WorldWideScience

Sample records for holographic beam steering

  1. A beam steering technique using dielectric wedges.

    OpenAIRE

    Khan, M. R.

    1995-01-01

    The thesis describes a method of' beam steering aimed at producing a useful amount of deflection of an antenna beam from boresight, by a simple and Inexpensive method. For large antennas, It is difficult, as well as expensive, to steer the beam by more than a few beamwidths. The method studied was developed with particular reference to the beam steering requirements of Direct Broadcast Satellite flat plate antennas. The method involves two dielectric wedges, having cir...

  2. Beam Steering Devices Reduce Payload Weight

    Science.gov (United States)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  3. Tunable beam steering enabled by graphene metamaterials.

    Science.gov (United States)

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  4. SPS Beam Steering for LHC Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Bartosik, Hannes [CERN; Cornelis, Karel [CERN; Norderhaug Drøsdal, Lene [CERN; Goddard, Brennan [CERN; Kain, Verena [CERN; Meddahi, Malika [CERN; Papaphilippou, Yannis [CERN; Wenninger, Jorg [CERN

    2014-07-01

    The CERN Super Proton Synchrotron accelerates beams for the Large Hadron Collider to 450 GeV. In addition it produces beams for fixed target facilities which adds complexity to the SPS operation. During the run 2012-2013 drifts of the extracted beam trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses in the LHC. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. While extensive studies are going on to understand, and possibly suppress, the source of such SPS orbit drifts the feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, by means of the interlocked correctors, is also being investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed.

  5. SPS Beam Steering for LHC Extraction

    CERN Document Server

    Gianfelice Wendt, E; Cornelis, K; Norderhaug Drosdal, L; Goddard, B; Kain, V; Meddahi, M; Papaphilippou, Y; Wenninger, J

    2014-01-01

    Beside producing beams for fixed target operation, the CERN Super Proton Synchrotron (SPS) accelerates beams for injection into the Large Hadron Collider (LHC). During the 2012-2013 run drifts of the extracted beam horizontal trajectories have been observed and lengthy optimizations in the transfer lines were performed to reduce particle losses. The observed trajectory drifts are consistent with the measured SPS orbit drifts at extraction. The feasibility of an automatic beam steering towards a “golden” orbit at the extraction septa, has been therefore investigated. The challenges and constraints related to the implementation of such a correction in the SPS are described. Simulation results are presented and a possible operational steering strategy is proposed. As the observed drift is mainly horizontal, the horizontal plane only will be considered.

  6. Indexing system for optical beam steering

    Science.gov (United States)

    Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.

    1990-01-01

    This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.

  7. Phase shifter for antenna beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, Ravi, E-mail: rjindal21@gmail.com [Master’s(MS) in System Electronics and General Electrical, Ecole Polytechnique of university of Nantes France, IETR, Nantes (France); Razban, Tchanguiz, E-mail: tchanguiz.razban-haghighi@univ-nantes.fr [Electronics and Telecommunication Institute of Rennes (IETR-UMR 6164), Ecole Polytechnique of university of Nantes France, IETR, Nantes (France)

    2016-03-09

    Wide band Array Antenna operates in Ku-band (10.7-12.7 GHz) frequency composed of N×N radiating elements. This antenna aims at the reception of television satellite signals. The goal of this research is to provide better possibility of electronic beam control instead of manual or mechanical control, and design compact and low cost phase shifters to be inserted in the feeding network of this antenna. The electronic control of the phase shifter will allow the control of beam steering. The emphasis of this project will be done at the beginning on the design of a good phase shifter in Ku band. The aim of this research is to define, simulate, release and measure a continuous phase shifter. Better reflection loss, low transmission loss, low Cost of array antennas, large range of phase-shifter, phase flatness and bandwidth will be achieved by providing better gain.

  8. ICESat-2 ATLAS Beam Steering Mechanism (BSM)

    Science.gov (United States)

    Hinkle, Matthew

    2015-01-01

    This work covers the design and test of a beam steering mechanism (BSM) used to accurately guide a laser on the Advanced Topographic Laser Altimeter System (ATLAS) down to Earth in order to measure elevation. It describes the main components in the BSM that allows it to perform and meet stringent requirements. Requirements of the BSM include two-axis steering of the transmitted laser beam, +-5000 uRad mechanical motion in each axis, and 1.5 uRad RMS pointing stability among many other requirements. The BSM uses four voice coil actuators in order to locate the mirror at the angle we need. There are four Differential Position Sensors that determine the position and angle of the mirror at all times. These sensors were verified through optical testing in both ambient and thermal conditions. Testing and extensive analyses were performed on the two-axis flexure throughout the program to check flexure thickness, positive margins, and infinite life. The mirror mount design has been modified to eliminate radial preload, while incorporating a titanium wave spring to provide an axial preload of 10.8N. The BSM underwent multiple tests in order to verify all components work as required under various conditions.

  9. "Intelligent" Automatic Beam Steering and Shaping

    CERN Document Server

    Jansson, A

    2000-01-01

    The strategy for Automated Beam Steering and Shaping (ABS) in the PS complex is to use theoretical response matrices calculated from an optics database. The main reason for this is that it enforces a certain understanding of the machine optics. A drawback is that the validation of such a matrix can be a lengthy process. However, every time a correction is made using an ABS program, a partial measurement of the response matrix is effectively performed. Since the ABS programs are very frequently used, the full matrices could thus be measured on an almost daily basis, provided this information is retained. The information can be used in two ways. Either the program passively logs the data to be analysed off­line, or the information is directly fed back to the matrix, which makes the program 'learn' as it executes. The data logging provides a powerful machine debugging tool, since deviations between the measured and theoretical matrices can be traced back to incorrect optical parameters. The 'learning' mode ensu...

  10. Design and Analysis of a Fast Steering Mirror for Precision Laser Beams Steering

    Directory of Open Access Journals (Sweden)

    Qingkun ZHOU

    2009-03-01

    Full Text Available Precision laser beam steering is critical in numerous applications. Also, precise pointing of laser beams is essential in challenging environments. The optical signal may be deflected, drift and wander due to environmental influences. The core problem of steering performances is to deal with the jitter disturbance. Based on the analysis of the beam angle steering system, some important factors to design the structure of a Fast Steering Mirror (FSM and the layout of laser optics steering system are presented. Flexure hinges with compliant mechanisms are used to build the FSM structure. A 4-quadrant detector is used as the sensor for the incoming light. A design of the developed control loop and concepts of the FSM model are discussed. A comparison between the measured gain response and the simulation model of the FSM reveals similarity between the theoretical simulation model and the real system, and offers a way to improve the model to better resemble the real system. A laser beam jitter control test bed is also introduced to improve jitter control techniques.

  11. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  12. Image Processing In Laser-Beam-Steering Subsystem

    Science.gov (United States)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  13. Beam steering by liquid crystal elastomer fibres.

    Science.gov (United States)

    Nocentini, S; Martella, D; Wiersma, D S; Parmeggiani, C

    2017-11-22

    The problem of utilizing a laser beam as an information vehicle and dividing it into different channels is an open problem in the telecommunication field. The switching of a signal into different ports has been demonstrated, to date, by employing complex devices and mechanisms such as the electro optic effect, microelectromechanical system (MEMS) mirrors, or liquid crystal-based spatial light modulators (SLMs). We present here a simple device, namely a mirror held by a liquid crystal elastomer (LCE) fibre, as an optically and remotely driven beam steerer. In fact, a considered signal (laser beam) can be addressed in every in-plane direction by controlling the fibre and mirror rotation, i.e., the deflected probe beam angle. Such movement is possible due to the preparation of LCE fibres able to rotate and contract under a selective light stimulus. By adjusting the irradiation stimulus power, elastic fibres are able to rotate with a specific angle, performing more than one complete revolution around their axis. The described movement is perfectly reversible as soon as the stimulus is removed.

  14. Femtosecond laser processing with a holographic line-shaped beam.

    Science.gov (United States)

    Hasegawa, Satoshi; Shiono, Koji; Hayasaki, Yoshio

    2015-09-07

    Line-shaped femtosecond pulses are well-suited to large-area machining with high throughput in laser cutting, peeling, and grooving of materials. First, we demonstrated the single-shot fabrication of a line structure in a glass surface using a line-shaped pulse generated by a holographic cylindrical lens displayed on a liquid-crystal spatial light modulator. We found the line structure was uniform and smooth near the ends because of the ability to precisely control the intensity distribution and to achieve single-shot fabrication. Second, we demonstrated a line-shaped beam deformed three-dimensionally for showing the potential of holographic line-shaped beam processing. Third, we demonstrated laser peeling of an indium tin oxide film. We found that little debris around the fabricated area was observed, because the debris was removed by the beam itself. Last, we demonstrated laser grooving of stainless steel. We found the swelling of the surface included upwardly growing nanogratings, although many line-shaped pulse irradiations were given. The swelling was caused by the depositions of the debris on the top of the nanogratings.

  15. Status of an automatic Beam Steering for the CLIC Test Facility 3

    CERN Document Server

    Adli, E; Dabrowski, A; Schulte, D; Shaker, SH; Skowronski, P; Tecker, F; Tomás, R

    2008-01-01

    An automatic beam steering application for CTF 3 is being designed in order to automatize operation of the machine, as well as providing a test-bed for advanced steering algorithms for CLIC. Beam-based correction including dispersion free steering have been investigated. An approach based on a PLACET on-line model has been tested. This paper gives an overview of the current status and the achieved results of the CTF3 automatic steering.

  16. Continuous axial scanning of a Gaussian beam via beam steering.

    Science.gov (United States)

    Boucher, Pauline; Barré, Nicolas; Pinel, Olivier; Labroille, Guillaume; Treps, Nicolas

    2017-09-18

    We propose and demonstrate experimentally the transfer of one spatial degree of freedom of a laser beam onto another one. Using a multi-plane light conversion device (MPLC) and a modal analysis, we designed a passive setup with immediate response which couples a displacement and tilt in the transverse plane to a longitudinal shift of the focus point of a beam. With this design, we demonstrated a shift of the focal point of the output beam by 4 zR along the propagation axis.

  17. Nonmechanical Infrared Beam Steering Using Blue Addressed Quantum Dot Doped Liquid Crystal Grating

    Science.gov (United States)

    Wang, Xiangru; Huang, Xiaoping; Huang, Ziqiang; Wu, Liang; Shang, Jiyang; Qiu, Qi; Wu, Shuanghong

    2017-01-01

    We present a scheme of nonmechanical laser beam steering using ZnS/InP quantum dots doping nematic liquid crystal as the optical recording film. Because of its internal electric field generated by blue laser-induced charge carrier distribution, liquid crystal molecules are reoriented to form a phase grating which make the incident angle steer to the angle as we desire. Being a nonmechanical programmable laser beam steering, the anisotropy of the relative permittivity tensor and blue laser-induced electric carriers play a significant effect in determining the reorientable liquid crystal molecule and reconfigurable phase modulation of the gratings, that determines the steering angle and steering efficiency.

  18. Laser beam steering approaches for microstructuring of copper layers

    Science.gov (United States)

    Mur, Jaka; Podobnik, Boštjan; Poberaj, Igor

    2017-02-01

    We have investigated the process of copper layer ablation with a tightly focused Q-switched 532 nm laser. Focusing 40 ns long laser pulses to a micrometer-sized spot results in high energy density and gives rise to ablation phenomena not seen during laser processing with larger beam diameters. Use of acousto-optic deflectors (AODs) enabled us to test different laser beam steering approaches in terms of choosing the position for each laser pulse independently of the previous pulses. Random addressing of desired positions across a microstructure proved to be the most efficient method compared to various scanning approaches. Assigning a random order to the spatial sequence of laser pulses resulted in the fastest microstructuring process and featured lowest residual heating of the substrate.

  19. Beam-modulation methods in quantitative and flow-visualization holographic interferometry

    Science.gov (United States)

    Decker, Arthur J.

    1986-01-01

    Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  20. Beam-modulation methods in quantitative and flow visualization holographic interferometry

    Science.gov (United States)

    Decker, A.

    1986-01-01

    This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  1. Steering, Splitting and Cloning of Optical Beam in a Coherently Driven Raman Gain System

    OpenAIRE

    Verma, Onkar N.; Dey, Tarak N.

    2014-01-01

    We propose an all-optical anti-waveguide mechanism for steering, splitting, and cloning of an optical beam beyond the diffraction-limit. We use a spatially inhomogeneous pump beam to create an anti-waveguide structure in a Doppler broadened N -type four-level Raman gain medium for a co-propagating weak probe beam. We show that a transverse modulated index of refraction and gain due to the spatially dependent pump beam hold the keys to steering, splitting and cloning of an optical beam. We hav...

  2. Beam steering uncertainty analysis for Risley prisms based on Monte Carlo simulation

    Science.gov (United States)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen

    2017-01-01

    The Risley-prism system is applied in imaging LADAR to achieve precision directing of laser beams. The image quality of LADAR is affected deeply by the laser beam steering quality of Risley prisms. The ray-tracing method was used to predict the pointing error. The beam steering uncertainty of Risley prisms was investigated through Monte Carlo simulation under the effects of rotation axis jitter and prism rotation error. Case examples were given to elucidate the probability distribution of pointing error. Furthermore, the effect of scan pattern on the beam steering uncertainty was also studied. It is found that the demand for the bearing rotational accuracy of the second prism is much more stringent than that of the first prism. Under the effect of rotation axis jitter, the pointing uncertainty in the field of regard is related to the altitude angle of the emerging beam, but it has no relationship with the azimuth angle. The beam steering uncertainty will be affected by the original phase if the scan pattern is a circle. The proposed method can be used to estimate the beam steering uncertainty of Risley prisms, and the conclusions will be helpful in the design and manufacture of this system.

  3. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  4. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Science.gov (United States)

    Heck, Martijn J. R.

    2017-01-01

    Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  5. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering

    Directory of Open Access Journals (Sweden)

    Heck Martijn J.R.

    2016-06-01

    Full Text Available Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.

  6. Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating.

    Science.gov (United States)

    Kondo, Keisuke; Tatebe, Tomoki; Hachuda, Shoji; Abe, Hiroshi; Koyama, Fumio; Baba, Toshihiko

    2017-12-01

    Compact non-mechanical beam steering devices are desired not only for current common applications, but also for advanced applications such as light detection and ranging. We use a Si photonic crystal slow-light waveguide with a diffraction grating, which radiates the guided mode to free space and steers a fan beam by sweeping the wavelength. Due to its large angular dispersion, slow light enhances the steering range without degrading the beam quality, resulting in more resolution points. We fabricated 600 μm devices and observed a 23° steering range and a beam divergence of 0.23°, which resulted in 100 resolution points.

  7. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    Science.gov (United States)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  8. Beam steering for circular switched parasitic arrays using a combinational approach

    CSIR Research Space (South Africa)

    Mofolo, ROM

    2011-09-01

    Full Text Available because of the array symmetry advantage [12]. This beam steering approach produces limited beam steering resolution. The On/Off RF switches are mostly used in the design of SPA antennas [14] to electronically switch the parasitic elements between... and isolated from the ground plane using a thin sheet of insulation material. III. SYSTEM MODEL The system studied in this paper is a single ring circular switched parasitic array antenna with a total of five elements (N=5): one central active element...

  9. Highly Effective Light Beam Diffraction on Holographic PDLC Photonic Structure, Controllable by the Spatially Inhomogeneous Electric Field

    Science.gov (United States)

    Semkin, A. O.; Sharangovich, S. N.

    In this work the highly effiective light beam diffraction on holographic photonic structure formed in polymer-dispersed liquid crystal (PDLCs) is theoretically described. The ability to manage its diffraction characteristics by the spatially inhomogeneous electric field is also shown.

  10. Fabrication of solar beam steering electrowetting devices—present status and future prospects

    Science.gov (United States)

    Khan, I.; Castelletto, S.; Rosengarten, G.

    2017-10-01

    Many different technologies are used to track the movement of the sun to both enable concentration of its energy and maximize the yearly energy capture. Their present main limitations are the cost, size, visual impact and wind loading, particularly for applications involving mounting to a building. A parabolic concentrator, for example, along with its steering equipment is heavy and bulky, and is not suitable for rooftop applications. Instead, thin and flat solar concentration devices are required for hassle-free rooftop applications. The use of electrowetting-controlled liquid lenses has emerged as a novel approach for solar tracking and concentration. By steering sunlight using thin electrowetting cell arrays, bulky mechanical equipment is not required. The basic concept of this technology is to change the shape of a liquid interface that is formed by two immiscible fluids of different refractive indices, by simply applying an electric field. An important challenge in electrowetting beam steering devices is the optimization of the design and fabrication process for each of their main constituent components, to maximize optical efficiency. In this paper, we report on the state-of-the-art fabrication methods for electrowetting devices for solar beam steering. We have reviewed the present status of different components types and related fabrication methods, and how they affect the efficiency and performance of such devices. The work identifies future prospects in using electrowetting beam steering devices for solar energy applications. This paper will help researchers and developers in the field to determine the components and fabrication process that affect the development of efficient beam steering electrowetting devices.

  11. Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas

    Science.gov (United States)

    Sanada, Atsushi

    2008-08-01

    A two-dimensional beam steering array composed of an eight-element antenna array using composite right/left-handed leaky-wave antennas fed by an 8 × 8 Butler matrix network is designed at X-band. An eight-way beam switching in one direction by input port switching and a continuous beam steering in the other direction by frequency sweep are achieved. A wide range beam steering operation covering from -55 to +53 degrees by port switching and from -37 to +27 degrees by frequency sweep is demonstrated with the maximum gain of 9.2 dBi.

  12. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  13. Initial investigation using statistical process control for quality control of accelerator beam steering

    Directory of Open Access Journals (Sweden)

    Able Charles M

    2011-12-01

    Full Text Available Abstract Background This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated. Methods Steering coil currents (SCC for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R process control charts (PCC. The weekly average and range values (subgroup n = 5 for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. Results PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20 are indicative of a non-random cause for deviation (Xbar chart and/or an uncontrolled process (R chart. Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Conclusion Radiotherapy clinical efficiency and accelerator beam consistency may be improved by

  14. Initial investigation using statistical process control for quality control of accelerator beam steering.

    Science.gov (United States)

    Able, Charles M; Hampton, Carnell J; Baydush, Alan H; Munley, Michael T

    2011-12-28

    This study seeks to increase clinical operational efficiency and accelerator beam consistency by retrospectively investigating the application of statistical process control (SPC) to linear accelerator beam steering parameters to determine the utility of such a methodology in detecting changes prior to equipment failure (interlocks actuated). Steering coil currents (SCC) for the transverse and radial planes are set such that a reproducibly useful photon or electron beam is available. SCC are sampled and stored in the control console computer each day during the morning warm-up. The transverse and radial - positioning and angle SCC for photon beam energies were evaluated using average and range (Xbar-R) process control charts (PCC). The weekly average and range values (subgroup n = 5) for each steering coil were used to develop the PCC. SCC from September 2009 (annual calibration) until two weeks following a beam steering failure in June 2010 were evaluated. PCC limits were calculated using the first twenty subgroups. Appropriate action limits were developed using conventional SPC guidelines. PCC high-alarm action limit was set at 6 standard deviations from the mean. A value exceeding this limit would require beam scanning and evaluation by the physicist and engineer. Two low alarms were used to indicate negative trends. Alarms received following establishment of limits (week 20) are indicative of a non-random cause for deviation (Xbar chart) and/or an uncontrolled process (R chart). Transverse angle SCC for 6 MV and 15 MV indicated a high-alarm 90 and 108 days prior to equipment failure respectively. A downward trend in this parameter continued, with high-alarm, until failure. Transverse position and radial angle SCC for 6 and 15 MV indicated low-alarms starting as early as 124 and 116 days prior to failure, respectively. Radiotherapy clinical efficiency and accelerator beam consistency may be improved by instituting SPC methods to monitor the beam steering process

  15. Steering A Radar Beam Toward The Zero-Doppler Line

    Science.gov (United States)

    Chang, Chi-Yung; Curlander, John C.

    1994-01-01

    Algorithm computes angles needed to aim radar beam from airborne or spaceborne platform toward Doppler line projected on ground for which Doppler shift of radar return is zero. Devised to reduce Doppler errors and simplify processing of data from synthetic-aperture-radar system. Applicable to aiming of other radio or optical instruments toward their zero-Doppler lines on ground.

  16. Non-mechanical beam steering in the mid-wave infrared

    Science.gov (United States)

    Frantz, Jesse A.; Myers, Jason D.; Bekele, Robel Y.; Spillmann, Christopher M.; Naciri, Jawad; Kolacz, Jakub S.; Gotjen, Henry; Shaw, Leslie B.; Sanghera, Jasbinder S.; Sodergren, Bennett; Wang, Ying-Ju; Rommel, Scott D.; Anderson, Mike; Davis, Scott R.; Ziemkiewicz, Michael

    2017-05-01

    The mid-wave infrared (MWIR) portion of the electromagnetic spectrum is critically important for a variety of applications such as LIDAR and chemical sensing. Concerning the latter, the MWIR is often referred to as the "molecular fingerprint" region owing to the fact that many molecules display distinctive vibrational absorptions in this region, making it useful for gas detection. To date, steering MWIR radiation typically required the use of mechanical devices such as gimbals, which are bulky, slow, power-hungry, and subject to mechanical failure. We present the first non-mechanical beam steerer capable of continuous angular tuning in the MWIR. These devices, based on refractive, electro-optic waveguides, provide angular steering in two dimensions without relying on moving parts. Previous work has demonstrated non-mechanical beam steering (NMBS) in the short-wave infrared (SWIR) and near infrared (NIR) using a waveguide in which a portion of the propagating light is evanescently coupled to a liquid crystal (LC) layer in which the refractive index is voltage-tuned. We have extended this NMBS technology into the MWIR by employing chalcogenide glass waveguides and LC materials that exhibit high MWIR transparency. As a result, we have observed continuous, 2D MWIR steering for the first time with a magnitude of 2.74° in-plane and 0.3° out-of-plane.

  17. A New System For Measuring The Deflection Of The Beam With The Support Of Digital Holographic Interferometry

    Science.gov (United States)

    Černecký, Jozef; Božek, Pavol; Pivarčiová, Elena

    2015-01-01

    The contribution deals with the comparison of possibilities of utilizing two experimental methods: digital and classical holographic interferometry for the visualization of beam motion. The girders are used in civil and mechanical engineering and considering the technical point of view it is necessary to learn to what extent the beam is deformed at the load and how much it can withstand.

  18. Holographic beam mapping of the CHIME pathfinder array

    Science.gov (United States)

    Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-François; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Johnson, Andre M.; Landecker, Tom L.; Masui, Kiyoshi W.; Mena Parra, Juan; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Recnik, Andre; Robishaw, Timothy; Shaw, J. Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald

    2016-08-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between z 0.8-2.5 CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.

  19. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2014-10-17

    SEEOR) is its relatively long optical beam path. In the VIS and NIR spectral regions, most liquid crystals have negligible absorption so that the...absorption; v.=variable intensity) [B. D. Mistry, ^ Handbook of Spectroscopic Data: Chemistry-UV, IR, PMR, CNMR and Mass Spectroscopy , Oxford, 2009...director was oriented at 45° with respect to the polarizer transmission axis. A linearly polarized He-Ne laser (>^=633nm), a tunable Argon-ion laser

  20. Frequency Invariant Beam Steering for Short-Pulse Systems with a Rotman Lens

    Directory of Open Access Journals (Sweden)

    Andreas Lambrecht

    2010-01-01

    Full Text Available A promising approach for beam steering of high-voltage transient signals for HPEM-systems (High Power Electro Magnetic is presented. The inherent capability of the Rotman lens to provide true time delays is used to develop a prototype beam steering device for an antielectronics HPEM system in the frequency range from 350 MHz to 5 GHz. Results of analytical calculations, simulations, and measurements from a hardware prototype are presented. The detailed mechanical setup of the Rotman lens is presented. Additionally the output pulses are investigated when inputting a Gaussian-like transient signal. Then time domain measures of quality (full width at half maximum, ringing, delay spread, maximum of transfer function are investigated for these output transients, and the simulation and measurement results are compared. A concluding analysis of the realizable time domain array pattern shows the radiated pulse form.

  1. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  2. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    Science.gov (United States)

    2015-01-01

    pressure budget for cooling channels reduces pump horsepower and turbine inlet temperature DISTRIBUTION STATEMENT A – Approved for public release...Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Jan 2015. PA#14562. 14. ABSTRACT Modulated absorption-emission thermometry (MAET) is a non-intrusive, radiometric technique for measuring line-of

  3. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Iversen, Theis Faber Quist; Hu, Qi

    2014-01-01

    the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering isimplemented optically with no moving parts by means of a controllableliquid-crystal retarder (LCR). The LCR switches the polarization betweentwo orthogonal linear states of the lidar beam so...

  4. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  5. Self-deflection and all-optical beam steering in CdZnTe.

    Science.gov (United States)

    Shwartz, Sharon; Segev, Mordechai; El-Hanany, Uri

    2004-04-01

    We report on the experimental observation of very large self-deflection of optical beams, along with all-optical steering, and electro-optic beam deflection. We observe as many as 27 resolvable spots of deflection at 1-W/cm2 intensity. These deflections arise from enhanced photorefractive effects in CdZnTe:V, giving rise to optically induced index changes in excess of 0.08, which is to our knowledge the strongest nonlinearity ever reported for any bulk semiconductor.

  6. Intra-pulse beam steering in a mid-infrared quantum cascade laser

    OpenAIRE

    Pruszy?ska-Karbownik, Emilia; Regi?ski, Kazimierz; Karbownik, Piotr; Mroziewicz, Bohdan

    2014-01-01

    The intra-pulse measurements of the beam steering in an AlGaAs/GaAs quantum cascade laser are presented in this paper. The experimental results are explained by a two-mode theoretical model. The near field of the laser radiation is calculated according to the effective index method and transposed to the far field numerically according to Huygens principle. The maximal observed value of deflection of the beam has been found to be \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{w...

  7. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    Science.gov (United States)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  8. High-gradient microelectromechanical system quadrupole electromagnets for particle beam focusing and steering

    Directory of Open Access Journals (Sweden)

    Jere Harrison

    2015-02-01

    Full Text Available Recent advancements in microelectromechanical system (MEMS fabrication techniques have enabled the batch-fabrication of quadrupole MEMS electromagnets producing 100 mT-scale field across sub-mm gaps with the potential for transformational advances in the field of compact high performance charged particle focusing and steering optics. The footprint of these in-vacuum focusing and steering optics can be as small as 3  mm×3  mm×0.5  mm. The low electromagnet impedance (58  mΩ, 32 nH per pole facilitates power-efficient operation and continuous or low duty cycle operation, and the individually controlled electromagnets allow combined dipole-quadrupole fields. Here we report on an experiment where these miniature devices have been used to focus and steer a 34 keV electron beam from a DC photogun, demonstrating the first application of magnetic MEMS to particle beam focusing.

  9. Intra-pulse beam steering in a mid-infrared quantum cascade laser.

    Science.gov (United States)

    Pruszyńska-Karbownik, Emilia; Regiński, Kazimierz; Karbownik, Piotr; Mroziewicz, Bohdan

    The intra-pulse measurements of the beam steering in an AlGaAs/GaAs quantum cascade laser are presented in this paper. The experimental results are explained by a two-mode theoretical model. The near field of the laser radiation is calculated according to the effective index method and transposed to the far field numerically according to Huygens principle. The maximal observed value of deflection of the beam has been found to be [Formula: see text]. For supply currents in the range from 1.6 to 2.4 times the threshold the beam steering occurs only on one side of the resonator axis, and stays is the same for all current values. For higher supply current, it occurs alternately on both sides and exhibits a bistability. The time period of the beam direction change has been found to be about 40 ns for the lowest current and was decreasing with the current increase to about 20 ns.

