitrary higher derivative gravitational theories.

  18. Flux flow, pinning, and resistive behavior in superconducting networks

    International Nuclear Information System (INIS)

    Teitel, S.

    1993-10-01

    We have studied the behavior of fluctuation effects in superconducting systems using numerical simulations of XY and Coulomb gas models. The fluctuation of vortex lines in high temperature superconductors, in the presence of an external magnetic field, has been studied using a three dimensional XY model. We have continued earlier work and verified the existence of two distinct phase transitions in this model. As the vortex line lattice is heated, it melts first into a line liquid where superconductivity is destroyed for currents perpendicular to the applied magnetic field, but persists for currents parallel to the field. As heating continues, the thermal excitation of closed vortex line loops links all the lines together, leading to completely normal metal properties in all directions. Upon cooling of the vortex line liquid, we find that as the system width increases, one can get trapped into an entangled non-equilibrium state in which vortex line cuttings are frozen out on measurable nine scales. We have also continued simulations of the two dimensional Coulomb gas, as a model for vortex fluctuations in two dimensional arrays of Josephson junctions, and thin film superconductors. Our preliminary results support the accepted view of a Kosterlitz-Thouless melting of the vortex lattice, in the limit of a uniform continous film

  19. The search for competing charge orders in frustrated ladder systems

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    A recent study revealed the dynamics of the charge sector of a one-dimensional quarter- filled electronic system with extended Hubbard interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. With the twin motivations of studying the co-existing charge and spin order found in strongly correlated chain systems and the effects of inter-chain couplings, we investigate the phase diagram of coupled effective (TFIM) systems. A bosonisation and RG analysis for a two-leg TFIM ladder yields a rich phase diagram showing Wigner/Peierls charge order and Neel/dimer spin order. In a broad parameter regime, the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite width is found to lie in between two charge-ordered gapped phases. Kosterlitz-Thouless transitions are found to lead from the gapless phase to either of the charge-ordered phases. Low energy effective Hamiltonian analyses of a strongly coupled 2-chain ladder system confirm a phase diagram with in-chain CO, rung-dimer, and orbital antiferromagnetic ordered phases with varying interchain couplings as well as superconductivity upon hole-doping. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (autor)

  20. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  1. The compact and inexpensive arrowhead setup for holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ladera, Celso L; Donoso, Guillermo, E-mail: clladera@usb.v [Departamento de Fisica, Universidad Simon BolIvar, Apdo. 89000, Caracas 1086 (Venezuela, Bolivarian Republic of)

    2011-07-15

    Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that requires neither a collimator nor a beam-splitter, and whose layout is reminiscent of an arrowhead. We show that this inexpensive setup is a good alternative for the study and applications of scientific holography by measuring small displacements and deformations of a body. The arrowhead setup will be found particularly useful for holography and holographic interferometry experiments and projects in teaching laboratories.

  2. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  3. Holographic subregion complexity for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bakhshaei, Elaheh [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Mollabashi, Ali [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2017-10-15

    Recently holographic prescriptions were proposed to compute the quantum complexity of a given state in the boundary theory. A specific proposal known as 'holographic subregion complexity' is supposed to calculate the complexity of a reduced density matrix corresponding to a static subregion. We study different families of singular subregions in the dual field theory and find the divergence structure and universal terms of holographic subregion complexity for these singular surfaces. We find that there are new universal terms, logarithmic in the UV cut-off, due to the singularities of a family of surfaces including a kink in (2 + 1) dimensions and cones in even dimensional field theories. We also find examples of new divergent terms such as squared logarithm and negative powers times the logarithm of the UV cut-off parameter. (orig.)

  4. Noise measurements of YBa2Cu3O7 thin film high-temperature superconductors

    International Nuclear Information System (INIS)

    Hall, J.J.

    1992-01-01

    The characteristics of thin-film YBa2Cu3O7 superconductors were studied from the superconducting region through the transition region and into the normal region. The properties studied included the resistance-temperature, current-voltage, and electrical noise with concentration of measurements in the transition region. The resistance vs. temperature measurements show a zero resistance followed by a small rise in magnitude at the onset of resistance followed by a sharp increase until the resistance tapers off in the fully normal region. The a-axis films had a larger normal resistivity, a lower critical temperature, and a broader transition than the similar c-axis films. The current(I) - voltage(V) measurements were concentrated in the transition region. A power relation between I and V was found to be V varies as I a(T) where a(T) is temperature dependent starting high the onset of vortex formation, approaches 3 at the vortex unbinding temperature, and goes to 1 when fully normal. This behavior was predicted by the Kosterlitz-Thouless theory and was found experimentally in all four films measured. The current-induced electrical noise characteristics were measured for four samples varying in thickness and axis orientation. Each film exhibited a widely varying magnitude of the noise voltage spectral density (S V ) in the transition region with a leveling off when fully normal. The normalized noise (S V /V squared) showed a sharp decrease in magnitude from the onset of measurable noise continually decreasing until flattening out when fully normal. The a-axis films exhibited S V /V squared over 3 order of magnitude larger than the c-axis films in the transition and normal regions. The normalized temperature coefficient of resistance (beta) was plotted against S V /V squared on a log-log scale to see if the noise generated was due to temperature fluctuations (slope = 2)

  5. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  6. Modifications to holographic entanglement entropy in warped CFT

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wei; Wen, Qiang; Xu, Jianfei [Yau Mathematical Sciences Center, Tsinghua University,Beijing 100084 (China)

    2017-02-13

    In https://www.doi.org/10.1103/PhysRevLett.117.011602 it was observed that asymptotic boundary conditions play an important role in the study of holographic entanglement beyond AdS/CFT. In particular, the Ryu-Takayanagi proposal must be modified for warped AdS{sub 3} (WAdS{sub 3}) with Dirichlet boundary conditions. In this paper, we consider AdS{sub 3} and WAdS{sub 3} with Dirichlet-Neumann boundary conditions. The conjectured holographic duals are warped conformal field theories (WCFTs), featuring a Virasoro-Kac-Moody algebra. We provide a holographic calculation of the entanglement entropy and Rényi entropy using AdS{sub 3}/WCFT and WAdS{sub 3}/WCFT dualities. Our bulk results are consistent with the WCFT results derived by Castro-Hofman-Iqbal using the Rindler method. Comparing with https://www.doi.org/10.1103/PhysRevLett.117.011602, we explicitly show that the holographic entanglement entropy is indeed affected by boundary conditions. Both results differ from the Ryu-Takayanagi proposal, indicating new relations between spacetime geometry and quantum entanglement for holographic dualities beyond AdS/CFT.

  7. Holographic grating relaxation technique for soft matter science

    Energy Technology Data Exchange (ETDEWEB)

    Lesnichii, Vasilii, E-mail: vasilii.lesnichii@physchem.uni-freiburg.de [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation); Kiessling, Andy [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Current address: Illinois Institute of Technology, 10 West 33rd Street, Chicago,IL60616 (United States); Bartsch, Eckhard [Institute of Physical Chemistry, Albertstraße 21, Institute of Macromolecular Chemistry, Stefan-Meier-Str. 31, Albert-Ludwigs Universität, Freiburg im Breisgau 79104 (Germany); Veniaminov, Andrey, E-mail: veniaminov@phoi.ifmo.ru [ITMO University, Kronverksky prospekt 49, Saint-Petersburg 197101 (Russian Federation)

    2016-06-17

    The holographic grating relaxation technique also known as forced Rayleigh scattering consists basically in writing a holographic grating in the specimen of interest and monitoring its diffraction efficiency as a function of time, from which valuable information on mass or heat transfer and photoinduced transformations can be extracted. In a more detailed view, the shape of the relaxation curve and the relaxation rate as a function of the grating period were found to be affected by the architecture of diffusing species (molecular probes) that constitute the grating, as well as that of the environment they diffuse in, thus making it possible to access and study spatial heterogeneity of materials and different modes of e.g., polymer motion. Minimum displacements and spatial domains approachable by the technique are in nanometer range, well below spatial periods of holographic gratings. In the present paper, several cases of holographic relaxation in heterogeneous media and complex motions are exemplified. Nano- to micro-structures or inhomogeneities comparable in spatial scale with holographic gratings manifest themselves in relaxation experiments via non-exponential decay (stepwise or stretched), spatial-period-dependent apparent diffusion coefficient, or unusual dependence of diffusion coefficient on molecular volume of diffusing probes.

  8. A holographic perspective on phonons and pseudo-phonons

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Andrea [Institute of Theoretical Physics and Astrophysics, University of Würzburg,97074 Würzburg (Germany); Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [Departamento de Física de Partículas, Universidade de Santiago de Compostelaand Instituto Galego de Física de Altas Enerxías (IGFAE),E-15782, Santiago de Compostela (Spain); Zayas, Leopoldo A. Pando [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)

    2017-05-10

    We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.

  9. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  10. Holographic entropy inequalities and gapped phases of matter

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Cao, ChunJun [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Walter, Michael [Stanford Institute for Theoretical Physics,Stanford University, Stanford, CA 94305 (United States); Wang, Zitao [Institute for Quantum Information and Matter, California Institute of Technology,Pasadena, CA 91125 (United States); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)

    2015-09-29

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  11. Holographic entropy inequalities and gapped phases of matter

    International Nuclear Information System (INIS)

    Bao, Ning; Cao, ChunJun; Walter, Michael; Wang, Zitao

    2015-01-01

    We extend our studies of holographic entropy inequalities to gapped phases of matter. For any number of regions, we determine the linear entropy inequalities satisfied by systems in which the entanglement entropy satisfies an exact area law. In particular, we find that all holographic entropy inequalities are valid in such systems. In gapped systems with topological order, the “cyclic inequalities” derived recently for the holographic entanglement entropy generalize the Kitaev-Preskill formula for the topological entanglement entropy. Finally, we propose a candidate linear inequality for general 4-party quantum states.

  12. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  13. A holographic model for black hole complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)

    2016-12-07

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  14. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    International Nuclear Information System (INIS)

    Singh, C.P.; Srivastava, Milan

    2018-01-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to ΛCDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ = ζ 0 + ζ 1 H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ. By illustrating the evolutionary trajectories in r - s and r - q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the ΛCDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ. Our study shows that the bulk viscosity plays very important role in the expansion history of the universe. (orig.)

  15. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    Science.gov (United States)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  16. Holographic Aquaculture

    Science.gov (United States)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  17. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  18. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  19. Development of an optoelectronic holographic platform for otolaryngology applications

    Science.gov (United States)

    Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael

    2010-08-01

    In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.

  20. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  1. Holographic inspection of nuclear plant

    International Nuclear Information System (INIS)

    Gordon, A.L.; Armour, I.A.; Glanville, R.; Malcolm, G.J.; Wright, D.G.

    1988-01-01

    The high resolution, enormous depth of field and high tolerance to radiation of holography mean that it has great potential as an inspection tool in the nuclear industry. In addition, the ability of double-pulse holography to yield detailed information on vibration over the whole field of both large and small structures provides measurements that often cannot be obtained in any other way. This paper reviews the development of equipment for the holographic inspection of nuclear fuel elements; a portable holocamera for use inside reactors; and the application of holographic techniques for vibration measurements in a nuclear power station. (author)

  2. Entropy-Corrected Holographic Dark Energy

    International Nuclear Information System (INIS)

    Wei Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  3. Pattern recognition with magnonic holographic memory device

    International Nuclear Information System (INIS)

    Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Gertz, F.; Khitun, A.

    2015-01-01

    In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed

  4. Reflection mode holographic recording in methylene blue-sensitized ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Thus, in recent years much attention has been centred on ... as bit-format holographic data storage [7] and visual indication of ... The characteristics of holographic recording material have great effects on the success- ... widely for display applications, for cover pages of books, magazines, pop art display,.

  5. Real-time laser holographic interferometry for aerodynamics

    International Nuclear Information System (INIS)

    Lee, G.

    1987-01-01

    Recent developments in thermoplastic recording holograms and advancements in automated image digitalization and analysis make real-time laser holographic interferometry feasible for two-dimensional flows such as airfoil flows. Typical airfoil measurements would include airfoil pressure distributions, wake and boundary layer profiles, and flow field density contours. This paper addresses some of the problems and requirements of a real-time laser holographic interferometer. 13 references

  6. Collapse and revival in holographic quenches

    International Nuclear Information System (INIS)

    Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-01-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  7. Holographic complexity and noncommutative gauge theory

    Science.gov (United States)

    Couch, Josiah; Eccles, Stefan; Fischler, Willy; Xiao, Ming-Lei

    2018-03-01

    We study the holographic complexity of noncommutative field theories. The four-dimensional N=4 noncommutative super Yang-Mills theory with Moyal algebra along two of the spatial directions has a well known holographic dual as a type IIB supergravity theory with a stack of D3 branes and non-trivial NS-NS B fields. We start from this example and find that the late time holographic complexity growth rate, based on the "complexity equals action" conjecture, experiences an enhancement when the non-commutativity is turned on. This enhancement saturates a new limit which is exactly 1/4 larger than the commutative value. We then attempt to give a quantum mechanics explanation of the enhancement. Finite time behavior of the complexity growth rate is also studied. Inspired by the non-trivial result, we move on to more general setup in string theory where we have a stack of D p branes and also turn on the B field. Multiple noncommutative directions are considered in higher p cases.

  8. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    International Nuclear Information System (INIS)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-01-01

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations

  9. Holographic RG flows from Quasi-Topological Gravity

    International Nuclear Information System (INIS)

    Camara da Silva, U.; Sotkov, G.M.

    2013-01-01

    We investigate the holographic Renormalization Group (RG) flows and the critical phenomena that take place in the QFT's dual to the d-dimensional cubic Quasi-Topological Gravity coupled to scalar matter. The knowledge of the corresponding flat Domain Walls (DW's) solutions allows us to derive the explicit form of the QFT's β-functions, as well as of the trace anomalies a(l) and c(l), in terms of the matter superpotential. As a consequence we are able to determine the complete set of CFT data characterizing the universality classes of the UV and IR critical points and to follow the particular RG evolution of this data. We further analyse the dependence of the critical properties of such dual QFT's on the values of the Lovelock couplings and on the shape of the superpotential. For odd values of d, the explicit form of the “a and c-central charges” as functions of the running coupling constant, enable us to establish the conditions under which the a and c-Theorems for their decreasing are valid. The restrictions imposed on the massless holographic RG flows by the requirements of the positivity of the energy fluxes are derived. The particular case of quartic Higgs-like superpotential is studied in detail. It provides an example of unitary dual QFT's having few c≠a-critical points representing second or infinite order phase transitions. Depending on the range of the values of the coupling constant they exhibit massive and massless phases, described by a chain of distinct DW's solutions sharing common boundaries

  10. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  11. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  12. Holographic corrections to meson scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk

    2017-06-15

    We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.