  10. Two-axis Beam Steering Mirror Control system for Precision Pointing and Tracking Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulander, Klaus [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2006-01-01

    Precision pointing and tracking of laser beams is critical in numerous military and industrial applications. This is particularly true for systems requiring atmospheric beam propagation. Such systems are plagued by environmental influences which cause the optical signal to break up and wander. Example applications include laser communications, precision targeting, active imaging, chemical remote sensing, and laser vibrometry. The goal of this project is to build a beam steering system using a two-axis mirror to maintain precise pointing control. Ultimately, position control to 0.08% accuracy (40 {micro}rad) with a bandwidth of 200 Hz is desired. The work described encompasses evaluation of the instrumentation system and the subsequent design and implementation of an analog electronic controller for a two-axis mirror used to steer the beam. The controller operates over a wide temperature range, through multiple mirror resonances, and is independent of specific mirrors. The design was built and successfully fielded in a Lawrence Livermore National Laboratory free-space optics experiment. All measurements and performance parameters are derived from measurements made on actual hardware that was built and field tested. In some cases, specific design details have been omitted that involve proprietary information pertaining to Lawrence Livermore National Laboratory patent positions and claims. These omissions in no way impact the general validity of the work or concepts presented in this thesis.

  11. Utilization of an ultrasound beam steering angle for measurements of tissue displacement vector and lateral displacement

    Directory of Open Access Journals (Sweden)

    Chikayoshi Sumi

    2010-09-01

    Full Text Available Chikayoshi SumiDepartment of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, JapanAbstract: A number of ultrasonic displacement/velocity measurement methods have been extensively developed for measurements of blood flow, tissue motion, and strain. Lateral modulation (LM methods have also been reported using steered, crossed beams, and these methods permit measurements of displacement vectors. In this report, a new beam steering method for the transmission and reception of ultrasound is proposed, which can enable measurements of lateral displacements and of arbitrary displacement vectors with a very high degree of accuracy. Because this beam steering method uses only a steering angle, this method is referred to as ASTA. With ASTA, the number of available methods to obtain a displacement vector measurement is limited to previously developed block-matching methods, such as the multidimensional cross-spectrum phase gradient method, and the multidimensional autocorrelation method (MAM and the multidimensional Doppler method (MDM using a block-matching method (the methods using block matching are referred to as MAMb and MDMb, respectively. Being dependent on the measurement method, only a lateral displacement measurement can be made even if the methods are multidimensional, ie, previously developed MAM and MDM using a moving average and a mirror setting of the obtained steered beams, and one-dimensional (1D, such as an autocorrelation method. Considerations of beamforming schemes using LM and ASTA show that the simple ASTA beamforming method increases capabilities for real-time measurements and requires a small physical aperture when compared with LM. For lateral displacement measurements (eg, blood flow in a carotid artery, a lateral coordinate must correspond to the direction of the target’s lateral motion, and the steering angle used is as large as possible to increase the measurement accuracy

  12. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.

    Science.gov (United States)

    Nabavizadeh, Alireza; Song, Pengfei; Chen, Shigao; Greenleaf, James F; Urban, Matthew W

    2015-04-01

    Elasticity imaging is becoming established as a means of assisting in diagnosis of certain diseases. Shear wave-based methods have been developed to perform elasticity measurements in soft tissue. Comb-push ultrasound shear elastography (CUSE) is one of these methods that apply acoustic radiation force to induce the shear wave in soft tissues. CUSE uses multiple ultrasound beams that are transmitted simultaneously to induce multiple shear wave sources into the tissue, with improved shear wave SNR and increased shear wave imaging frame rate. We propose a novel method that uses steered push beams (SPB) that can be applied for beam formation for shear wave generation. In CUSE beamforming, either unfocused or focused beams are used to create the propagating shear waves. In SPB methods we use unfocused beams that are steered at specific angles. The interaction of these steered beams causes shear waves to be generated in more of a random nature than in CUSE. The beams are typically steered over a range of 3 to 7° and can either be steered to the left (-θ) or right (+θ).We performed simulations of 100 configurations using Field II and found the best configurations based on spatial distribution of peaks in the resulting intensity field. The best candidates were ones with a higher number of the intensity peaks distributed over all depths in the simulated beamformed results. Then these optimal configurations were applied on a homogeneous phantom and two different phantoms with inclusions. In one of the inhomogeneous phantoms we studied two spherical inclusions with 10 and 20 mm diameters, and in the other phantom we studied cylindrical inclusions with diameters ranging from 2.53 to 16.67 mm. We compared these results with those obtained using conventional CUSE with unfocused and focused beams. The mean and standard deviation of the resulting shear wave speeds were used to evaluate the accuracy of the reconstructions by examining bias with nominal values for the phantoms

  13. Beam steering in superconducting quarter-wave resonators: An analytical approach

    Directory of Open Access Journals (Sweden)

    Alberto Facco

    2011-07-01

    Full Text Available Beam steering in superconducting quarter-wave resonators (QWRs, which is mainly caused by magnetic fields, has been pointed out in 2001 in an early work [A. Facco and V. Zviagintsev, in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, p. 1095], where an analytical formula describing it was proposed and the influence of cavity geometry was discussed. Since then, the importance of this effect was recognized and effective correction techniques have been found [P. N. Ostroumov and K. W. Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.110101]. This phenomenon was further studied in the following years, mainly with numerical methods. In this paper we intend to go back to the original approach and, using well established approximations, derive a simple analytical expression for QWR steering which includes correction methods and reproduces the data starting from a few calculable geometrical constants which characterize every cavity. This expression, of the type of the Panofski equation, can be a useful tool in the design of superconducting quarter-wave resonators and in the definition of their limits of application with different beams.

  14. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    Science.gov (United States)

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm.

  15. Microscopic Mapping of Subnanometric Motion with Multiple-Beam Differential Holographic Technique

    Science.gov (United States)

    Lin, Hungyi

    The measurement of ultrasmall displacement is usually performed by laser interferometry. In most cases, this method is specified for the surface measurement and requires a relatively smooth surface capable of reflecting light. In this research, a newly developed method, mutiple -beam microdifferential holography, is introduced to measure a small configuration change. This configuration change can happen on the surface of an object or inside a semitransparent object. In the experiment, two reference beams are used to record a pair of phase biased holographic images simultaneously. During the image reconstruction, the CCD image acquisition system is employed to record the pair of images one at a time and then process them digitally. The subtraction image intuitively shows that the deformation of tested object occurs between the double exposures applied during the holographic recording. A second object beam, usually a plane wave, is added to the imaging system for the purpose of image registration, which is required for the image processing. Several developments upgraded the system performance. The calibration was done with an extremely consistent moving object, a small air bubble drifting in a glycerine-filled capillary. Displacements as small as 0.4 nanometer are reported. In application, a living cell, a single frog muscle fiber, was under examination. This part of the research focused mainly on the crossbridge mechanism of striated muscle contraction. The images made at the plateau of tetanus suggest either that the cycling time constant is much longer than 10 msec, that the displacement for a power stroke is substantially less than 12 nanometer, or that the crossbridge is not cycling during the isometric force generation. The images made at the initial state of force development suggest that a large number of crossbridges shift toward the actin filament at the onset of the force development and stay there (at least without large scale rotation) even when the

  16. New design of a beam-steering thermooptic multimode polymer waveguide switch

    Science.gov (United States)

    Ma, C.; van Keuren, E.

    2006-12-01

    We present simulations of a Y-branch directional coupler activated using the thermooptic effect in a multimode polymer waveguide. Microheaters embedded beneath both sides of the waveguide at the Y-branch are used to generate an inhomogeneous temperature profile. Through the thermooptic effect, this temperature profile creates a refractive index profile in the channel waveguide material, which steers the beam to one of the two output branches. We determined the expected thermal profiles using finite element modeling (FEM). The transmission of a basic mode through the waveguide was then simulated using the beam propagation method (BPM). The results show that a high contrast ratio (>90%) can be achieved in response times on the order of 1 ms.

  17. Synthesis of Steered Flat-top Beam Pattern Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    D. Mandal

    2016-12-01

    Full Text Available In this paper a pattern synthesis method based on Evolutionary Algorithm is presented. A Flat-top beam pattern has been generated from a concentric ring array of isotropic elements by finding out the optimum set of elements amplitudes and phases using Differential Evolution algorithm. The said pattern is generated in three predefined azimuth planes instate of a single phi plane and also verified for a range of azimuth plane for the same optimum excitations. The main beam is steered to an elevation angle of 30 degree with lower peak SLL and ripple. Dynamic range ratio (DRR is also being improved by eliminating the weakly excited array elements, which simplify the design complexity of feed networks.

  18. Fast beam steering with full polarization control using a galvanometric optical scanner and polarization controller

    CERN Document Server

    Jofre, M; Steinlechner, F; Oliverio, N; Torres, J P; Pruneri, V; Mitchell, M W; 10.1364/OE.20.012247

    2012-01-01

    Optical beam steering is a key element in many industrial and scientific applications like in material processing, information technologies, medical imaging and laser display. Even though galvanometer-based scanners offer flexibility, speed and accuracy at a relatively low cost, they still lack the necessary control over the polarization required for certain applications. We report on the development of a polarization steerable system assembled with a fiber polarization controller and a galvanometric scanner, both controlled by a digital signal processor board. The system implements control of the polarization decoupled from the pointing direction through a feed-forward control scheme. This enables to direct optical beams to a desired direction without affecting its initial polarization state. When considering the full working field of view, we are able to compensate polarization angle errors larger than 0.2 rad, in a temporal window of less than $\\sim 20$ ms. Given the unification of components to fully cont...

  19. Monolithic beam steering in a mid-infrared, surface-emitting, photonic integrated circuit.

    Science.gov (United States)

    Slivken, Steven; Wu, Donghai; Razeghi, Manijeh

    2017-08-16

    The mid-infrared (2.5 infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function.

  20. Low Cost Beam-Steering Approach for a Series-Fed Array

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex and costly. This paper presents a concept which overcomes these detrimental attributes by eliminating all of the phased array backend (including phase shifters). Instead, a propagation constant reconfigurable transmission line in a series fed array arrangement is used to allow phase shifting with one small (less than or equal to 100mil) linear mechanical motion. A novel slotted coplanar stripline design improves on previous transmission lines by demonstrating a greater control of propagation constant, thus allowing practical prototypes to be built. Also, beam steering pattern control is explored. We show that with correct choice of line impedance, pattern control is possible for all scan angles. A 20 element array scanning from -25 deg less than or equal to theta less than or equal to 21 deg. with mostly uniform gain at 13GHz is presented. Measured patterns show a reduced scan range of 12 deg. less than or equal to theta less than or equal to 25 deg. due to a correctable manufacturing error as verified by simulation. Beam squint is measured to be plus or minus 2.5 deg for a 600MHz bandwidth and cross-pol is measured to be at least -15dB.

  1. Directive metamaterial-based subwavelength resonant cavity antennas - Applications for beam steering

    Science.gov (United States)

    Ourir, Abdelwaheb; Burokur, Shah Nawaz; Yahiaoui, Riad; de Lustrac, André

    2009-06-01

    This article presents the use of composite resonant metamaterials for the design of highly directive subwavelength cavity antennas. These metamaterials, composed of planar metallic patterns periodically organized on dielectric substrates, exhibit frequency dispersive phase characteristics. Different models of metamaterial-based surfaces (metasurfaces), introducing a zero degree reflection phase shift to incident waves, are firstly studied where the bandwidth and operation frequency are predicted. These surfaces are then applied in a resonant Fabry-Perot type cavity and a ray optics analysis is used to design different models of ultra-compact high-gain microstrip printed antennas. Another surface presenting a variable reflection phase by the use of a non-periodic metamaterial-based metallic strips array is designed for a passive low-profile steering beam antenna application. Finally, the incorporation of active electronic components on the metasurfaces, allowing an electronic control of the phase responses, is applied to an operation frequency reconfigurable cavity and a beam steering cavity. All these cavity antennas operate on subwavelength modes, the smallest cavity thickness being of the order of λ/60. To cite this article: A. Ourir et al., C. R. Physique 10 (2009).

  2. Beam steering using optical parametric amplification in Kerr medium: a space-time analogy of parametric slow-light.

    Science.gov (United States)

    Fanjoux, Gil; Lantz, Eric; Michaud, Jérémy; Sylvestre, Thibaut

    2012-11-19

    In a way analogous to a light pulse that can be optically delayed via slow light propagation in Kerr-type nonlinear media, we theoretically demonstrate that beam steering and spatial walk-off compensation can be achieved in noncollinear optical parametric amplification. We identify this effect as a result of the quadratic phase shift induced by parametric amplification that leads to the cancellation of the spatial walk-off and collinear propagation of all beams though they have different wavevectors. Experimental evidence is reported of a soliton array steering in a Kerr slab waveguide.

  3. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Directory of Open Access Journals (Sweden)

    Wu-Jung Lee

    2017-12-01

    Full Text Available Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  4. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    Science.gov (United States)

    Lee, Wu-Jung; Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H; Moss, Cynthia F

    2017-12-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  5. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  6. Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays.

    Science.gov (United States)

    DiDomenico, Leo D

    2015-11-30

    This paper introduces Microfluidic Beam Steering (MBS), which is a new technique for electronically steering light having multiple octaves of bandwidth, any polarization state and incidence from any direction of the sky without significant restrictions due to physical area, optical loss and power handling capacity. It is based on optical elements comprising both transparent solids and electronically controllable fluids to control Total Internal Reflection (TIR), refraction and/or diffraction from micro-structured surfaces within a transparent solid. A TIR-based MBS is discussed in the context of solar energy and its potential to significantly increase annual energy harvests from solar arrays situated on fixed areas like roofs. The advantages and challenges associated with analog and digital MBS systems are discussed and early-stage MBS hardware is demonstrated. Finally, an analytic model of sun-tracking is provided to formally establish the potential for MBS to increase annual solar energy harvests by approximately 45% more than conventional 0-Degree Of Freedom (0-DOF) solar arrays, 62% more than 1-DOF arrays and 233% more than 2-DOF arrays, all at 20% atmospheric aerosol scattering.

  7. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    Science.gov (United States)

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-04

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

  8. Tunable Talbot imaging distance using an array of beam-steered metamaterial leaky-wave antennas

    Science.gov (United States)

    Gómez-Díaz, J. S.; Álvarez-Melcón, A.; Gupta, S.; Caloz, C.

    2009-10-01

    A tunable spatio-temporal Talbot imaging phenomenon is presented. This phenomenon is based on the radiation properties of an array of beam-steered metamaterial composite right-/left-handed leaky-wave antennas, which is excited by a modulated pulse. The scanning law property of these antennas is exploited to achieve off-axis radiation, which leads to a tunable Talbot distance, as a function of the input pulse modulation frequency. The proposed Talbot phenomenon is analyzed theoretically, taking into account the aberrations produced by higher-order terms present in the free-space transfer function. Numerical simulations confirm the self-imaging and pulse multiplication effects and their tunability capabilities as a function of frequency. Finally, the experimental results are included to confirm the phenomenon predicted.

  9. Large diameter dual-axis MEMS-based mirror for laser beam steering

    Science.gov (United States)

    Ilias, S.; Picard, F.; Le Foulgoc, K.; Osouf, J.; Larouche, C.; Caron, J.-S.; Topart, P.; Garcia Blanco, S.; Vincent, D.; Lepage, J. F.; Gilbert, B.

    2011-03-01

    The main goals of this work is the development of a large dual-axis MEMS mirror, ~3mm in diameter, capable of steering a laser beam within an angular cone of 60°. The targeted application involves the control of a laser beam with a particular interest for the resulting far field beam direction and profile. Finite element simulations using ANSYS modeling program were conducted to optimize the mirror design and determine the main characteristics of the mirror. The voltage required to tilt the mirror by 15° around each of the two axes was evaluated to be in the range of 700 V. The construction of this device is based on high precision structural dies assembly which relies on innovative developments in the fields of selective electroplating, deep reactive ion etching (DRIE) and thermocompression flip-chip bonding. The fabrication process involved the microassembly of 4 mirror parts, i.e. address electrodes, thick pedestal, gimbals structure and mirror plate. Single crystal silicon was used as material for the fabrication of the thick pedestal and mirror plate which provided the required large mirror-electrode gap and a high quality mirror with high flatness and low roughness. Soldering based on SnAu was considered for the microassembly of the thick pedestal to the address electrodes die, while Au-Au thermocompression bonding was considered to achieve the assembly of gimbals and mirror. The gimbals were supported by a polyimide sacrificial film to avoid damaging the hinges during mirror plate assembly.

  10. Comparison of active beam steering elements and analysis of platform vibrations for various long-range FSO links

    Science.gov (United States)

    Harris, Alan; Sluss, James J., Jr.; Refai, Hazem H.; LoPresti, Peter G.

    2005-06-01

    An important consideration when deploying free-space optical (FSO) communication links over ultra long distances is the ability to actively steer the laser beam. FSO links are currently being researched as an attractive option for deep-space communication links or as a link to provide broadband communications to aircraft in-flight. In order to establish ultra long FSO links or to actively track FSO links between moving platforms, an active tracking system based on hybrid technology is essential. These hybrid systems are usually a combination of a mechanical gimbal and some array of active optical components. The presence of active optical components in a beam steering device is necessary to provide a high bandwidth while offsetting vibrations present on the mounting platform. This study compares three active beam steering elements that can be used in FSO transmitters and receivers. Performance characteristics of MEMS-based micro mirror arrays, acousto-optic modulators and steerable mirrors are analyzed and compared. A comparison of aperture size, range of motion, resolution and scanning speed is performed. Simulations in order to show the effects of vibration on various different length FSO links are run. A simulation in order to verify the ability of a fast steering mirror to offset vibration effects in a ground-to-UAV link is performed.

  11. Sensor for monitoring the vibration of a laser beam based on holographic polymer dispersed liquid crystal films.

    Science.gov (United States)

    Li, Ming Shian; Wu, Shing Trong; Fuh, Andy Ying-Guey

    2010-12-06

    A continuous multiple exposure diffraction grating (CMEDG) is fabricated holographically on polymer dispersed liquid crystal (PDLC) films using two-beam interference with multiple exposures. The grating is fabricated by exposing a PDLC film to 18 repeated exposure/non-exposure cycles with an angular step of ~10°/10° while it revolves a circle on a rotation stage. The structure of the sample thus formed is analyzed using a scanning electron microscope (SEM) and shows arc-ripples around the center. From the diffraction patterns of the formed grating obtained using a normally incident laser beam, some or all of the 18 recorded arc beams can be reconstructed, as determined by the probing location. Thus, it can be applied for use as a beam-vibration sensor for a laser.

  12. Beam-Steering Performance of Flat Luneburg Lens at 60 GHz for Future Wireless Communications

    Directory of Open Access Journals (Sweden)

    Robert Foster

    2017-01-01

    Full Text Available The beam-steering capabilities of a simplified flat Luneburg lens are reported at 60 GHz. The design of the lens is first described, using transformation electromagnetics, before discussion of the fabrication of the lens using casting of ceramic composites. The simulated beam-steering performance is shown, demonstrating that the lens, with only six layers and a highest permittivity of 12, achieves scan angles of ±30° with gains of at least 18 dBi over a bandwidth from 57 to 66 GHz. To verify the simulations and further demonstrate the broadband nature of the lens, raw high definition video was transmitted over a wireless link at scan angles up to 36°.

  13. Integrated remotely tunable optical delay line for millimeter-wave beam steering fabricated in an InP generic foundry.

    Science.gov (United States)

    Cao, Z; Tessema, N; Latkowski, S; Zhao, X; Chen, Z; Moskalenko, V; Williams, K A; van der Boom, H P A; Tangdiongga, E; Koonen, A M J

    2015-09-01

    A compact and fabrication-tolerant integrated remotely tunable optical delay line is proposed for millimeter-wave beam steering and is fabricated in an InP generic foundry. The proposed delay line is based on a spectrally cyclic-arrayed waveguide grating feedback loop. Its major features include the tolerant architecture with reduced chip size, and bi-directional operation with simplified remote tuning. Moreover, its cyclic feature guarantees further cascaded operations either for 2D radio beam steering or for high-resolution delay generation. The experimental results show less than 6.5-dB insertion loss of the integrated delay line. Five different delays from 0 to 71.6 ps are generated with less than 0.67-ps delay errors.

  14. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  15. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines

    Science.gov (United States)

    Romanchenko, I. V.; Ulmaskulov, M. R.; Sharypov, K. A.; Shunailov, S. A.; Shpak, V. G.; Yalandin, M. I.; Pedos, M. S.; Rukin, S. N.; Konev, V. Yu.; Rostov, V. V.

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ˜5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ˜10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  16. Four channel high power rf source with beam steering based on gyromagnetic nonlinear transmission lines.

    Science.gov (United States)

    Romanchenko, I V; Ulmaskulov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N; Konev, V Yu; Rostov, V V

    2017-05-01

    The synchronized operation of four gyromagnetic nonlinear transmission lines (NLTLs) was tested with a pulse repetition frequency up to 1 kHz during 1 s bursts. High voltage pulses with a duration of ∼5 ns from the solid state driver S-500 were split into four 48 Ω channels reaching about -200 kV in each channel with ∼10% variation in the amplitude. The maximum peak voltage at the NLTL output was within 220-235 kV with the maximum modulation depth of decaying oscillations up to 90% at the center frequency near 2.1 GHz. The relative delay between channels reached the half-period of the center frequency of oscillations. The associated beam steering by four element array of conical helical antennas was demonstrated in a horizontal plane at 17°. The effective potential of radiation reached 360 kV at the radiation axis. The effect of ferrite temperature on the shock wave velocity in gyromagnetic NLTL is observed.

  17. Compact, semi-passive beam steering prism array for solar concentrators.

    Science.gov (United States)

    Zheng, Cheng; Li, Qiyuan; Rosengarten, Gary; Hawkes, Evatt; Taylor, Robert A

    2017-05-10

    In order to maximize solar energy utilization in a limited space (e.g., rooftops), solar collectors should track the sun. As an alternative to rotational tracking systems, this paper presents a compact, semi-passive beam steering prism array which has been designed, analyzed, and tested for solar applications. The proposed prism array enables a linear concentrator system to remain stationary so that it can integrate with a variety of different solar concentrators, and which should be particularly useful for systems which require a low profile (namely rooftop-mounted systems). A case study of this prism array working within a specific rooftop solar collector demonstrates that it can boost the average daily optical efficiency of the collector by 32.7% and expand its effective working time from 6 h to 7.33 h. Overall, the proposed design provides an alternative way to "follow" the sun for a wide range of solar thermal and photovoltaic concentrator systems.

  18. Continuous Beam Steering Through Broadside Using Asymmetrically Modulated Goubau Line Leaky-Wave Antennas.

    Science.gov (United States)

    Tang, Xiao-Lan; Zhang, Qingfeng; Hu, Sanming; Zhuang, Yaqiang; Kandwal, Abhishek; Zhang, Ge; Chen, Yifan

    2017-09-15

    Goubau line is a single-conductor transmission line, featuring easy integration and low-loss transmission properties. Here, we propose a periodic leaky-wave antenna (LWA) based on planar Goubau transmission line on a thin dielectric substrate. The leaky-wave radiations are generated by introducing periodic modulations along the Goubau line. In this way, the surface wave, which is slow-wave mode supported by the Goubau line, achieves an additional momentum and hence enters the fast-wave region for radiations. By employing the periodic modulations, the proposed Goubau line LWAs are able to continuously steer the main beam from backward to forward within the operational frequency range. However, the LWAs usually suffer from a low radiation efficiency at the broadside direction. To overcome this drawback, we explore both transversally and longitudinally asymmetrical modulations to the Goubau line. Theoretical analysis, numerical simulations and experimental results are given in comparison with the symmetrical LWAs. It is demonstrated that the asymmetrical modulations significantly improve the radiation efficiency of LWAs at the broadside. Furthermore, the measurement results agree well with the numerical ones, which experimentally validates the proposed LWA structures. These novel Goubau line LWAs, experimentally demonstrated and validated at microwave frequencies, show also great potential for millimeter-wave and terahertz systems.

  19. THz leaky-wave antenna with high-directivity and beam-steering using CPW CRLH meta-material resonators

    Science.gov (United States)

    Si, Li-Ming; Sun, Hou-Jun; Lv, Xin

    2009-07-01

    A novel coplanar waveguide (CPW)-based composite right/left-handed (CRLH) structure for terahertz (THz) leaky wave antennas (LWAs) application with high directivity and beam steering capability is introduced. The structure of the CRLH-TL was composed of a slot and embedded resonators termed metamaterial resonators using planar CPW technology. There were three steps involved to design the structure of metamaterial resonator and position distribution of metamaterial resonators in the composite right/left-handed (CRLH) transmission lines. First, equivalent circuit model method (also called "transmission line model method") was used to create an equivalent circuit model of the element of metamaterial resonator. Second, from the equivalent circuit model, it was possible to correspond to two basic equivalent circuit parameters "series impedance and shunt admittance" from artificial transmission line structure "CPW-based metamaterial resonator". Finally, the dimensions of metamaterial resonator were calculated and optimized according to the dispersion diagram. Meanwhile, ohmic loss needs to be considered because it is high at THz wave and above frequency region. The LWAs with CPW-based CRLH could implement high-directivity and backward-to-forward beam steering which differs from the conventional one. A balanced CPW CRLH LWA is designed at the transition frequency of 1485 GHz and performances of high-directivity and wide-angle continuous beam-steering are demonstrated.

  20. Holographic telescope

    Science.gov (United States)

    Odhner, Jefferson E.

    2016-07-01

    Holographic optical elements (HOEs) work on the principal of diffraction and can in some cases replace conventional optical elements that work on the principal of refraction. An HOE can be thinner, lighter, can have more functionality, and can be lower cost than conventional optics. An HOE can serve as a beam splitter, spectral filter, mirror, and lens all at the same time. For a single wavelength system, an HOE can be an ideal solution but they have not been widely accepted for multispectral systems because they suffer from severe chromatic aberration. A refractive optical system also suffers from chromatic aberration but it is generally not as severe. To color correct a conventional refractive optical system, a flint glass and a crown glass are placed together such that the color dispersion of the flint and the crown cancel each other out making an achromatic lens (achromat) and the wavelengths all focus to the same point. The color dispersion of refractive lenses and holographic lenses are opposite from each other. In a diffractive optical system, long wavelengths focus closer (remember for HOEs: RBM "red bends more") than nominal focus while shorter wavelengths focus further out. In a refractive optical system, it is just the opposite. For this reason, diffractives can be incorporated into a refractive system to do the color correction and often cut down on the number of optical elements used [1.]. Color correction can also be achieved with an all-diffractive system by combining a holographic optical element with its conjugate. In this way the color dispersion of the first holographic optical element can be cancelled by the color dispersion of the second holographic optic. It is this technique that will be exploited in this paper to design a telescope made entirely of holographic optical elements. This telescope could be more portable (for field operations) the same technique could be used to make optics light enough for incorporation into a UAV.

  1. Leaky wave antenna with amplitude controlled beam steering based on composite right/left-handed transmission lines

    Science.gov (United States)

    Eberspächer, M. A.; Eibert, T. F.

    2010-09-01

    An antenna comprising two different composite right/left-handed transmission line structures is proposed which enables easy beam steering at an operation frequency of 10 GHz. The composite right/left-handed transmission lines are based on planar, periodically arranged via free unit cells, implemented in microstrip technology. Both transmission lines exhibit the infinite wavelength phenomenon which occurs at 9.72 GHz and 9.89 GHz, respectively. Thus, operating the different leaky wave structures at 10 GHz, radiation with azimuth angles of ±8° and ±17° can be achieved depending on the selected input port. In order to obtain a tunable main beam direction, the radiation patterns of both structures are superimposed by feeding them simultaneously. The influence of each guiding structure, and hence the direction of the main beam, can be controlled via the feeding amplitude. As a result of this, the beam can be steered between ±17° with a gain of up to 10 dBi. The guiding structures are arranged in parallel with a clearance of a=12.2 mm which is less than half of the wavelength in free space. This allows in a further step the attachment of additional guiding structures in order to increase the tunable angle range or creating an antenna array with a small beamwidth in the elevation plane without the occurrence of grating lobes. An antenna prototype was fabricated and validated by measurements.