  13. Organic liquids as ''activ media'' in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some types of organic liquids for using as activ media in a holographic ionizing radiation dosimeter are presented. One outlined the advantages of the holographic dosimeter comparatively with those of common used dosimeters. One presented the advantages of utilization of the organic liquids comparatively with another chemical systems used in a holographic ionizing radiation dosimeter. (author)

  14. Holographic dark energy and f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.

  15. Application of DuPont photopolymer films to automotive holographic display

    Science.gov (United States)

    Nakazawa, Norihito; Ono, Motoshi; Takeuchi, Shoichi; Sakurai, Hiromi; Hirano, Masahiro

    1998-03-01

    Automotive holographic head-up display (HUD) systems employing DuPont holographic photopolymer films are presented. Holographic materials for automotive application are exposed to severe environmental conditions and are required high performance. This paper describes the improvement of DuPont photopolymer films for the automotive use, critical technical issues such as optical design, external color and stray light. The holographic HUD combiner embedded in a windshield of an automobile has peculiar problems called external color. Diffraction light from holographic combiner makes its external color tone stimulative. We have introduced RGB three color recording and color simulation in order to improve the external color. A moderate external color tone was realized by the optimization in terms of wavelengths and diffraction efficiencies of the combiner hologram. The stray light called flare arises from a reflection by glass surface of windshield. We have developed two techniques to avoid the flare. First is a diffuser type trap beam guard hologram which reduces the intensity of the flare. Second is the optimization of the design of hologram so that the incident direction of flare is lower than the horizon line. As an example of automotive display a stand-alone type holographic HUD system attached on the dashboard of an automobile is demonstrated, which provides useful driving information such as route guidance. The display has a very simple optical system that consists of only a holographic combiner and a vacuum fluorescent display. Its thin body is only 35 mm high and does not obstruct driver's view. The display gives high contrast and wide image.

  16. Temporal formation of optical anisotropy and surface relief during polarization holographic recording in polymethylmethacrylate with azobenzene side groups

    Science.gov (United States)

    Sasaki, Tomoyuki; Izawa, Masahiro; Noda, Kohei; Nishioka, Emi; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-03-01

    The formation of polarization holographic gratings with both optical anisotropy and surface relief (SR) deformation was studied for polymethylmethacrylate with azobenzene side groups. Temporal contributions of isotropic and anisotropic phase gratings were simultaneously determined by observing transitional intensity and polarization states of the diffraction beams and characterizing by means of Jones calculus. To clarify the mechanism of SR deformation, cross sections of SR were characterized based on the optical gradient force model; experimental observations were in good agreement with the theoretical expectation. We clarified that the anisotropic phase change originating in the reorientation of the azobenzene side groups was induced immediately at the beginning of the holographic recording, while the response time of the isotropic phase change originating in the molecular migration due to the optical gradient force was relatively slow.

  17. Digital Double-Pulse Holographic Interferometry for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    H.J. Tiziani

    1996-01-01

    Full Text Available Different arrangements for double-pulsed holographic and speckle interferometry for vibration analysis will be described. Experimental results obtained with films (classical holographic interferometry and CCD cameras (digital holographic interferometry as storage materials are presented. In digital holography, two separate holograms of an object under test are recorded within a few microseconds using a CCD camera and are stored in a frame grabber. The phases of the two reconstructed wave fields are calculated from the complex amplitudes. The deformation is obtained from the phase difference. In the case of electronic speckle pattern interferometry (or image plane hologram, the phase can be calculated by using the sinusoid-fitting method. In the case of digital holographic interferometry, the phase is obtained by digital reconstruction of the complex amplitudes of the wave fronts. Using three directions of illumination and one direction of observation, all the information necessary for the reconstruction of the 3-dimensional deformation vector can be recorded at the same time. Applications of the method for measuring rotating objects are discussed where a derotator needs to be used.

  18. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  19. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  20. Covariant generalized holographic dark energy and accelerating universe

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  1. Phase transitions in 3D gravity and fractal dimension

    Science.gov (United States)

    Dong, Xi; Maguire, Shaun; Maloney, Alexander; Maxfield, Henry

    2018-05-01

    We show that for three dimensional gravity with higher genus boundary conditions, if the theory possesses a sufficiently light scalar, there is a second order phase transition where the scalar field condenses. This three dimensional version of the holographic superconducting phase transition occurs even though the pure gravity solutions are locally AdS3. This is in addition to the first order Hawking-Page-like phase transitions between different locally AdS3 handlebodies. This implies that the Rényi entropies of holographic CFTs will undergo phase transitions as the Rényi parameter is varied, as long as the theory possesses a scalar operator which is lighter than a certain critical dimension. We show that this critical dimension has an elegant mathematical interpretation as the Hausdorff dimension of the limit set of a quotient group of AdS3, and use this to compute it, analytically near the boundary of moduli space and numerically in the interior of moduli space. We compare this to a CFT computation generalizing recent work of Belin, Keller and Zadeh, bounding the critical dimension using higher genus conformal blocks, and find a surprisingly good match.

  2. Numerical processing of ultrasonic holographic data

    International Nuclear Information System (INIS)

    Langenberg, K.J.; Kiefer, R.; Wosnitza, M.; Schmitz, V.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Saarbruecken

    1980-01-01

    Reconstructing ultrasonic holographic data numerically, the well-known Fresnel approximation is a first step in evaluating the Rayleigh-Sommerfeld diffraction formula, that is to say, a one- or two-dimensional Fourier-transform of the holographic data multiplied by a complex phase factor has to be computed. The present contribution investigates the relation between flaw depth and aperture size yielding the more advantageous use of the spatial frequency approach where the advantage is in terms of the number of samples and hence computation time in evaluating Fourier transforms numerically. (orig.) [de

  3. Holographic dark energy in the DGP model

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco; Avelino, Arturo

    2012-01-01

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: ε=±1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  4. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  5. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  6. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.

  7. Chemical systems in aqueous solutions for using in the holographic ionizing radiation

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some types of chemical systems in aqueous solutions for utilization as active media in holographic ionizing radiation dosimeter are presented. One discussed some advantages of the holographic dosimeter comparatively with another existing types. It is outlined the advantages of using aqueousss solutions as active media in holographic dosimeter. (author)

  8. Environmental stability study of holographic solar spectrum splitting materials

    Science.gov (United States)

    Chrysler, Benjamin D.; Ayala Pelaez, Silvana; Wu, Yuechen; Vorndran, Shelby D.; Kostuk, Raymond K.

    2016-09-01

    In this study the impact of outdoor temperature variations and solar illumination exposure on spectral filter material and holographic optical elements is examined. Although holographic components have been shown to be useful for solar spectrum splitting designs, relatively little quantitative data exist to demonstrate the extent to which these materials can withstand outdoor conditions. As researchers seek to investigate practical spectrum splitting designs, the environmental stability of holographic materials should be considered as an important factor. In the experiment presented, two holographic materials, Covestro Bayfol HX photopolymer and dichromated gelatin, and 3M reflective polymer filter materials are exposed to outdoor conditions for a period of several months. The environmental effect on absorption, spectral and angular bandwidth, peak efficiency, and Bragg matching conditions for the holograms are examined. Spectral bandwidth and transmittance of the 3M reflective filter material are also monitored. Holographic gratings are recorded, measured, and mounted on glass substrates and then sealed with a glass cover plate. The test samples are then mounted on a photovoltaic panel to simulate realistic temperature conditions and placed at an outdoor test facility in Tucson, Arizona. A duplicate set of holograms and 3M filter material is stored as a control group and periodically compared over the test period.

  9. First law of thermodynamics on holographic screens in entropic force frame

    International Nuclear Information System (INIS)

    Chen Yixin; Li Jianlong

    2011-01-01

    Imposing a mathematical definition of holographic screen, in the spirit of Verlinde's entropic force proposal (E.P. Verlinde, (arXiv:1001.0785)), we give the differential and integral form of the first law of thermodynamics on the holographic screen enclosing a spherical symmetric black hole. It is consistent with equipartition principle and the form of Komar mass. There are also other version of first law, which are equivalent up to a Legendre transformation. The holographic screen thermodynamics is defined in a quasi-local form, which is the main difference to black hole thermodynamics. Thus, the physical interpretation of holographic screen thermodynamics might be different from black hole thermodynamics. We argue that the entropy of the holographic screen determines its area, i.e. S=A/4 . And the metric can be expressed by thermodynamics variables, which is an illustration of how the space is foliated by the thermodynamical potentials.

  10. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    The paper describes a simple and cost effective method for the realization of an optical interferometer based on holographic optics, which use minimal bulk optical components. The optical arrangement in the proposed method involves a very simple alignment procedure and inexpensive holographic recording material is ...

  11. A novel holographic technique for strain and deformation measurement

    International Nuclear Information System (INIS)

    Ettemeyer, A.

    1988-01-01

    A complete holographic system is presented after a description of the holographic measurement principle and of the fundamentals of three-dimensional deformation and dilatation analysis. The new holographic system permits quasi-simultaneous measurements from three extremely divergent directions. For this purpose, the object is illuminated and observed from each of three perspectives. To avoid perturbing interferences and Moire effects, the laser beam is split up into three beams which are no longer coherent with each other. In this way, three holograms are produced in various sections of a single holographic plate. The holograms for the three measurement directions are evaluated with the help of a computer (Phase-shift method). A picture rectification is effected to compensate for the distortion of the object's perspectives due to diverging directions of observation. The three-dimensional shifting components of the displacement vector are calculated for each point of the object's surface. The expansion of the object's surface is derived from these calculations, by means of differentiation. (orig./HP) [de

  12. Proton beam writing for producing holographic images

    International Nuclear Information System (INIS)

    Ow, Y.S.; Breese, M.B.H.; Bettiol, A.A.

    2009-01-01

    This work reports on the writing of computer generated hologram diffraction patterns using focused 2 MeV proton beam irradiation. These patterns were designed using a ray tracing algorithm and written directly into a thick polymethylmethacrylate layer. When the developed holographic pattern was illuminated with a 650 nm laser it produced a good reconstructed image. This work provides means of forming high-resolution, high aspect ratio holographic images in polymers for applications in data storage using switchable holography.

  13. A holographic waveguide based eye tracker

    Science.gov (United States)

    Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng

    2018-02-01

    We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.

  14. Shrinkage measurement for holographic recording materials

    Science.gov (United States)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.

    2017-05-01

    There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).

  15. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  16. Holographic method coupled with an optoelectronic interface applied in the ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.; Sporea, D.; Niculescu, V.I.R.

    2000-01-01

    The paper presents a holographic method applied in the ionizing radiation dosimetry. It is possible to use two types of holographic interferometry like as double exposure holographic interferometry, or fast real time holographic interferometry. In this paper the applications of holographic interferometry to ionizing radiation dosimetry are presented. The determination of the accurate value of dose delivered by an ionizing radiation source (released energy per mass unit) is a complex problem which imposes different solutions depending on experimental parameters and it is solved with a double exposure holographic interferometric method associated with an optoelectronic interface and Z80 microprocessor. The method can determine the absorbed integral dose as well as the three-dimensional distribution of dose in given volume. The paper presents some results obtained in radiation dosimetry. Original mathematical relations for integral absorbed dose in irreversible radiolyzing liquids where derived. Irradiation effects can be estimated from the holographic fringes displacement and density. To measure these parameters, the obtained holographic interferograms were picked-up by a closed TV circuit system in such a way that a selected TV line explores the picture along the direction of interest using a special designed interface, a Z80 and our microprocessor system captures data along the selected TV line. When the integral dose is to be measured the microprocessor computes it from the information contained in the fringes distribution, according to the proposed formulae. Integral absorbed dose and spatial dose distribution can be estimated with an accuracy better than 4%. Some advantages of this method are outlined comparatively with conventional method in radiation dosimetry. The paper presents an original holographic set-up with an electronic interface, assisted by a Z80 microprocessor and used for nondestructive testing of transparent objects at the laser wave length

  17. Real-time Holographic Display Based on a Super Fast Response Thin Film

    International Nuclear Information System (INIS)

    Gao, Hongyue; Li, Xiao; He, Zhenghong; Su, Yikai; Poon, Ting-Chung

    2013-01-01

    Real-time dynamic holographic display is obtained with super fast response in a thin film without any applied electric field. Holograms can be refreshed in the order of a millisecond and there is no cross talk between the recorded holograms because the hologram formed in the film is transient and can be completely self erased, and the hologram formation time and self-erasure time are both ∼1 ms. Holographic video display is achieved, which shows the real-time holographic image display capability of the thin film, and its much higher resolution than those of commercially available spatial light modulators. Furthermore, multiplexed hologram display using two polarization directions of a recorded light and multiple color holographic display at different laser wavelengths are presented, which demonstrate the feasibility of a RGB color holographic three-dimensional display with the thin film. Because the sample is easy to be fabricated into a large size screen and needs no external applied electric field, we think that the film can be developed into a large-size, dynamic, and color holographic three-dimensional display in the future.

  18. Real-time wideband holographic surveillance system

    Science.gov (United States)

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  19. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  20. Design and evaluation of daylighting applications of holographic glazings

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, K.; Ehrlich, C.; Ward, G.

    1996-12-01

    According to the contractual agreement, BTP would develop a computer model of the POC holographic structures and then simulate the performance of alternative designs using the RADIANCE lighting and rendering computer program [Ward 1990]. The RADIANCE model would then be used to evaluate the daylight performance of alternative designs of holographic glazings in a prototypical office space. The simulation process would be validated against actual photometric measurements of holographic glazing samples developed by POC. The results would be used to evaluate the potential for increased electric lighting savings through increased daylight illuminance levels at distances more than 15 ft--20 ft (4.6 m--6.1 m ) from the window wall.

  1. Inflation via logarithmic entropy-corrected holographic dark energy model

    International Nuclear Information System (INIS)

    Darabi, F.; Felegary, F.; Setare, M.R.

    2016-01-01

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  2. Superdomain dynamics in ferroelectric-ferroelastic films: Switching, jamming, and relaxation

    Science.gov (United States)

    Scott, J. F.; Hershkovitz, A.; Ivry, Y.; Lu, H.; Gruverman, A.; Gregg, J. M.