  2. Two-Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Angelou, Nikolas; Hansen, Per

    2014-01-01

    , and there is a need for instruments that can measure flow fields on scales larger than a few meters with good resolution. This paper reports on the use of synchronized continuous-wave Doppler lidars for rotorcraft downwash flow field studies. Built from a modified ZephIR wind lidar and a double-prism arrangement...... for agile beam steering, a wind scanner—WindScanner—has been developed at the Department ofWind Energy at the Technical University of Denmark (DTU) Risø campus. The WindScanner measures the line-of-sight component of the airflow remotely and by rapid steering, the line-of-sight direction and the focus...... and rescue helicopter are presented. Since the line-of-sight directions of the two synchronized WindScanners were scanned within the plane of interest, the influence of the wind component perpendicular to the plane was avoided. The results also demonstrate the possibilities within less demanding flows...

  3. Integration of a dog-leg beam routing for the remote steering upper port launcher for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ronden, D M S [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Bongers, W [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Bruschi, A [Instituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, via Cozzi 53, 20125 Milan (Italy); Elzendoorn, B S Q [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Graswinckel, M F [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Lamers, B [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands); Moro, A [Instituto di Fisica del Plasma, Association EURATOM-ENEA-CNR, via Cozzi 53, 20125 Milan (Italy); Poli, E [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Verhoeven, A G A [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE, Nieuwegein (Netherlands)

    2005-01-01

    In the course of the development of a remote steering ECRH upper port launcher for ITER, it became clear that a modification could be introduced in the conceptual design in order to solve a number of structural weaknesses. Up to that point, all conceptual layouts were based on each remote steering beamline having a single front mirror placed in front of the square waveguide to aim the beam towards its resonance surface in the plasma. By placing an additional mirror per line inside the front shield of the upper port plug - effectively creating a dogleg routing - a number of structural issues were solved. This modification allows for a decrease of the heat load on the front mirrors and a shift downwards of the launching point. Additionally, through correct placement and focusing of the mirrors, the front shield penetration could be reduced by a factor of 4 and the cut in the blanket module below the upper port could be reduced significantly, while the level of overall performance could be increased as well. In order to visualise this new concept accurately, a more detailed design of the beam propagation was required. Through concerted effort within our institute, two different approaches were made to come to this new design; further advancements of the 3D-model and an Excel-based 2D simulation. This dual approach, together with beam tracing calculations done by affiliated institutes have indicated that the dogleg can prove to be a reliable design for a RS upper port launcher.

  4. Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals

    DEFF Research Database (Denmark)

    Ojaroudiparchin, Naser; Shen, Ming; Pedersen, Gert F.

    2015-01-01

    to form a linear phased array in the edge region (top-side) on a mobile phone PCB. The simulated results show that the antenna has the reflection coefficient (S11) less than -10 dB in the frequency range of 27.4 to 28.6 GHz. The proposed phased array antenna has good gain, efficiency, and 3D beam steering...... characteristics in the entire operation band, which makes it suitable for millimeter-wave 5G communications. In addition, the performance of the antenna in the vicinity of user’s hand has been investigated in this study....

  5. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    Science.gov (United States)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  6. High-contrast grating MEMS optical phase-shifters for two-dimensional free-space beam steering

    Science.gov (United States)

    Megens, Mischa; Yoo, Byung-Wook; Chan, Trevor; Yang, Weijian; Sun, Tianbo; Chang-Hasnain, Connie J.; Wu, Ming C.; Horsley, David A.

    2014-02-01

    We report an optical phased array (OPA) for two-dimensional free-space beam steering. The array is composed of tunable MEMS all-pass filters (APFs) based on polysilicon high contrast grating (HCG) mirrors. The cavity length of each APF is voltage controlled via an electrostatically-actuated HCG top mirror and a fixed DBR bottom mirror. The HCG mirrors are composed of only a single layer of polysilicon, achieving >99% reflectivity through the use of a subwavelength grating patterned into the polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1-50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results in a high degree of flatness even in a thin 350 nm HCG mirror. Relative to beamsteering systems based on a single rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The APF structure affords large (~2π) phase shift at a small displacement (< 50 nm), an order-of-magnitude smaller than the displacement required in a single-mirror phase-shifter design. Precise control of each all-pass-filter is achieved through an interferometric phase measurement system, and beam steering is demonstrated using binary phase patterns.

  7. Holographic interferometry of oil films and droplets in water with a single-beam mirror-type scheme.

    Science.gov (United States)

    Kukhtarev, Nickolai; Kukhtareva, Tatiana; Gallegos, Sonia C

    2011-03-01

    Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico. © 2011 Optical Society of America

  8. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.

    Science.gov (United States)

    Lin, Yuankun; Harb, Ahmad; Lozano, Karen; Xu, Di; Chen, K P

    2009-09-14

    This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four first-order diffracted beams from the gratings and one non-diffracted central beam overlap and form a three-dimensional interference pattern. The phase of one side beam is delayed by inserting a thin piece of microscope glass slide into the beam. By rotating the glass slide, thus tuning the phase of the side beam, the five beam interference pattern changes from face-center tetragonal symmetry into diamond-like lattice symmetry with an optimal bandgap. Three-dimensional photonic crystal templates are produced in a photoresist and show the phase tuning effect for bandgap optimization. Furthermore, by integrating an amplitude mask in the central opening, line defects are produced within the photonic crystal template. This paper presents the first experimental demonstration on the holographic fabrication approach of three-dimensional photonic crystal templates with functional defects by a single laser exposure using a single optical element.

  9. Demonstration of Tunable Steering and Multiplexing of Two 28 GHz Data Carrying Orbital Angular Momentum Beams Using Antenna Array

    Science.gov (United States)

    Xie, Guodong; Zhao, Zhe; Yan, Yan; Li, Long; Ren, Yongxiong; Ahmed, Nisar; Cao, Yinwen; Willner, Asher J.; Bao, Changjing; Wang, Zhe; Liu, Cong; Ziyadi, Morteza; Talwar, Shilpa; Sajuyigbe, Soji; Ashrafi, Solyman; Tur, Moshe; Molisch, Andreas F.; Willner, Alan E.

    2016-01-01

    In line-of-sight communication systems, accurate alignment between the transmitter and receiver is important to guarantee sufficient signal power at the receiver. Such alignment is even more important for orbital angular momentum (OAM) multiplexing systems since misalignment between the transmitter and receiver may cause crosstalk among channels. In this paper, we demonstrate the simultaneous generation and tunable steering of two OAM beams utilising a custom-designed circular antenna array at 28 GHz. We achieve a steering angle of up to 35 degrees from the antenna array normal. We find that (i) the steering angle of the generated OAM beams is limited by the emitting angle of the antenna elements, and (ii) a larger steering angle may degrade the mode purity of the generated OAM beams as well as induce inter-symbol-interference to each of the individual channels. Moreover, we demonstrate the transmission of two 1-Gbaud quadratic phase shift keying (QPSK) signal over the two steerable OAM beams with both multiplexed channels achieved bit error rates (BERs) of <3.8 × 10−3. PMID:27833168

  10. Superresolution imaging system by color-coded tilted-beam illumination in digital in-line holographic microscopy

    Science.gov (United States)

    Granero, L.; Micó, V.; Ferreira, C.; Zalevsky, Z.; García, J.

    2016-04-01

    Digital in-line holographic microscopy (DIHM) relates with the capability to achieve microscopic imaging working without lensless in the regime of holography. In essence, DIHM proposes a simple layout where a point source of coherent light illuminates the sample and the diffracted wavefront is recorded by a digital sensor. However, DIHM lacks high numerical aperture (NA) due to both geometrical distortion and the mandatory compromise between the illumination pinhole diameter, the illumination wavelength, and the need to obtain a reasonable light efficiency. One way to improve the resolution in DIHM, is by allowing superresolution imaging by angular multiplexing using tilted beam illumination. This illumination allows the on-axis diffraction of different spatial frequency content of the sample's spectrum, different in comparison to the case when on-axis illumination is used. And after recover this additional spectral content, a synthetic numerical aperture (SNA) expanding up the cutoff frequency of the system in comparison with the on-axis illumination case can be assembled in a digital post-processing stage. In this contribution, we present a method to achieve one-dimensional (1-D) superresolved imaging in DIHM by a SINGLE SHOT illumination, using color-coded tilted beams. The method has been named as L-SESRIM (Lensless Single-Exposure Super-Resolved Interferometric Microscopy). Although the technique was previously presented showing very preliminary results [34], in this contribution we expand the experimental characterization (USAF resolution test target) as well as derive the theoretical frame for SNA generation using different illumination wavelengths.

  11. Performance analysis for W-band antenna alignment using accurate mechanical beam steering

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    This article presents a study of antenna alignment impact on bit error rate for a wireless link between two directive W-band horn antennas where one of them is mechanically steered by a Stewart platform. Such a technique is applied to find the optimal alignment between transmitter and receiver wi...... with an accuracy of 18 both in azimuth and elevation angles. The maximum degree of misalignment which can be tolerated is also reported for different values of optical power in the generation of W-band signals by photonic up-conversion. (C) 2017 Wiley Periodicals, Inc....

  12. Mid-infrared laser beam steering based on Fourier transform OPO

    Science.gov (United States)

    Bourderionnet, Jérôme; Brignon, Arnaud; Dolfi, Daniel; Huignard, Jean-Pierre

    2017-04-01

    Inertia-less optical scanners are an essential building block for many systems, including remote sensing, spectroscopy, and optronics. Although many solutions provide efficient scanning devices in the visible to near-infrared spectral range today, none of these devices offers good performances in longer wavelengths like in the mid-IR range. The new rationale that is described in this paper is to take advantage of existing and well-proven steering techniques in the near IR and to reach mid-IR by frequency conversion in a specifically designed Fourier transform optical parametric oscillator.

  13. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi

    Science.gov (United States)

    Burnham, D. R.; Wright, G. D.; Read, N. D.; McGloin, D.

    2007-08-01

    We report on the ability of holographic light fields to alter the normal growth patterns of filamentous fungi. The light fields are produced on a microscopic scale by borrowing methods from the field of optical tweezers, but without the aim of directly trapping or manipulating objects. Extended light fields are shown to redirect and constrict hyphal tip growth, and induce hyphal branching in a highly reproducible manner. The merits of using discrete and continuous light fields produced using a spatial light modulator are discussed and the use of three-dimensional 'pseudowalls' of light to control the growth patterns is reported. We also demonstrate the dependence of hyphal tip growth on the wavelength of light, finding that less power is needed at shorter wavelengths to effect changes in the growth dynamics of fungal hyphae.

  14. Plug-in module acceleration feedback control for fast steering mirror-based beam stabilization systems

    Science.gov (United States)

    Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge

    2017-08-01

    A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.

  15. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  16. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  17. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  18. Extended wavelet transformation to digital holographic reconstruction: application to the elliptical, astigmatic Gaussian beams.

    Science.gov (United States)

    Remacha, Clément; Coëtmellec, Sébastien; Brunel, Marc; Lebrun, Denis

    2013-02-01

    Wavelet analysis provides an efficient tool in numerous signal processing problems and has been implemented in optical processing techniques, such as in-line holography. This paper proposes an improvement of this tool for the case of an elliptical, astigmatic Gaussian (AEG) beam. We show that this mathematical operator allows reconstructing an image of a spherical particle without compression of the reconstructed image, which increases the accuracy of the 3D location of particles and of their size measurement. To validate the performance of this operator we have studied the diffraction pattern produced by a particle illuminated by an AEG beam. This study used mutual intensity propagation, and the particle is defined as a chirped Gaussian sum. The proposed technique was applied and the experimental results are presented.

  19. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Klepp, J.; Fally, M. [Faculty of Physics, University of Vienna, 1090 Wien (Austria); Tomita, Y. [Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182 (Japan); Pruner, C. [Department of Materials Science and Physics, University of Salzburg, 5020 Salzburg (Austria); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  20. Dynamic Time Multiplexing Fabrication of Holographic Polymer Dispersed Liquid Crystals for Increased Wavelength Sensitivity

    Science.gov (United States)

    Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)

    2017-01-01

    Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.

  1. Dynamic characterization and modelling of a dual-axis beam steering device for performance understanding, optimization and control design

    Science.gov (United States)

    Berglund, Martin; Palmer, Kristoffer; Lotfi, Sara; Kratz, Henrik; Thornell, Greger

    2013-04-01

    This paper presents a lumped thermal model of a dual-axis laser micromirror device for beam steering in a free-space optical (FSO) communication system, designed for fractionated spacecraft. An FSO communication system provides several advantages, such as larger bandwidth, smaller size and weight of the communication payload and less power consumption. A dual-axis mirror device is designed and realized using microelectromechanical systems technology. The fabrication is based on a double-sided, bulk micromachining process, where the mirror actuates thermally by joints consisting of v-grooves filled with the SU-8 polymer. The size of the device, consisting of a mirror, which is deflectable versus its frame in one direction, and through deflection of the frame in the other, is 15.4 × 10.4 × 0.3 mm3. In order to further characterize and understand the micromirror device, a Simulink state-space model of the actuator is set up using thermal and mechanical properties from a realized actuator. A deviation of less than 2% between the modelled and measured devices was obtained in an actuating temperature range of 20-200 °C. The model of the physical device was examined by evaluating its performance in vacuum, and by changing physical parameters, such as thickness and material composition. By this, design parameters were evaluated for performance gain and usability. For example, the crosstalk between the two actuators deflecting the mirror along its two axes in atmospheric pressure is projected to go down from 97% to 6% when changing the frame material from silicon to silicon dioxide. A feedback control system was also designed around the model in order to examine the possibility to make a robust control system for the physical device. In conclusion, the model of the actuator presented in this paper can be used for further understanding and development of the actuator system.

  2. Holographic analysis of photopolymers

    Science.gov (United States)

    Sullivan, Amy C.; Alim, Marvin D.; Glugla, David J.; McLeod, Robert R.

    2017-05-01

    Two-beam holographic exposure and subsequent monitoring of the time-dependent first-order Bragg diffraction is a common method for investigating the refractive index response of holographic photopolymers for a range of input writing conditions. The experimental set up is straightforward, and Kogelnik's well-known coupled wave theory (CWT)[1] can be used to separate measurements of the change in index of refraction (Δn) and the thickness of transmission and reflection holograms. However, CWT assumes that the hologram is written and read out with a plane wave and that the hologram is uniform in both the transverse and depth dimensions, assumptions that are rarely valid in practical holographic testing. The effect of deviations from these assumptions on the measured thickness and Δn become more pronounced for over-modulated exposures. As commercial and research polymers reach refractive index modulations on the order of 10-2, even relatively thin (material analysis must be carefully evaluated in this regime. We present a study of the effects of the finite Gaussian write and read beams on the CWT analysis of photopolymer materials and discuss what intuition this can give us about the effect other non-uniformities, such as mechanical stresses and significant absorption of the write beam, will have on the analysis of the maximum attainable refractive index in a material system. We use this analysis to study a model high Δn two-stage photopolymer holographic material using both transmission and reflection holograms.

  3. An All-Passive Negative Feedback Network for Broadband and Full Field-of-View Self-Steering Beam-Forming with Zero DC Power Consumption

    Science.gov (United States)

    2017-03-01

    the incident RF signal with zero DC power consumption. A proof-of-concept broadband four-element all passive self-steering beam-former at 5 GHz with a...2.8 dB at in = +90°/−90° with an input RF power Pin of −17 dBm/element at 5 GHz, achieving >25 dB array factor improvement over the open-loop...which can be employed after the low noise amplifiers (LNAs) in a phased-array receiver. The inner two signal paths (path 2 and path 3) are included in

  4. Holographic Memories

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, NCR; Berg, RH

    1999-01-01

    A Two-dimensional holographic memory for archival storage is described. Assuming a coherent transfer function, an A4 page can be stored at high resolution in an area of 1 mm(2). Recently developed side-chain liquid crystalline azobenzene polyesters are found to be suitable media for holographic...... storage. They exhibit high resolution, high diffraction efficiency, have long storage life, are fully erasable and are mechanically stable....

  5. Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2013-01-01

    Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs.

  6. Steering handbook

    CERN Document Server

    Pfeffer, Peter

    2017-01-01

    This edited volume presents basic principles as well as advanced concepts of the computational modeling of steering systems. Moreover, the book includes the components and functionalities of modern steering system, which are presented comprehensively and in a practical way. The book is written by more than 15 leading experts from the automotive industry and its components suppliers. The target audience primarily comprises practicing engineers, developers, researchers as well as graduate students who want to specialize in this field.

  7. Beam steering application for W-band data links with moving targets in 5G wireless networks

    DEFF Research Database (Denmark)

    Morales Vicente, Alvaro; Rodríguez Páez, Juan Sebastián; Gallardo, Omar

    2017-01-01

    Ubiquitous broadband Internet access is one of the major goals of the next generation of wireless communications. However, there are still some locations where this is difficult to achieve. This is the case on moving vehicles and, particularly, on trains. Among the possible solutions to this prob......Ubiquitous broadband Internet access is one of the major goals of the next generation of wireless communications. However, there are still some locations where this is difficult to achieve. This is the case on moving vehicles and, particularly, on trains. Among the possible solutions......-steering solution based on a Stewart platform is adopted for the transmitter antenna to allow it to follow a moving receiver along a known path, thereby enhancing the coverage area. The performance of a system transmitting a 2.5 Gbit/s non-return-to-zero signal generated by photonic up-conversion over a wireless...

  8. A measurement of the holographic minimum-observable beam branching ratio in the Fermilab 15-foot bubble chamber

    CERN Document Server

    Aderholz, Michael; Akbari, H; Allport, P P; Badyal, S K; Ballagh, H C; Barth, Monique; Baton, Jean-Pierre; Bingham, Harry H; Bjelkhagen, H I; Brucker, E B; Burnstein, R A; Campbell, J Ronald; Cence, R J; Chatterjee, T K; Clayton, E F; Corrigan, G; Coutures, C; De Prospo, D F; Devanand, P; De Wolf, E A; Faulkner, P J W; Föth, H; Fretter, W B; Geissler, Kryno K; Gupta, V K; Hanlon, J; Harigel, G G; Harris, F A; Hawkins, J; Jabiol, M A; Jacques, P; Jones, G T; Jones, M D; Kafka, T; Kalelkar, M S; Kasper, P; Kohli, J M; Koller, E L; Krawiec, R J; Lauko, M; Lys, J E; Marage, P; Milburn, R H; Miller, D B; Mitra, I S; Mobayyen, M M; Moreels, J; Morrison, Douglas Robert Ogston; Myatt, Gerald; Naon, R; Napier, A; Naylor, P; Neveu, M; Passmore, D; Peters, M W; Peterson, V Z; Plano, R J; Rao, N K; Rubin, H A; Sacton, J; Sambyal, S S; Schmitz, N; Schneps, J; Sekulin, R L; Sewell, S J; Singh, J B; Smart, W M; Stamer, P E; Varvell, K E; Verluyten, L; Voyvodic, L; Wachsmuth, H W; Wainstein, S; Williams, W; Willocq, S; Yost, G P

    1999-01-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at Fermilab, during a physics run. The innovative system combined the reference beam with the object beam, illuminating a conical volume of $\\sim 1.4$~m$^3$. Bubble tracks from neutrino interactions with a width of $\\sim 120\\;\\mu$m have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the Beam Branching Ratio. We obtained in our experiment an exceedingly small minimum-observable ratio of $(0.54 \\pm 0.21) \\times 10^{-7}$. The technology has the potential for a wide range of applications.

  9. Analysis of Skid Steer Loader Steering Characteristic

    Directory of Open Access Journals (Sweden)

    Feng Ren

    2015-01-01

    Full Text Available In order to analyze the steering dynamic characteristic of the skid steer loader, a cosimulation model of steering system based on theoretical analysis of skid steer loader steering process was established by using AMESim software platform and Motion software platform. The dynamic characteristics of unilateral, bilateral steering conditions and the load characteristics of steering process were analyzed through simulation and verified by experiment. The comparison of dynamic model and experimental results shows that the error between simulation data and experimental data is within 10%, and the model can be used in system matching and performance prediction.

  10. Phase control during reconstruction of holographically recorded flow fields using real-time holographic interferometry

    Science.gov (United States)

    Burner, A. W.; Goad, W. K.

    1981-01-01

    A technique of phase control during reconstruction of holographic interferograms is demonstrated in which the recorded scene beam with disturbance present is made to interfere with the real-time scene beam after the disturbance is removed. The reference phase is adjusted during reconstruction by manipulating either the scene or reference beams. Comparisons are made between the present technique and the two-reference-beam and two-plate techniques, more commonly used for phase control during reconstruction of holographic interferograms for flow visualization.

  11. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Torres, V., E-mail: victor.torres@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beruete, M., E-mail: miguel.beruete@unavarra.es; Sorolla, M. [Antennas Group-TERALAB, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona (Spain); Navarro-Cía, M., E-mail: m.navarro@imperial.ac.uk [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom); Centre for Plasmonics and Metamaterials, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Terahertz Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Engheta, N., E-mail: engheta@ee.upenn.edu [Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-12-15

    An all-metallic steerable beam antenna composed of an ε-near-zero (ENZ) metamaterial lens is experimentally demonstrated at 144 GHz (λ{sub 0} = 2.083 mm). The ENZ lens is realized by an array of narrow hollow rectangular waveguides working just near and above the cut-off of the TE{sub 10} mode. The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and compared with experimental results demonstrating good agreement. Next, a flange-ended WR-6.5 waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain scan loss below 3 dB is achieved for angles up to ±15°.

  12. Holographic Cosmology

    OpenAIRE

    Banks, T.; Fischler, W.

    2004-01-01

    We describe a cosmology of the very early universe, based on the holographic principle of 't Hooft and Susskind. We have described the initial state as a dense black hole fluid. Here we present a mathematical model of this heuristic picture, as well as a non-rigorous discussion of how a more normal universe could evolve out of such a state. The gross features of the cosmology depend on a few parameters, which cannot yet be calculated from first principles. For some range of these parameters, ...

  13. High-resolution full-parallax computer-generated holographic stereogram created by e-beam technology

    Science.gov (United States)

    Goncharsky, Alexander; Goncharsky, Anton; Durlevich, Svyatoslav

    2017-06-01

    A high-resolution computer-generated stereogram for forming full-parallax three-dimensional (3-D) images is proposed. A full-parallax 3-D image is formed from 825 two-dimensional (2-D) projections and can be observed in a wide angular range. The stereogram is a reflective diffractive optical element (DOE) that consists of 50×50 μm2 hogels, where each hogel corresponds to one pixel of the 2-D frames. A phase-type kinoform is computed in every hogel by solving a nonlinear inverse problem. The DOE relief is fabricated using electron-beam technology with pixel size of 0.2×0.2 μm2. The effectiveness of the technology developed is illustrated by photographs and a video of a real DOE under monochromatic light and under white light. The new high-resolution full-parallax stereograms can be used for protecting bank notes, documents, and ID cards against counterfeit.

  14. Holographic technidilaton

    Science.gov (United States)

    Haba, Kazumoto; Matsuzaki, Shinya; Yamawaki, Koichi

    2010-09-01

    Technidilaton, a pseudo-Nambu-Goldstone boson of scale symmetry, was predicted long ago in the scale-invariant/walking/conformal technicolor (SWC-TC) as a remnant of the (approximate) scale symmetry associated with the conformal fixed point, based on the conformal gauge dynamics of ladder Schwinger-Dyson (SD) equation with nonrunning coupling. We study the technidilaton as a flavor-singlet bound state of technifermions by including the technigluon condensate (tGC) effect into the previous (bottom-up) holographic approach to the SWC-TC, a deformation of the holographic QCD with γm≃0 by large anomalous dimension γm≃1. With including a bulk scalar field corresponding to the gluon condensate, we first improve the operator product expansion of the current correlators so as to reproduce gluonic 1/Q4 term both in QCD and SWC-TC. We find in QCD about 10% (negative) contribution of gluon condensate to the ρ meson mass. We also calculate the oblique electroweak S-parameter in the presence of the effect of the tGC and find that for the fixed value of S the tGC effects dramatically reduce the flavor-singlet scalar (technidilaton) mass MTD (in the unit of Fπ), while the vector and axial-vector masses Mρ and Ma1 are rather insensitive to the tGC, where Fπ is the decay constant of the technipion. If we use the range of values of tGC implied by the ladder SD analysis of the nonperturbative scale anomaly in the large Nf QCD near the conformal window, the phenomenological constraint S≃0.1 predicts the technidilaton mass MTD˜600GeV which is within reach of LHC discovery.

  15. Beam-Based Alignment in CTF3 Test Beam Line

    OpenAIRE

    Sterbini, G; Dӧbert, S; Marín, E.; Lillestol, RL; Schulte, D.; Adli, E.

    2012-01-01

    The CLIC linear collider is based on the two beams acceleration scheme. During acceleration of the colliding beams, the drive beam suffers a large build up on its energy spread. In order to efficiently transport such a beam, beam-based alignment techniques together with tight prealignment tolerances are crucial. To evaluate the performance of these steering algorithms, a beam-based steering campaign has been conducted at the Test Beam Line of the CLIC Test Facility. In the following we presen...

  16. Volume polarization holographic recording in thick photopolymer for optical memory.

    Science.gov (United States)

    Lin, Shiuan Huei; Cho, Sheng-Lung; Chou, Shin-Fu; Lin, June Hua; Lin, Chih Min; Chi, Sien; Hsu, Ken Yuh

    2014-06-16

    Based on a vector wave theory of volume holograms, dependence of holographic reconstruction on the polarization states of the writing and reading beams is discussed. It is found that under paraxial approximation the circular polarization holograms provide a better distinction of the reading beams. Characteristics of recording polarization holograms in thick phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymer are experimentally investigated. It is found that the circular polarization holographic recording possesses better dynamic range and material sensitivity, and a uniform spatial frequency response over a wide range. The performance is comparable to that of the intensity holographic recording in PQ/PMMA. Based on theoretical analyses and the material properties, a polarization multiplexing holographic memory using circularly polarization recording configuration for increasing storage capacity has been designed and experimentally demonstrated.

  17. The holographic universe

    NARCIS (Netherlands)

    McFadden, P.L.; Skenderis, K.

    2010-01-01

    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory (QFT). The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein

  18. Holographic Dark Information Energy

    Directory of Open Access Journals (Sweden)

    Michael Paul Gough

    2011-04-01

    Full Text Available Landauer’s principle and the Holographic principle are used to derive the holographic information energy contribution to the Universe. Information energy density has increased with star formation until sufficient to start accelerating the expansion of the universe. The resulting reduction in the rate of star formation due to the accelerated expansion may provide a feedback that limits the information energy density to a constant level. The characteristics of the universe’s holographic information energy then closely match those required to explain dark energy and also answer the cosmic coincidence problem. Furthermore the era of acceleration will be clearly limited in time.

  19. Dynamical holographic QCD model

    Directory of Open Access Journals (Sweden)

    Li Danning

    2014-01-01

    Full Text Available We develop a dynamical holographic QCD model, which resembles the renormalization group from ultraviolet (UV to infrared (IR. The dynamical holographic model is constructed in the graviton-dilaton-scalar framework with the dilaton background field Φ and scalar field X responsible for the gluodynamics and chiral dynamics, respectively. We summarize the results on hadron spectra, QCD phase transition and transport properties including the jet quenching parameter and the shear/bulk viscosity in the framework of the dynamical holographic QCD model.

  20. Steering Performance, Tactical Vehicles

    Science.gov (United States)

    2015-07-29

    front and rear. h. Steering gear type (rack & pinion, recirculating ball, etc.). TOP 02-2-600 29 July 2015 6 i. Steering linkage type...TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure ( TOP ) 02-2-600 Steering Performance, Tactical Vehicles...Colleran Road Aberdeen Proving Ground, MD 21005-5059 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 02-2-600 9. SPONSORING/MONITORING AGENCY

  1. Complex wavefront modulation and holographic display using single spatial light modulator

    Science.gov (United States)

    Kong, Dezhao; Cao, Liangcai; Shen, Xueju; Zhang, Hao; Zong, Song; Jin, Guofan

    2017-08-01

    A holographic display method based on complex wavefront modulation using single spatial light modulator is proposed. The holographic display is achieved from complex wavefront encoded by double phase hologram. The modulated beam by single phase-only spatial light modulator passes through a 4f optical system to synthesize the expected complex modulated wavefront on the output plane, with a low-pass filter in the Fourier plane. The performance of holographic display is also improved by complex wavefront modulation, compared with the holographic display based on phase-only wavefront modulation. The proposed encoding and display technique is theoretically demonstrated, as well as validated in numerical simulations.