    2017-12-01

    Recent experimental work shows that ferroelectric switching can occur in large jumps in which ferroelastic superdomains switch together, rather than having the numerous smaller ferroelectric domains switch within them. In this sense, the superdomains play a role analogous to that of Abrikosov vortices in thin superconducting films under the Kosterlitz-Thouless framework, which control the dynamics more than individual Cooper pairs within them do. Here, we examine the dynamics of ferroelastic superdomains in ferroelastic ferroelectrics and their role in switching devices such as memories. Jamming of ferroelectric domains in thin films has revealed an unexpected time dependence of t-1/4 at long times (hours), but it is difficult to discriminate between power-law and exponential relaxation. Other aspects of this work, including spatial period doubling of domains, led to a description of ferroelastic domains as nonlinear processes in a viscoelastic medium, which produce folding and metastable kinetically limited states. This ¼ exponent is a surprising agreement with the well-known value of ¼ for coarsening dynamics in viscoelastic media. We try to establish a link between these two processes, hitherto considered unrelated, and with superdomains and domain bundles. We note also that high-Tc superconductors share many of the ferroelastic domain properties discussed here and that several new solar cell materials and metal-insulator transition systems are ferroelastic.

  3. Holographic and acoustic emission evaluation of pressure vessels

    International Nuclear Information System (INIS)

    Boyd, D.M.

    1980-01-01

    Optical holographic interfereometry and acoustic emission monitoring were simultaneously used to evaluate two small, high pressure vessels during pressurization. The techniques provide pressure vessel designers with both quantitative information such as displacement/strain measurements and qualitative information such as flaw detection. The data from the holographic interferograms were analyzed for strain profiles. The acoustic emission signals were monitored for crack growth and vessel quality

  4. A Curious Conundrum; The State of Holographic Portraiture in the 21st Century

    International Nuclear Information System (INIS)

    Taylor, R

    2013-01-01

    The technology of producing (true) hologram portraits was first introduced in the late 1960's. From this time, a number of individuals and organizations worldwide have specialized in providing holographic portraiture services with varying degrees of achievement. Yet today, some 45 years later, holographic portraiture remains an obscure and niche form of displaying an individual's likeness. Despite all of this technology's promising and unique attributes, and the astonishing fact of holography being the most accurate and realistic form of imaging available today; true holographic portraits continues to be a form of portraiture largely unknown to the general public and has never achieved large-scale commercial success. This paper will present a brief history of holographic portraiture, designating the different types of 3-D hologram portraits available today, and their uses. Emphasis will be given to true holographic pulsed portraiture in which the subject itself is recorded holographically using high-energy pulsed lasers. Possible cause and effect for explaining the present demise of this type of portrait making will be discussed along with recent advancements and future developments in this fledgling field which could ultimately lead to a 'tipping point' in large-scale consumer and commercial awareness and desirability of the medium. The author will share his experiences in operating pulsed holographic portraiture studios for over the last 15 years including the vision of a new type of holographic portrait studio for the 21st century which he hopes will attain the level of success enabling a next generation of commercially viable holographic portrait studios for the future.

  5. Holographic three-dimensional telepresence using large-area photorefractive polymer.

    Science.gov (United States)

    Blanche, P-A; Bablumian, A; Voorakaranam, R; Christenson, C; Lin, W; Gu, T; Flores, D; Wang, P; Hsieh, W-Y; Kathaperumal, M; Rachwal, B; Siddiqui, O; Thomas, J; Norwood, R A; Yamamoto, M; Peyghambarian, N

    2010-11-04

    Holography is a technique that is used to display objects or scenes in three dimensions. Such three-dimensional (3D) images, or holograms, can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. The concept of 3D telepresence, a real-time dynamic hologram depicting a scene occurring in a different location, has attracted considerable public interest since it was depicted in the original Star Wars film in 1977. However, the lack of sufficient computational power to produce realistic computer-generated holograms and the absence of large-area and dynamically updatable holographic recording media have prevented realization of the concept. Here we use a holographic stereographic technique and a photorefractive polymer material as the recording medium to demonstrate a holographic display that can refresh images every two seconds. A 50 Hz nanosecond pulsed laser is used to write the holographic pixels. Multicoloured holographic 3D images are produced by using angular multiplexing, and the full parallax display employs spatial multiplexing. 3D telepresence is demonstrated by taking multiple images from one location and transmitting the information via Ethernet to another location where the hologram is printed with the quasi-real-time dynamic 3D display. Further improvements could bring applications in telemedicine, prototyping, advertising, updatable 3D maps and entertainment.

  6. Entanglement between two interacting CFTs and generalized holographic entanglement entropy

    International Nuclear Information System (INIS)

    Mollabashi, Ali; Shiba, Noburo; Takayanagi, Tadashi

    2014-01-01

    In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting N=4 super Yang-Mills theories by introducing a minimal surface in the S 5 direction, instead of the AdS 5 direction. This offers a possible generalization of holographic entanglement entropy

  7. Drawing Lines with Light in Holographic Space

    International Nuclear Information System (INIS)

    Chang, Yin-Ren; Richardson, Martin

    2013-01-01

    This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.

  8. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)

    2010-06-07

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  9. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Jamil, Mubasher

    2010-01-01

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  10. Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells

    Science.gov (United States)

    Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie

    2017-03-01

    Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.

  11. Counterterms and dual holographic anomalies in CS gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banados, Maximo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Theisen, Stefan [Max-Planck-Institut fuer Gravitationphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2005-10-15

    The holographic Weyl anomaly associated to Chern-Simons gravity in 2n+1 dimensions is proportional to the Euler term in 2n dimensions, with no contributions from the Weyl tensor. We compute the holographic energy-momentum tensor associated to Chern-Simons gravity directly from the action, in an arbitrary odd-dimensional spacetime. We show, in particular, that the counterterms rendering the action finite contain only terms of the Lovelock type.

  12. Report on the set-up of a holographic interferometer

    International Nuclear Information System (INIS)

    Koster, J.N.

    1977-10-01

    Holographic interferometry is well suited for visualizing temperature, density, pressure and concentration fields in transparent fluids. The holographic real-time interferometer allows a continuous observation of stationary and instationary flow processes. After the explanation of the measuring technique, the problems arising during the interferometer set-up as well as the necessary adjusting operations are described. For heat transfer problems new possibilities for the application of holographic interferometry are revealed. Convection in boxes, temperature fields around heated or cooled bodies, concentration and diffusion processes in two phase-flows, mixtures and solutions as well as melting and freezing processes may be investigated. On the basis of particular examples some applications are presented. (orig.) [de

  13. Near real-time digital holographic microscope based on GPU parallel computing

    Science.gov (United States)

    Zhu, Gang; Zhao, Zhixiong; Wang, Huarui; Yang, Yan

    2018-01-01

    A transmission near real-time digital holographic microscope with in-line and off-axis light path is presented, in which the parallel computing technology based on compute unified device architecture (CUDA) and digital holographic microscopy are combined. Compared to other holographic microscopes, which have to implement reconstruction in multiple focal planes and are time-consuming the reconstruction speed of the near real-time digital holographic microscope can be greatly improved with the parallel computing technology based on CUDA, so it is especially suitable for measurements of particle field in micrometer and nanometer scale. Simulations and experiments show that the proposed transmission digital holographic microscope can accurately measure and display the velocity of particle field in micrometer scale, and the average velocity error is lower than 10%.With the graphic processing units(GPU), the computing time of the 100 reconstruction planes(512×512 grids) is lower than 120ms, while it is 4.9s using traditional reconstruction method by CPU. The reconstruction speed has been raised by 40 times. In other words, it can handle holograms at 8.3 frames per second and the near real-time measurement and display of particle velocity field are realized. The real-time three-dimensional reconstruction of particle velocity field is expected to achieve by further optimization of software and hardware. Keywords: digital holographic microscope,

  14. Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin

    NARCIS (Netherlands)

    Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.

    2005-01-01

    We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the

  15. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  16. Deriving covariant holographic entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)

    2016-11-07

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  17. Interacting holographic dark energy with logarithmic correction

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy

  18. Holographic bounds on the UV cutoff scale in inflationary cosmology

    DEFF Research Database (Denmark)

    Keski-Vakkuri, Esko; Sloth, Martin Snoager

    2003-01-01

    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating...

  19. Computer assisted holographic moire contouring

    Science.gov (United States)

    Sciammarella, Cesar A.

    2000-01-01

    Theoretical analyses and experimental results on holographic moire contouring on diffusely reflecting objects are presented. The sensitivity and limitations of the method are discussed. Particular emphasis is put on computer-assisted data retrieval, processing, and recording.

  20. Magnonic holographic imaging of magnetic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A.D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khivintsev, Y.; Filimonov, Y. [Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Saratov 410019 (Russian Federation); Saratov State University, Saratov 410012 (Russian Federation); Garay, J.; Lake, R.; Balandin, A.A. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khitun, A., E-mail: akhitun@engr.ucr.edu [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States)

    2017-04-15

    We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot – the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe{sub 12}O{sub 19} and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe{sub 12}O{sub 19} powder. The imaging was accomplished on a Y{sub 3}Fe{sub 2}(FeO{sub 4}){sub 3} testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed. - Highlights: • A technique for magnetic microstructure imaging via their interaction with propagating spin waves is proposed. • In this technique, magnetic structures appear as 3D objects. • Several holographic images of magnetic microstructures are presented.

  1. Future of photorefractive based holographic 3D display

    Science.gov (United States)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  2. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre; Depeursinge, Christian D.; Magistretti, Pierre J.

    2013-01-01

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  3. A defect in holographic interpretations of tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej [Institute for Advanced Study,Princeton, NJ 08540 (United States); Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,Austin, TX 78712 (United States)

    2017-03-16

    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS{sub 3}-Janus geometries.

  4. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  5. Lifshitz scaling effects on holographic superconductors

    International Nuclear Information System (INIS)

    Lu, Jun-Wang; Wu, Ya-Bo; Qian, Peng; Zhao, Yue-Yue; Zhang, Xue; Zhang, Nan

    2014-01-01

    Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent z on the holographic superconductor models are studied in some detail, including s-wave and p-wave models. Working in the probe limit, we calculate the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with a general z. For both the s-wave and p-wave models in the black hole backgrounds, as z increases, the phase transition becomes difficult and the conductivity is suppressed. For the Lifshitz soliton background, when z increases, the critical chemical potential increases in both the s-wave model (with a fixed mass of the scalar field) and p-wave model. For the p-wave model in both the Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when z increases. In all cases, we find that the critical exponent of the condensation is always 1/2, independent of z and spacetime dimension. The analytical results from the Sturm–Liouville variational method uphold the numerical calculations. The implications of these results are discussed

  6. The CP-odd sector and $θ$ dynamics in holographic QCD

    NARCIS (Netherlands)

    Arean, Daniel; Iatrakis, Ioannis; Jarvinen, Matti; Kiritsis, Elias

    2017-01-01

    The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the CP-odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle-points at finite $\\theta$ is determined, as well

  7. The holographic bound in the scalar-tensor and f(R) gravities

    International Nuclear Information System (INIS)

    Firouzjaee, J.T.

    2013-01-01

    The holographic bound has been extended to the different theory of gravities such as scalar-tensor gravity and f(R) gravity according to the Noether charge definition of the entropy for a black hole surface. We have introduced some popular examples of the flat FRW cosmology in order to investigate holographic bound in scalar-tensor and f(R) gravity. Using the holographic bound, we put an additional constraint on scalar-tensor gravity and the f(R) gravity parameters. We also discuss the transformation from Jordan frame to Einstein frame. (orig.)

  8. Entanglement from dissipation and holographic interpretation

    Science.gov (United States)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2018-02-01

    In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacumm state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017).

  9. Constraining holographic cosmology using Planck data

    Science.gov (United States)

    Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas

    2017-06-01

    Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.

  10. Entanglement from dissipation and holographic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Cantcheff, M.B. [IFLP-CONICET CC 67, La Plata, Buenos Aires (Argentina); Gadelha, Alexandre L. [Universidade Federal da Bahia, Instituto de Fisica, Salvador, BA (Brazil); Marchioro, Dafni F.Z.; Nedel, Daniel Luiz [Universidade Federal da Integracao Latino-Americana, Instituto Latino-Americano de Ciencias da Vida e da Natureza, Foz do Iguacu, PR (Brazil)

    2018-02-15

    In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacuum state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017). (orig.)

  11. Baryon physics in holographic QCD

    Directory of Open Access Journals (Sweden)

    Alex Pomarol

    2009-03-01

    Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.

  12. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  13. Holographic duality: Stealing dimensions from metals

    Science.gov (United States)

    Zaanen, Jan

    2013-10-01

    Although electrically charged black holes seem remote from superconductors and strange metals in the laboratory, they might be intimately related by the holographic dualities discovered in string theory.

  14. Fermionic phase transition induced by the effective impurity in holography

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Li-Qing [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); School of Physics and Electronic Information, Shangrao Normal University,Shangrao 334000 (China); Kuang, Xiao-Mei [Department of Physics, National Technical University of Athens,GR-15780 Athens (Greece); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-20

    We investigate the holographic fermionic phase transition induced by the effective impurity in holography, which is introduced by massless scalar fields in Einstein-Maxwell-massless scalar gravity. We obtain a phase diagram in (α,T) plane separating the Fermi liquid phase and the non-Fermi liquid phase.

  15. Holographic diffuser by use of a silver halide sensitized gelatin process

    Science.gov (United States)

    Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man

    2003-05-01

    Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.

  16. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  17. The theory of critical phenomena in two-dimensional systems

    International Nuclear Information System (INIS)

    Olvera de la C, M.

    1981-01-01

    An exposition of the theory of critical phenomena in two-dimensional physical systems is presented. The first six chapters deal with the mean field theory of critical phenomena, scale invariance of the thermodynamic functions, Kadanoff's spin block construction, Wilson's renormalization group treatment of critical phenomena in configuration space, and the two-dimensional Ising model on a triangular lattice. The second part of this work is made of four chapters devoted to the application of the ideas expounded in the first part to the discussion of critical phenomena in superfluid films, two-dimensional crystals and the two-dimensional XY model of magnetic systems. Chapters seven to ten are devoted to the following subjects: analysis of long range order in one, two, and three-dimensional physical systems. Topological defects in the XY model, in superfluid films and in two-dimensional crystals. The Thouless-Kosterlitz iterated mean field theory of the dipole gas. The renormalization group treatment of the XY model, superfluid films and two-dimensional crystal. (author)

  18. Ensemble-free configurational temperature for spin systems

    Science.gov (United States)

    Palma, G.; Gutiérrez, G.; Davis, S.