  2. Coherent backlight unit using holographic optical elements for full-color flat-panel holographic display

    Science.gov (United States)

    Kim, Sun Il; Choi, Chil-Sung; An, Jungkwuen; Song, Hoon; Kim, Yunhee; Kim, Young; Sung, Geeyoung; Seo, Wontaek; Seo, Juwon; Kim, Yun-Tae; Kim, Hojung; Kim, Yongkyu; Lee, Hong-Seok; Hwang, Sungwoo

    2017-03-01

    We propose the coherent backlight unit (BLU) using Holographic Optical Element (HOE) for full-color flat-panel holographic display. The HOE BLU consists of two reflective type HOEs that change the optical beam path and shape by diffraction. The diverging incident beam is transformed to the collimated beam which has a very small diffraction angle (7.5°) by HOE 1 (H1) in order to illuminate the whole display. This collimated beam is converged to a point at a distance from the glass substrate by HOE 2 (H2). As a result, the diverging incident beam is converted to a point light by H1 and H2. When the high resolution Spatial Light Modulator (SLM) displaying Computer Generated Hologram (CGH) is illuminated by HOE BLU, the hologram image is displayed at a view point near focal point. Practically, we fabricated the full color HOE BLU for 5.5" flat panel holographic display by using the proposed design. At least 5.5" size of HOE is required to illuminate the whole panel. For this reason, we recorded 150 mm x 90 mm size HOE on the 10 mm thickness glass substrate. This HOE BLU exhibits a total efficiency of 8.0% at Red (660 nm), 7.7% at Green (532 nm), 3.2% at Blue (460 nm) using optimized recording conditions for each wavelength. Finally, a bright full color hologram image was achieved.

  3. Periodically driven holographic superconductor

    National Research Council Canada - National Science Library

    Li, Wei-Jia; Tian, Yu; Zhang, Hongbao

    2013-01-01

    .... As a result, our holographic superconductor is driven to the final oscillating state, where the condensate is suppressed and the oscillation frequency is controlled by twice of the driving frequency...

  4. Holographic Optics For Vision Systems

    Science.gov (United States)

    Freeman, Michael H.

    1989-05-01

    The human visual system is often equated to a photographic camera. This is a poor analogy because the differences are far greater than the similarities. The processing of the human visual system is complex and non-linear so that even optical transfer function concepts must be applied with caution. Holographic optics offers some extra degrees of freedom with respect to refractive optics. Unlike refractive optics, diffractive effects are not, in the first order, dependent on material and geometric shape and require no significant volume. On the other hand they may suffer from fractional efficiencies and strong wavelength dependencies. The Pilkington 'Diffrax' lens invented by the author is an example of a product which steers between the disadvantages and maximises the advantages to provide the world's first diffractive bifocal contact lens. Indications for other visual applications are not very propitious although time and development may show this to be incorrect. This paper will review the interaction between the preferences and antipathies of the human visual system and the optical effects of diffractive systems.

  5. Display applications for holographic optical elements

    Science.gov (United States)

    Gambogi, William J., Jr.; Armstrong, Mark L.; Hamzavy, Babak; Levin, Michael L.; Mackara, Steven R.; Molteni, William J., Jr.; Steijn, Kirk W.; Stevenson, Sylvia H.; Felder, Thomas C.; Heidt, Gerald L.; Miller, Douglas R.

    2001-06-01

    In the last several years, holographic elements have been introduced into a wide array of display applications. Holographic Reflectors are incorporated with liquid crystal displays to shift optimum viewing angle away form specular glare and raise brightness by concentrating light at a convenient viewing angle. Reflectors can be produced in blue, green, gold, red, or white colors. Denso GlassVision projection screens incorporate transmission holograms to efficiently direct projected light to the viewer in a screen that reverts to clear glass When the projection image is turned off. JVC has introduce da large-screen HDTV that uses a holographic color filter to separate blue, green, and red light from the illumination beam, and direct the sorted colors to the appropriate color pixel, raising brightness with a passive component. Most recently, HOE prototypes have been produced to improve the efficiency of portable liquid crystal color display. Front diffuser are affixed to the face of reflective color LCDs and direct output light from the LCD to the viewer at a convenient viewing angle in a concentrated view cone. Reflective Colors Filters are pixelated diffuse reflectors internal to the LCD structure and aligned to the LCD matrix. These reflective filters provide higher brightness, larger color gamut, and better color saturation including a holographic grating are under development to provide wider view angle in direct-view LCDs.

  6. Steering smog prediction

    NARCIS (Netherlands)

    R. van Liere (Robert); J.J. van Wijk (Jack)

    1997-01-01

    textabstractThe use of computational steering for smog prediction is described. This application is representative for many underlying issues found in steering high performance applications: high computing times, large data sets, and many different input parameters. After a short description of the

  7. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.

    Science.gov (United States)

    Farré, Arnau; van der Horst, Astrid; Blab, Gerhard A; Downing, Benjamin P B; Forde, Nancy R

    2010-04-01

    The well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected, demonstrating (1) that holographic optical trap calibration using thermal fluctuation methods is valid to high forces; (2) that the holographic optical traps are harmonic out to >250 nm of 2.1 mum particle displacement; and (3) that temporal modulations in traps induced by the spatial light modulator (SLM) do not affect the ability of optical traps to hold and steer particles against high forces. These studies demonstrate a new high-force capability for holographic optical traps achievable by SLM technologies. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  8. A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on ITER

    NARCIS (Netherlands)

    Bongers, W. A.; M. F. Graswinckel,; Goede, A. P. H.; Kasparek, W.; Danilov, I.; Curto, A. F.; M.R. de Baar,; van den Berg, M. A.; Donne, A. J. H.; Elzendoorn, B. S. Q.; Heidinger, R.; Ivanov, P.; Kruijt, O. G.; Lamers, B.; Meier, A.; Piosczyk, B.; Plaum, B.; Ronden, D. M. S.; Thoen, D. J.; Schmid, M.; Verhoeven, A. G. A.

    2010-01-01

    High-power millimetre wave beams employed on ITER for heating and Current drive at the 170 GHz electron cyclotron resonance frequency require agile steering and tight focusing of the beams to suppress neoclassical tearing modes. This paper presents experimental validation of the remote steering (RS)

  9. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  10. Fermilab Steering Group Report

    Energy Technology Data Exchange (ETDEWEB)

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOvA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the

  11. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  12. Magnonic Holographic Memory

    Science.gov (United States)

    Khitun, Alexander; Kozhevnikov, Alexander; Gertz, Frederick; Filimonov, Yuri

    2015-03-01

    Collective oscillation of spins in magnetic lattice known as spin waves (magnons) possess relatively long coherence length at room temperature, which makes it possible to build sub-micrometer scale holographic devices similar to the devices developed in optics. In this work, we present a prototype 2-bit magnonic holographic memory. The memory consists of the double-cross waveguide structure made of Y3Fe2(FeO4)3 with magnets placed on the top of waveguide junctions. Information is encoded in the orientation of the magnets, while the read-out is accomplished by the spin waves generated by the micro-antennas placed on the edges of the waveguides. The interference pattern produced by multiple spin waves makes it possible to build a unique holographic image of the magnetic structure and recognize the state of the each magnet. The development of magnonic holographic devices opens a new horizon for building scalable holographic devices compatible with conventional electronic devices. This work was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the National Science Foundation under the NEB2020 Grant ECCS-1124714.

  13. Spiral holographic imaging through quantum interference

    Science.gov (United States)

    Tang, Jie; Ming, Yang; Hu, Wei; Lu, Yan-qing

    2017-07-01

    Spiral holographic imaging in the Hong-Ou-Mandel interference scheme is introduced. Using spontaneous parametric down-conversion as a source of photon pairs, we analyze the joint orbital angular momentum spectrum of a reference photon and the photon encoding information of the object. The first-order interference of light beams in standard holographic imaging is replaced by the quantum interference of two-photon probability amplitudes. The difficulty in retrieving the amplitude and phase structure of an unknown photon is thereby avoided as classical interferometric techniques such as optical holography do not apply. Our results show that the full information of the object's transmission function can be recorded in the spiral hologram, which originates directly from the joint orbital angular momentum spectrum. This presents a lateral demonstration of compressive imaging and can potentially be used for remote sensing.

  14. High quality digital holographic reconstruction on analog film

    Science.gov (United States)

    Nelsen, B.; Hartmann, P.

    2017-05-01

    High quality real-time digital holographic reconstruction, i.e. at 30 Hz frame rates, has been at the forefront of research and has been hailed as the holy grail of display systems. While these efforts have produced a fascinating array of computer algorithms and technology, many applications of reconstructing high quality digital holograms do not require such high frame rates. In fact, applications such as 3D holographic lithography even require a stationary mask. Typical devices used for digital hologram reconstruction are based on spatial-light-modulator technology and this technology is great for reconstructing arbitrary holograms on the fly; however, it lacks the high spatial resolution achievable by its analog counterpart, holographic film. Analog holographic film is therefore the method of choice for reconstructing highquality static holograms. The challenge lies in taking a static, high-quality digitally calculated hologram and effectively writing it to holographic film. We have developed a theoretical system based on a tunable phase plate, an intensity adjustable high-coherence laser and a slip-stick based piezo rotation stage to effectively produce a digitally calculated hologram on analog film. The configuration reproduces the individual components, both the amplitude and phase, of the hologram in the Fourier domain. These Fourier components are then individually written on the holographic film after interfering with a reference beam. The system is analogous to writing angularly multiplexed plane waves with individual component phase control.

  15. The holographic universe

    CERN Document Server

    Talbot, Michael

    1991-01-01

    'There is evidence to suggest that our world and everything in it - from snowflakes to maple trees to falling stars and spinning electrons - are only ghostly images, projections from a level of reality literally beyond both space and time.' This is the astonishing idea behind the holographic theory of the universe, pioneered by two eminent thinkers: physicist David Bohm, a former protege of Albert Einstein, and quantum physicist Karl Pribram. The holographic theory of the universe encompasses consciousness and reality as we know them, but can also explain such hitherto unexplained phenomena as telepathy, out-of-body experiences and even miraculous healing. In this remarkable book, Michael Talbot reveals the extraordinary depth and power of the holographic theory of the universe, illustrating how it makes sense of the entire range of experiences within our universe - and in other universes beyond our own.

  16. Phenomenology of Holographic Quenches

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-10-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  17. Realization of an optical interferometer based on holographic optics ...

    Indian Academy of Sciences (India)

    holographic exposures, in conjunction with the common beam O2 for the formation of two different but overlapped .... used for Agfa-Gevaert 8E75HD plates to give high efficiency and low noise grating holograms on H1 and H2. ... of India, New Delhi for the financial support for carrying out this work. One of the authors (AKS) ...

  18. Setting up of holographic optical tweezer arrays

    Science.gov (United States)

    Gupta, Deepak K.; Tata, B. V. R.; Ravindran, T. R.

    2017-05-01

    Optical tweezers use tightly focused laser beams to hold and move microscopic objects in a solvent. However, many applications require simultaneous control over multitude of particles, positioning them in 3D space at desired locations with desired symmetry, which is made possible by the use of holographic optical tweezers using the technique of beam shaping and holography. We have designed and developed a holographic optical tweezer set-up using a phase only liquid crystal, reflective spatial light modulator. We employ the technique of phase modulation to modulate the phase of the beam by generating holograms using Random Superposition (RS) and weighted Gerchberg Saxton algorithm (WGS) algorithm for generating desired patterns of light at the trapping plane. A 4×4 array of beams with square symmetry was generated using WGS algorithm and trapped polystyrene particles of size 1.2 micron in a 4×4 two dimensional array. There were uniformity issues among the trap intensities, as we move away from the zeroth order spot. This was corrected by taking into account diffraction effects due to the pixelated nature of SLM modulating the intensity of the trap spots and the ghost order suppression by spatial disorder.

  19. Splash events First Beams 2008

    CERN Multimedia

    Collaboration, CMS

    2008-01-01

    First beam through the detector: images showing the debris, or "splash", of particles picked up in the detector's calorimeters and muon chambers after the beam was steered into the collimator (tungsten blocks) at Point 5.

  20. Holographic Data Storage with a Digital Micromirror Device

    Science.gov (United States)

    Bullock, Daniel; Sauncy, Toni; Allen, Charles; Dallas, Tim

    2007-10-01

    A holographic data system writes bits by recording the interference between a reference beam and an object beam containing data as a diffraction grating onto a photosensitive disc. The purpose of this research is to evaluate current designs and consider improvements such as the use of a digital micromirror device (DMD) as a spatial light modulator. Other factors addressed are multiple incident angles for volume layering and improving bit contrast.

  1. A Comparison Between Compounding Techniques Using Large Beam-Steered Plane Wave Imaging for Blood Vector Velocity Imaging in a Carotid Artery Model.

    Science.gov (United States)

    Saris, Anne E C M; Hansen, Hendrik H G; Fekkes, Stein; Nillesen, Maartje M; Rutten, Marcel C M; de Korte, Chris L

    2016-11-01

    Conventional color Doppler imaging is limited, since it only provides velocity estimates along the ultrasound beam direction for a restricted field of view at a limited frame rate. High-frame-rate speckle tracking, using plane wave transmits, has shown potential for 2-D blood velocity estimation. However, due to the lack of focusing in transmit, image quality gets reduced, which hampers speckle tracking. Although ultrafast imaging facilitates improved clutter filtering, it still remains a major challenge in blood velocity estimation. Signal dropouts and poor velocity estimates are still present for high beam-to-flow angles and low blood flow velocities. In this paper, ultrafast plane wave imaging was combined with multiscale speckle tracking to assess the 2-D blood velocity vector in a common carotid artery (CCA) flow field. A multiangled plane wave imaging sequence was used to compare the performance of displacement compounding, coherent compounding, and compound speckle tracking. Zero-degree plane wave imaging was also evaluated. The performance of the methods was evaluated before and after clutter filtering for the large range of velocities (0-1.5 m/s) that are normally present in a healthy CCA during the cardiac cycle. An extensive simulation study was performed, based on a sophisticated model of the CCA, to investigate and evaluate the performance of the methods at different pulse repetition frequencies and signal-to-noise levels. In vivo data were acquired of a healthy carotid artery bifurcation to support the simulation results. In general, methods utilizing compounding after speckle tracking, i.e., displacement compounding and compound speckle tracking, were least affected by clutter filtering and provided the most robust and accurate estimates for the entire velocity range. Displacement compounding, which uses solely axial information to estimate the velocity vector, provided most accurate velocity estimates, although it required sufficiently high pulse

  2. Holographic Investigation of Solid Propellant Combustion

    Science.gov (United States)

    1988-12-01

    IITLE (B=m* £Se-T) CaruatwICi, HOLOGRAPHIC INIL’ESTIGWI’ION OF SOLZ ’PROPELLANT COMBUSTION 12 PERSONAL AUTHOR(S) -Butler, Albert G. 13a TYPE OF REPORT...Speckle 19 ABSTRACT (Ccin1,rn WI ree~rse if IlCCenr~y anld ,dentify by blod number) An Investigcation into the behavior of aissmnied solid propellant...required to obtain a good quality hologram. Nuetral density filters, :3 placed in the scene beam for collimated type transmission holograms or in the

  3. Intelligent holographic databases

    Science.gov (United States)

    Barbastathis, George

    Memory is a key component of intelligence. In the human brain, physical structure and functionality jointly provide diverse memory modalities at multiple time scales. How could we engineer artificial memories with similar faculties? In this thesis, we attack both hardware and algorithmic aspects of this problem. A good part is devoted to holographic memory architectures, because they meet high capacity and parallelism requirements. We develop and fully characterize shift multiplexing, a novel storage method that simplifies disk head design for holographic disks. We develop and optimize the design of compact refreshable holographic random access memories, showing several ways that 1 Tbit can be stored holographically in volume less than 1 m3, with surface density more than 20 times higher than conventional silicon DRAM integrated circuits. To address the issue of photorefractive volatility, we further develop the two-lambda (dual wavelength) method for shift multiplexing, and combine electrical fixing with angle multiplexing to demonstrate 1,000 multiplexed fixed holograms. Finally, we propose a noise model and an information theoretic metric to optimize the imaging system of a holographic memory, in terms of storage density and error rate. Motivated by the problem of interfacing sensors and memories to a complex system with limited computational resources, we construct a computer game of Desert Survival, built as a high-dimensional non-stationary virtual environment in a competitive setting. The efficacy of episodic learning, implemented as a reinforced Nearest Neighbor scheme, and the probability of winning against a control opponent improve significantly by concentrating the algorithmic effort to the virtual desert neighborhood that emerges as most significant at any time. The generalized computational model combines the autonomous neural network and von Neumann paradigms through a compact, dynamic central representation, which contains the most salient features

  4. Holographic Optical Data Storage

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Although the basic idea may be traced back to the earlier X-ray diffraction studies of Sir W. L. Bragg, the holographic method as we know it was invented by D. Gabor in 1948 as a two-step lensless imaging technique to enhance the resolution of electron microscopy, for which he received the 1971 Nobel Prize in physics. The distinctive feature of holography is the recording of the object phase variations that carry the depth information, which is lost in conventional photography where only the intensity (= squared amplitude) distribution of an object is captured. Since all photosensitive media necessarily respond to the intensity incident upon them, an ingenious way had to be found to convert object phase into intensity variations, and Gabor achieved this by introducing a coherent reference wave along with the object wave during exposure. Gabor's in-line recording scheme, however, required the object in question to be largely transmissive, and could provide only marginal image quality due to unwanted terms simultaneously reconstructed along with the desired wavefront. Further handicapped by the lack of a strong coherent light source, optical holography thus seemed fated to remain just another scientific curiosity, until the field was revolutionized in the early 1960s by some major breakthroughs: the proposition and demonstration of the laser principle, the introduction of off-axis holography, and the invention of volume holography. Consequently, the remainder of that decade saw an exponential growth in research on theory, practice, and applications of holography. Today, holography not only boasts a wide variety of scientific and technical applications (e.g., holographic interferometry for strain, vibration, and flow analysis, microscopy and high-resolution imagery, imaging through distorting media, optical interconnects, holographic optical elements, optical neural networks, three-dimensional displays, data storage, etc.), but has become a prominent am advertising

  5. Deriving covariant holographic entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xi [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Lewkowycz, Aitor [Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Rangamani, Mukund [Center for Quantum Mathematics and Physics (QMAP), Department of Physics, University of California, Davis, CA 95616 (United States)

    2016-11-07

    We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.

  6. 49 CFR 570.60 - Steering system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Steering system. 570.60 Section 570.60... 10,000 Pounds § 570.60 Steering system. (a) System play. Lash or free play in the steering system... excessive lash or free play in the steering system. Table 2. Steering Wheel Free Play Values Steering wheel...

  7. 49 CFR 570.7 - Steering systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Steering systems. 570.7 Section 570.7... Pounds or Less § 570.7 Steering systems. (a) System play. Lash or free play in the steering system shall... in the steering system. Table 1—Steering System Free Play Values Steering wheel diameter (inches...

  8. Holographic entanglement entropy

    CERN Document Server

    Rangamani, Mukund

    2017-01-01

    This book provides a comprehensive overview of developments in the field of holographic entanglement entropy. Within the context of the AdS/CFT correspondence, it is shown how quantum entanglement is computed by the area of certain extremal surfaces. The general lessons one can learn from this connection are drawn out for quantum field theories, many-body physics, and quantum gravity. An overview of the necessary background material is provided together with a flavor of the exciting open questions that are currently being discussed. The book is divided into four main parts. In the first part, the concept of entanglement, and methods for computing it, in quantum field theories is reviewed. In the second part, an overview of the AdS/CFT correspondence is given and the holographic entanglement entropy prescription is explained. In the third part, the time-dependence of entanglement entropy in out-of-equilibrium systems, and applications to many body physics are explored using holographic methods. The last part f...

  9. Electrical steering of vehicles

    DEFF Research Database (Denmark)

    Blanke, Mogens; Thomsen, Jesper Sandberg

    2006-01-01

    solutions and still meet strict requirements to functional safety. The paper applies graph-based analysis of functional system structure to find a novel fault-tolerant architecture for an electrical steering where a dedicated AC-motor design and cheap voltage measurements ensure ability to detect all...

  10. The Holographic Principle in a Cosmological Setting

    NARCIS (Netherlands)

    Savonije, Ivo Lothar

    2003-01-01

    We study the holographic principle in a cosmological context. First, entropy bounds are derived from the holographic principle and applied within a Anti-de Sitter spacetime. Next, the compatibility of the holographic principle and de Sitter spacetime is considered. The holographic principle is a

  11. Holographic Baryons and Instanton Crystal

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated ADHM construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review we summarize the known results on the construction and phases of crystals of the holographic baryons.

  12. Holographic baryons and instanton crystals

    Science.gov (United States)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    2015-06-01

    In a wide class of holographic models, like the one proposed by Sakai and Sugimoto, baryons can be approximated by instantons of non-Abelian gauge fields that live on the world-volume of flavor D-branes. In the leading order, those are just the Yang-Mills instantons, whose solutions can be constructed from the celebrated Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction. This fact can be used to study various properties of baryons in the holographic limit. In particular, one can attempt to construct a holographic description of the cold dense nuclear matter phase of baryons. It can be argued that holographic baryons in such a regime are necessarily in a solid crystalline phase. In this review, we summarize the known results on the construction and phases of crystals of the holographic baryons.

  13. Scanning for piecewise holographic grating generation

    Science.gov (United States)

    Miler, Miroslav; Kostka, František; Dvořák, Martin

    2006-03-01

    Holographic gratings that are recorded as a whole in a single exposition are limited in size because of the available power of suitable laser sources and nonlinear response of and/or reciprocity effects in a recording medium. A sequential-illumination technique can help in this case. This technique relies on piecewise grating recording that consists in scanning with a relatively narrow laser beam, a pencil, across the grating surface employing an appropriate optical set up. The contribution describes a method utilizing a small parallel displacement of the laser pencil by turning a plane-parallel plate, which is then transferred to a larger angular deflection by a short focus lens. Simultaneously, the beam is expanded angularly. This all can take place either before light enters the beam-splitter or along paths of both the interfering beams. In this way, uniform diffraction efficiency gratings that are much larger than the cross-section of the beam can be achieved. The laser pencil can be moved in polar or rectangular coordinates. Recording of larger gratings supposes large precise collimating mirrors. If they are not available e.g. due to their high price, they can be replaced by long propagating homocentric beams with their origins in the same distance from the recording plate.

  14. A holographic bound for D3-brane

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakul, Aizhan; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Eurasian National University, Department of General Theoretical Physics, Astana (Kazakhstan); Faizal, Mir [University of British Columbia-Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom)

    2017-06-15

    In this paper, we will regularize the holographic entanglement entropy, holographic complexity and fidelity susceptibility for a configuration of D3-branes. We will also study the regularization of the holographic complexity from the action for a configuration of D3-branes. It will be demonstrated that for a spherical shell of D3-branes the regularized holographic complexity is always greater than or equal to the regularized fidelity susceptibility. Furthermore, we will also demonstrate that the regularized holographic complexity is related to the regularized holographic entanglement entropy for this system. Thus, we will obtain a holographic bound involving regularized holographic complexity, regularized holographic entanglement entropy and regularized fidelity susceptibility of a configuration of D3-brane. We will also discuss a bound for regularized holographic complexity from action, for a D3-brane configuration. (orig.)

  15. Collinear technology for a holographic versatile disk

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi

    2006-02-01

    A novel reading and writing technology for a holographic versatile disk (HVD) system called collinear technology is developed. With this method a two-dimensional data page can be recorded as volumetric holograms generated by a reference beam and a signal beam that are bundled on the same axis and that are irradiated on the recording medium through a single objective lens. The multiplex recording and reconstruction process is demonstrated, and it is shown that the optical configuration and the dichroic medium disk structure are suitable for a compact system. With the HVD's special structure, the system can use a servo to focus, track, and locate the reading and writing addresses. A unique selectable-capacity recording format of a HVD and its standardization activity are also introduced. This method will enable us to construct a small HVD system with CD and DVD upper compatibilities.

  16. Steering Your Mysterious Mind

    DEFF Research Database (Denmark)

    Prasad, Ramjee

    Steering the Mysterious Mind, describes a unique, novel concept for a way to gain control of your mind. The five basic elements of human life, that is; Creativity, Content­ment, Confidence, Calmness, and Concentration (C5) have been introduced in my previous book Unlock Your Personalization...... well-being is key for happy and stress free life. Mind has enormous energy. Everyone has access to tre­mendous mental energies; what matters is being aware of this and to work on concentrating your energy into creative work. To achieve mental strength, C5 is a su­preme powerful exercise for the mind....... Compare it with going to the gym where you work on the physical body. In the same way as with arms and legs, the mind is a mus­cle which you exercise through C5 practice. Steering the mind on your personal goal will help you to be creative....

  17. Optimization of Steering Elements in the RIA Driver Linac

    CERN Document Server

    SchnirmanLessner, Eliane; Ostroumov, Peter

    2005-01-01

    The driver linac of the projected RIA facility is a versatile accelerator, a 1.4-GV, CW superconducting linac designed to simultaneously accelerate several heavy-ion charge states, providing beams from protons at about 1 GeV to uranium at 400 MeV/u at power levels at a minimum of 100 kW and up to 400 kW for most beams. Acceleration of multiple-charge-state uranium beams places stringent requirements on the linac design. A steering algorithm was derived that fulfilled the driver’s real estate requirements, such as placement of steering dipole coils on SC solenoids and of beam position monitors outside cryostats, and beam-dynamics requirements, such as coupling effects induced by the focusing solenoids.* The algorithm has been fully integrated in the tracking code TRACK** and is used to study and optimize the number and position of steering elements that minimize the multiple-beam centroid oscillations and preserve the beam emittance under misalignments of accelerating and transverse focusing elements...

  18. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  19. Volume holographic memory

    Directory of Open Access Journals (Sweden)

    Cornelia Denz

    2000-05-01

    Full Text Available Volume holography represents a promising alternative to existing storage technologies. Its parallel data storage leads to high capacities combined with short access times and high transfer rates. The design and realization of a compact volume holographic storage demonstrator is presented. The technique of phase-coded multiplexing implemented to superimpose many data pages in a single location enables to store up to 480 holograms per storage location without any moving parts. Results of analog and digital data storage are shown and real time optical image processing is demonstrated.

  20. Laser adaptive holographic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)

    2016-03-31

    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  1. Holographic twin Higgs model.

    Science.gov (United States)

    Geller, Michael; Telem, Ofri

    2015-05-15

    We present the first realization of a "twin Higgs" model as a holographic composite Higgs model. Uniquely among composite Higgs models, the Higgs potential is protected by a new standard model (SM) singlet elementary "mirror" sector at the sigma model scale f and not by the composite states at m_{KK}, naturally allowing for m_{KK} beyond the LHC reach. As a result, naturalness in our model cannot be constrained by the LHC, but may be probed by precision Higgs measurements at future lepton colliders, and by direct searches for Kaluza-Klein excitations at a 100 TeV collider.

  2. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  3. Generalized holographic cosmology

    Science.gov (United States)

    Banerjee, Souvik; Bhowmick, Samrat; Sahay, Anurag; Siopsis, George

    2013-04-01

    We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditions on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newton's constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.

  4. Liquid Crystal on Silicon Non-Mechanical Steering of a Laser Vibrometer System

    National Research Council Canada - National Science Library

    Kuciapinski, Kevin S

    2005-01-01

    .... The coherent laser radar system used was a Laser Vibrometer System. The beam of the laser vibrometer was steered from 0 mrad to 3 mrad at 1 mrad increments using the liquid crystal on silicon (LCOS) device...

  5. Fischler Susskind holographic cosmology revisited

    Science.gov (United States)

    Diaz, Pablo; Per, M. A.; Segui, Antonio

    2007-11-01

    When Fischler and Susskind proposed a holographic prescription based on the particle horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the particle horizon area. In this paper, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid this problem if they expand fast enough. It has also been shown that the holographic principle is saturated for a codimension one-brane dominated universe. The Fischler Susskind prescription is used to obtain the maximum number of degrees of freedom per Planck volume at the Planck era compatible with the holographic principle.