    2016-12-01

    An estimator for the dynamical temperature in an arbitrary ensemble is derived in the framework of the conjugate variables theorem. We prove directly that its average indeed gives the inverse temperature and that it is independent of the ensemble. We test this estimator numerically by a simulation of the two-dimensional X Y model in the canonical ensemble. As this model is critical in the whole region of temperatures below the Berezinski-Kosterlitz-Thouless critical temperature TBKT, we use a generalization of Wolff's unicluster algorithm. The numerical results allow us to confirm the robustness of the analytical expression for the microscopic estimator of the temperature. This microscopic estimator has also the advantage that it gives a direct measure of the thermalization process and can be used to compute absolute errors associated with statistical fluctuations. In consequence, this estimator allows for a direct, absolute, and stringent test of the ergodicity of the underlying Markov process, which encodes the algorithm used in a numerical simulation.

  19. The holographic principle, the equipartition of energy and Newton’s gravity

    Science.gov (United States)

    Sadiq, M.

    2017-12-01

    Assuming the equipartition of energy to hold on a holographic sphere, Erik Verlinde demonstrated that Newton’s gravity follows as an entropic force. Some comments are in place about Verlinde’s assumptions in his derivation. It is pointed out that the holographic principle allows for freedom up to a free scale factor in the choice of Planck scale area while leading to classical gravity. Similarity of this free parameter with the Immirzi parameter of loop quantum gravity is discussed. We point out that the equipartition of energy is inbuilt into the holographic principle and, therefore, need not be assumed from the outset.

  20. Liquid polymers for using in a holographic ionizing radiation dosimeter

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1979-01-01

    Some liquid polymeric systems for using in the holographic ionizing radiation dosimeter are presented. It is shown that the action of radiation on polymers leads to the destruction of the polymeric chains or to perform them, the both processes being applied in radiation dosimetry. Some advantages of the holographic dosimeter are outlined comparatively with those common used. (author)

  1. Properties of multilayer nonuniform holographic structures

    International Nuclear Information System (INIS)

    Pen, E F; Rodionov, Mikhail Yu

    2010-01-01

    Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)

  2. Holographic entanglement for Chern-Simons terms

    International Nuclear Information System (INIS)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-01-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS 2k+1 . This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS 7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  3. Holographic entanglement for Chern-Simons terms

    Energy Technology Data Exchange (ETDEWEB)

    Azeyanagi, Tatsuo [Département de Physique, Ecole Normale Supérieure, CNRS,24 rue Lhomond, 75005 Paris (France); Loganayagam, R. [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Ng, Gim Seng [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada)

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS{sub 2k+1}. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong’s derivation applied to the corresponding anomaly polynomial. In lower dimensions (k=1,2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k≥3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS{sub 7} and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  4. Holographic entanglement for Chern-Simons terms

    Science.gov (United States)

    Azeyanagi, Tatsuo; Loganayagam, R.; Ng, Gim Seng

    2017-02-01

    We derive the holographic entanglement entropy contribution from pure and mixed gravitational Chern-Simons(CS) terms in AdS2 k+1. This is done through two different methods: first, by a direct evaluation of CS action in a holographic replica geometry and second by a descent of Dong's derivation applied to the corresponding anomaly polynomial. In lower dimensions ( k = 1 , 2), the formula coincides with the Tachikawa formula for black hole entropy from gravitational CS terms. New extrinsic curvature corrections appear for k ≥ 3: we give explicit and concise expressions for the two pure gravitational CS terms in AdS7 and present various consistency checks, including agreements with the black hole entropy formula when evaluated at the bifurcation surface.

  5. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  6. Holographic conductivity of holographic superconductors with higher-order corrections

    Energy Technology Data Exchange (ETDEWEB)

    Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghazanfari, Afsoon; Dehyadegari, Amin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2018-02-15

    We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω/T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature. (orig.)

  7. Holographic models with anisotropic scaling

    Science.gov (United States)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  8. Holographic sensors for diagnostics of solution components

    International Nuclear Information System (INIS)

    Kraiskii, A V; Suitanov, T T; Postnikov, V A; Khamidulin, A V

    2010-01-01

    The properties of holographic sensors of two types are studied. The sensors are based on a three-dimensional polymer-network matrix of copolymers of acrylamide, acrylic acid (which are sensitive to the medium acidity and bivalent metal ions) and aminophenylboronic acid (sensitive to glucose). It is found that a change in the ionic composition of a solution results in changes in the distance between layers and in the diffraction efficiency of holograms. Variations in the shape of spectral lines, which are attributed to the inhomogeneity of a sensitive layer, and nonmonotonic changes in the emulsion thickness and diffraction efficiency were observed during transient processes. The composition of the components of a hydrogel medium is selected for systems which can be used as a base for glucose sensors with the mean holographic response in the region of physiological glucose concentration in model solutions achieving 40 nm/(mmol L -1 ). It is shown that the developed holographic sensors can be used for the visual and instrumental determination of the medium acidity, alcohol content, ionic strength, bivalent metal salts and the quality of water, in particular, for drinking. (laser applications and other topics in quantum electronics)

  9. Holographic sol-gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Ilatovskii, Daniil A.; Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-05-01

    Sol-gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  10. Holographic sol–gel monoliths: optical properties and application for humidity sensing

    Science.gov (United States)

    Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-01-01

    Sol–gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol–gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  11. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  12. IR sensitive photorefractive polymers, the first updateable holographic three-dimensional display

    Science.gov (United States)

    Tay, Savas

    This work presents recent advances in the development of infra-red sensitive photorefractive polymers, and updateable near real-time holographic 3D displays based on photorefractive polymers. Theoretical and experimental techniques used for design, fabrication and characterization of photorefractive polymers are outlined. Materials development and technical advances that made possible the use of photorefractive polymers for infra-red free-space optical communications, and 3D holographic displays are presented. Photorefractive polymers are dynamic holographic materials that allow recording of highly efficient reversible holograms. The longest operation wavelength for a photorefractive polymer before this study has been 950nm, far shorter than 1550nm, the wavelength of choice for optical communications and medical imaging. The polymers shown here were sensitized using two-photon absorption, a third order nonlinear effect, beyond the linear absorption spectrum of organic dyes, and reach 40% diffraction efficiency with a 35ms response time at this wavelength. As a consequence of two-photon absorption sensitization they exhibit non-destructive readout, which is an important advantage for applications that require high signal-to-noise ratios. Holographic 3D displays provide highly realistic images without the need for special eyewear, making them valuable tools for applications that require "situational awareness" such as medical, industrial and military imaging. Current commercially available holographic 3D displays employ photopolymers that lack image updating capability, resulting in their restricted use and high cost per 3D image. The holographic 3D display shown here employs photorefractive polymers with nearly 100% diffraction efficiency and fast writing time, hours of image persistence, rapid erasure and large area, a combination of properties that has not been shown before. The 3D display is based on stereography and utilizes world's largest photorefractive

  13. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Liu Pan; Zeng Chao; Yao Qiu-Xiang; Zheng Zhiqiang; Liu Jicheng; Zheng Huadong; Yu Ying-Jie; Zeng Zhen-Xiang; Sun Tao

    2016-01-01

    We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. (special topic)

  14. A direct-view customer-oriented digital holographic camera

    Science.gov (United States)

    Besaga, Vira R.; Gerhardt, Nils C.; Maksimyak, Peter P.; Hofmann, Martin R.

    2018-01-01

    In this paper, we propose a direct-view digital holographic camera system consisting mostly of customer-oriented components. The camera system is based on standard photographic units such as camera sensor and objective and is adapted to operate under off-axis external white-light illumination. The common-path geometry of the holographic module of the system ensures direct-view operation. The system can operate in both self-reference and self-interference modes. As a proof of system operability, we present reconstructed amplitude and phase information of a test sample.

  15. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...... gratings was studied in case of films with and without a hard protective layer. We showed that the dominant contribution to the diffraction efficiency comes from the anisotropy in case of expositions below 1 sec even for high incident intensity. The usage of the same wavelength for writing, reading...

  16. An Extension of Holographic Moiré to Micromechanics

    Science.gov (United States)

    Sciammarella, C. A.; Sciammarella, F. M.

    The electronic Holographic Moiré is an ideal tool for micromechanics studies. It does not require a modification of the surface by the introduction of a reference grating. This is of particular advantage when dealing with materials such as solid propellant grains whose chemical nature and surface finish makes the application of a reference grating very difficult. Traditional electronic Holographic Moiré presents some difficult problems when large magnifications are needed and large rigid body motion takes place. This paper presents developments that solves these problems and extends the application of the technique to micromechanics.

  17. Digital holographic inspection for drying processes of paint films and ink dots

    Science.gov (United States)

    Yokota, M.; Aoyama, F.

    2017-06-01

    Digital holographic techniques to investigate drying processes of both paint films and ink dot is presented. The proposed technique based on digital holographic interferometry can achieve both visualization of variations and analysis of dryness of paint films in the drying process by using phase changes between two subsequent reconstructed complex amplitudes of the reflected light from the film. To follow the drying processes, holograms are recorded at a constant time interval. Phase-shifting digital holography has been applied to analyze the dryness of commercial paints applied on the metal plate. For analysis of an ink dot having diameter of a few hundred micrometers, digital holographic microscopy is applied to evaluating the time history of dryness of ink dot in the drying process. This paper describes these holographic techniques applied to the commercially available paint and ink and presents some experimental results.

  18. Optical processing of holographic lateral shear interferograms recorded by displacing an object

    International Nuclear Information System (INIS)

    Lyalikov, A M

    2008-01-01

    A new approach is considered which is used in holographic lateral shear interferometry and allows the combination of the displacement of a phase object under study during the recording of holographic interferograms with the optical processing of displaced and optically conjugate holographic interferograms. Depending on the method of optical processing of such a pair of holographic interferograms, several aberration-free interference patterns are observed, which reflect with different sensitivities variations in the light wave phase caused by the phase object. Due to the lateral shear, which is equal to or exceeds the linear size of the object, the interference patterns of the object are identical to interference patterns obtained in a two-beam, reference-wave interferometer. The possibility of using this method to control optical inhomogeneities in active crystals in solid-state lasers is studied experimentally. (interferometry)

  19. Digital holographic setups for phase object measurements in micro and macro scale

    Directory of Open Access Journals (Sweden)

    Lédl Vít

    2015-01-01

    Full Text Available The measurement of properties of so called phase objects is being solved for more than one Century starting probably with schlieren technique 1. Classical interferometry served as a great measurement tool for several decades and was replaced by holographic interferometry, which disposes with many benefits when compared to classical interferometry. Holographic interferometry undergone an enormous development in last decade when digital holography has been established as a standard technique and most of the drawbacks were solved. The paper deals with scope of the huge applicability of digital holographic interferometry in heat and mass transfer measurement from micro to macro scale and from simple 2D measurement up to complex tomographic techniques. Recently the very complex experimental setups are under development in our labs combining many techniques leading to digital holographic micro tomography methods.

  20. Holographic currents in first order Gravity and finite Fefferman-Graham expansions

    International Nuclear Information System (INIS)

    Banados, Maximo; Miskovic, Olivera; Theisen, Stefan

    2006-01-01

    We study the holographic currents associated to Chern-Simons theories. We start with an example in three dimensions and find the holographic representations of vector and chiral currents reproducing the correct expression for the chiral anomaly. In five dimensions, Chern-Simons theory for AdS group describes first order gravity and we show that there exists a gauge fixing leading to a finite Fefferman-Graham expansion. We derive the corresponding holographic currents, namely, the stress tensor and spin current which couple to the metric and torsional degrees of freedom at the boundary, respectively. We obtain the correct Ward identities for these currents by looking at the bulk constraint equations

  1. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  2. Prospects of linear reconstruction in atomic resolution electron holographic tomography

    International Nuclear Information System (INIS)

    Krehl, Jonas; Lubk, Axel

    2015-01-01

    Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction

  3. Prospects of linear reconstruction in atomic resolution electron holographic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Krehl, Jonas, E-mail: Jonas.Krehl@triebenberg.de; Lubk, Axel

    2015-03-15

    Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction.

  4. Magnetic Catalysis of Chiral Symmetry Breaking: A Holographic Prospective

    International Nuclear Information System (INIS)

    Filev, V.; Rashkov, R.; Rashkov, R.

    2010-01-01

    We review a recent investigation of the effect of magnetic catalysis of mass generation in holographic Yang-Mills theories. We aim at a self-contained and pedagogical form of the review. We provide a brief field theory background and review the basics of holographic flavordynamics. The main part of the paper investigates the influence of external magnetic field to holographic gauge theories dual to the D3/D5- and D3/D7-brane intersections. Among the observed phenomena are the spontaneous breaking of a global internal symmetry, Zeeman splitting of the energy levels, and the existence of pseudo, Goldstone modes. An analytic derivation of the Gell-Mann-Oaks-Renner relation for the D3/D7 set up is reviewed. In the D3/D5 case, the pseudo-Goldstone modes satisfy nonrelativistic dispersion relation. The studies reviewed confirm the universal nature of the magnetic catalysis of mass generation.

  5. All-dielectric meta-holograms with holographic images transforming longitudinally

    KAUST Repository

    Wang, Qiu; Xu, Quan; Zhang, Xueqian; Tian, Chunxiu; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.

  6. All-dielectric meta-holograms with holographic images transforming longitudinally

    KAUST Repository

    Wang, Qiu

    2017-11-22

    Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.

  7. Holographic Renormalization in Dense Medium

    International Nuclear Information System (INIS)

    Park, Chanyong

    2014-01-01

    The holographic renormalization of a charged black brane with or without a dilaton field, whose dual field theory describes a dense medium at finite temperature, is investigated in this paper. In a dense medium, two different thermodynamic descriptions are possible due to an additional conserved charge. These two different thermodynamic ensembles are classified by the asymptotic boundary condition of the bulk gauge field. It is also shown that in the holographic renormalization regularity of all bulk fields can reproduce consistent thermodynamic quantities and that the Bekenstein-Hawking entropy is nothing but the renormalized thermal entropy of the dual field theory. Furthermore, we find that the Reissner-Nordström AdS black brane is dual to a theory with conformal matter as expected, whereas a charged black brane with a nontrivial dilaton profile is mapped to a theory with nonconformal matter although its leading asymptotic geometry still remains as AdS space

  8. Holographic non-Gaussianities in general single-field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Isono, Hiroshi [Department of Physics, Faculty of Science,Chulalongkorn University, Bangkok 10330 (Thailand); Noumi, Toshifumi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics,Kobe University, Kobe 657-8501 (Japan); Shiu, Gary [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong); Department of Physics, University of Wisconsin-Madison,Madison, WI 53706 (United States); Wong, Sam S.C.; Zhou, Siyi [Department of Physics and Jockey Club Institute for Advanced Study,Hong Kong University of Science and Technology (Hong Kong)

    2016-12-07

    We use holographic techniques to compute inflationary non-Gaussianities for general single-field inflation, including models with a non-trivial sound speed. In this holographic approach, the inflationary dynamics is captured by a relevant deformation of the dual conformal field theory (CFT) in the UV, while the inflationary correlators are computed by conformal perturbation theory. In this paper, we discuss the effects of higher derivative operators, such as (∂{sub μ}ϕ∂{sup μ}ϕ){sup m}, which are known to induce a non-trivial sound speed and source potentially large non-Gaussianities. We compute the full inflationary bispectra from the deformed CFT correlators. We also discuss the squeezed limit of the bispectra from the viewpoint of operator product expansions. As is generic in the holographic description of inflation, our power spectrum is blue tilted in the UV region. We extend our bispectrum computation to the IR region by resumming the conformal perturbations to all orders. We provide a self-consistent setup which reproduces a red tilted power spectrum, as well as all possible bispectrum shapes in the slow-roll regime.