  6. The traveltime holographic principle

    KAUST Repository

    Huang, Y.

    2014-11-06

    Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.

  7. Digital holographic microscopy

    Science.gov (United States)

    Barkley, Solomon; Dimiduk, Thomas; Manoharan, Vinothan

    Digital holographic microscopy is a 3D optical imaging technique with high temporal ( ms) and spatial ( 10 nm) precision. However, its adoption as a characterization technique has been limited due to the inherent difficulty of recovering 3D data from the holograms. Successful analysis has traditionally required substantial knowledge about the sample being imaged (for example, the approximate positions of particles in the field of view), as well as expertise in scattering theory. To overcome the obstacles to widespread adoption of holographic microscopy, we developed HoloPy - an open source python package for analysis of holograms and scattering data. HoloPy uses Bayesian statistical methods to determine the geometry and properties of discrete scatterers from raw holograms. We demonstrate the use of HoloPy to measure the dynamics of colloidal particles at interfaces, to ascertain the structures of self-assembled colloidal particles, and to track freely swimming bacteria. The HoloPy codebase is thoroughly tested and well-documented to facilitate use by the broader experimental community. This research is supported by NSF Grant DMR-1306410 and NSERC.

  8. Steering characteristics of motorcycles

    Science.gov (United States)

    Fujii, Shigeru; Shiozawa, Souichi; Shinagawa, Akinori; Kishi, Tomoaki

    2012-08-01

    In this study, the results of a steady-state cornering test using a sport-touring motorcycle and the analysis of those test results are presented. This test was conducted as an activity in our efforts to realise a quantitative development method for motorcycles. The measurement data from this test include measurement results for tyre force, tyre moment, and tyre slip angle that have not been practically addressed in the research of motorcycles, in addition to normal measurement results for velocity, steering angle, steering torque, roll angle, etc. Until now research on motorcycle dynamics characteristics has indicated that 'there is a strong relationship between the motorcycle dynamics characteristics and the tyre slip angle'. However, since it is difficult to take highly precise measurements of the motorcycle's tyre slip angle during actual riding, especially when the motorcycle is tilted during cornering, such measurements have been avoided, cf. [H. Ishii and Y. Tezuka, Considerations of turning performance for motorcycle, SETC (1997), pp. 383-389]. Nevertheless, in this research we attempted to measure the tyre slip angle and also attempted to investigate in detail the dynamics characteristics and tyre characteristics during riding. Until now there has not been an adequate investigation conducted under a variety of riding conditions, but it is the aim of this research to show that it is possible to measure the tyre slip angle with a reasonable accuracy. It is our opinion that this will open a new path to a more detailed investigation of the motorcycle's dynamics characteristics. In addition, we conducted measurements using not only the normal rider's lean angle (lean-with posture), but also measurements in the case where the rider's lean angle was intentionally changed, in order to investigate the effects that a change in the rider's posture has on the variation in the measurement results of the motorcycle's dynamics. Furthermore, we then compared these

  9. Linearity of holographic entanglement entropy

    National Research Council Canada - National Science Library

    Almheiri, Ahmed; Dong, Xi; Swingle, Brian

    2017-01-01

    We consider the question of whether the leading contribution to the entanglement entropy in holographic CFTs is truly given by the expectation value of a linear operator as is suggested by the Ryu-Takayanagi formula...

  10. Adventures in Holographic Dimer Models

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Karch, Andreas; /Washington U., Seattle; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  11. Adventures in holographic dimer models

    Science.gov (United States)

    Kachru, Shamit; Karch, Andreas; Yaida, Sho

    2011-03-01

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  12. Performance analysis and material dependence of micro holographic optical elements as couplers for fiber optic communication

    Science.gov (United States)

    Ambadiyil, Sajan; Prasannan, G.; Sathyan, Jithesh; Ajith Kumar, P. T.

    2005-01-01

    Holographic Optical Elements (HOEs) are gaining much importance and finding newer and better applications in areas of optical fiber communication and optical information processing systems. In contrast to conventional HOEs, optical communication and information systems require smaller and efficient elements of desired characteristics and transfer functions. Such Micro Holographic Optical Elements (MHOEs) can either be an HOE, recorded with two narrow beams of laser light or a segment cut from a larger HOE (SHOEs), and recorded in the conventional manner. In this study, micro holographic couplers, having specific focusing and diffraction characteristics were recorded in different holographic recording media such as silver halide and dichromated gelatin. Wavelength response of the elements was tested at 633 nm and 442 nm. Variation in diffraction efficiency/coupling factor, and insertion loss of the elements were studied. The paper reports in detail about the above results and related design considerations.

  13. Beam Injection into RHIC

    Science.gov (United States)

    Fischer, W.; Hahn, H.; Mackay, W. W.; Tsoupas, N.

    1997-05-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. We describe the injection zone and its bottlenecks, the application program to steer the beam and the injection kickers. We report on the commissioning of the injection systems and on measurements of the kickers.

  14. On holographic defect entropy

    Energy Technology Data Exchange (ETDEWEB)

    Estes, John [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom); Jensen, Kristan [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8W 3P6 (Canada); C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook,Stony Brook, NY 11794-3840 (United States); O’Bannon, Andy [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Tsatis, Efstratios [8 Kotylaiou Street, Athens 11364 (Greece); Wrase, Timm [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2014-05-19

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions.

  15. On holographic defect entropy

    Science.gov (United States)

    Estes, John; Jensen, Kristan; O'Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-05-01

    We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3 + 1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1 + 1)-dimensional field theories generalizes to higher dimensions.

  16. Causality & holographic entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Matthew [Martin Fisher School of Physics, Brandeis University, MS 057, 415 South Street, Waltham, MA 02454 (United States); Hubeny, Veronika E. [Centre for Particle Theory & Department of Mathematical Sciences,Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Lawrence, Albion [Martin Fisher School of Physics, Brandeis University, MS 057, 415 South Street, Waltham, MA 02454 (United States); Rangamani, Mukund [Centre for Particle Theory & Department of Mathematical Sciences,Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2014-12-29

    We identify conditions for the entanglement entropy as a function of spatial region to be compatible with causality in an arbitrary relativistic quantum field theory. We then prove that the covariant holographic entanglement entropy prescription (which relates entanglement entropy of a given spatial region on the boundary to the area of a certain extremal surface in the bulk) obeys these conditions, as long as the bulk obeys the null energy condition. While necessary for the validity of the prescription, this consistency requirement is quite nontrivial from the bulk standpoint, and therefore provides important additional evidence for the prescription. In the process, we introduce a codimension-zero bulk region, named the entanglement wedge, naturally associated with the given boundary spatial region. We propose that the entanglement wedge is the most natural bulk region corresponding to the boundary reduced density matrix.

  17. Holographic Vortex Coronagraph

    Science.gov (United States)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  18. Holographic versatile disc system

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi

    2005-09-01

    A Holographic Versatile Disc (HVD) system, using Collinear Technologies for a high capacity and high data transfer rates storage system, is proposed. With its unique configuration the optical pickup can be designed as small as a DVD's, and can be placed on one side of the disc. With the HVD's special structure, the system can servo the focus/track and locate reading/writing address. A unique selectable capacity recording format of HVD and its standardization activity are also introduced. Experimental and theoretical studies suggest that the tilt, wavelength, defocus and de-track margins are wide enough to miniaturize the HVD system at a low cost. HVD systems using Collinear Technologies will be compatible with existing disc storage systems, like CD and DVD, and will enable us to expand its applications into other optical information storage systems.

  19. Holographic Waveguided See-Through Display Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...

  20. 3D holographic printer: fast printing approach.

    Science.gov (United States)

    Morozov, Alexander V; Putilin, Andrey N; Kopenkin, Sergey S; Borodin, Yuriy P; Druzhin, Vladislav V; Dubynin, Sergey E; Dubinin, German B

    2014-02-10

    This article describes the general operation principles of devices for synthesized holographic images such as holographic printers. Special emphasis is placed on the printing speed. In addition, various methods to increase the printing process are described and compared.

  1. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  2. Digital holographic interferometer with correction of distortions

    Science.gov (United States)

    Sevryugin, A. A.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Y.

    2015-10-01

    The paper considers the use of holographic interferometer for hologram re-recording with correction of distortions. Each optical system contains some beam path deviations, called aberrations of the optical system. They are seen in the resulting interference pattern as a distortion of fringes. While increasing the sensitivity of the interference pattern by N times at the same time we introduce new aberrations, caused by re-recording setup in addition to aberrations that are already presented on the interferogram, caused by initial recording, also multiplied by N times. In this experiment we decided to use a modified setup with spatially combined interferograms with use of matrix spatial light modulator and digital image processing of the interferograms recorded by CCD or CMOS camera.

  3. Holographic Gratings for Slow-Neutron Optics

    Science.gov (United States)

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin

    2012-01-01

    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  4. Experimental demonstration of a global dispersion-free steering correction at the new linac test facility at SLAC

    Directory of Open Access Journals (Sweden)

    A. Latina

    2014-04-01

    Full Text Available The performance of future linear colliders will depend critically on beam-based alignment and feedback systems. In ILC and CLIC it is planned to perform dispersion-free steering in the main linacs. To this end the beams are accelerated with different gradients to evaluate the dispersion. The steering is performed by minimizing the average offset of the different beams in the beam position monitors and, at the same time, the difference between the beam trajectories. The experimental verification of the dispersion-free steering algorithm is essential to prove its effectiveness and to prepare the commissioning of such machines. The algorithm should take an orbit measurement at every cycle (train to train, estimate the correction from this information, and, from the system response matrices, apply the correction. We have successfully tested dispersion-free steering at FACET, including an adaptive system-identification algorithm, where the system response matrix is measured dynamically and automatically.

  5. Experimental teaching and training system based on volume holographic storage

    Science.gov (United States)

    Jiang, Zhuqing; Wang, Zhe; Sun, Chan; Cui, Yutong; Wan, Yuhong; Zou, Rufei

    2017-08-01

    The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.

  6. Holographic framework for eternal inflation

    Science.gov (United States)

    Freivogel, Ben; Sekino, Yasuhiro; Susskind, Leonard; Yeh, Chen-Pin

    2006-10-01

    In this paper we provide some circumstantial evidence for a holographic duality between bubble nucleation in an eternally inflating universe and a Euclidean conformal field theory (CFT). The holographic correspondence (which is different than Strominger’s de Sitter (dS)/CFT duality) relates the decay of (3+1)-dimensional de Sitter space to a two-dimensional CFT. It is not associated with pure de Sitter space, but rather with Coleman-De Luccia bubble nucleation. Alternatively, it can be thought of as a holographic description of the open, infinite, Friedmann-Robertson-Walker (FRW) cosmology that results from such a bubble. The conjectured holographic representation is of a new type that combines holography with the Wheeler-DeWitt formalism to produce a Wheeler-DeWitt theory that lives on the spatial boundary of a k=-1 FRW cosmology. We also argue for a more ambitious interpretation of the Wheeler-DeWitt CFT as a holographic dual of the entire Landscape.

  7. Impact of electron irradiation on electron holographic potentiometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. B.; Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Berger, D. [Technische Universität Berlin, Zentraleinrichtung für Elektronenmikroskopie, Strae des 17. Juni 135, 10623 Berlin (Germany); Knauer, A.; Weyers, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Koslow, I.; Kneissl, M. [Ferdinand-Braun-Institut, Leibnitz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, 10623 Berlin (Germany)

    2014-09-01

    While electron holography in the transmission electron microscope offers the possibility to measure maps of the electrostatic potential of semiconductors down to nanometer dimensions, these measurements are known to underestimate the absolute value of the potential, especially in GaN. We have varied the dose rates of electron irradiation over several orders of magnitude and observed strong variations of the holographically detected voltages. Overall, the results indicate that the electron beam generates electrical currents within the specimens primarily by the photovoltaic effect and due to secondary electron emission. These currents have to be considered for a quantitative interpretation of electron holographic measurements, as their negligence contributes to large parts in the observed discrepancy between the measured and expected potential values in GaN.

  8. Compact lensless off-axis transmission digital holographic microscope.

    Science.gov (United States)

    Rostykus, Manon; Moser, Christophe

    2017-07-10

    Current compact lensless holographic microscopes are based on either multiple angle in-line holograms, multiple wavelength illumination or a combination thereof. Complex computational algorithms are necessary to retrieve the phase image which slows down the visualization of the image. Here we propose a simple compact lensless transmission holographic microscope with an off-axis configuration which simplifies considerably the computational processing to visualize the phase images and opens the possibility of real time phase imaging using off the shelf smart phone processors and less than $3 worth of optics and detectors, suitable for broad educational dissemination. This is achieved using a side illumination and analog hologram gratings to shape the reference and signal illumination beams from one light source. We demonstrate experimentally imaging of cells with a field of view (FOV) of ~12mm2, and a resolution of ~3.9μm.

  9. Fingerprint sensor using a polymer dispersed liquid crystal holographic lens.

    Science.gov (United States)

    Jie, Ying; Jihong, Zheng

    2010-09-01

    We used a polymer dispersed liquid crystal material holographic lens in a fingerprint sensor, which reduced the total size of the sensor and improved image quality. The beam carrying fingerprint information was diffracted by the holographic lens and converged onto the complementary metal-oxide semiconductor image sensor directly, which omitted the traditional lens or fiber taper. The phenomenon that the image quality is poor when the finger is too dry or wet was explained based on the evanescent wave theory. The total size of the device was 50 mm x 25 mm x 30 mm. The fingerprint image had a contrast of 250:1 and a resolution of 800 dots/in.

  10. Design of the ITER upper port electron cyclotron heating and current drive system based on remote steering

    NARCIS (Netherlands)

    M. F. Graswinckel,; van den Berg, M. A.; Bongers, W. A.; Donne, A. J. H.; Goede, A. P. H.; Cardozo, N. L.; Ronden, D. M. S.; Verhoeven, A. G. A.

    2008-01-01

    A design is presented for the electron cyclotron (EC) heating and current drive system of the ITER upper port launchers based on the remote steering (RS) concept. In this concept the millimeter-wave beam is steered by a mirror that is located at the back end of the launcher waveguide. The RS concept

  11. On holographic entanglement density

    Science.gov (United States)

    Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie

    2017-10-01

    We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.

  12. FDTD simulations of forces on particles during holographic assembly.

    Science.gov (United States)

    Benito, David C; Simpson, Stephen H; Hanna, Simon

    2008-03-03

    We present finite-difference time-domain (FDTD) calculations of the forces and torques on dielectric particles of various shapes, held in one or many Gaussian optical traps, as part of a study of the physical limitations involved in the construction of micro- and nanostructures using a dynamic holographic assembler (DHA). We employ a full 3-dimensional FDTD implementation, which includes a complete treatment of optical anisotropy. The Gaussian beams are sourced using a multipole expansion of a fifth order Davis beam. Force and torques are calculated for pairs of silica spheres in adjacent traps, for silica cylinders trapped by multiple beams and for oblate silica spheroids and calcite spheres in both linearly and circularly polarized beams. Comparisons are drawn between the magnitudes of the optical forces and the Van der Waals forces acting on the systems. The paper also considers the limitations of the FDTD approach when applied to optical trapping.

  13. STEER Coastal Use Mapping Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Coastal Use Mapping Project is designed to collect critical information on human activities in and near the St. Thomas East End Reserves (STEER). The project...

  14. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...

  15. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  16. Advances with holographic DESA emulsions

    Science.gov (United States)

    Dünkel, Lothar; Eichler, Jürgen; Schneeweiss, Claudia; Ackermann, Gerhard

    2006-02-01

    DESA emulsions represent layer systems based on ultra-fine grained silver halide (AgX) technology. The new layers have an excellent performance for holographic application. The technology has been presented repeatedly in recent years, including the emulsion characterization and topics of chemical and spectral sensitization. The paper gives a survey of actual results referring to panchromatic sensitization and other improvements like the application of silver halide sensitized gelatine (SHSG) procedure. These results are embedded into intensive collaborations with small and medium enterprises (SME's) to commercialize DESA layers. Predominant goals are innovative products with holographic components and layers providing as well as cost effectiveness and high quality.

  17. Pinning of holographic sliding stripes

    Science.gov (United States)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2017-11-01

    In a holographic probe-brane model exhibiting a spontaneously spatially modulated ground state, we introduce explicit sources of symmetry breaking in the form of ionic and antiferromagnetic lattices. For the first time in a holographic model, we demonstrate pinning, in which the translational Goldstone mode is lifted by the introduction of explicit sources of translational symmetry breaking. The numerically computed optical conductivity fits very well to a Drude-Lorentz model with a small residual metallicity, precisely matching analytic formulas for the DC conductivity. We also find an instability of the striped phase in the presence of a large-amplitude ionic lattice.

  18. Use beam steering dipoles to minimize aberrations associated with off-centered transit through the induction bunching module. Design an improved NDCX-I drift compression section to make best use of the new bunching module to optimize planned initial NDCX-I target experiments

    Energy Technology Data Exchange (ETDEWEB)

    HIFS-VNL; Seidl, Peter; Seidl, P.; Barnard, J.; Bieniosek, F.; Coleman, J.; Grote, D.; Leitner, M.; Gilson, E.; Logan, B.G.; Lund, S.; Lidia, S.; Ni, P.; Ogata, D.; Roy, P.; Waldron, W.; Welch, D.; Wooton, C.

    2008-03-28

    This milestone has been met by: (1) calculating steering solutions and implementing them in the experiment using the three pairs of crossed magnetic dipoles installed in between the matching solenoids, S1-S4. We have demonstrated the ability to center the beam position and angle to<1 mm and<1 mrad upstream of the induction bunching module (IBM) gap, compared to uncorrected beam offsets of several millimeters and milli-radians. (2) Based on LSP and analytic study, the new IBM, which has twice the volt-seconds of our first IBM, should be accompanied by a longer drift compression section in order to achieve a predicted doubling of the energy deposition on future warm-dense matter targets. This will be accomplished by constructing a longer ferro-electric plasma source. (3) Because the bunched current is a function of the longitudinal phase space and emittance of the beam entering the IBM we have characterized the longitudinal phase space with a high-resolution energy analyzer.

  19. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera.

    Science.gov (United States)

    Connelly, Michael J; Szecówka, Przemyslaw M; Jallapuram, Raghavendra; Martin, Suzanne; Toal, Vincent; Whelan, Maurice P

    2008-02-15

    A laser Doppler vibrometer (LDV) is described in which holographic optical elements are used to provide the interferometer reference and object illumination beams. A complementary metal-oxide semiconductor camera, incorporating a digital signal processor, is used to carry out real-time signal processing of the interferometer output to allow multipoint LDV to be implemented.

  20. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...

  1. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  2. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  3. Conformal symmetry and holographic cosmology

    NARCIS (Netherlands)

    Bzowski, A.W.

    2013-01-01

    This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of

  4. Holographic Grating Study. Volume 1

    Science.gov (United States)

    1979-03-01

    EFFICIENCY GRATING ANALYSIS AND MEASUREMENT 167 4. 1 High-Efficiency Holographic Grating Desl ^ri Isaues .... 167 4.2 Computer Modeling of High...one or more higher orders is maximized . This distinguishes them from low-efficiency gratings which utilize the zero order at hi^h efficiency

  5. Code Properties from Holographic Geometries

    Directory of Open Access Journals (Sweden)

    Fernando Pastawski

    2017-05-01

    Full Text Available Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015 163.JHEPFG1029-847910.1007/JHEP04(2015163] proposed a highly illuminating connection between the AdS/CFT holographic correspondence and operator algebra quantum error correction (OAQEC. Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  6. Picosecond Holographic-Grating Spectroscopy

    NARCIS (Netherlands)

    Duppen, K.

    1987-01-01

    Interfering light waves produce an optical interference pattern in any medium that interacts with light. This modulation of some physical parameter of the system acts as a classical holographic grating for optical radiation. When such a grating is produced through interaction of pulsed light waves

  7. Thermalization after holographic bilocal quench

    Science.gov (United States)

    Aref'eva, Irina Ya.; Khramtsov, Mikhail A.; Tikhanovskaya, Maria D.

    2017-09-01

    We study thermalization in the holographic (1 + 1)-dimensional CFT after simultaneous generation of two high-energy excitations in the antipodal points on the circle. The holographic picture of such quantum quench is the creation of BTZ black hole from a collision of two massless particles. We perform holographic computation of entanglement entropy and mutual information in the boundary theory and analyze their evolution with time. We show that equilibration of the entanglement in the regions which contained one of the initial excitations is generally similar to that in other holographic quench models, but with some important distinctions. We observe that entanglement propagates along a sharp effective light cone from the points of initial excitations on the boundary. The characteristics of entanglement propagation in the global quench models such as entanglement velocity and the light cone velocity also have a meaning in the bilocal quench scenario. We also observe the loss of memory about the initial state during the equilibration process. We find that the memory loss reflects on the time behavior of the entanglement similarly to the global quench case, and it is related to the universal linear growth of entanglement, which comes from the interior of the forming black hole. We also analyze general two-point correlation functions in the framework of the geodesic approximation, focusing on the study of the late time behavior.

  8. Code Properties from Holographic Geometries

    Science.gov (United States)

    Pastawski, Fernando; Preskill, John

    2017-04-01

    Almheiri, Dong, and Harlow [J. High Energy Phys. 04 (2015) 163., 10.1007/JHEP04(2015)163] proposed a highly illuminating connection between the AdS /CFT holographic correspondence and operator algebra quantum error correction (OAQEC). Here, we explore this connection further. We derive some general results about OAQEC, as well as results that apply specifically to quantum codes that admit a holographic interpretation. We introduce a new quantity called price, which characterizes the support of a protected logical system, and find constraints on the price and the distance for logical subalgebras of quantum codes. We show that holographic codes defined on bulk manifolds with asymptotically negative curvature exhibit uberholography, meaning that a bulk logical algebra can be supported on a boundary region with a fractal structure. We argue that, for holographic codes defined on bulk manifolds with asymptotically flat or positive curvature, the boundary physics must be highly nonlocal, an observation with potential implications for black holes and for quantum gravity in AdS space at distance scales that are small compared to the AdS curvature radius.

  9. Holographic complexity and spacetime singularities

    Energy Technology Data Exchange (ETDEWEB)

    Barbón, José L.F. [Instituto de Física Teórica IFT UAM/CSIC,C/ Nicolás Cabrera 13, Campus Universidad Autónoma de Madrid,Madrid 28049 (Spain); Rabinovici, Eliezer [Racah Institute of Physics, The Hebrew University,Jerusalem 91904 (Israel); Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2016-01-15

    We study the evolution of holographic complexity in various AdS/CFT models containing cosmological crunch singularities. We find that a notion of complexity measured by extremal bulk volumes tends to decrease as the singularity is approached in CFT time, suggesting that the corresponding quantum states have simpler entanglement structure at the singularity.

  10. Holographic free-electron light source

    Science.gov (United States)

    Li, Guanhai; Clarke, Brendan P.; So, Jin-Kyu; MacDonald, Kevin F.; Zheludev, Nikolay I.

    2016-12-01

    Recent advances in the physics and technology of light generation via free-electron proximity and impact interactions with nanostructures (gratings, photonic crystals, nano-undulators, metamaterials and antenna arrays) have enabled the development of nanoscale-resolution techniques for such applications as mapping plasmons, studying nanoparticle structural transformations and characterizing luminescent materials (including time-resolved measurements). Here, we introduce a universal approach allowing generation of light with prescribed wavelength, direction, divergence and topological charge via point-excitation of holographic plasmonic metasurfaces. It is illustrated using medium-energy free-electron injection to generate highly-directional visible to near-infrared light beams, at selected wavelengths in prescribed azimuthal and polar directions, with brightness two orders of magnitude higher than that from an unstructured surface, and vortex beams with topological charge up to ten. Such emitters, with micron-scale dimensions and the freedom to fully control radiation parameters, offer novel applications in nano-spectroscopy, nano-chemistry and sensing.

  11. Evaluation method of an influence of wavefront aberration on signal quality in holographic memory

    Science.gov (United States)

    Akieda, Kensuke; Nakajima, Akihito; Ohori, Tomohiro; Katakura, Kiyoto; Yamamoto, Manabu

    2010-11-01

    One of the problems that affects the practical use of holographic memory is deterioration of the reproduced images due to aberration in the optical system. The medium used in holographic memory systems must be interchangeable, and hence, it is necessary to clarify the influence of aberration in the optical system on the signal quality and perform aberration correction for drive compatibility. In this study, aberration is introduced in the reference light beam during image reproduction, and the deterioration of the reproduced image signal is examined.

  12. Color waveguide transparent screen using lens array holographic optical element

    Science.gov (United States)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  13. Collinear technology for holographic versatile disc (HVD) system

    Science.gov (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Shimura, Tsutomu; Ichimura, Shotaro; Fujimura, Ryushi; Kuroda, Kazuo

    2006-09-01

    Holographic Versatile Disc (HVD TM) using Collinear TM Technologies is proposed by OPTWARE Corporation, in which the information and reference beams are displayed co-axially by the same SLM. With this unique configuration the optical pickup can be designed as small as the DVD's, and can be placed on one side of the recording disc. In HVD TM structure, the pre-formatted meta-data reflective layer is used for the focus/tracking servo and reading address information, and the dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increased recording density of HVD TM. Experimental and theoretical studies suggest that the holographic material is very effective to increased recording density of the system. As the servo technology is being introduced to control the objective lens to be maintained precisely to the disc in the recording and the reconstructing process, a vibration isolator is no longer necessary. HVD TM will be compatible with existing disc storage systems, like CD and DVD, and enable us to expand its applications into other optical information storage systems.

  14. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  15. Robot-Assisted Needle Steering

    Science.gov (United States)

    Reed, Kyle B.; Majewicz, Ann; Kallem, Vinutha; Alterovitz, Ron; Goldberg, Ken; Cowan, Noah J.; Okamura, Allison M.

    2012-01-01

    Needle insertion is a critical aspect of many medical treatments, diagnostic methods, and scientific studies, and is considered to be one of the simplest and most minimally invasive medical procedures. Robot-assisted needle steering has the potential to improve the effectiveness of existing medical procedures and enable new ones by allowing increased accuracy through more dexterous control of the needle tip path and acquisition of targets not accessible by straight-line trajectories. In this article, we describe a robot-assisted needle steering system that uses three integrated controllers: a motion planner concerned with guiding the needle around obstacles to a target in a desired plane, a planar controller that maintains the needle in the desired plane, and a torsion compensator that controls the needle tip orientation about the axis of the needle shaft. Experimental results from steering an asymmetric-tip needle in artificial tissue demonstrate the effectiveness of the system and its sensitivity to various environmental and control parameters. In addition, we show an example of needle steering in ex vivo biological tissue to accomplish a clinically relevant task, and highlight challenges of practical needle steering implementation. PMID:23028210

  16. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  17. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (Tholographic complexity will be divergent.

  18. Holographic Two-Photon Induced Photopolymerization

    Data.gov (United States)

    Federal Laboratory Consortium — Holographic two-photon-induced photopolymerization (HTPIP) offers distinct advantages over conventional one-photon-induced photopolymerization and current techniques...

  19. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms.

    Science.gov (United States)

    Vizsnyiczai, Gaszton; Kelemen, Lóránd; Ormos, Pál

    2014-10-06

    Two-photon polymerization enables the fabrication of micron sized structures with submicron resolution. Spatial light modulators (SLM) have already been used to create multiple polymerizing foci in the photoresist by holographic beam shaping, thus enabling the parallel fabrication of multiple microstructures. Here we demonstrate the parallel two-photon polymerization of single 3D microstructures by multiple holographically translated foci. Multiple foci were created by phase holograms, which were calculated real-time on an NVIDIA CUDA GPU, and displayed on an electronically addressed SLM. A 3D demonstrational structure was designed that is built up from a nested set of dodecahedron frames of decreasing size. Each individual microstructure was fabricated with the parallel and coordinated motion of 5 holographic foci. The reproducibility and the high uniformity of features of the microstructures were verified by scanning electron microscopy.

  20. Holographic 3D multi-spot two-photon excitation for fast optical stimulation in brain

    Science.gov (United States)

    Takiguchi, Yu; Toyoda, Haruyoshi

    2017-04-01

    We report here a holographic high speed accessing microscope of sensory-driven synaptic activity across all inputs to single living neurons in the context of the intact cerebral cortex. This system is based on holographic multiple beam generation with spatial light modulator, we have demonstrated performance of the holographic excitation efficiency in several in vitro prototype system. 3D weighted iterative Fourier Transform method using the Ewald sphere in consideration of calculation speed has been adopted; multiple locations can be patterned in 3D with single hologram. Standard deviation of intensities of spots are still large due to the aberration of the system and/or hologram calculation, we successfully excited multiple locations of neurons in living mouse brain to monitor the calcium signals.

  1. Bulling among yearling feedlot steers.

    Science.gov (United States)

    Pierson, R E; Jensen, R; Braddy, P M; Horton, D P; Christie, R M

    1976-09-01

    In a survey to determine the cause of illness and deaths among yearling feedlot cattle, bulling was found to be one of the major problems. During the years 1971-1974, 54,913 (2.88%) steers became bullers and represented an annual loss of around +325,000. Some of the causes of bulling were found to be hormones, either as implants or in the feed. In 1974, from 1,988 necropsies, it was determined that 83 steers died from riding injuries.

  2. Holographic reflector for reflective LCDs

    Science.gov (United States)

    Sato, Atsushi; Murillo-Mora, Luis M.; Iwata, Fujio

    1997-05-01

    We describe a new holographic optical element to improve the image's quality of a reflective liquid crystal displays (LCDs). This new holographic reflector consists basically of 2 layers: a volume type transmission hologram layer and a metallic reflection layer. Compared with conventional reflectors for reflective LCDs, a high optical efficiency can be obtained because the hologram is able to concentrate the reflected light to the observer's eyes. Also, it avoids the problems of glare in the LCDs by deviating the reflected incident light (used for display) away from the direction of the direct reflection light. The transmission hologram's low wavelength selectivity permits us to obtain a near white color reflector for reflective LCDs which for multiple applications is the preferable color for the background.

  3. Holographic Chern-Simons defects

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutoshi [Department of Physics and Astronomy, University of Kentucky,Lexington, KY 40506 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Melby-Thompson, Charles M. [Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Meyer, René [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York 11794-3800 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Sugimoto, Shigeki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan)

    2016-06-28

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  4. Holographic renormalization in teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krssak, Martin [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-01-15

    We consider the problem of IR divergences of the action in the covariant formulation of teleparallel gravity in asymptotically Minkowski spacetimes. We show that divergences are caused by inertial effects and can be removed by adding an appropriate surface term, leading to the renormalized action. This process can be viewed as a teleparallel analog of holographic renormalization. Moreover, we explore the variational problem in teleparallel gravity and explain how the variation with respect to the spin connection should be performed. (orig.)

  5. Photopolymerizable Nanocomposites for Holographic Applications

    OpenAIRE

    Leite, Elsa

    2010-01-01

    Photopolymerizable nanocomposites with good optical properties consisting of an acrylamide based photopolymer and zeolite nanoparticles (Beta, zeolite A, AlPO-18, silicalite-1 and zeolite L) were fabricated and characterized for holographic applications. The colloidal zeolite solutions used in this project were characterized by several techniques including X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM) and Raman spectroscopy to ensure their success...

  6. Constructive use of holographic projections

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Institut fuer Theoretische Physik der FU, Berlin (Germany)

    2008-07-01

    Revisiting the old problem of existence of interacting models of QFT with new conceptual ideas and mathematical tools, one arrives at a novel view about the nature of QFT. The recent success of algebraic methods in establishing the existence of factorizing models suggests new directions for a more intrinsic constructive approach beyond Lagrangian quantization. Holographic projection simplifies certain properties of the bulk theory and hence is a promising new tool for these new attempts. (author)

  7. Engineering Holographic Superconductor Phase Diagrams

    OpenAIRE

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two ord...

  8. Techniques for writing and reading data on an optical disk which include formation of holographic optical gratings in plural locations on the optical disk

    Science.gov (United States)

    Liu, Tsuen-Hsi (Inventor); Psaltis, Demetri (Inventor); Mok, Fai H. (Inventor); Zhou, Gan (Inventor)

    2005-01-01

    An optical memory for storing and/or reading data on an optical disk. The optical disk incorporates a material in which holographic gratings can be created, and subsequently detected, at plural locations within the disk by an electro-optical head. Creation and detection of holographic gratings with variable diffraction efficiency is possible with the electro-optical head. Multiple holographic gratings can also be created at each one of the plural locations via a beam of light which has a different wavelength or point of focus. These data elements can be read by the electro-optical head using a beam of light sequentially varied in wavelength or point of focus to correspond to the multiple holographic gratings to be recorded.

  9. 46 CFR 176.814 - Steering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steering systems. 176.814 Section 176.814 Shipping COAST...) INSPECTION AND CERTIFICATION Material Inspections § 176.814 Steering systems. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test the steering systems of...

  10. A survey of computational steering environments

    NARCIS (Netherlands)

    J.D. Mulder (Jurriaan); J.J. van Wijk (Jack); R. van Liere (Robert)

    1998-01-01

    textabstractComputational steering is a powerful concept that allows scientists to interactively control a computational process during its execution. In this paper, a survey of computational steering environments for the on-line steering of ongoing scientific and engineering simulations is

  11. Holographic cosmology from BIonic solutions

    Science.gov (United States)

    Sepehri, Alireza; Faizal, Mir; Setare, Mohammad Reza; Ali, Ahmed Farag

    2017-02-01

    In this paper, we will use a BIonic solution for analyzing the holographic cosmology. A BIonic solution is a configuration of a D3-brane and an anti-D3-brane connected by a wormhole, and holographic cosmology is a recent proposal to explain cosmic expansion by using the holographic principle. In our model, a BIonic configuration will be produced by the transition of fundamental black strings. The formation of a BIonic configuration will cause inflation. As the D3-brane moves away from the anti-D3-brane, the wormhole will get annihilated, and the inflation will end with the annihilation of this wormhole. However, it is possible for a D3-brane to collide with an anti-D3-brane. Such a collision will occur if the distance between the D3-brane and the anti-D3-brane reduces, and this will create tachyonic states. We will demonstrate that these tachyonic states will lead to the formation of a new wormhole, and this will cause acceleration of the universe before such a collision.

  12. Holographic interferometry in construction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, T.

    1995-12-31

    In this work techniques for visualizing phase and opaque objects by ruby laser interferometry are introduced. A leakage flow as a phase object is studied by holographic interferometry and the intensity distribution of the interferograms presenting the leakage flow are computer-simulated. A qualitative and quantitative analysis of the leakage flow is made. The analysis is based on the experimental and theoretical results presented in this work. The holographic setup and the double pass method for visualizing leakage flow are explained. A vibrating iron plate is the opaque object. Transient impact waves are generated by a pistol bullet on the iron plate and visualized by holographic interferometry. An apparatus with the capability of detecting and calculating the delays necessary for laser triggering is introduced. A time series of interferograms presenting elastic wave formation in an iron plate is shown. A computer-simulation of the intensity distributions of these interferograms is made. An analysis based on the computer-simulation and the experimental data of the transient elastic wave is carried out and the results are presented. (author)

  13. Medical applications of holographic stereograms

    Science.gov (United States)

    Tsujiuchi, Jumpei

    1991-02-01

    A method for displaying 3D images of medical objects by using holographic stereogram is described together with basic properties of reconstructed images of cylindrical holographic stereograms. INTRODUCTI ON A holographic stereogram (HS) is a synthesized hologram from an original film which consists of a series of ordinary photographs taken from different directions of an object and is possible to apply to an object whose hologram is very difficult or impossible to take with conventional techniques [U. Such a feature of HS can be used for 3D display of medical images such as X-ray images computer assisted tomogrphy (CT) images nuclear magnetic reasonance images (MRI) or ultrasonic images of a patient. CYLINDRICAL HOLOGRAPHI C STEREOGRAMS The original film of the medical HS is taken by rotating around the body axis of a patient a U-shaped arm equipment one end of which has a pulse X-ray source and the other end a movie camera with an image intensifier [2]. Synthesis of HS is carried out by using a special optical system the hologram is shaped into a cylinder and is reconstructed by illuminating the hologram with a small white light source located on the axis of the cylinder. Such a HS is called multiplex hologram (MH) the most popular HS and the reconstructed image can be observed in the cylinder. The formation of reconstructed image is made in unusual way and fundamental properties

  14. Digital Holographic Interferometry for Airborne Particle Characterization

    Science.gov (United States)

    2015-03-19

    and its extinction cross section, and a computational demonstration that holographic interferometry can resolve aerosol particle size evolution ...hologram and its extinction cross section, and a computational demonstration that holographic interferometry can resolve aerosol particle size... evolution . 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING

  15. Holographic Read-Only Memory Fabricated by Deposition of Reflector after Writing Process with Aromatic Photopolymer Recording Layer

    Science.gov (United States)

    Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2010-08-01

    The deposition of reflector after writing (DRAW) process has been proposed for the fabrication of reflective-type holographic read-only memories. In the DRAW process, a reflector is deposited on a recording medium after signal writing, resulting in the reduction of noise holograms written by reflected beams from a reflector in the write process. Significant improvements are experimentally confirmed in read and write (R/W) performances in DRAW-processed holographic media. The combination of the DRAW process and an aromatic photopolymer recording material realizes low noise, high signal-to-noise ratio, and low symbol error rate characteristics at large multiplexing numbers up to 1020. In conventional reflective-type holographic media, ghost noise is superimposed on the readout signal, causing deterioration in R/W characteristics. The wave vector analyses clarify the mechanism by which the noise holograms are written and ghost noise is superimposed on the signal beam in the conventional media.

  16. Holographic complexity for time-dependent backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Myrzakulov, Ratbay [Eurasian International Center for Theoretical Physics and Department of General Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2016-11-10

    In this paper, we will analyze the holographic complexity for time-dependent asymptotically AdS geometries. We will first use a covariant zero mean curvature slicing of the time-dependent bulk geometries, and then use this co-dimension one spacelike slice of the bulk spacetime to define a co-dimension two minimal surface. The time-dependent holographic complexity will be defined using the volume enclosed by this minimal surface. This time-dependent holographic complexity will reduce to the usual holographic complexity for static geometries. We will analyze the time-dependence as a perturbation of the asymptotically AdS geometries. Thus, we will obtain time-dependent asymptotically AdS geometries, and we will calculate the holographic complexity for such time-dependent geometries.

  17. Athermally photoreduced graphene oxides for three-dimensional holographic images

    Science.gov (United States)

    Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min

    2015-01-01

    The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676

  18. Eigenmode multiplexing with SLM for volume holographic data storage

    Science.gov (United States)

    Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.

  19. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  20. Diffraction from a one-beam generated hologram on a polymer-dispersed liquid crystal film

    Science.gov (United States)

    Tsai, M. S.; Jiang, I.-Min; Fuh, Andy Y. G.

    2000-03-01

    Holographic ring patterns are generated by a single beam (Ar+ laser) incident onto a polymer-dispersed liquid crystal (PDLC) film. The incident laser beam initially acts as a writing beam, and then induces "point" light sources due to micron-sized particles in the film. Interference between the incident beam and the induced "point" light sources then produces holographic ring patterns, which are permanently recorded in situ on the film. After recording, the incident beam becomes a reference beam and reconstructs the "point" source wavefronts. The interference among these reconstructed "point" light sources produces a Quetelet-type scattering ring in a screen placed behind the PDLC film.

  1. Fabrication and characterization of one- and two-dimensional regular patterns produced employing multiple exposure holographic lithography

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Jurkevičiute, A.; Armakavičius, N.

    2017-01-01

    In this paper we describe fabrication and characterization methods of two-dimensional periodic microstructures in photoresist with pitch of 1.2 urn and lattice constant 1.2-4.8 μm, formed using two-beam multiple exposure holographic lithography technique. The regular structures were recorded empl...

  2. Holographic Read-Only Memory

    Science.gov (United States)

    Mok, F.; Zhou, G.; Psaltis, D.

    The most successful use of optical memories so far has been as read-only memories (ROM). A main reason for this success has been the availability of inexpensive methods to mass-produce copies of recorded disks. This has made it possible to publish data (audio, video, databases, computer games) and distribute it widely through normal retail channels. In this chapter, we show results of a holographic read-only memory (HROM) of which digital data on a master disk can be copied onto replicate disks efficiently.

  3. A Holographic Twin Higgs Model

    OpenAIRE

    Geller, Michael; Telem, Ofri

    2014-01-01

    We present a UV completion of the twin Higgs idea in the framework of holographic composite Higgs. The SM contribution to the Higgs potential is effectively cut off by the SM-singlet mirror partners at the sigma-model scale f, naturally allowing for m_{KK} beyond the LHC reach. The bulk symmetry is SU(7) X SO(8), broken on the IR brane into SU(7) X SO(7) and on the UV brane into (SU(3) X SU(2) X U(1))^{SM} X (SU(3) X SU(2) X U(1))^{mirror} X Z2. The field content on the UV brane is the SM, ex...

  4. Electric steering; Die elektrische Lenkung

    Energy Technology Data Exchange (ETDEWEB)

    Trost, J. [DaimlerChrysler AG (Germany)

    2001-07-01

    Modern industrial trucks already have a large number of electronic systems. With electric steering systems, all steering systems have electronic interfaces, which will influence the safety, functionality and cost of a vehicle. Optimization of the driver workplace, the installation of active safety systems, and the optimization of the failure characteristics can improve passive and active safety. With electronic interfaces to all vehicle control system, the truck can be integrated easily in automatic transport processes. Finally, the simplified interfaces in the vehicle will reduce the overall cost. Failure management is an indispensable precondition for the introduction of electric steering systems, as are correct specifications. A status report is presented. [German] Eine Vielzahl von Systemen sind im modernen schweren Nutzfahrzeug bereits elektronisch (by Wire) realisiert. Mit der elektrischen Lenkung sind saemtliche Systeme zur Laengs- und Querregelung des Fahrzeuges mit elektronischen Schnittstellen versehen. Dies hat Auswirkungen auf die Sicherheit, die Funktionalitaet und die Kosten des Gesamtfahrzeuges. Durch Optimierung des Fahrerarbeitsplatzes, Einfuehrung aktiver Sicherheitssysteme und Optimierung des Ausfallverhaltens koennen die passive wie aktive Sicherheit des Fahrzeuges verbessert werden. Mit den elektronischen Schnittstellen zu allen Fahrzeugfuehrungssystemen kann das Nutzfahrzeug in hervorragender Weise in automatisierte Transportaufgaben integriert werden. Schliesslich lassen sich durch die vereinfachten Schnittstellen im Fahrzeug Kosten im Gesamtfahrzeug reduzieren. Die Beherrschung des Ausfallverhaltens ist aber ebenso wie eine angepasste Vorschriftenlage Voraussetzung fuer die Einfuehrung der elektrischen Lenkung. Ueber den Stand der Entwicklung wird berichtet. (orig.)

  5. Pattern-Recognition Processor Using Holographic Photopolymer

    Science.gov (United States)

    Chao, Tien-Hsin; Cammack, Kevin

    2006-01-01

    proposed joint-transform optical correlator (JTOC) would be capable of operating as a real-time pattern-recognition processor. The key correlation-filter reading/writing medium of this JTOC would be an updateable holographic photopolymer. The high-resolution, high-speed characteristics of this photopolymer would enable pattern-recognition processing to occur at a speed three orders of magnitude greater than that of state-of-the-art digital pattern-recognition processors. There are many potential applications in biometric personal identification (e.g., using images of fingerprints and faces) and nondestructive industrial inspection. In order to appreciate the advantages of the proposed JTOC, it is necessary to understand the principle of operation of a conventional JTOC. In a conventional JTOC (shown in the upper part of the figure), a collimated laser beam passes through two side-by-side spatial light modulators (SLMs). One SLM displays a real-time input image to be recognized. The other SLM displays a reference image from a digital memory. A Fourier-transform lens is placed at its focal distance from the SLM plane, and a charge-coupled device (CCD) image detector is placed at the back focal plane of the lens for use as a square-law recorder. Processing takes place in two stages. In the first stage, the CCD records the interference pattern between the Fourier transforms of the input and reference images, and the pattern is then digitized and saved in a buffer memory. In the second stage, the reference SLM is turned off and the interference pattern is fed back to the input SLM. The interference pattern thus becomes Fourier-transformed, yielding at the CCD an image representing the joint-transform correlation between the input and reference images. This image contains a sharp correlation peak when the input and reference images are matched. The drawbacks of a conventional JTOC are the following: The CCD has low spatial resolution and is not an ideal square

  6. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  7. Demonstration of holographic smart card system using the optical memory technology

    Science.gov (United States)

    Kim, JungHoi; Choi, JaeKwang; An, JunWon; Kim, Nam; Lee, KwonYeon; Jeon, SeckHee

    2003-05-01

    In this paper, we demonstrate the holographic smart card system using digital holographic memory technique that uses reference beam encrypted by the random phase mask to prevent unauthorized users from accessing the stored digital page. The input data that include document data, a picture of face, and a fingerprint for identification is encoded digitally and then coupled with the reference beam modulated by a random phase mask. Therefore, this proposed system can execute recording in the order of MB~GB and readout all personal information from just one card without any additional database system. Also, recorded digital holograms can't be reconstructed without a phase key and can't be copied by using computers, scanners, or photography.

  8. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  9. Analogue holographic correspondence in optical metamaterials

    Science.gov (United States)

    Khveshchenko, D. V.

    2015-03-01

    We assess the prospects of using metamaterials for simulating various aspects of analogue gravity and holographic correspondence. Albeit requiring a careful engineering of the dielectric media, some hallmark features reminiscent of the hypothetical “generalized holographic conjecture” can be detected by measuring non-local optical field correlations. The possibility of such simulated behavior might also shed light on the true origin of those ostensibly holographic phenomena in the condensed-matter systems with emergent effective metrics which may not, in fact, require any reference to the string-theoretical holography.

  10. Holographic entanglement entropy on generic time slices

    Science.gov (United States)

    Kusuki, Yuya; Takayanagi, Tadashi; Umemoto, Koji

    2017-06-01

    We study the holographic entanglement entropy and mutual information for Lorentz boosted subsystems. In holographic CFTs at zero and finite temperature, we find that the mutual information gets divergent in a universal way when the end points of two subsystems are light-like separated. In Lifshitz and hyperscaling violating geometries dual to non-relativistic theories, we show that the holographic entanglement entropy is not well-defined for Lorentz boosted subsystems in general. This strongly suggests that in non-relativistic theories, we cannot make a real space factorization of the Hilbert space on a generic time slice except the constant time slice, as opposed to relativistic field theories.

  11. Corrections to holographic entanglement plateau

    Science.gov (United States)

    Chen, Bin; Li, Zhibin; Zhang, Jia-ju

    2017-09-01

    We investigate the robustness of the Araki-Lieb inequality in a two-dimensional (2D) conformal field theory (CFT) on torus. The inequality requires that Δ S = S( L) - | S( L - ℓ) - S( ℓ)| is nonnegative, where S( L) is the thermal entropy and S( L - ℓ), S( ℓ) are the entanglement entropies. Holographically there is an entanglement plateau in the BTZ black hole background, which means that there exists a critical length such that when ℓ ≤ ℓ c the inequality saturates Δ S =0. In thermal AdS background, the holographic entanglement entropy leads to Δ S = 0 for arbitrary ℓ. We compute the next-to-leading order contributions to Δ S in the large central charge CFT at both high and low temperatures. In both cases we show that Δ S is strictly positive except for ℓ = 0 or ℓ = L. This turns out to be true for any 2D CFT. In calculating the single interval entanglement entropy in a thermal state, we develop new techniques to simplify the computation. At a high temperature, we ignore the finite size correction such that the problem is related to the entanglement entropy of double intervals on a complex plane. As a result, we show that the leading contribution from a primary module takes a universal form. At a low temperature, we show that the leading thermal correction to the entanglement entropy from a primary module does not take a universal form, depending on the details of the theory.

  12. Bit Threads and Holographic Entanglement

    Science.gov (United States)

    Freedman, Michael; Headrick, Matthew

    2017-05-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  13. 46 CFR 108.641 - Instructions for changing steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 108.641 Section... steering gear. Instructions stating, in order, the different steps to be taken for changing to emergency and secondary steering gear must be posted in the steering gear room and at each secondary steering...

  14. 46 CFR 182.610 - Main steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Main steering gear. 182.610 Section 182.610 Shipping...) MACHINERY INSTALLATION Steering Systems § 182.610 Main steering gear. (a) A vessel must be provided with a main steering gear that is: (1) Of adequate strength and capable of steering the vessel at all service...

  15. Entanglement entropy and complexity for one-dimensional holographic superconductors

    Directory of Open Access Journals (Sweden)

    Mahdi Kord Zangeneh

    2017-08-01

    Full Text Available Holographic superconductor is an important arena for holography, as it allows concrete calculations to further understand the dictionary between bulk physics and boundary physics. An important quantity of recent interest is the holographic complexity. Conflicting claims had been made in the literature concerning the behavior of holographic complexity during phase transition. We clarify this issue by performing a numerical study on one-dimensional holographic superconductor. Our investigation shows that holographic complexity does not behave in the same way as holographic entanglement entropy. Nevertheless, the universal terms of both quantities are finite and reflect the phase transition at the same critical temperature.

  16. G-corrected holographic dark energy model

    CERN Document Server

    Malekjani, M

    2013-01-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.

  17. Surface counterterms and regularized holographic complexity

    Science.gov (United States)

    Yang, Run-Qiu; Niu, Chao; Kim, Keun-Young

    2017-09-01

    The holographic complexity is UV divergent. As a finite complexity, we propose a "regularized complexity" by employing a similar method to the holographic renor-malization. We add codimension-two boundary counterterms which do not contain any boundary stress tensor information. It means that we subtract only non-dynamic back-ground and all the dynamic information of holographic complexity is contained in the regularized part. After showing the general counterterms for both CA and CV conjectures in holographic spacetime dimension 5 and less, we give concrete examples: the BTZ black holes and the four and five dimensional Schwarzschild AdS black holes. We propose how to obtain the counterterms in higher spacetime dimensions and show explicit formulas only for some special cases with enough symmetries. We also compute the complexity of formation by using the regularized complexity.

  18. Holographic equipartition and the maximization of entropy

    Science.gov (United States)

    Krishna, P. B.; Mathew, Titus K.

    2017-09-01

    The accelerated expansion of the Universe can be interpreted as a tendency to satisfy holographic equipartition. It can be expressed by a simple law, Δ V =Δ t (Nsurf-ɛ Nbulk) , where V is the Hubble volume in Planck units, t is the cosmic time in Planck units, and Nsurf /bulk is the number of degrees of freedom on the horizon/bulk of the Universe. We show that this holographic equipartition law effectively implies the maximization of entropy. In the cosmological context, a system that obeys the holographic equipartition law behaves as an ordinary macroscopic system that proceeds to an equilibrium state of maximum entropy. We consider the standard Λ CDM model of the Universe and show that it is consistent with the holographic equipartition law. Analyzing the entropy evolution, we find that it also proceeds to an equilibrium state of maximum entropy.

  19. Some applications of holographic interferometry in biomechanics

    Science.gov (United States)

    Ebbeni, Jean P. L.

    1992-03-01

    Holographic interferometry is well adapted for the determination of 2D strain fields in osseous structures. The knowledge of those strain fields is important for the understanding of structure behavior such as arthrosis.

  20. Entropy Bounds, Holographic Principle and Uncertainty Relation

    Directory of Open Access Journals (Sweden)

    I. V. Volovich

    2001-06-01

    Full Text Available Abstract: A simple derivation of the bound on entropy is given and the holographic principle is discussed. We estimate the number of quantum states inside space region on the base of uncertainty relation. The result is compared with the Bekenstein formula for entropy bound, which was initially derived from the generalized second law of thermodynamics for black holes. The holographic principle states that the entropy inside a region is bounded by the area of the boundary of that region. This principle can be called the kinematical holographic principle. We argue that it can be derived from the dynamical holographic principle which states that the dynamics of a system in a region should be described by a system which lives on the boundary of the region. This last principle can be valid in general relativity because the ADM hamiltonian reduces to the surface term.

  1. Multi-Layer Traffic Steering

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Gimenez, Lucas Chavarria

    2013-01-01

    This paper investigates the potentials of traffic steering in the Radio Resource Control (RRC) Idle state by evaluating the Absolute Priorities (AP) framework in a multilayer Long Term Evolution (LTE) macrocell scenario. Frequency priorities are broadcast on the system information and RRC Idle...... signaling. The priority adjustment is based on both the Composite Available Capacity (CAC) and the radio conditions of the candidate layers. Compared to broadcast AP, the proposed scheme achieves better load balancing performance and improves network capacity, given that the User Equipment (UE) inactivity...

  2. Fischler-Susskind holographic cosmology revisited

    OpenAIRE

    Diaz, Pablo; Per, M. A.; Segui, Antonio

    2007-01-01

    When Fischler and Susskind proposed a holographic prescription based on the Particle Horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the Particle Horizon area. In this article, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid this problem if they expand fast enough. It has been also shown that the Holographic Principle is satu...

  3. Strongly interacting matter from holographic QCD model

    Directory of Open Access Journals (Sweden)

    Chen Yidian

    2016-01-01

    Full Text Available We introduce the 5-dimension dynamical holographic QCD model, which is constructed in the graviton-dilaton-scalar framework with the dilaton background field Φ and the scalar field X responsible for the gluodynamics and chiral dynamics, respectively. We review our results on the hadron spectra including the glueball and light meson spectra, QCD phase transitions and transport properties in the framework of the dynamical holographic QCD model.

  4. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  5. Soft wall model for a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2016-06-15

    We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)

  6. Reduction of the recorded speckle noise in holographic 3D printer.

    Science.gov (United States)

    Utsugi, Takeru; Yamaguchi, Masahiro

    2013-01-14

    A holographic 3D printer produces a high-quality 3D image reproduced by a full-color, full-parallax holographic stereogram with high-density light-ray recording. In order to produce a high-resolution holographic stereogram, we have to solve the problem of speckle noise in this system. For equalizing an intensity distribution inside the elementary hologram, the object beam is modulated by a diffuser. However the diffuser typically generates speckles, which is recorded in the holographic stereogram. It is localized behind the reconstructed image as a granularity noise. First we show the problems of some conventional ways for suppressing the granularity noise using a band-limited diffuser, and then we analyze an approach using a moving diffuser for the reduction of this noise. In the result, it is found that recording with a moving diffuser is effective for reducing the granularity noise at infinity of reconstructed image, although an alternative noise occurs. Moreover we propose a new method introducing multiple exposures to suppress the noise effectively.

  7. Pulsed holographic system for imaging through spatially extended scattering media

    Science.gov (United States)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  8. High density collinear holographic data storage system (Conference Presentation)

    Science.gov (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong

    2016-09-01

    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  9. History Of Holographic Display In Japan

    Science.gov (United States)

    Iwata, Fujio

    1987-06-01

    The first exhibition of holographic display was held at Seibu Museum of Art in Tokyo in 1975 and played a role of opening of the holographic era in Japan. This exhibition and the next big exhibition of holography held at Isetan department store 3 years later in 1978 were really epoch-making facts on holographic display in Japan. Since these two exhibitions, holographic display in Japan has come to attract attention of a lot of people to the new display media, holography. At that time, mass production technology of holograms had not been fully developed yet, and the hologram was so expensive that they were found only at the big event. Some companies and universities still continued research and development to have holograms get into practical applications of display media. Few years later, people became interested in 3-D displays and sometimes many peoples took an interest in holographic display, mainly mass produced embossed type holograms applied to the field of publications, book and magazine, etc. 3-D display booms occurred in the year of Tsukuba Science Expo'85 in 1985 and embossed type hologram became much popular. History of holographic display of Japan in terms of technical development and practical use on laser reconstruction hologram, rainbow hologram, multiplex hologram and lippmann hologram will be introduced.

  10. Holographic reconstruction by compressive sensing

    Science.gov (United States)

    Leportier, T.; Park, M.-C.