  9. Bidirectional holographic codes and sub-AdS locality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhao; Hayden, Patrick; Qi, Xiao-Liang [Stanford Institute for Theoretical Physics,Physics Department, Stanford University, CA 94304-4060 (United States)

    2016-01-28

    Tensor networks implementing quantum error correcting codes have recently been used to construct toy models of holographic duality explicitly realizing some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this article. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a “code” subspace, (2) a set of bulk states playing the role of “classical geometries” which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and (5) the ability to describe geometry at sub-AdS resolutions or even flat space.

  10. Holographic space and time: Emergent in what sense?

    Science.gov (United States)

    Vistarini, Tiziana

    2017-08-01

    This paper proposes a metaphysics for holographic duality. In addition to the AdS/CFT correspondence I also consider the dS/CFT conjecture of duality. Both involve non-perturbative string theory and both are exact dualities. But while the AdS/CFT keeps time at the margins of the story, the dS/CFT conjecture gives to time the "space" it deserves by presenting an interesting holographic model of it. My goals in this paper can be summarized in the following way. First, I argue that the formal structure and physical content of the duality do not support the standard philosophical reading of the relation in terms of grounding. Second, I put forward a philosophical scheme mainly extrapolated from the double aspect monism theory. I read holographic duality in this framework as it seems to fit the mathematical and physical structure of the duality smoothly. Inside this framework I propose a notion of spacetime emergence alternative to those ones commonly debated in the AdS/CFT physics and philosophy circles.

  11. Optical studies in the holographic ground station

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  12. Effects of backreaction on power-Maxwell holographic superconductors in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Salahi, Hamid Reza; Montakhab, Afshin [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, Ahmad [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2016-10-15

    We analytically and numerically investigate the properties of s-wave holographic superconductors by considering the effects of scalar and gauge fields on the background geometry in five-dimensional Einstein-Gauss-Bonnet gravity. We assume the gauge field to be in the form of the power-Maxwell nonlinear electrodynamics. We employ the Sturm-Liouville eigenvalue problem for analytical calculation of the critical temperature and the shooting method for the numerical investigation. Our numerical and analytical results indicate that higher curvature corrections affect condensation of the holographic superconductors with backreaction. We observe that the backreaction can decrease the critical temperature of the holographic superconductors, while the power-Maxwell electrodynamics and Gauss-Bonnet coefficient term may increase the critical temperature of the holographic superconductors. We find that the critical exponent has the mean-field value β = 1/2, regardless of the values of Gauss-Bonnet coefficient, backreaction and power-Maxwell parameters. (orig.)

  13. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k......Rad. The precision limits of the measurement of dose were found to be ±4%. The procedure was simple and the holographic equipment stable and compact, thus allowing experimentation under routine laboratory conditions and limited space....

  14. Thermalization in a holographic confining gauge theory

    Science.gov (United States)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2015-08-01

    Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory's most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.

  15. Thermalization in a holographic confining gauge theory

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher

    2015-01-01

    Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theory’s most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.

  16. Reheating of the Universe as holographic thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)

    2016-08-10

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  17. Reheating of the Universe as holographic thermalization

    Directory of Open Access Journals (Sweden)

    Shinsuke Kawai

    2016-08-01

    Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  18. The traveltime holographic principle

    KAUST Repository

    Huang, Y.; Schuster, Gerard T.

    2014-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  19. The traveltime holographic principle

    KAUST Repository

    Huang, Y.

    2014-11-06

    Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.

  20. The traveltime holographic principle

    Science.gov (United States)

    Huang, Yunsong; Schuster, Gerard T.

    2015-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the `traveltime holographic principle', by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  1. Development of holographic interferometer for non-destructive testing

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Sung Hoon; Shin, Jang Soo; Cho, Jai Wan; Kim, Duk Hyeon; Hong, Suck Kyoung; Lee, Sang Kil; Kim, Heon Jun; Park, Chang Jin

    1993-02-01

    This project sets the goal at development of holographic interferometer. In this interferometer, fringe localization and imaging of object are considered. And collimated beam and wedge are used for the high-speed recording and formation of carrier fringes, respectively. With this real-time holographic interferometer, not only experiments were conducted on natural convection and flame jet, but also on high speed flow phenomena such as shock wave propagation. Visualization of high-speed flow is recorded in high-speed camera with framing rate ∼ 35000f/s. And to analyze axis symmetric phase object, analysis program was developed. (Author)

  2. A shape dynamical approach to holographic renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Henrique [University of California at Davis, Davis, CA (United States); Gryb, Sean [Utrecht University, Institute for Theoretical Physics, Utrecht (Netherlands); Radboud University Nijmegen, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Koslowski, Tim [University of New Brunswick, Fredericton, NB (Canada); Mercati, Flavio; Smolin, Lee [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities. (orig.)

  3. Van der Waals phase transition in the framework of holography

    International Nuclear Information System (INIS)

    Zeng, Xiao-Xiong; Li, Li-Fang

    2017-01-01

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  4. Van der Waals phase transition in the framework of holography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-10

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  5. Van der Waals phase transition in the framework of holography

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2017-01-01

    Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  6. Beam-modulation methods in quantitative and flow-visualization holographic interferometry

    Science.gov (United States)

    Decker, Arthur J.

    1986-01-01

    Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  7. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  8. Magnonic holographic imaging of magnetic microstructures

    Science.gov (United States)

    Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A. D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C.; Khivintsev, Y.; Filimonov, Y.; Garay, J.; Lake, R.; Balandin, A. A.; Khitun, A.

    2017-04-01

    We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot - the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe12O19 and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe12O19 powder. The imaging was accomplished on a Y3Fe2(FeO4)3 testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed.

  9. Holographic Raman lidar

    International Nuclear Information System (INIS)

    Andersen, G.

    2000-01-01

    Full text: We have constructed a Raman lidar system that incorporates a holographic optical element. By resolving just 3 nitrogen lines in the Resonance Raman spectroscopy (RRS) spectrum, temperature fits as good as 1% at altitudes of 20km can be made in 30 minutes. Due to the narrowband selectivity of the HOE, the lidar provides measurements over a continuous 24hr period. By adding a 4th channel to capture the Rayleigh backscattered light, temperature profiles can be extended to 80km

  10. Music holographic physiotherapy by laser

    Science.gov (United States)

    Liao, Changhuan

    1996-09-01

    Based on the relationship between music and nature, the paper compares laser and light with music sound on the principles of synergetics, describes music physically and objectively, and proposes a music holographic therapy by laser. Maybe it will have certain effects on mechanism study and clinical practice of the music therapy.

  11. Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques

    Directory of Open Access Journals (Sweden)

    Kay-Michael Voit

    2013-01-01

    Full Text Available Holographic spectroscopy is highlighted as a powerful tool for the analysis of photosensitive materials with pronounced alterations of the complex permittivity over a broad range in the visible spectrum, due to the advances made both in the fields of advanced holographic media and highly tunable lasers systems. To analytically discuss consequences for in- and off-Bragg reconstruction, we revised Kogelnik’s coupled wave theory strictly on the basis of complex permittivities. We extended it to comply with modern experimental parameters such as out-of-phase mixed holograms and highly modulated gratings. A spatially modulated, wavelength-dependent permittivity that superimposes a spatially homogeneous wavelength-dependent ground state spectrum is taken into account for signal wave reconstruction with bulky elementary mixed gratings as an example. The dispersion characteristics of the respective diffraction efficiency is modelled for color-center-absorption and absorption of strongly localized carriers. As an example for the theoretical possibilities of our newly derived set of equations, we present a quantitative analysis of the Borrmann effect connected to out-of-phase gratings, providing easier and more intuitive methods for the derivation of their grating parameters.

  12. Holographic NDE of pressure tubes for Cirene nuclear reactor

    International Nuclear Information System (INIS)

    Di Chirico, G.; Pirodda, L.; Villani, A.

    1985-01-01

    Pressure tubes for CIRENE nuclear reactor can be subjected to fretting corrosion of the inner walls. The resulting marks exhibit different geometries, whose influence on the structural behaviour of the tubes has been evaluated by means of a real time holographic technique. The paper shows the results of this investigation. Position and shape of internal defects have been directly visualized by observing holographic fringe distorsions on the outside surface of the tubes. Furthermore, through the fringe patterns, circumferential stress values have also been obtained. (Author) [pt

  13. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    Science.gov (United States)

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Holographic complexity and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-01-15

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  15. Holographic complexity and spacetime singularities

    International Nuclear Information System (INIS)

    Barbón, José L.F.; Rabinovici, Eliezer

    2016-01-01

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  16. Beam-modulation methods in quantitative and flow visualization holographic interferometry

    Science.gov (United States)

    Decker, A.

    1986-01-01

    This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  17. Visualization and direct comparison of large displacements using difference holographic interferometry

    International Nuclear Information System (INIS)

    Necati Ecevit, F.; Aydin, R.

    1994-01-01

    The difference holographic interferometry provides the possibility of direct comparison of large displacements and deformations of two similar but different objects by application of a special kind of illumination. In this work, the principles of the difference holographic interferometry and the experimental results obtained by applying the single beam technique to large displacements is presented. (author). 10 refs, 4 figs

  18. Holographic spectrum-splitting optical systems for solar photovoltaics

    Science.gov (United States)

    Zhang, Deming

    Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle

  19. Momentum analyticity of the holographic electric polarizability in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Lei [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, R.O.C. (China); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Ren, Hai-cang [Physics Department, The Rockefeller University,1230 York Avenue, New York, 10021-6399 (United States); Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China); Lee, Ting-Kuo [Institute of Physics, Academic Sinica,No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei, Taiwan (China); Hou, Defu [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Central China Normal University, No. 152 Luoyu Rd., Hongshan Dist., Wuhan (China)

    2017-04-21

    The static electric polarization of a holographic field theory dual to the Einstein-Maxwell theory in the background of AdS{sub 4} with a Reissner-Nordström (AdS-RN) black hole is investigated. We prove that the holographic polarization is a meromorphic functions in complex momentum plane and locate analytically the asymptotic distribution of the poles along two straight lines parallel to the imaginary axis for a large momentum magnitude. The results are compared with the numerical result on Friedel-like poles of the same holographic model reported in the literature and with the momentum singularities of the one-loop polarization in weak-coupling spinor QED{sub 3} and scalar QED{sub 3} with the similarities and differences discussed.

  20. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  1. On the time evolution of holographic n-partite information

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Mozaffar, M. Reza Mohammadi; Tanhayi, Mohammad Reza

    2015-01-01

    We study various scaling behaviors of n-partite information during a process of thermalization for n disjoint system consisting of n parallel strips whose widths are much larger than the separation between them. By making use of the holographic description for entanglement entropy we explore holographic description of the n-partite information by which we show that it has a definite sign: it is positive for even n and negative for odd n. This might thought of as an intrinsic property of a field theory which has gravity dual.

  2. Page Oriented Holographic Memories And Optical Pattern Recognition

    Science.gov (United States)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  3. Flowing holographic anyonic superfluid

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  4. Holographic memory for high-density data storage and high-speed pattern recognition

    Science.gov (United States)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  5. Nature of phase transitions in Axelrod-like coupled Potts models in two dimensions

    Science.gov (United States)

    Gandica, Yerali; Chiacchiera, Silvia

    2016-03-01

    We study F coupled q -state Potts models in a two-dimensional square lattice. The interaction between the different layers is attractive to favor a simultaneous alignment in all of them, and its strength is fixed. The nature of the phase transition for zero field is numerically determined for F =2 ,3 . Using the Lee-Kosterlitz method, we find that it is continuous for F =2 and q =2 , whereas it is abrupt for higher values of q and/or F . When a continuous or a weakly first-order phase transition takes place, we also analyze the properties of the geometrical clusters. This allows us to determine the fractal dimension D of the incipient infinite cluster and to examine the finite-size scaling of the cluster number density via data collapse. A mean-field approximation of the model, from which some general trends can be determined, is presented too. Finally, since this lattice model has been recently considered as a thermodynamic counterpart of the Axelrod model of social dynamics, we discuss our results in connection with this one.

  6. Volume Holographic Storage of Digital Data Implemented in Photorefractive Media

    Science.gov (United States)

    Heanue, John Frederick

    A holographic data storage system is fundamentally different from conventional storage devices. Information is recorded in a volume, rather than on a two-dimensional surface. Data is transferred in parallel, on a page-by -page basis, rather than serially. These properties, combined with a limited need for mechanical motion, lead to the potential for a storage system with high capacity, fast transfer rate, and short access time. The majority of previous volume holographic storage experiments have involved direct storage and retrieval of pictorial information. Success in the development of a practical holographic storage device requires an understanding of the performance capabilities of a digital system. This thesis presents a number of contributions toward this goal. A description of light diffraction from volume gratings is given. The results are used as the basis for a theoretical and numerical analysis of interpage crosstalk in both angular and wavelength multiplexed holographic storage. An analysis of photorefractive grating formation in photovoltaic media such as lithium niobate is presented along with steady-state expressions for the space-charge field in thermal fixing. Thermal fixing by room temperature recording followed by ion compensation at elevated temperatures is compared to simultaneous recording and compensation at high temperature. In particular, the tradeoff between diffraction efficiency and incomplete Bragg matching is evaluated. An experimental investigation of orthogonal phase code multiplexing is described. Two unique capabilities, the ability to perform arithmetic operations on stored data pages optically, rather than electronically, and encrypted data storage, are demonstrated. A comparison of digital signal representations, or channel codes, is carried out. The codes are compared in terms of bit-error rate performance at constant capacity. A well-known one-dimensional digital detection technique, maximum likelihood sequence estimation, is

  7. Smartphone-based quantitative measurements on holographic sensors.

    Directory of Open Access Journals (Sweden)

    Gita Khalili Moghaddam

    Full Text Available The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI, i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.

  8. Waking and scrambling in holographic heating up

    Science.gov (United States)

    Ageev, D. S.; Aref'eva, I. Ya.

    2017-10-01

    Using holographic methods, we study the heating up process in quantum field theory. As a holographic dual of this process, we use absorption of a thin shell on a black brane. We find the explicit form of the time evolution of the quantum mutual information during heating up from the temperature Ti to the temperature T f in a system of two intervals in two-dimensional space-time. We determine the geometric characteristics of the system under which the time dependence of the mutual information has a bell shape: it is equal to zero at the initial instant, becomes positive at some subsequent instant, further attains its maximum, and again decreases to zero. Such a behavior of the mutual information occurs in the process of photosynthesis. We show that if the distance x between the intervals is less than log 2/2π T i, then the evolution of the holographic mutual information has a bell shape only for intervals whose lengths are bounded from above and below. For sufficiently large x, i.e., for x < log 2/2π T i, the bell-like shape of the time dependence of the quantum mutual information is present only for sufficiently large intervals. Moreover, the zone narrows as T i increases and widens as T f increases.

  9. Smartphone-based quantitative measurements on holographic sensors.

    Science.gov (United States)

    Khalili Moghaddam, Gita; Lowe, Christopher Robin

    2017-01-01

    The research reported herein integrates a generic holographic sensor platform and a smartphone-based colour quantification algorithm in order to standardise and improve the determination of the concentration of analytes of interest. The utility of this approach has been exemplified by analysing the replay colour of the captured image of a holographic pH sensor in near real-time. Personalised image encryption followed by a wavelet-based image compression method were applied to secure the image transfer across a bandwidth-limited network to the cloud. The decrypted and decompressed image was processed through four principal steps: Recognition of the hologram in the image with a complex background using a template-based approach, conversion of device-dependent RGB values to device-independent CIEXYZ values using a polynomial model of the camera and computation of the CIEL*a*b* values, use of the colour coordinates of the captured image to segment the image, select the appropriate colour descriptors and, ultimately, locate the region of interest (ROI), i.e. the hologram in this case, and finally, application of a machine learning-based algorithm to correlate the colour coordinates of the ROI to the analyte concentration. Integrating holographic sensors and the colour image processing algorithm potentially offers a cost-effective platform for the remote monitoring of analytes in real time in readily accessible body fluids by minimally trained individuals.

  10. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Ayan [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Institut de Physique Théorique, CEA, CNRS URA 2306,91191 Gif-sur-Yvette (France); Petkou, Anastasios C. [Institute of Theoretical Physics, Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki (Greece); Petropoulos, P. Marios; Pozzoli, Valentina [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,Route de Saclay, 91128 Palaiseau Cedex (France); Siampos, Konstadinos [Service de Mécanique et Gravitation, Université de Mons, UMONS,20 Place du Parc, 7000 Mons (Belgium)

    2014-04-23

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D{sub t}. Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality.

  11. Holographic perfect fluidity, Cotton energy-momentum duality and transport properties

    International Nuclear Information System (INIS)

    Mukhopadhyay, Ayan; Petkou, Anastasios C.; Petropoulos, P. Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2014-01-01

    We investigate background metrics for 2+1-dimensional holographic theories where the equilibrium solution behaves as a perfect fluid, and admits thus a thermodynamic description. We introduce stationary perfect-Cotton geometries, where the Cotton-York tensor takes the form of the energy-momentum tensor of a perfect fluid, i.e. they are of Petrov type D t . Fluids in equilibrium in such boundary geometries have non-trivial vorticity. The corresponding bulk can be exactly reconstructed to obtain 3+1-dimensional stationary black-hole solutions with no naked singularities for appropriate values of the black-hole mass. It follows that an infinite number of transport coefficients vanish for holographic fluids. Our results imply an intimate relationship between black-hole uniqueness and holographic perfect equilibrium. They also point towards a Cotton/energy-momentum tensor duality constraining the fluid vorticity, as an intriguing boundary manifestation of the bulk mass/nut duality

  12. Molecular glasses of azobenzene for holographic data storage applications

    Science.gov (United States)

    Zarins, Elmars; Balodis, Karlis; Ruduss, Armands; Kokars, Valdis; Ozols, Andris; Augustovs, Peteris; Saharovs, Dmitrijs

    2018-05-01

    A series of D-N=N-A type molecular glasses where the electron acceptor part (A) contains several electron withdrawing substituents, but the electron donating part (D) of the glassy azochromophores contains amorphous phase promoting non-conjugated bulky triphenyl or hydroxyl groups have been synthesized and investigated. Results showed that the azodye physical properties depend not only on the incorporated electron withdrawing substituents but are also influenced by the bonding type of covalently attached bulky moieties. Synthesized glassy azocompounds showed glass transition temperatures up to 106 °C and thermal stability up to 312 °C. The ability to form holographic gratings in spin-cast thin films of the glassy azodyes was investigated using 532 nm and 633 nm lasers obtaining diffraction efficiency up to 57%, self-diffraction efficiency up to 15% and photosensitivity as high as 3.7 J/(cm2%). Surface relief grating (SRG) depths reached 1.1 μm and in some cases even exceeded the thickness of the films.

  13. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    Science.gov (United States)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  14. Some applications of holographic interferometry in biomechanics

    Science.gov (United States)

    Ebbeni, Jean P. L.

    1992-03-01

    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  15. Holographic cinematography of time-varying reflecting and time-varying phase objects using a Nd:YAG laser

    Science.gov (United States)

    Decker, A. J.

    1982-01-01

    The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.

  16. Monopole correlations in holographically flavored liquids

    NARCIS (Netherlands)

    Iqbal, N.

    2015-01-01

    Many-body systems with a conserved U(1) current in (2+1) dimensions may be probed by weakly gauging this current and studying correlation functions of magnetic monopole operators in the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental

  17. Holographic entanglement entropy and gravitational anomalies

    NARCIS (Netherlands)

    Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal

  18. Holographic Lovelock gravities and black holes

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2010-01-01

    We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on

  19. Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography.

    Science.gov (United States)

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-09-05

    A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.

  20. Volume holographic memory

    Directory of Open Access Journals (Sweden)

    Cornelia Denz

    2000-05-01

    Full Text Available Volume holography represents a promising alternative to existing storage technologies. Its parallel data storage leads to high capacities combined with short access times and high transfer rates. The design and realization of a compact volume holographic storage demonstrator is presented. The technique of phase-coded multiplexing implemented to superimpose many data pages in a single location enables to store up to 480 holograms per storage location without any moving parts. Results of analog and digital data storage are shown and real time optical image processing is demonstrated.

  1. Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories

    Science.gov (United States)

    Dong, Xi

    2016-06-01

    We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.

  2. Hardware and software improvements to a low-cost horizontal parallax holographic video monitor.

    Science.gov (United States)

    Henrie, Andrew; Codling, Jesse R; Gneiting, Scott; Christensen, Justin B; Awerkamp, Parker; Burdette, Mark J; Smalley, Daniel E

    2018-01-01

    Displays capable of true holographic video have been prohibitively expensive and difficult to build. With this paper, we present a suite of modularized hardware components and software tools needed to build a HoloMonitor with basic "hacker-space" equipment, highlighting improvements that have enabled the total materials cost to fall to $820, well below that of other holographic displays. It is our hope that the current level of simplicity, development, design flexibility, and documentation will enable the lay engineer, programmer, and scientist to relatively easily replicate, modify, and build upon our designs, bringing true holographic video to the masses.

  3. AdS/QHE: towards a holographic description of quantum Hall experiments

    International Nuclear Information System (INIS)

    Bayntun, Allan; Burgess, C P; Lee, Sung-Sik; Dolan, Brian P

    2011-01-01

    Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semicircle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the dc ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero dc conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semicircle transitions between them. The model can be regarded as a strongly coupled analogue of the old 'composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model. In particular, the model indicates the value 2/5 for low-temperature scaling exponents for transitions among quantum Hall plateaux, in agreement with the measured value 0.42±0.01.

  4. Mass production of holographic transparent components for augmented and virtual reality applications

    Science.gov (United States)

    Russo, Juan Manuel; Dimov, Fedor; Padiyar, Joy; Coe-Sullivan, Seth

    2017-06-01

    Diffractive optics such as holographic optical elements (HOEs) can provide transparent and narrow band components with arbitrary incident and diffracted angles for near-to-eye commercial electronic products for augmented reality (AR), virtual reality (VR), and smart glass applications. In this paper, we will summarize the operational parameters and general optical geometries relevant for near-to-eye displays, the holographic substrates available for these applications, and their performance characteristics and ease of manufacture. We will compare the holographic substrates available in terms of fabrication, manufacturability, and end-user performance characteristics. Luminit is currently emplacing the manufacturing capacity to serve this market, and this paper will discuss the capabilities and limitations of this unique facility.

  5. Holographic associative memories in document retrieval systems

    International Nuclear Information System (INIS)

    Becker, P.J.; Bolle, H.; Keller, A.; Kistner, W.; Riecke, W.D.; Wagner, U.

    1979-03-01

    The objective of this work was the implementation of a holographic memory with associative readout for a document retrieval system. Taking advantage of the favourable properties of holography - associative readout of the memory, parallel processing in the response store - may give shorter response times than sequentially organized data memories. Such a system may also operate in the interactive mode including chain associations. In order to avoid technological difficulties, the experimental setup made use of commercially available components only. As a result an improved holographic structure is proposed which uses volume holograms in photorefractive crystals as storage device. In two chapters of appendix we give a review of the state of the art of electrooptic devices for coherent optical data processing and of competing technologies (semiconductor associative memories and associative program systems). (orig.) [de

  6. Holographic models and the QCD trace anomaly

    International Nuclear Information System (INIS)

    Goity, Jose L.; Trinchero, Roberto C.

    2012-01-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  7. Towards understanding Regge trajectories in holographic QCD

    International Nuclear Information System (INIS)

    Cata, Oscar

    2007-01-01

    We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD

  8. Recent advances in photorefractivity of poly(4-diphenylaminostyrene) composites: Wavelength dependence and dynamic holographic images

    Science.gov (United States)

    Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto

    2014-08-01

    To expand upon our previous report [Appl. Phys. Express 5, 064101 (2012) 064101], we provide here the modified poly(4-diphenylaminostyrene) (PDAS)-based photorefractive (PR) device on the basis of wavelength dependency, and demonstrate dynamic holographic images by using the PDAS-based PR device under the obtained appropriate conditions. The PR devices containing the triphenylamine unit have potential application to dynamic holographic images, which will be useful for real-time holographic displays.

  9. Holographic Transformation, Belief Propagation and Loop Calculus for Generalized Probabilistic Theories

    OpenAIRE

    Mori, Ryuhei

    2015-01-01

    The holographic transformation, belief propagation and loop calculus are generalized to problems in generalized probabilistic theories including quantum mechanics. In this work, the partition function of classical factor graph is represented by an inner product of two high-dimensional vectors both of which can be decomposed to tensor products of low-dimensional vectors. On the representation, the holographic transformation is clearly understood by using adjoint linear maps. Furthermore, on th...

  10. Phase-image-based content-addressable holographic data storage

    Science.gov (United States)

    John, Renu; Joseph, Joby; Singh, Kehar

    2004-03-01

    We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.

  11. Experimental teaching and training system based on volume holographic storage

    Science.gov (United States)

    Jiang, Zhuqing; Wang, Zhe; Sun, Chan; Cui, Yutong; Wan, Yuhong; Zou, Rufei

    2017-08-01

    The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.

  12. Cosmology of a holographic induced gravity model with curvature effects

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq

    2011-01-01

    We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.

  13. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  14. Holographic Ward identities for symmetry breaking in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Physics Department, University of Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina); Marzolla, Andrea; Naegels, Daniel [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sierra-Garcia, J. Anibal [Department of Particle Physics and IGFAE, University of Santiago de Compostela,E-15782 Santiago de Compostela (Spain)

    2017-04-03

    We investigate symmetry breaking in two-dimensional field theories which have a holographic gravity dual. Being at large N, the Coleman theorem does not hold and Goldstone bosons are expected. We consider the minimal setup to describe a conserved current and a charged operator, and we perform holographic renormalization in order to find the correct Ward identities describing symmetry breaking. This involves some subtleties related to the different boundary conditions that a vector can have in the three-dimensional bulk. We establish which is the correct prescription that yields, after renormalization, the same Ward identities as in higher dimensions.

  15. Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization

    Science.gov (United States)

    Liu, Hongpeng; Yu, Dan; Zhou, Ke; Wang, Shichan; Luo, Suhua; Li, Li; Wang, Weibo; Song, Qinggong

    2018-05-01

    Optical sensor based on pH-sensitive hydrogel has important practical applications in medical diagnosis and bio-sensor areas. This report details the experimental and theoretical results from a novel photosensitive polymer hydrogel holographic sensor, which formed by thermal polymerization of 2-hydroxyethyl methacrylate, for the detection of pH in buffer. Volume grating recorded in the polymer hydrogel was employed in response to the performance of solution. Methacrylic acid with carboxyl groups was selected as the primary co-monomer to functionalize the matrix. Peak diffraction spectrum of holographic grating determined as a primary sensing parameter was characterized to reflect the change in pH. The extracted linear relation between peak wavelength and pH value provided a probability for the practical application of holographic sensor. To explore the sensing mechanism deeply, a theoretical model was used to describe the relevant holographic processes, including grating formation, dark diffusional enhancement, and final fringe swelling. Numerical result further showed all of the dynamic processes and internal sensing physical mechanism. These experimental and numerical results provided a significant foundation for the development of novel holographic sensor based on polymer hydrogel and improvement of its practical applicability.