    2017-06-01

    Techniques based on compressive sensing (CS) have been proposed recently for the optical capture of compressed holographic data. However, even though several remarkable articles have presented mathematical theories and numerical simulations, only a few experimental demonstrations have been reported. In this paper, we investigate the use of different metrics for the estimation of sparsity and show that the Gini index is the most consistent. In addition, we compare the sparsifying bases based on discrete cosine transform, Fourier transform and Fresnelets. We demonstrate that the Fresnelets basis is the best choice for the reconstruction of digital holograms by CS. Finally, we present an experimental set-up for optical acquisition of phase-shifted holograms with an imaging system based on a single-pixel sensor.

  11. Soft Pomeron in Holographic QCD

    CERN Document Server

    Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko

    2016-01-01

    We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.

  12. Note on subregion holographic complexity

    Science.gov (United States)

    Roy, Pratim; Sarkar, Tapobrata

    2017-07-01

    The volume inside a Ryu-Takayanagi surface has been conjectured to be related to the complexity of subregions of the boundary field theory. Here, we study the behavior of this volume analytically, when the entangling surface has a strip geometry. We perform systematic expansions in the low- and high-temperature regimes for AdS-Schwarzschild and RN-AdS black holes. In the latter regime, we point out spurious divergences that might occur due to the limitations of a near horizon expansion. A similar analysis is performed for extremal black holes and, at large charge, we find that there might be some new features of the volume as compared to the area. Finally, we numerically study a four-dimensional RN-AdS black hole in global AdS, the entangling surface being a sphere. We find that the holographic complexity captures essentially the same information as the entanglement entropy, as far as phase transitions are concerned.

  13. Emergent Spacetime and Holographic CFTs

    CERN Document Server

    El-Showk, Sheer

    2012-01-01

    We discuss universal properties of conformal field theories with holographic duals. A central feature of these theories is the existence of a low-lying sector of operators whose correlators factorize. We demonstrate that factorization can only hold in the large central charge limit. Using conformal invariance and factorization we argue that these operators are naturally represented as fields in AdS as this makes the underlying linearity of the system manifest. In this class of CFTs the solution of the conformal bootstrap conditions can be naturally organized in structures which coincide with Witten diagrams in the bulk. The large value of the central charge suggests that the theory must include a large number of new operators not captured by the factorized sector. Consequently we may think of the AdS hologram as an effective representation of a small sector of the CFT, which is embedded inside a much larger Hilbert space corresponding to the black hole microstates.

  14. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  15. Rewritable azobenzene polyester for polarization holographic data storage

    DEFF Research Database (Denmark)

    Kerekes, A; Sajti, Sz.; Loerincz, Emoeke

    2000-01-01

    Optical storage properties of thin azobenzene side-chain polyester films were examined by polarization holographic measurements. The new amorphous polyester film is the candidate material for the purpose of rewritable holographic memory system. Temporal formation of anisotropic and topographic...

  16. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  17. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  18. Holographic fluorescence mapping using space-division matching method

    Science.gov (United States)

    Abe, Ryosuke; Hayasaki, Yoshio

    2017-10-01

    Three-dimensional mapping of fluorescence light sources was performed by using self-interference digital holography. The positions of the sources were quantitatively determined by using Gaussian fitting of the axial and lateral intensity distributions obtained from diffraction calculations through position calibration from the observation space to the sample space. A space-division matching method was developed to perform the mapping of many fluorescence light sources, in this experiment, 500 nm fluorescent nanoparticles fixed in gelatin. A fluorescence digital holographic microscope having a 60 × objective lens with a numerical aperture of 1.25 detected 13 fluorescence light sources in a measurable region with a radius of ∼ 20 μm and a height of ∼ 5 μm. It was found that the measurable region had a conical shape resulting from the overlap between two beams.

  19. Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation.

    Science.gov (United States)

    Huft, Preston R; Kolbow, Joshua D; Thweatt, Jonathan T; Lindquist, Nathan C

    2017-12-13

    We demonstrate dynamic trapping and manipulation of nanoparticles with plasmonic holograms. By tailoring the illumination pattern of an incident light beam with a computer-controlled spatial light modulator, constructive and destructive interference of plasmon waves create a focused hotspot that can be moved across a surface. Specifically, a computer-generated hologram illuminating the perimeter of a silver Bull's Eye nanostructure generates surface plasmons that propagate toward the center. Shifting the phase of the plasmon waves as a function of space gives complete control over the location of the focus. We show that 200 nm diameter nanoparticles trapped in this focus can be moved in arbitrary patterns. This allows, for example, circular motion with linearly polarized light. These results show the versatility of holographically generated surface plasmon waves for advanced trapping and manipulation of nanoparticles.

  20. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics.

    Science.gov (United States)

    Jang, Changwon; Kim, Jonghyun; Clark, David C; Lee, Seungjae; Lee, Byoungho; Kim, Myung K

    2015-01-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: selfinterference incoherent digital holography (SIDH). The SIDH generates a complex—i.e., amplitude plus phase—hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  1. Didactical Holographic Exhibit Including Holo TV (holographic Television)

    Science.gov (United States)

    Lunazzi, José J.; Magalhães, Daniel S. F.; Rivera, Noemí I. R.

    2008-04-01

    Our Institute of Physics exposes since 1980 didactical exhibitions of holography in Brazil where nice holograms are shown altogether with basic experiments of geometric and wave optics. This experiments lead to the understanding of the phenomenon of images of an ample way. Thousands of people have been present at them, in their majority of the Universidade Estadual de Campinas, where since 2002 they have taken the format of a course without formal evaluation. This way the exhibition has been divided in four modules, in each one of them are shown different holograms, experiments of optics and applications of diffractive images with white light developed in the Institute of Physics. The sequence of the learning through the modules begins with the geometric optics, later we explain the wave optics and finally holography. The phenomenon of the diffraction in daily elements is shown experimentally from the beginning. As well as the application of the holographic screens in white light: the television images that appear in front of the screen and the spectator can try to experience the reality illusion. Put something so exclusive (that only exists in the laboratory) to the public is a way to approximate the persons to an investigation in course. The vision of images that seem to be of holograms, but in movement, and size of until a square meter completes this exhibition of an exclusive way in the world.

  2. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment

    Directory of Open Access Journals (Sweden)

    Mayu Miki

    2014-05-01

    Full Text Available We report on theoretical and experimental investigations of optical wave propagations in two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal (HPDLC film. In the theoretical analysis we employed the 2×2 matrix formulation and the statistical thermodynamics model to analyze the formation of anisotropic photonic lattice structures by holographic polymerization. The influence of multiple reflections inside an HPDLC film on the formed refractive index distribution was taken into account in the analysis. In the experiment we fabricated two-dimensional photonic lattice structures in an HPDLC film under three-beam interference holographic polymerization and performed optical measurements of spectral transmittances and wavelength dispersion. We also demonstrated the electrical control capability of the fabricated photonic lattice structure and its dependence on incident wave polarization. These measured results were compared with the calculated ones by means of photonic band and beam propagation calculations.

  3. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment†

    Science.gov (United States)

    Miki, Mayu; Ohira, Ryuichiro; Tomita, Yasuo

    2014-01-01

    We report on theoretical and experimental investigations of optical wave propagations in two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal (HPDLC) film. In the theoretical analysis we employed the 2 × 2 matrix formulation and the statistical thermodynamics model to analyze the formation of anisotropic photonic lattice structures by holographic polymerization. The influence of multiple reflections inside an HPDLC film on the formed refractive index distribution was taken into account in the analysis. In the experiment we fabricated two-dimensional photonic lattice structures in an HPDLC film under three-beam interference holographic polymerization and performed optical measurements of spectral transmittances and wavelength dispersion. We also demonstrated the electrical control capability of the fabricated photonic lattice structure and its dependence on incident wave polarization. These measured results were compared with the calculated ones by means of photonic band and beam propagation calculations. PMID:28788643

  4. Optical Properties of Electrically Tunable Two-Dimensional Photonic Lattice Structures Formed in a Holographic Polymer-Dispersed Liquid Crystal Film: Analysis and Experiment.

    Science.gov (United States)

    Miki, Mayu; Ohira, Ryuichiro; Tomita, Yasuo

    2014-05-07

    We report on theoretical and experimental investigations of optical wave propagations in two-dimensional photonic lattice structures formed in a holographic polymer-dispersed liquid crystal (HPDLC) film. In the theoretical analysis we employed the 2×2 matrix formulation and the statistical thermodynamics model to analyze the formation of anisotropic photonic lattice structures by holographic polymerization. The influence of multiple reflections inside an HPDLC film on the formed refractive index distribution was taken into account in the analysis. In the experiment we fabricated two-dimensional photonic lattice structures in an HPDLC film under three-beam interference holographic polymerization and performed optical measurements of spectral transmittances and wavelength dispersion. We also demonstrated the electrical control capability of the fabricated photonic lattice structure and its dependence on incident wave polarization. These measured results were compared with the calculated ones by means of photonic band and beam propagation calculations.

  5. Optical information transfer based on helico-conical laser beams

    Science.gov (United States)

    Mihailescu, M.; Kusko, C.; Preda, L.

    2014-09-01

    We generated holographic masks starting with the interference between the reference beam and the signal beam, which is diffracted by the object. We investigate additive and multiplicative combinations between conical and helical phase distributions as compound objects to be inserted in the signal beam. We explored experimentally the dynamics of the diffracted intensity patterns, in two and three dimensions, after these holographic masks are addressed onto a programmable spatial light modulator. The diffracted intensity spatial arrangement contain information about constructive parameters used for holographic masks generation and exhibit asymmetric shapes and peaks along the optical axis in all analyzed compound objects. We introduce a reading mask in the optical path and, by analyzing changes of the spatial distribution in the final diffracted intensity arrangement, is possible to read the values of the constructive parameters. The generation of these reading masks in each case is discussed.

  6. Cavity enhanced eigenmode multiplexing for volume holographic data storage

    Science.gov (United States)

    Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.

  7. Optimization of self-processing photopolymers as holographic storage material taking into account application requirements

    Science.gov (United States)

    Carre, Christiane; Lougnot, Daniel-Joseph

    1996-09-01

    Photopolymerizable systems were developed in Mulhouse as holographic recording materials. The direct generation of images with no post-treatment nor repositioning is their most attractive feature. Such media are ideally suited for real time interferometry. Compromises for definition of the exposure parameters were established, taking into account the desired diffraction efficiency and the exposure time that could not be lower than a few tenths of a second. On the other hand, the self-processing system was optimized for the recording of off-axis holographic lenses. With such a n end in view, the aim was not to attain the shortest and easiest handling time but the highest diffraction efficiency and the lowest optical noise. The diffracted beams were sharply focused and diffraction efficiencies higher than 80 percent were obtained at 514 nm. Since the chemical composition and the method of conditioning are very flexible, they can be adapted to meet the requirements for various applications.

  8. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system

    Science.gov (United States)

    Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin

    2014-02-01

    A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.

  9. Digital aberration correction of fluorescent images with coherent holographic image reconstruction by phase transfer (CHIRPT)

    Science.gov (United States)

    Field, Jeffrey J.; Bartels, Randy A.

    2016-03-01

    Coherent holographic image reconstruction by phase transfer (CHIRPT) is an imaging method that permits digital holographic propagation of fluorescent light. The image formation process in CHIRPT is based on illuminating the specimen with a precisely controlled spatio-temporally varying intensity pattern. This pattern is formed by focusing a spatially coherent illumination beam to a line focus on a spinning modulation mask, and image relaying the mask plane to the focal plane of an objective lens. Deviations from the designed spatio-temporal illumination pattern due to imperfect mounting of the circular modulation mask onto the rotation motor induce aberrations in the recovered image. Here we show that these aberrations can be measured and removed non-iteratively by measuring the disk aberration phase externally. We also demonstrate measurement and correction of systematic optical aberrations in the CHIRPT microscope.

  10. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Directory of Open Access Journals (Sweden)

    N.S. Mazhari

    2017-03-01

    Full Text Available The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  11. Holographic complexity and fidelity susceptibility as holographic information dual to different volumes in AdS

    Energy Technology Data Exchange (ETDEWEB)

    Mazhari, N.S., E-mail: najmemazhari86@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Bahamonde, Sebastian, E-mail: sebastian.beltran.14@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-03-10

    The holographic complexity and fidelity susceptibility have been defined as new quantities dual to different volumes in AdS. In this paper, we will use these new proposals to calculate both of these quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an inhomogeneous background and a hyperscaling violating background. It is observed that the holographic complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility does not have any such dependence.

  12. Steer-by-wire steering system with enhanced functionality for rear steered vehicles

    Directory of Open Access Journals (Sweden)

    Christoph Dillmann

    2015-12-01

    Full Text Available Heckgelenkte selbstfahrende Erntemaschinen sind die zentralen Elemente moderner Ernteketten in der Landwirtschaft. Das primär auf Bodenschonung ausgelegte Fahrwerk, die aktuelle Höchstgeschwindigkeit von 40 km/h sowie die systembedingten, fahrdynamischen Nachteile einer heckgelenkten Maschine erschweren jedoch die Fahrzeugführung auf der Straße. Das Spurhalten und Stabilisieren erfordert daher viel Erfahrung und eine hohe Konzentration des Fahrers. Fahrdynamiksysteme können den Fahrzeugführer entlasten und somit das Fahren mit hohen Geschwindigkeiten sicherer und komfortabler gestalten. Im hier vorgestellten Projekt wird in diesem Kontext eine Steer-by-wire-Lenkung mit parametrierbarer Lenkcharakteristik vorgestellt, die auf die unterschiedlichen Vorzüge des Fahrers einstellbar ist und fahrzustandsabhängige Informationen über das Lenkrad an den Bediener übermittelt.

  13. Intra–cavity generation of Bessel–like beams with longitudinally dependent cone angles

    CSIR Research Space (South Africa)

    Litvin, IA

    2010-02-01

    Full Text Available conical wave approach to calculating Bessel-Gauss beam reconstruction after complex obstacles,” Opt. Commun. 282(6), 1078–1082 (2009). 14. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett... efficient method for producing Bessel beams, due mainly to the higher transmittance compared to an annular slit, and because an axicon produces no higher–order diffracted beams as in the case of holographic elements. Much of the interest in Bessel beams...

  14. Design of a remote steering antenna for ECRH heating in the stellarator Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Plaum, B., E-mail: plaum@igvp.uni-stuttgart.de [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Lechte, C.; Kasparek, W.; Gaiser, S.; Zeitler, A. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Univ. Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Erckmann, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-17491 Greifswald (Germany); Weißgerber, M. [Max-Planck-Institut für Plasmaphysik, EURATOM-IPP, D-85748 Garching (Germany); Bechtold, A. [NTG Neue Technologie GmbH & Co KG, D-63571 Gelnhausen (Germany); Busch, M.; Szcepaniak, B. [Galvano-T electroplating-electroforming GmbH, D-51570 Windeck-Rosbach (Germany)

    2015-10-15

    Highlights: • We report about the design activities for the remote steering antennas for the stellarator W7-X. • The integration into the W7-X system and the manufacturing procedure are described. • Simulations and loss measurements for the waveguide walls were done and are in good agreement. • A method for extending the steering range is presented. • A mechanical deformation analysis showed that the deformation is not critical for the beam quality. - Abstract: For the ECRH heating system of the stellarator Wendelstein 7-X, two remote steering antennas are developed and manufactured. The principle of remote steering antennas is based on the imaging characteristics of corrugated rectangular waveguides, which is well understood and can accurately be simulated. Several details, however, require deeper investigation. The antenna needs a miter-bend and a 24 mm gap. The positions of these elements need to be chosen carefully to reduce losses and stray radiation. The antennas are manufactured from copper by electroforming. This allows to integrate all components, including the corrugated inner walls and the cooling channels, in one vacuum-tight piece. This paper reviews the design process of the remote steering antennas for W7-X as well as technological issues and experimental results from test pieces.

  15. Theta dependence in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bartolini, Lorenzo [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Bigazzi, Francesco [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bolognesi, Stefano [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Manenti, Andrea [Institute of Physics, EPFL,Rte de la Sorge, BSP 728, CH-1015 Lausanne (Switzerland)

    2017-02-07

    We study the effects of the CP-breaking topological θ-term in the large N{sub c} QCD model by Witten, Sakai and Sugimoto with N{sub f} degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N{sub f}=2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ḡ{sub πNN}, finding that it is zero to leading order in the large N{sub c} limit.

  16. An automatic holographic adaptive phoropter

    Science.gov (United States)

    Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam

    2017-08-01

    Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.

  17. Holographic model for charmonium dissociation

    Science.gov (United States)

    Braga, Nelson R. F.; Ferreira, Luiz F.; Vega, Alfredo

    2017-11-01

    We present a holographic bottom up model for the thermal behavior of c c bar vector mesons in a finite temperature and density plasma. There is a clear physical interpretation for the three input energy parameters of the model. Two of them are related to the mass spectrum of the heavy meson. Namely the quark mass and the string tension of the quark-anti-quark interaction. The third parameter is a large energy scale associated with the non-hadronic meson decay. In such a process the heavy meson is transformed into a much lighter state by electroweak processes. The corresponding transition amplitude is assumed to depend on the energy scale associated with this large mass variation. With this three parameter model one can fit the masses and decay constants of J / Ψ and three radial excitations with an rms error of 20.7%. Using the geometry of a charged black hole, one finds the spectral function for charmonium states inside a plasma at finite temperature and density. The charmonium dissociation in the medium is represented by the decrease in the height of the spectral function peaks.

  18. Holographic correlation functions in Critical Gravity

    Science.gov (United States)

    Anastasiou, Giorgos; Olea, Rodrigo

    2017-11-01

    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

  19. Holographic butterfly effect at quantum critical points

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-10-01

    When the Lyapunov exponent λL in a quantum chaotic system saturates the bound λL ≤ 2π k B T , it is proposed that this system has a holographic dual described by a gravity theory. In particular, the butterfly effect as a prominent phenomenon of chaos can ubiquitously exist in a black hole system characterized by a shockwave solution near the horizon. In this paper we propose that the butterfly velocity can be used to diagnose quantum phase transition (QPT) in holographic theories. We provide evidences for this proposal with an anisotropic holographic model exhibiting metal-insulator transitions (MIT), in which the derivatives of the butterfly velocity with respect to system parameters characterizes quantum critical points (QCP) with local extremes in zero temperature limit. We also point out that this proposal can be tested by experiments in the light of recent progress on the measurement of out-of-time-order correlation function (OTOC).

  20. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  1. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  2. Anomalous transport and holographic momentum relaxation

    Science.gov (United States)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl; Megías, Eugenio

    2017-09-01

    The chiral magnetic and vortical effects denote the generation of dissipationless currents due to magnetic fields or rotation. They can be studied in holographic models with Chern-Simons couplings dual to anomalies in field theory. We study a holographic model with translation symmetry breaking based on linear massless scalar field backgrounds. We compute the electric DC conductivity and find that it can vanish for certain values of the translation symmetry breaking couplings. Then we compute the chiral magnetic and chiral vortical conductivities. They are completely independent of the holographic disorder couplings and take the usual values in terms of chemical potential and temperature. To arrive at this result we suggest a new definition of energy-momentum tensor in presence of the gravitational Chern-Simons coupling.

  3. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  4. Collapse and revival in holographic quenches

    Science.gov (United States)

    da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre

    2015-04-01

    We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.

  5. 49 CFR 393.209 - Steering wheel systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Steering wheel systems. 393.209 Section 393.209... NECESSARY FOR SAFE OPERATION Frames, Cab and Body Components, Wheels, Steering, and Suspension Systems § 393.209 Steering wheel systems. (a) The steering wheel shall be secured and must not have any spokes...

  6. 46 CFR 58.25-20 - Piping for steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Piping for steering gear. 58.25-20 Section 58.25-20... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-20 Piping for steering gear. (a) Pressure piping must... the hydraulic system can be readily recharged from within the steering-gear compartment and must be...

  7. Wavelength techniques for digital holographic memories

    Science.gov (United States)

    Lande, David

    Holographic storage is a technique to store and retrieve information spread out in a volume, in contrast to current optical devices which store information locally on a surface. It provides for parallel page-by-page recording and readout of data instead of the usual serial, bit-by-bit, technique, and offers much higher diffraction-limited capacity. Success in the development of a competitive holographic storage device then depends on its cost, compactness and reliability. Since the first digital demonstrations, considerable effort by various groups has been spent in the development of high performance, practical holographic systems. This thesis presents several contributions toward this goal, suitable for holographic storage in lithium niobate and other applicable media. An intuitive explanation of volume holography is given, and Fourier analysis is used to derive the diffraction- limited capacity of digital storage in the form of elementary refractive index gratings. The physics of photorefractive materials, which are commonly used in holographic recording, is then presented, along with an established phenomenological model for grating formation. Following an analysis of imaging and multiplexing, a completely automated storage system implementing wavelength-multiplexed holography is described and evaluated, highlighting the feasibility of systems with fewer optical and mechanical components. The volatility of information in photorefractive media is then addressed by a demonstration of optical fixing, a technique based on two-photon recording mechanisms. Such an all-optical technique removes the need for heating elements, high voltages, or other post-processing elements currently used in non-volatile systems. Two-photon recording is also used to modulate, or apodize, the amplitude of volume gratings within the crystal bulk, providing a flexible technique to reduce cross-talk noise between stored pages and optimize the system capacity. Finally, simulations of

  8. Holographic mutual information for singular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffar, M. Reza Mohammadi; Mollabashi, Ali [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Omidi, Farzad [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2015-12-14

    We study corner contributions to holographic mutual information for entangling regions composed of a set of disjoint sectors of a single infinite circle in 3-dimensional conformal field theories. In spite of the UV divergence of holographic mutual information, it exhibits a first order phase transition. We show that tripartite information is also divergent for disjoint sectors, which is in contrast with the well-known feature of tripartite information being finite even when entangling regions share boundaries. We also verify the locality of corner effects by studying mutual information between regions separated by a sharp annular region. Possible extensions to higher dimensions and hyperscaling violating geometries is also considered for disjoint sectors.

  9. Holographic corrections to meson scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Armoni, Adi; Ireson, Edwin, E-mail: 746616@swansea.ac.uk

    2017-06-15

    We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.

  10. Holographic Photon Production and Anisotropic Flow

    Science.gov (United States)

    Iatrakis, Ioannis; Kiritsis, Elias; Shen, Chun; Yang, Di-Lun

    2017-08-01

    The thermal-photon emission from strongly coupled gauge theories at finite temperature via the bottom-up models in holographic QCD in the deconfined phase is studied. The models are constructed to approximately reproduce the electric conductivity obtained from lattice simulations for the quark gluon plasma (QGP). The emission rates are then embedded in hydrodynamic simulations combined with prompt photons and hadronic contributions to analyze the spectra and anisotropic flow of direct photons in RHIC and LHC. In general, the holographic models enhance the yield and improve the agreement in spectra, while they reduce the flow in low pT and increase it in high pT.

  11. Liquid crystals for holographic optical data storage

    DEFF Research Database (Denmark)

    Matharu, Avtar; Jeeva, S.; Ramanujam, P.S.

    2007-01-01

    A tutorial review is presented to inform and inspire the reader to develop and integrate strong scientific links between liquid crystals and holographic data storage, from a materials scientist's viewpoint. The principle of holographic data storage as a means of providing a solution...... to the information storage demands of the 21st century is detailed. Holography is a small subset of the much larger field of optical data storage and similarly, the diversity of materials used for optical data storage is enormous. The theory of polarisation holography which produces holograms of constant intensity...

  12. A computer test of holographic flavour dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Filev, Veselin G.; O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)

    2016-05-20

    We perform computer simulations of the Berkooz-Douglas (BD) matrix model, holographically dual to the D0/D4-brane intersection. We generate the fundamental condensate versus bare mass curve of the theory both holographically and from simulations of the BD model. Our studies show excellent agreement of the two approaches in the deconfined phase of the theory and significant deviations in the confined phase. We argue the discrepancy in the confined phase is explained by the embedding of the D4-brane which yields stronger α{sup ′} corrections to the condensate in this phase.

  13. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    chromophores-which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting...... materials. Here we show that holographic gratings with large first-order diffraction efficiencies (up to 80%) can be written and erased optically in oligomer films only a few micrometres thick. The holograms also exhibit good thermal stability, and are not erased after heating to 180 degrees C for one month...

  14. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  15. Omni rotational driving and steering wheel

    DEFF Research Database (Denmark)

    2008-01-01

    Abstract of WO 2008138346  (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...

  16. CCCT - NCTN Steering Committees - Gynecologic Cancers

    Science.gov (United States)

    The Gynecologic Cancers Steering Committee evaluates and prioritizes concepts for phase 2 and 3 clinical trials in adult gynecologic cancers. The GCSC is also intent on fostering collaboration with international groups and institutions conducting trials.

  17. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  18. Optimization Under Uncertainty for Wake Steering Strategies

    Science.gov (United States)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  19. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2015-09-30

    Central Florida 12201 Research Parkway, suite 501 Orlando, FL 32826-3246 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...AGENCY NAME(S) AND ADDRESS|ES) Office of Naval Research 875 North Randolph Street Arlington, VA 22203-1995 10. SPONSOR/MONITORS ACRONYM(S) ONR312...figure-of-merit {FoM) to compare the performance of an LC: Isn FoM= — . (2) a The molecular vibration frequency (co) of a diatomic group depends

  20. Cluster beam steering onto silicon surfaces studied by molecular dynamics

    CERN Document Server

    Mazzone, A M

    2002-01-01

    The purpose of this study is to investigate the effects of the impact conditions on cluster deposition in silicon and is motivated by recent results obtained using a variable incidence angle during deposition of metallic clusters and atoms. Therefore deposition of silicon clusters with a kinetic energy in the range from 0.5 to 10 eV/atom directed at normal and grazing incidence onto crystalline silicon has been studied using a molecular dynamics simulation method. The influence of other relevant parameters, such as the interatomic forces and the cluster size and shape, has also been investigated. This study shows that the physics of deposition is almost entirely dictated by the nature of the interatomic forces. When using potentials with the four-fold coordination typical of bulk a clear dependence on the size N is observed and the spreading index eta decreases with the increase of N for all incidence conditions. The cluster binding strength is perceptibly increased when using a potential accounting for the c...

  1. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2013-10-22

    were measured on a Bruker Avance 400 MHz spectrometer at 400.13, 100.61 MHz, respectively. The ’H and 13C NMR chemical shifts were referenced to TMS...quaterphenyls The ’H and l3C spectra were measured on a Bruker Avance 400 MHz spectrometer at 400.13 and 100.61 MHz, respectively. The ’H and l3C NMR chemical

  2. Holographic display for see-through augmented reality using mirror-lens holographic optical element.

    Science.gov (United States)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Cho, Jaebum; Lee, Byoungho

    2016-06-01

    A holographic display system for realizing a three-dimensional optical see-through augmented reality (AR) is proposed. A multi-functional holographic optical element (HOE), which simultaneously performs the optical functions of a mirror and a lens, is adopted in the system. In the proposed method, a mirror that is used to guide the light source into a reflection type spatial light modulator (SLM) and a lens that functions as Fourier transforming optics are recorded on a single holographic recording material by utilizing an angular multiplexing technique of volume hologram. The HOE is transparent and performs the optical functions just for Bragg matched condition. Therefore, the real-world scenes that are usually distorted by a Fourier lens or an SLM in the conventional holographic display can be observed without visual disturbance by using the proposed mirror-lens HOE (MLHOE). Furthermore, to achieve an optimized optical recording condition of the MLHOE, the optical characteristics of the holographic material are measured. The proposed holographic AR display system is verified experimentally.