  16. Berni Alder and Phase Transitions in Two Dimensions

    Science.gov (United States)

    Kosterlitz, J. Michael

    I do not know Berni Alder as a person, but I feel that I know him well through his seminal paper "Phase Transition in Elastic Disks𠇍 by B. J. Alder and T. E. Wainwright [1962], which was essential in motivating David Thouless and myself to think about phase transitions in two dimensional systems with a continuous symmetry. In the early 1970's, the conventional wisdom was that a crystalline solid could not exist in a two dimensional world because of the rigorous Mermin-Wagner theorem prohibiting true long range translational order at any non-zero temperature. This contradiction was settled by the theory of dislocation mediated melting to an intermediate hexatic phase followed by a second transition to the isotropic fluid at a higher temperature. This scenario, with its associated sophisticated theory, seemed to settle the controversy of two dimensional melting once and for all. However, in our elation at understanding the fundamental physics and the essential excitations of melting in 2D, we had all forgotten that the early work of Berni Alder also showed that this melting involved a weak first order transition while theory now predicted melting by two successive continuous transitions with no discontinuity in area at the critical pressure. This discrepancy could be hand waved away by arguing that Berni's system was far too small and his computers far too slow so that the areal discontinuity could be due to finite size effects or to failing to equilibrate the system. Experiments were not able to resolve the order of the transitions, but seemed to agree quantitatively with theory…

  17. Holographic dark energy models: a comparison from the latest observational data

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Zhang, Xin

    2009-01-01

    The holographic principle of quantum gravity theory has been applied to the dark energy (DE) problem, and so far three holographic DE models have been proposed: the original holographic dark energy (HDE) model, the agegraphic dark energy (ADE) model, and the holographic Ricci dark energy (RDE) model. In this work, we perform the best-fit analysis on these three models, by using the latest observational data including the Union+CFA3 sample of 397 Type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The analysis shows that for HDE, χ min 2 = 465.912; for RDE, χ min 2 = 483.130; for ADE, χ min 2 = 481.694. Among these models, HDE model can give the smallest χ 2 min . Besides, we also use the Bayesian evidence (BE) as a model selection criterion to make a comparison. It is found that for HDE, ADE, and RDE, Δln BE = −0.86, −5.17, and −8.14, respectively. So, it seems that the HDE model is more favored by the observational data

  18. Holographic vector superconductor in Gauss–Bonnet gravity

    Directory of Open Access Journals (Sweden)

    Jun-Wang Lu

    2016-02-01

    Full Text Available In the probe limit, we numerically study the holographic p-wave superconductor phase transitions in the higher curvature theory. Concretely, we study the influences of Gauss–Bonnet parameter α on the Maxwell complex vector model (MCV in the five-dimensional Gauss–Bonnet–AdS black hole and soliton backgrounds, respectively. In the two backgrounds, the improving Gauss–Bonnet parameter α and dimension of the vector operator Δ inhibit the vector condensate. In the black hole, the condensate quickly saturates a stable value at lower temperature. Moreover, both the stable value of condensate and the ratio ωg/Tc increase with α. In the soliton, the location of the second pole of the imaginary part increases with α, which implies that the energy of the quasiparticle excitation increases with the improving higher curvature correction. In addition, the influences of the Gauss–Bonnet correction on the MCV model are similar to the ones on the SU(2 p-wave model, which confirms that the MCV model is a generalization of the SU(2 Yang–Mills model even without the applied magnetic field to some extent.

  19. Supersymmetric D3/D7 for holographic flavors on curved space

    International Nuclear Information System (INIS)

    Karch, Andreas; Robinson, Brandon; Uhlemann, Christoph F.

    2015-01-01

    We derive a new class of supersymmetric D3/D7 brane configurations, which allow to holographically describe N=4 SYM coupled to massive N=2 flavor degrees of freedom on spaces of constant curvature. We systematically solve the κ-symmetry condition for D7-brane embeddings into AdS_4-sliced AdS_5×S"5, and find supersymmetric embeddings in a simple closed form. Up to a critical mass, these embeddings come in surprisingly diverse families, and we present a first study of their (holographic) phenomenology. We carry out the holographic renormalization, compute the one-point functions and attempt a field-theoretic interpretation of the different families. To complete the catalog of supersymmetric D3/D7 configurations, we construct analogous embeddings for flavored N=4 SYM on S"4 and dS_4.

  20. Holographic mutual information of two disjoint spheres

    Science.gov (United States)

    Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong

    2018-04-01

    We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.

  1. Projection multiplex recording of computer-synthesised one-dimensional Fourier holograms for holographic memory systems: mathematical and experimental modelling

    Energy Technology Data Exchange (ETDEWEB)

    Betin, A Yu; Bobrinev, V I; Verenikina, N M; Donchenko, S S; Odinokov, S B [Research Institute ' Radiotronics and Laser Engineering' , Bauman Moscow State Technical University, Moscow (Russian Federation); Evtikhiev, N N; Zlokazov, E Yu; Starikov, S N; Starikov, R S [National Reseach Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-08-31

    A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)

  2. Exploring holographic Composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)

    2016-07-13

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.

  3. Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d > 2?

    International Nuclear Information System (INIS)

    Suslov, I. M.

    2006-01-01

    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point splits into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards, Thouless, 1972; Last, Thouless, 1974; Schreiber, 1985). The possibility of restoring the conventional picture still exists but requires a radical reinterpretation of the raw numerical data

  4. Statistical mechanics of stochastic neural networks: Relationship between the self-consistent signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric calculation approaches

    International Nuclear Information System (INIS)

    Shiino, Masatoshi; Yamana, Michiko

    2004-01-01

    We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields

  5. HoloHands: games console interface for controlling holographic optical manipulation

    Science.gov (United States)

    McDonald, C.; McPherson, M.; McDougall, C.; McGloin, D.

    2013-03-01

    The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations.

  6. HoloHands: games console interface for controlling holographic optical manipulation

    International Nuclear Information System (INIS)

    McDonald, C; McPherson, M; McDougall, C; McGloin, D

    2013-01-01

    The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations. (paper)

  7. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  8. Holographic fluctuations and the principle of minimal complexity

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, Wissam [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany); Department of Mechanical Engineering, MIT,Cambridge MA 02139 (United States); Osborne, Tobias J. [Institut für Theoretische Physik, Leibniz Universität Hannover,Appelstr. 2, 30167 Hannover (Germany)

    2016-12-14

    We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. We describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system.

  9. Magnetic phenomena in holographic superconductivity with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Aldo Dector

    2015-09-01

    Full Text Available We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg–Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg–Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibits a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

  10. LMM Holographic Optical Tweezers (HOT) Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...

  11. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  12. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    Science.gov (United States)

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  13. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    Science.gov (United States)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  14. Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole

    Science.gov (United States)

    Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric

    2017-07-01

    We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.

  15. Holographic entanglement entropy for hollow cones and banana shaped regions

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Harald [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany)

    2016-06-09

    We consider banana shaped regions as examples of compact regions, whose boundary has two conical singularities. Their regularised holographic entropy is calculated with all divergent as well as finite terms. The coefficient of the squared logarithmic divergence, also in such a case with internally curved boundary, agrees with that calculated in the literature for infinite circular cones with their internally flat boundary. For the otherwise conformally invariant coefficient of the ordinary logarithmic divergence an anomaly under exceptional conformal transformations is observed. The construction of minimal submanifolds, needed for the entanglement entropy of cones, requires fine-tuning of Cauchy data. Perturbations of such fine-tuning leads to solutions relevant for hollow cones. The divergent parts for the entanglement entropy of hollow cones are calculated. Increasing the difference between the opening angles of their outer and inner boundary, one finds a transition between connected solutions for small differences to disconnected solutions for larger ones.

  16. Holographic investigation of silver electromigration in nano-sized As2S3 films

    Science.gov (United States)

    Sainov, S.; Todorov, R.; Bodurov, I.; Yovcheva, Temenuzhka

    2013-10-01

    Holographic gratings with a diffraction efficiency (DE) greater than 8% and a spatial resolution of 2237 mm-1 are recorded in very thin As2S3 films with a thickness of 100 nm. Silver photo-diffusion is observed during the holographic recording process while applying a corona discharge. We use the method of holographic grating relaxation spectroscopy (forced Rayleigh scattering) based on the evanescent waves to determine that the silver diffusion coefficient in the thin As2S3 film is in the range of (0.9-10.3) × 10-13 cm2 s-1 depending on the corona charge polarity. This work is dedicated to the 90th anniversary of the birth of Academician Jordan Malinowski.

  17. Superconductivity in 2+1 dimensions without parity or time-reversal violation

    International Nuclear Information System (INIS)

    Dorey, N.; Mavromatos, N.E.

    1990-01-01

    A model of dynamical holes in a planar quantum antiferromagnet is analysed in the limit of large spin and small doping concentration. The long-wavelength limit of this system is found to be a relativistic QFT of multiflavour Dirac fermions with both four-fermion and statistical chiral gauge interactions. The Schwinger-Dyson equation for the fermion self-energy is solved in the limit of many flavours and the theory is found to possess a phase in which the global vector symmetry of the effective action is realised in the Kosterlitz-Thouless mode. The theory exhibits superconductivity without parity or time-reversal violation in this phase and the charge quantum assumes the phenomenologically relevant value of 2e. The mechanism is conjectured to be 'holepair' condensation due primarily to the statistical gauge interaction. Although there is a formal similarity with BCS theory the physical origin of the attraction between holes is quite different. The model may provide a prototype for further studies in realistic microscopic systems that attempt to simulate planar high temperature superconducting oxides. (orig.)

  18. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  19. Adjustable liquid aperture to eliminate undesirable light in holographic projection.

    Science.gov (United States)

    Wang, Di; Liu, Chao; Li, Lei; Zhou, Xin; Wang, Qiong-Hua

    2016-02-08

    In this paper, we propose an adjustable liquid aperture to eliminate the undesirable light in a holographic projection. The aperture is based on hydrodynamic actuation. A chamber is formed with a cylindrical tube. A black droplet is filled in the sidewall of the cylinder tube and the outside space is the transparent oil which is immiscible with the black droplet. An ultrathin glass sheet is attached on the bottom substrate of the device and a black shading film is secured to the central area of the glass sheet. By changing the volume of the black droplet, the black droplet will move to the middle or sidewall due to hydrodynamic actuation, so the device can be used as an adjustable aperture. A divergent spherical wave and a solid lens are used to separate the focus planes of the reconstructed image and diffraction beams induced by the liquid crystal on silicon in the holographic projection. Then the aperture is used to eliminate the diffraction beams by adjusting the size of the liquid aperture and the holographic projection does not have undesirable light.

  20. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade

    Science.gov (United States)

    Decker, A. J.

    1986-01-01

    Since 1979, the Lewis Research Center has examined holographic cinematography for three-dimensional flow visualization. The Nd:YAG lasers used were Q-switched, double-pulsed, and frequency-doubled, operating at 20 pulses per second. The primary subjects for flow visualization were the shock waves produced in two flutter cascades. Flow visualization was by diffuse-illumination, double-exposure, and holographic interferometry. The performances of the lasers, holography, and diffuse-illumination interferometry are evaluated in single-window wind tunnels. The fringe-contrast factor is used to evaluate the results. The effects of turbulence on shock-wave visualization in a transonic flow are discussed. The depth of field for visualization of a turbulent structure is demonstrated to be a measure of the relative density and scale of that structure. Other items discussed are the holographic emulsion, tests of coherence and polarization, effects of windows and diffusers, hologram bleaching, laser configurations, influence and handling of specular reflections, modes of fringe localization, noise sources, and coherence requirements as a function of the pulse energy. Holography and diffuse illumination interferometry are also reviewed.

  1. Ultrafast layer based computer-generated hologram calculation with sparse template holographic fringe pattern for 3-D object.

    Science.gov (United States)

    Kim, Hak Gu; Man Ro, Yong

    2017-11-27

    In this paper, we propose a new ultrafast layer based CGH calculation that exploits the sparsity of hologram fringe pattern in 3-D object layer. Specifically, we devise a sparse template holographic fringe pattern. The holographic fringe pattern on a depth layer can be rapidly calculated by adding the sparse template holographic fringe patterns at each object point position. Since the size of sparse template holographic fringe pattern is much smaller than that of the CGH plane, the computational load can be significantly reduced. Experimental results show that the proposed method achieves 10-20 msec for 1024x1024 pixels providing visually plausible results.

  2. The digital holographic interferometry in resonant acoustic spectroscopy

    International Nuclear Information System (INIS)

    GAPONOV, V.E.; AZAMATOV, Z.T.; REDKORECHEV, V.I.; ISAEV, A.M.

    2014-01-01

    The opportunities of application of digital holographic interferometry method for studies of shapes of resonant modes in resonant acoustic spectroscopy are shown. The results of experimental measurements and analytical calculations are submitted. (authors)

  3. Scalar Condensation of Holographic Superconductors using ...

    Indian Academy of Sciences (India)

    Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...

  4. A Note on Holography and Phase Transitions

    Directory of Open Access Journals (Sweden)

    Marc Bellon

    2011-01-01

    Full Text Available Focusing on the connection between the Landau theory of second-order phase transitions and the holographic approach to critical phenomena, we study diverse field theories in an anti de Sitter black hole background. Through simple analytical approximations, solutions to the equations of motion can be obtained in closed form which give rather good approximations of the results obtained using more involved numerical methods. The agreement we find stems from rather elementary considerations on perturbation of Schrödinger equations.

  5. Holographic free energy and thermodynamic geometry

    Science.gov (United States)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-12-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.

  6. Holographic free energy and thermodynamic geometry

    International Nuclear Information System (INIS)

    Ghorai, Debabrata; Gangopadhyay, Sunandan

    2016-01-01

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  7. Holographic free energy and thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)

    2016-12-15

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  8. Holographic quenches towards a Lifshitz point

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Giancarlo [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil); Cuadros-Melgar, Bertha [Escola de Engenharia de Lorena, Universidade de São Paulo,Estrada Municipal do Campinho S/N, CEP: 12602-810, Lorena (Brazil); Abdalla, Elcio [Instituto de Física, Universidade de São Paulo,C.P. 66318, CEP: 05315-970, São Paulo (Brazil)

    2016-02-01

    We use the holographic duality to study quantum quenches of a strongly coupled CFT that drive the theory towards a non-relativistic fixed point with Lifshitz scaling. We consider the case of a Lifshitz dynamical exponent z close to unity, where the non-relativistic field theory can be understood as a specific deformation of the corresponding CFT and, hence, the standard holographic dictionary can be applied. On the gravity side this amounts to finding a dynamical bulk solution which interpolates between AdS and Lishitz spacetimes as time evolves. We show that an asymptotically Lifshitz black hole is always formed in the final state. This indicates that it is impossible to reach the vacuum state of the Lifshitz theory from the CFT vacuum as a result of the proposed quenching mechanism. The nonequilibrium dynamics following the breaking of the relativistic scaling symmetry is also probed using both local and non-local observables. In particular, we conclude that the equilibration process happens in a top-down manner, i.e., the symmetry is broken faster for UV modes.

  9. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    International Nuclear Information System (INIS)

    Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert

    2017-01-01

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  10. The holographic dictionary for Beta functions of multi-trace coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Aharony, Ofer [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Gur-Ari, Guy [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305 (United States); Klinghoffer, Nizan [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel)

    2015-05-06

    Field theories with weakly coupled holographic duals, such as large N gauge theories, have a natural separation of their operators into ‘single-trace operators’ (dual to single-particle states) and ‘multi-trace operators’ (dual to multi-particle states). There are examples of large N gauge theories where the beta functions of single-trace coupling constants all vanish, but marginal multi-trace coupling constants have non-vanishing beta functions that spoil conformal invariance (even when all multi-trace coupling constants vanish). The holographic dual of such theories should be a classical solution in anti-de Sitter space, in which the boundary conditions that correspond to the multi-trace coupling constants depend on the cutoff scale, in a way that spoils conformal invariance. We argue that this is realized through specific bulk coupling constants that lead to a running of the multi-trace coupling constants. This fills a missing entry in the holographic dictionary.

  11. Carbazole Containing Copolymers: Synthesis, Characterization, and Applications in Reversible Holographic Recording

    Directory of Open Access Journals (Sweden)

    Bénédicte Mailhot-Jensen

    2010-01-01

    Full Text Available Carbazolic copolymers have been developed to be used in reversible holographic recording. This paper describes a complete analysis, from synthesis of the material to its applications, together with the corresponding characterizations. The investigated materials were photosensitive copolymers obtained from carbazolylalkylmethacrylates (CEM and octylmethacrylate (OMA. A detailed investigation was undertaken involving infrared spectroscopy and NMR techniques, 1H, 13C, COSY, and HSQC, in order to establish the chemical structure and the composition of the copolymers. Holographic recording characteristics were investigated with one- and two-layer photothermoplastic carriers. The two-layer carrier contains separate photosensitive and thermoplastic layers and gives the best holographic response. The surface of microstructured samples has been characterized by atomic force microscopy analysis. It is shown that via a photothermoplastic recording process, it is possible to record and read holograms practically in real time (~3 s with a diffraction efficiency of 10% and a spatial resolution higher than 1000 mm−1.

  12. Polarization holographic recording in Disperse Red1 doped polyurethane polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Aleksejeva, J; Gerbreders, A; Gertners, U; Reinfelde, M; Teteris, J, E-mail: aleksejeva.jelena@gmail.com [Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga (Latvia)

    2011-06-23

    In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence {Delta}n was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.

  13. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut; Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Järvinen, Matti [Laboratoire de Physique Théorique de l’École Normale Supérieure & Institut de Physique Théorique Philippe Meyer, PSL Research University,CNRS, Sorbonne Universités, UPMC University Paris 06,24 rue Lhomond, 75231 Paris Cedex 05 (France); Nijs, Govert [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2017-03-09

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  14. Photopolymer for Optical Holography and Holographic Interferometry

    Czech Academy of Sciences Publication Activity Database

    Květoň, M.; Lédl, Vít; Havránek, A.; Fiala, P.

    2010-01-01

    Roč. 295, č. 1 (2010), s. 107-113 ISSN 1022-1360 Institutional research plan: CEZ:AV0Z20430508 Keywords : holographic interferometry * holography * photopolymerization * recording material * refractive index Subject RIV: BH - Optics, Masers, Lasers http://onlinelibrary.wiley.com/doi/10.1002/masy.200900093/pdf

  15. Gravitational collapse and evolution of holographic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R [Dipartimento di Fisica, Universita di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Germani, C [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom)

    2006-03-01

    Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and 'anti-evaporates'. Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an 'anti-evaporation' and an 'evaporation' term.

  16. Towards automated electron holographic tomography for 3D mapping of electrostatic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Daniel, E-mail: Daniel.Wolf@Triebenberg.de [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Lubk, Axel; Lichte, Hannes [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, 01062 Dresden (Germany); Friedrich, Heiner [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht (Netherlands)

    2010-04-15

    Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography with electron tomography, was successfully applied for the quantitative 3D mapping of electrostatic potentials at the nanoscale. Here we present the first software package (THOMAS) for semi-automated acquisition of holographic tilt series, a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by a factor of five on average, compared to the previous, completely manual approaches. Moreover, the existing software packages for retrieving amplitude and phase information from electron holograms have been extended, now including a one-step procedure for holographic tilt series reconstruction. Furthermore, a modified SIRT algorithm (WSIRT) was implemented for the quantitative 3D reconstruction of the electrostatic potential from the aligned phase tilt series. Finally, the application of EHT to a polystyrene latex sphere test-specimen and a pn-doped Ge 'needle'-shaped specimen are presented, illustrating the quantitative character of EHT. For both specimens the mean inner potential (MIP) values were accurately determined from the reconstructed 3D potential. For the Ge specimen, additionally the 'built-in' voltage across the pn junction of 0.5 V was obtained.

  17. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    Science.gov (United States)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre; Jourdain, Pascal; Boss, Daniel; Depeursinge, Christian D.; Magistretti, Pierre J.

    2013-01-01

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  19. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  20. Application of holographic elements in displays and planar illuminators

    Science.gov (United States)

    Putilin, Andrew; Gustomiasov, Igor

    2007-05-01

    Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.

  1. Blockspin renormalization-group study of color confinement due to violation of the non-Abelian Bianchi identity

    Science.gov (United States)

    Suzuki, Tsuneo

    2018-02-01

    Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1) smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the tadpole-improved gauge action. The effective action can be determined by adopting the inverse Monte Carlo method. The coupling constants F (i ) of the effective action depend on the coupling of the lattice action β and the number of the blocking step n . But it is found that F (i ) satisfies a beautiful scaling; that is, they are a function of the product b =n a (β ) alone for lattice coupling constants 3.0 ≤β ≤3.9 and the steps of blocking 1 ≤n ≤12 . The effective action showing the scaling behavior can be regarded as an almost perfect action corresponding to the continuum limit, since a →0 as n →∞ for fixed b . The infrared effective monopole action keeps the global color invariance when smooth gauges such as MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the continuum theory. Then we compare the results with those obtained by the analytic blocking method of topological defects from the continuum, assuming local two-point interactions are dominant as the infrared effective action. The action is formulated in the continuum limit while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be transformed into that of the string model. Since large b =n a (β ) corresponds to the strong-coupling region in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically

  2. Electronic holographic moire in the micron range

    Science.gov (United States)

    Sciammarella, Cesar A.; Sciammarella, Federico M.

    2001-06-01

    The basic theory behind microscopic electronic holographic moire is presented. Conditions of observation are discussed, and optimal parameters are established. An application is presented as an example where experimental result are statistically analyzed and successfully correlated with an independent method of measurement of the same quantity.

  3. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2010-01-01

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  4. Holographic photon production in heavy ion collisions

    International Nuclear Information System (INIS)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-01-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  5. Holographic photon production in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Kiritsis, Elias [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Department of Physics, University of Crete,71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,71003 Heraklion (Greece); APC, Univ Paris Diderot, Sorbonne Paris Cité, APC, UMR 7164 CNRS,F-75205 Paris (France); Shen, Chun [Department of Physics, McGill University,3600 University Street, Montreal, QC, H3A 2T8 (Canada); Yang, Di-Lun [Theoretical Research Division, Nishina Center, RIKEN, Wako,Saitama 351-0198 (Japan)

    2017-04-07

    The thermal-photon emission from strongly coupled gauge theories at finite temperature is calculated using holographic models for QCD in the Veneziano limit (V-QCD). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons from hard scattering and the thermal photons from hadron gas to analyze the spectra and anisotropic flow of direct photons at RHIC and LHC. The results from different sources responsible for the thermal photons in QGP including the weakly coupled QGP (wQGP) from perturbative calculations, strongly coupled N=4 super Yang-Mills (SYM) plasma (as a benchmark for reference), and Gubser’s phenomenological holographic model are then compared. It is found that the direct-photon spectra are enhanced in the strongly coupled scenario compared with the ones in the wQGP, especially at high momenta. Moreover, both the elliptic flow and triangular flow of direct photons are amplified at high momenta for V-QCD and the SYM plasma. The results are further compared with experimental observations.

  6. The Thouless-Anderson-Palmer equation for an analogue neural network with temporally fluctuating white synaptic noise

    International Nuclear Information System (INIS)

    Ichiki, Akihisa; Shiino, Masatoshi

    2007-01-01

    Effects of synaptic noise on the retrieval process of associative memory neural networks are studied from the viewpoint of neurobiological and biophysical understanding of information processing in the brain. We investigate the statistical mechanical properties of stochastic analogue neural networks with temporally fluctuating synaptic noise, which is assumed to be white noise. Such networks, in general, defy the use of the replica method, since they have no energy concept. The self-consistent signal-to-noise analysis (SCSNA), which is an alternative to the replica method for deriving a set of order parameter equations, requires no energy concept and thus becomes available in studying networks without energy functions. Applying the SCSNA to stochastic networks requires the knowledge of the Thouless-Anderson-Palmer (TAP) equation which defines the deterministic networks equivalent to the original stochastic ones. The study of the TAP equation which is of particular interest for the case without energy concept is very less, while it is closely related to the SCSNA in the case with energy concept. This paper aims to derive the TAP equation for networks with synaptic noise together with a set of order parameter equations by a hybrid use of the cavity method and the SCSNA

  7. Constructive use of holographic projections

    International Nuclear Information System (INIS)

    Schroer, Bert

    2008-01-01

    Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)

  8. Constructive use of holographic projections

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)

    2008-07-01

    Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)

  9. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  10. Design and optimization of cascaded DCG based holographic elements for spectrum-splitting PV systems

    Science.gov (United States)

    Wu, Yuechen; Chrysler, Benjamin; Pelaez, Silvana Ayala; Kostuk, Raymond K.

    2017-09-01

    In this work, the technique of designing and optimizing broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting application. Spectrum splitting photovoltaic system uses a series of single bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. DCG is a near ideal holographic material for solar applications as it can achieve high refractive index modulation, low absorption and scattering properties and long-term stability to solar exposure after sealing. In this research, a methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cut-off wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is also developed to optimize both single and two-layer cascaded holographic spectrum splitters for the best bandgap combinations of two- and three-junction SSPV systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems under the AM1.5 solar spectrum are then calculated using the detailed balance method, and shows an improvement compared with tandem structure.

  11. Phase recording for formation of holographic optical elements on silver-halide photographic emulsions

    Science.gov (United States)

    Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.

    2009-05-01

    Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.

  12. Acoustical holographic recording with coherent optical read-out and image processing

    Science.gov (United States)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  13. Holographic conductivity for logarithmic charged dilaton-Lifshitz solutions

    Directory of Open Access Journals (Sweden)

    A. Dehyadegari

    2016-07-01

    Full Text Available We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the holographic conductivity for a (2+1-dimensional brane boundary and study its behavior in terms of the frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz–Maxwell-dilaton black branes which have conductivity for all z, here in the presence of nonlinear gauge field, the holographic conductivity does exist provided z≤3 and vanishes for z>3. It is shown that independent of the nonlinear parameter β, the real part of the conductivity is the same for a specific value of frequency per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as existence of an additional charge carrier rather than the AdS case, and is due to the presence of the scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced by mild oxygen plasma exposure has been reported.

  14. An elementary research on wireless transmission of holographic 3D moving pictures

    Science.gov (United States)

    Takano, Kunihiko; Sato, Koki; Endo, Takaya; Asano, Hiroaki; Fukuzawa, Atsuo; Asai, Kikuo

    2009-05-01

    In this paper, a transmitting process of a sequence of holograms describing 3D moving objects over the communicating wireless-network system is presented. A sequence of holograms involves holograms is transformed into a bit stream data, and then it is transmitted over the wireless LAN and Bluetooth. It is shown that applying this technique, holographic data of 3D moving object is transmitted in high quality and a relatively good reconstruction of holographic images is performed.

  15. Application of holographic interferometric studies of underwater shock-wave focusing to medicine

    Science.gov (United States)

    Takayama, Kazuyoshi; Nagoya, H.; Obara, Tetsuro; Kuwahara, M.

    1993-01-01

    Holographic interferometric flow visualization was successfully applied to underwater shock wave focusing and its application to extracorporeal shock wave lithotripsy (ESWL). Real time diffuse holograms revealed the shock wave focusing process in an ellipsoidal reflector made from PMMA and double exposure holographic interferometry also clarified quantitatively the shock focusing process. Disintegration of urinary tract stones and gallbladder stones was observed by high speed photogrammetry. Tissue damage associated with the ESWL treatment is discussed in some detail.

  16. Second-order hydrodynamics and universality in non-conformal holographic fluids

    International Nuclear Information System (INIS)

    Kleinert, Philipp; Probst, Jonas

    2016-01-01

    We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3+1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ=3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, H̃=2ητ π −2(κ−κ ∗ )−λ 2 , always vanishes. We prove analytically that the Haack-Yarom identity H=2ητ π −4λ 1 −λ 2 =0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H=0 may be universally satisfied by strongly coupled fluids.

  17. Second-order hydrodynamics and universality in non-conformal holographic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, Philipp; Probst, Jonas [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-12-19

    We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3+1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ=3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, H̃=2ητ{sub π}−2(κ−κ{sup ∗})−λ{sub 2}, always vanishes. We prove analytically that the Haack-Yarom identity H=2ητ{sub π}−4λ{sub 1}−λ{sub 2}=0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H=0 may be universally satisfied by strongly coupled fluids.

  18. Holographic interaction effects on transport in Dirac semimetals

    NARCIS (Netherlands)

    Jacobs, V.P.J.; Vandoren, S.; Stoof, H.T.C.

    2014-01-01

    Strongly interacting Dirac semimetals are investigated using a holographic model especially geared to compute the single-particle correlation function for this case, including both interaction effects and non-zero temperature. We calculate the (homogeneous) optical conductivity at zero chemical

  19. The use of holographic techniques for recording high-speed events

    International Nuclear Information System (INIS)

    Stepanov, B.M.; Filenko, Yu.I.

    The metods resulting from studies carried out using the commercial holographic device UIG-I are described. The device is intended for recording and investigating moving scenes and high-speed events by a holographic method. It consists of a quantum generator with a two-stage amplifier whose radiation energy in a single-mode operation is 0.7 J, and pulse width for passive Q-switching is 40nsec. Hologram portrait making was one of the experiments which illustrate the possible applications of the device. Hologram portraits such as group portraits and those that can be reconstructed in white light, were obtained on Micrat BP-2 and Agfa Gevaert plates

  20. Holographic interferometry and laser speckle photography as aids to assessment of pressurized components

    International Nuclear Information System (INIS)

    Martin, D.J.V.

    1975-01-01

    This paper gives details of the defect detection holographic technique and describes laser speckle photography to evaluate in phase movement and strain in pressurized components. The new fibre optic technique and system appraisal is included. The holographic tests show that it is possible to detect on the outside of tubes defects in the bore approximately 10% of thickness deep. Speckle photography gives object lateral movement, direction and strain. (Auth.)