  3. Experimental holographic movie to estimate picture quality for holographic television (III)

    Science.gov (United States)

    Higuchi, Kazuhito; Ishikawa, Jun; Hiyama, Shigeo

    1994-05-01

    Holographic movies can be seen as a tool to estimate the picture quality of moving holographic images as a step towards holographic television. The authors have previously developed two versions of an experimental holographic movie system, and this paper is a report on an improved version 3 of the system. The new version features a newly-developed recording system which utilizes a pulsed Nd:YAG laser with an injection seeder, and an automatic film driver unit which moves perforated 35 mm holographic film intermittently. The system is mounted on a dolly to which a hydraulic lifter is attached. A twin diamond-shaped hologram format, developed for an earlier version of the system, is adopted for the films. After the films are developed, they are driven intermittently with a shutter, illuminated by the LD pumped CW Nd:YAG laser, and viewed through twin diamond-shaped windows. This version 3 system makes it possible to record live scenes, including those of the human body, flowing liquids, smoke, etc., which was impossible in the version 1 and version 3 systems. As a consequence, the characteristics of holographic 3D images with motion can be studied over an area covered by both eyes, and the labor required of animators in taking holograms is greatly reduced.

  4. A holographic model for black hole complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Physics Department, Brown University,Providence, RI 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107, Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,AlbaNova University Centre, 10691 Stockholm (Sweden)

    2016-12-07

    We explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holographically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulk effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are complementary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.

  5. Composite materials inspection. [ultrasonic vibration holographic NDT

    Science.gov (United States)

    Erf, R. K.

    1974-01-01

    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  6. Holographic applications of logarithmic conformal field theories

    NARCIS (Netherlands)

    Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.

    2013-01-01

    We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in

  7. Holographic recording in two-stage networks

    Science.gov (United States)

    McLeod, Robert R.; Peng, Haiyan; Nair, Devatha P.; Kowalski, Benjamin A.; Bowman, Christopher N.

    2017-05-01

    We demonstrate holography in a traditional two-component holographic photopolymer in which the solid polymer host matrix has three distinct sets of material properties: 1) an initially liquid state appropriate for formulation and casting into the desired final shape, 2) a rubbery state with low glass transition temperature appropriate for holographic recording, and 3) a final higher modulus state with improved mechanical robustness. The general chemical scheme is to form the second stage rubbery polymer network via a thiol-acrylate Michael addition with an excess of one functional group. Holographic recording then takes place via radically initiated photopolymerization of a mobile high refractive index monomer, per the common two-chemistry process. During final flood illumination of the material, the remaining monomer and excess functional groups are polymerized to increase crosslink density and improve the mechanical properties of the matrix. We described three such material schemes and report general trends. We demonstrate high (96%) efficiency holographic recording, low (1.1%) shrinkage, no oxygen sensitivity and stage 2 glass transition temperatures at or above room temperature, sufficient to enable self-supporting films.

  8. Holographic space: presence and absence in time

    Science.gov (United States)

    Chang, Yin-Ren; Richardson, Martin

    2017-03-01

    In terms of contemporary art, time-based media generally refers to artworks that have duration as a dimension and unfold to the viewer over time, that could be a video, slide, film, computer-based technologies or audio. As part of this category, holography pushes this visual-oriented narrative a step further, which brings a real 3D image to invite and allow audiences revisiting the scene of the past, at the moment of recording in space and time. Audiences could also experience the kinetic holographic aesthetics through constantly moving the viewing point or illumination source, which creates dynamic visual effects. In other words, when the audience and hologram remain still, the holographic image can only be perceived statically. This unique form of expression is not created by virtual simulation; the principal of wavefront reconstruction process made holographic art exceptional from other time-based media. This project integrates 3D printing technology to explore the nature of material aesthetics, transiting between material world and holographic space. In addition, this series of creation also reveals the unique temporal quality of a hologram's presence and absence, an ambiguous relationship existing in this media.

  9. Phases of kinky holographic nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Elliot-Ripley, Matthew; Sutcliffe, Paul; Zamaklar, Marija [Department of Mathematical Sciences, Durham University,South Road, Durham (United Kingdom)

    2016-10-17

    Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

  10. Holographic Josephson junction from massive gravity

    NARCIS (Netherlands)

    Hu, Ya-Peng; Li, Huai-Fan; Zeng, Hua-Bi; Zhang, H.

    2016-01-01

    We study the holographic superconductor-normal metal-superconductor (SNS) Josephson junction in de Rham-Gabadadze-Tolley massive gravity. If the boundary theory is independent of spatial directions, i.e., if the chemical potential is homogeneous in spatial directions, we find that the graviton mass

  11. Plasmon switching : Observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit

    NARCIS (Netherlands)

    Raghunathan, S.B.; Gan, C.H.; Van Dijk, T.; Ea Kim, B.; Schouten, H.F.; Ubachs, W.; Lalanne, P.; Visser, T.D.

    2012-01-01

    We report a plasmon steering method that enables us to dynamically control the direction of surface plasmons generated by a two-mode slit in a thin metal film. By varying the phase between different coherent beams that are incident on the slit, individual waveguide modes are excited. Different

  12. Beam-beam instability

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1983-08-01

    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  13. beam-beam interaction

    CERN Multimedia

    2017-01-01

    The Beam 1 (represented in blue) and the Beam 2 (represented in red) are colliding with an angle at the Interaction Point (IP). The angle is needed to avoid unwanted multiple collisions along the interaction region. Despite of the separation introduced by the angle, the two beams interact via their electromagnetic field, the so called "beam-beam" interaction.

  14. Binary Intensity Modulation and Hybrid Ternary Modulation Applied to Multiplexing Objects Using Holographic Data Storage on a PVA/AA Photopolymer

    Directory of Open Access Journals (Sweden)

    Elena Fernandez

    2014-01-01

    Full Text Available Holographic data pages were multiplexed in a polyvinyl alcohol/acrylamide photopolymer and a liquid crystal device was used to modify the object beam and store objects in the material. A peristrophic multiplexing method was used to store a large number of objects in the same spot of the material. The objects were stored using two different modulations: binary intensity modulation and hybrid ternary modulation. Moreover, the bit error rate (BER of the images was calculated in order to compare which modulation is most appropriate to be used for holographic data storage.

  15. Polarization holographic high-density optical data storage in bacteriorhodopsin film.

    Science.gov (United States)

    Yao, Baoli; Ren, Zhiwei; Menke, Neimule; Wang, Yingli; Zheng, Yuan; Lei, Ming; Chen, Guofu; Hampp, Norbert

    2005-12-01

    Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He-Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier transform holographic setup, a storage density of 2 x 10(8) bits/cm2 was obtained on a 60 x 42 microm2 area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density.

  16. Electrically tunable two-dimensional holographic polymer-dispersed liquid crystal grating with variable period

    Science.gov (United States)

    Wang, Kangni; Zheng, Jihong; Liu, Yourong; Gao, Hui; Zhuang, Songlin

    2017-06-01

    An electrically tunable two-dimensional (2D) holographic polymer-dispersed liquid crystal (H-PDLC) grating with variable period was fabricated by inserting a cylindrical lens in a conventional holographic interference beam. The interference between the plane wave and cylindrical wave resulting in varying intersection angles on the sample, combined with dual exposure along directions perpendicular to each other, generates a 2D H-PDLC grating with varied period. We have identified periods varying from 3.109 to 5.158 μm across a 16 mm width, with supporting theoretical equations for the period. The period exhibits a symmetrical square lattice in a diagonal direction, with an asymmetrical rectangular lattice in off-diagonal locations. With the first exposure at 2 s and the second exposure at 60 s, the phase separation between the prepolymer and liquid crystal was most evident. The diffraction properties and optic-electric characteristics were also studied. The diffraction efficiency of first-order light was observed to be 13.5% without external voltage, and the transmission efficiency of non-diffracted light was 78% with an applied voltage of 100 V. The proposed method provides the capability of generating period variation to the conventional holographic interference path, with potential application in diffractive optics such as tunable multi-wavelength organic lasing from a dye-doped 2D H-PDLC grating.

  17. No-cloning of quantum steering

    Science.gov (United States)

    Chiu, Ching-Yi; Lambert, Neill; Liao, Teh-Lu; Nori, Franco; Li, Che-Ming

    2016-06-01

    Einstein-Podolsky-Rosen (EPR) steering allows two parties to verify their entanglement, even if one party’s measurements are untrusted. This concept has not only provided new insights into the nature of non-local spatial correlations in quantum mechanics, but also serves as a resource for one-sided device-independent quantum information tasks. Here, we investigate how EPR steering behaves when one-half of a maximally entangled pair of qudits (multidimensional quantum systems) is cloned by a universal cloning machine. We find that EPR steering, as verified by a criterion based on the mutual information between qudits, can only be found in one of the copy subsystems but not both. We prove that this is also true for the single-system analogue of EPR steering. We find that this restriction, which we term ‘no-cloning of quantum steering’, elucidates the physical reason why steering can be used to secure sources and channels against cloning-based attacks when implementing quantum communication and quantum computation protocols.

  18. Self-Steered Self-Organization

    Science.gov (United States)

    Keijzer, Fred

    Self-organization has become a well-established phenomenon in physics, now also propagated as an important phenomenon in the case of psychology. This addition to ordinary self-organization may be called self-steering (through internal control parameters). Self-steering is conceptualized in a biological context (DNA, neurocognition of the visuomotor system) and in psychology. The major conceptual problem is to avoid that self-steering turns into the invocation of an unexplained intentional force that may fall victim to the problems related to regular representation-based cognitive science. Kelso's understanding of intention is discussed and criticized in this respect. It is proposed that the steering factors may be like representations, but have no meaning or existence apart from the self-organizing processes that they help to regulate. In this respect there remains a major difference with traditional representational theories. Compared to intentionality, self-steering is a more basic concept that applies to much lower levels of organization as well.

  19. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  20. Dual wavelength full field imaging in low coherence digital holographic microscopy.

    Science.gov (United States)

    Monemhaghdoust, Zahra; Montfort, Frédéric; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2011-11-21

    A diffractive optical element (DOE) is presented to simultaneously manipulate the coherence plane tilt of a beam containing a plurality of discrete wavelengths. The DOE is inserted into the reference arm of an off-axis dual wavelength low coherence digital holographic microscope (DHM) to provide a coherence plane tilt so that interference with the object beam generates fringes over the full detector area. The DOE maintains the propagation direction of the reference beam and thus it can be inserted in-line in existing DHM set-ups. We demonstrate full field imaging in a reflection commercial DHM with two wavelengths, 685 nm and 794 nm, resulting in an unambiguous range of 2.494 micrometers. © 2011 Optical Society of America

  1. Correction method of wavefront aberration on signal quality in holographic memory

    Science.gov (United States)

    Kimura, Eri; Nakajima, Akihito; Akieda, Kensuke; Ohori, Tomohiro; Katakura, Kiyoto; Kondo, Yo; Yamamoto, Manabu

    2011-02-01

    One of the problems that affects the practical use of holographic memory is deterioration of the reproduced images due to aberration in the optical system. The medium must be interchangeable, and hence it is necessary to clarify the influence of aberration in the optical system on the signal quality and perform aberration correction for drive compatibility. In this study, aberration is introduced in the reference light beam during image reproduction, and the deterioration of the reproduced image signal is examined. In addition, for a basic study of aberration correction, the correction technique using a two-dimensional signal processing is studied.

  2. Norland Optical Adhesive 72® as phase holographic material

    Directory of Open Access Journals (Sweden)

    Mauricio Ortiz-Gutiérrez

    2015-12-01

    Full Text Available Characterization of the holographic material composed by adhesive polymer Norland Optical Adhesive 72® (NOA 72® was studied. With a wavelength of 457 nm from an Ar laser, real time phase holographic gratings under different parameters such as energy, frequency and thickness were recorded. The diffraction efficiency of the recorded holographic gratings was measured and some experimental results are shown. Furthermore, the material was used to record Fourier holograms.

  3. Applications of holographic interferometry for spacecraft structural components

    Science.gov (United States)

    Rao, M. V.; Samuel, R.; Nair, P. S.

    1994-06-01

    An overview of the applications of holographic interferometry for spacecraft structural components at ISRO Satellite Center, Bangalore, India, is presented. The details of the development of a dual vacuum stressing technique and its application for holographic nondestructive testing (HNDT) of honeycomb panels are presented. Results of some calibration studies conducted for HNDT of propellant tanks are also presented. It is found that holographic interferometry is quite useful, particularly for HNDT of honeycomb panels and propellant tanks used for spacecraft structural components.

  4. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  5. Unbounded Violation of Quantum Steering Inequalities.

    Science.gov (United States)

    Marciniak, M; Rutkowski, A; Yin, Z; Horodecki, M; Horodecki, R

    2015-10-23

    We construct steering inequalities that exhibit unbounded violation. The concept was to exploit the relationship between steering violation and the uncertainty relation. To this end, we apply mutually unbiased bases and anticommuting observables, known to exhibit the strongest uncertainty. In both cases, we are able to procure unbounded violations. Our approach is much more constructive and transparent than the operator space theory approach employed to obtain large violation of Bell inequalities. Importantly, using anticommuting observables we are able to obtain a dichotomic steering inequality with unbounded violation. Thus far, there is no analogous result for Bell inequalities. Interestingly, both the dichotomic inequality and one of our inequalities cannot be directly obtained from existing uncertainty relations, which strongly suggest the existence of an unknown kind of uncertainty relation.

  6. Saturation of the Holographic Principle for Spatially Closed Cosmological Models

    Science.gov (United States)

    Diaz, P.; Per, M. A.; Segui, A.

    Under the assumption on the fundamental character of the Holographic Principle as a primary principle guiding the behavior of our universe the saturation of the holographic limit is reasonable. On the other hand the Fischler-Susskind holographic prescription seems to be incompatible with closed cosmological models due to the apparently unavoidable recontraction of the particle horizon area. However we will show that the saturation of the Fischler-Susskind holographic prescription over a closed (although almost flat) cosmological model enforces a cosmological evolution very similar to the observed universe.

  7. Holographic display with LED sources illumination and enlarged viewing angle

    Science.gov (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz

    2016-09-01

    In this work we present holographic display that uses LED sources illumination and have enlarged viewing angle. In this holographic display design we employ phase only SLM because it allows to obtain reconstructions of high quality. Our setup realizes complex coding scheme and allows to reconstruct complex holographic images. Thus reconstruction of inplane holograms is possible. Holograms displayed on SLM are computer generated. For enlargement of angular field of view we use three spatially separated illumination sources and time multiplexing technique. In experimental part, where we display computer generated holograms, we show that it is possible to obtain holographic reconstructions of 3D object with extended viewing angle.

  8. Higher order corrections to holographic black hole chemistry

    Science.gov (United States)

    Sinamuli, Musema; Mann, Robert B.

    2017-10-01

    We investigate the holographic Smarr relation beyond the large N limit. By making use of the holographic dictionary, we find that the bulk correlates of subleading 1 /N corrections to this relation are related to the couplings in Lovelock gravity theories. We likewise obtain a holographic equation of state and check its validity for a variety of interesting and nontrivial black holes, including rotating planar black holes in Gauss-Bonnet-Born-Infeld gravity, and nonextremal rotating black holes in minimal five-dimensional gauged supergravity. We provide an explanation of the N -dependence of the holographic Smarr relation in terms of contributions due to planar and nonplanar diagrams in the dual theory.

  9. HOMES - Holographic Optical Method for Exoplanet Spectroscopy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope designed for exoplanet discovery. Its double dispersion architecture employs a...

  10. Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications

    Science.gov (United States)

    Ortuño, Manuel; Gallego, Sergi; Márquez, Andrés; Neipp, Cristian; Pascual, Inmaculada; Beléndez, Augusto

    2012-01-01

    Photopolymers have proved to be useful for different holographic applications such as holographic data storage or holographic optical elements. However, most photopolymers have certain undesirable features, such as the toxicity of some of their components or their low environmental compatibility. For this reason, the Holography and Optical Processing Group at the University of Alicante developed a new dry photopolymer with low toxicity and high thickness called biophotopol, which is very adequate for holographic data storage applications. In this paper we describe our recent studies on biophotopol and the main characteristics of this material. PMID:28817008

  11. Online optimized hysteresis-based steering feel model for steer-by-wire systems

    Directory of Open Access Journals (Sweden)

    Ahmet Kirli

    2016-06-01

    Full Text Available In rubber-wheeled road vehicles, the mechanical connection between steering wheel and front wheels provides steering-related feedback to the driver. The torque fed back to the driver through the steering linkages and steering wheel, which is called steering feel, helps the driver in controlling the vehicle. The torque feedback is reproduced via artificial methods in steer-by-wire systems due to the lack of mechanical connection. In this work, in order to minimize the physical workload and the lateral acceleration under the consideration of handling performance, optimization of a hysteresis-based steering feel has been studied. A 2-degree-of-freedom bicycle model based on the magic formula tire model has been used for simulations and hardware-in-the-loop experiments. A mathematical model is proposed in order to create an adaptive model-based optimization of the hysteresis parameters simultaneously while driving. A hardware-in-the-loop experimental setup has been used for the driving tests. The weave and the double-lane change tests have been performed with different drivers in order to demonstrate and quantify the optimization methods that are presented in this work.

  12. Frontiers in x-ray components for high-resolution spectroscopy and imaging laminar type varied-line-spacing holographic gratings for soft x-ray

    CERN Document Server

    Sano, K

    2003-01-01

    Laminar-type varied-line-spacing gratings have been widely used for soft x-ray monochromator recently because of the features of low stray lights and higher order lights. We have developed and advanced holographic recording and an ion-beam etching methods for the laminar type varied-line spacing gratings. This report describes a short review of the soft x-ray spectrometers using varied-line-spacing gratings, the fabrication process of the laminar-type holographic gratings, and the performance of the flat field spectrographs equipped with the laminar type varied-line spacing gratings comparing with the mechanically ruled replica gratings. It is concluded that, for the sake of the advanced design and fabrication processes and excellent spectroscopic performance, laminar-type holographic gratings will be widely used for soft x-ray spectrometers for various purposes in the near future. (author)

  13. Intuitive steering assistance in critical understeer situations.

    Science.gov (United States)

    Hildebrandt, Christoph; Schmidt, Mario; Sedlmayr, Martin; Pion, Olivier; Büyükyildiz, Görkem; Küçükay, Ferit

    2015-01-01

    To develop and verify a driver assistance function, working on the electric power steering of passenger cars, to support the driver on handling critical understeer situations. The main objectives of the so-called understeer assistance are reinforcing the driver's awareness of the driving conditions and giving support to handle the situation correctly without inducing irritation by abnormal steering behavior. The system was designed in consideration of psychological aspects of human decision making while operating a vehicle in unfamiliar understeer situations. Using a comparison of vehicle dynamics with a reference model computed in the car, the level of understeer is calculated. Depending on the understeer level, the steering wheel restoring torque is increased while a vibration is applied to the steering wheel at the same time. To verify the achievement of the objectives, the standard steering system is compared to the developed understeer assistance in an active driving study on a test track. Not only objective measurement data but also subjective ratings delivered by 63 unbiased participants were used. The subjects follow the offered steering recommendation by steering less when the assistance function is activated (Δγmax = 44.38°, p = 2.5°·10⁻³%). In the sequel, an enhanced vehicle reaction arises that is validated by analyzing the achieved maximum lateral offset (ΔSy,res = 0.16m, p = 0.07%). In addition, the evaluation of subjective ratings clearly indicates a better awareness of the understeer situation with the assistance function (χ= +0.44, p = 0.89%). Furthermore the subjects rate the understeer assistance better than the standard steering system (χ= +0.43, p = 3.03%). By measuring vehicle data and eliciting subjective opinions of the participants, the effectiveness regarding an improved handling of an understeering vehicle as well as the acceptance of the understeer assistance by the driver is confirmed. Larger subject groups and more realistic

  14. Drowsy Driver Detection via Steering Wheel

    Directory of Open Access Journals (Sweden)

    Herlina ABDUL RAHIM

    2010-09-01

    Full Text Available The main purpose of this project is to produce a safety system especially for fatigue car driver so as to prevent from accidents. The statistic on road fatality shows that human error constitute of 64.84 % road accidents fatality and 17.4 % due to technical factors. These systems encompassed the approach of hand pressure applied on the steering wheel. The steering will be installed with pressure sensors. At the same time these sensors can be used to measure gripping force while driving.

  15. Holo-GPC: Holographic Generalized Phase Contrast

    DEFF Research Database (Denmark)

    Bañas, Andrew; Glückstad, Jesper

    2017-01-01

    volume. On the other hand, Generalized Phase Contrast (GPC) forms beams with well-defined lateral shapes and could be classified as the latter. To certain extents, GPC and holography can also perform both beam distribution and beam shaping. But despite the overlap in beam distribution and beam shaping...

  16. Holographic interpolation between a and F

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Teruhiko [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Nakaguchi, Yuki [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8568 (Japan); Nishioka, Tatsuma [Department of Physics, Faculty of Science, The University of Tokyo,Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-12-29

    An interpolating function F-tilde between the a-anomaly coefficient in even dimensions and the free energy on an odd-dimensional sphere has been proposed recently and is conjectured to monotonically decrease along any renormalization group flow in continuous dimension d. We examine F-tilde in the large-N CFT’s in d dimensions holographically described by the Einstein-Hilbert gravity in the AdS{sub d+1} space. We show that F-tilde is a smooth function of d and correctly interpolates the a coefficients and the free energies. The monotonicity of F-tilde along an RG flow follows from the analytic continuation of the holographic c-theorem to continuous d, which completes the proof of the conjecture.

  17. Holographic Associative Memory Employing Phase Conjugation

    Science.gov (United States)

    Soffer, B. H.; Marom, E.; Owechko, Y.; Dunning, G.

    1986-12-01

    The principle of information retrieval by association has been suggested as a basis for parallel computing and as the process by which human memory functions.1 Various associative processors have been proposed that use electronic or optical means. Optical schemes,2-7 in particular, those based on holographic principles,8'8' are well suited to associative processing because of their high parallelism and information throughput. Previous workers8 demonstrated that holographically stored images can be recalled by using relatively complicated reference images but did not utilize nonlinear feedback to reduce the large cross talk that results when multiple objects are stored and a partial or distorted input is used for retrieval. These earlier approaches were limited in their ability to reconstruct the output object faithfully from a partial input.

  18. Multiplexed fluorescence spectroscopy with holographic optical tweezers

    Science.gov (United States)

    Cibula, M. A.; Kendrick, M. J.; Gruss, D. S.; Bychkova, V.; Pylypiuk, N.; Koesdjojo, M.; Remcho, V. T.; Ostroverkhova, O.; McIntyre, D. H.

    2011-10-01

    We present a multiplexed spectroscopy technique using holographic optical tweezers to trap and excite multiple sensor particles. Our goal is to develop a lab-on-a-chip measurement platform for monitoring pH and other ion concentrations with high spatial resolution in a microfluidic device or within biological cells. We have developed a variety of polymeric pH/ion sensitive nanoparticles with fluorescence spectra that change with the pH/ion concentration of the surrounding environment. We optically trap and manipulate multiple nanosensors using holographic optical tweezers. The trapped particles are irradiated with a separate excitation laser and the fluorescence from all the particles is detected simultaneously with an imaging spectrometer. Electronic separation of the parallel, discrete spectra allows for concurrent determination of multiple spectra.

  19. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  20. Reheating of the Universe as holographic thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Shinsuke, E-mail: shinsuke.kawai@gmail.com [Department of Physics, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Nakayama, Yu [California Institute of Technology, 452-48, Pasadena, CA 91125 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, Kashiwa, Chiba 277-8583 (Japan)

    2016-08-10

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  1. Holographic trace anomaly at finite temperature

    Science.gov (United States)

    Lee, Bum-Hoon; Nam, Siyoung; Park, Chanyong

    2017-01-01

    Using the holographic renormalization, we investigate the finite temperature and size effect to the energy-momentum tensor of the dual field theory and its renormalization group (RG) flow. Following the anti-de Sitter/conformal field theory correspondence, the dual field theory of the AdS space is well known to be a conformal field theory that has no nontrivial RG flow. Holographically, that theory can be lifted to a finite temperature version by considering a AdS black hole solution. Because the black hole horizon associated with temperature is dimensionful, it breaks the boundary conformal symmetry and leads to a nontrivial RG flow. In this work, we investigate the finite temperature and size correction to a strongly interacting conformal field theory along the Wisonian renormalization group flow.

  2. Transonic flow visualization using holographic interferometry

    Science.gov (United States)

    Bryanston-Cross, Peter J.

    1987-05-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  3. Reheating of the Universe as holographic thermalization

    Directory of Open Access Journals (Sweden)

    Shinsuke Kawai

    2016-08-01

    Full Text Available Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  4. Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal.

    Science.gov (United States)

    Ogiwara, Akifumi; Watanabe, Minoru; Moriwaki, Retsu

    2013-04-01

    Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization controllable optical devices, such as the holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (T(ni)) that the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is discussed with two types of LC composites comprised of isotropic and LC diacrylate monomers. The holographic memory formed by the LC and LC diacrylate monomer performs precise reconstruction of the context information for ORGAs at high temperatures more than 150°C.

  5. Holographic window for solar power generation

    Science.gov (United States)

    Kasezawa, Toshihiro; Horimai, Hideyoshi; Tabuchi, Hiroshi; Shimura, Tsutomu

    2016-12-01

    A new photovoltaic generation unit based on the application of holographic technologies called a Holo-Window is proposed in this work. The basic principle and the optical configuration used for the basic experimental unit are described. Suitable fabrication technology for a hologram with the broadband spectrum required to provide the appropriate sunlight capture capability is then discussed. Finally, a laboratory-prototype Holo-Window unit was developed and its performance was evaluated.

  6. Non-relativistic geometry of holographic screens

    Science.gov (United States)

    Moosa, Mudassir

    2017-06-01

    We propose that the intrinsic geometry of holographic screens should be described by the Newton-Cartan geometry. As a test of this proposal, we show that the evolution equations of the screen can be written in a covariant form in terms of a stress tensor, an energy current, and a momentum one-form. We derive the expressions for the stress tensor, energy density, and momentum one-form using Brown-York action formalism.

  7. Holographic cosmological models on the braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2009-01-26

    In this Letter we have studied a closed universe which a holographic energy on the brane whose energy density is described by {rho}(H)=3c{sup 2}H{sup 2} and we obtain an equation for the Hubble parameter. This equation gave us different physical behavior depending if c{sup 2}>1 or c{sup 2}<1 against of the sign of the brane tension.

  8. Shrinkage measurement for holographic recording materials

    Science.gov (United States)

    Fernández, R.; Gallego, S.; Márquez, A.; Francés, J.; Navarro Fuster, V.; Neipp, C.; Ortuño, M.; Beléndez, A.; Pascual, I.

    2017-05-01

    There is an increasing demand for new holographic recording materials. One of them are photopolymers, which are becoming a classic media in this field. Their versatility is well known and new possibilities are being created by including new components, such as nanoparticles or dispersed liquid crystal molecules in classical formulations, making them interesting for additional applications in which the thin film preparation and the structural modification have a fundamental importance. Prior to obtaining a wide commercialization of displays based on photopolymers, one of the key aspects is to achieve a complete characterization of them. In this sense, one of the main parameters to estimate and control is the shrinkage of these materials. The volume variations change the angular response of the hologram in two aspects, the angular selectivity and the maximum diffraction efficiency. One criteria for the recording material to be used in a holographic data storage application is the shrinkage, maximum of 0.5%. Along this work, we compare two different methods to measure the holographic recording material shrinkage. The first one is measuring the angle of propagation for both diffracted orders +/-1 when slanted gratings are recorded, so that an accurate value of the grating vector can be calculated. The second one is based on interference measurements at zero spatial frequency limit. We calculate the shrinkage for three different photopolymers: a polyvinyl alcohol acrylamide (PVA/AA) based photopolymer, one of the greenest photopolymers whose patent belongs to the Alicante University called Biophotopol and on the last place a holographic-dispersed liquid crystal photopolymer (H-PDLC).

  9. Holographic Investigation of Solid Propellant Particulates.

    Science.gov (United States)

    1981-12-01

    used at the Naval Postgraduate School in an attempt to obtain this type of data. They are: 1. High speed cinematography of burning propellant strands in...techniques vice conventional photography. Utilization of the holographic procedure results in a film plate which has recorded on it both the phase and...AGFA-GEVAERT 8E75 HD film plate is mounted on a kinematic plate holder near the focal plane of a pair of plano convex lenses. This device serves to

  10. Geometric Analogue of Holographic Reduced Representation

    OpenAIRE

    Aerts, Diederik; Czachor, Marek; De Moor, Bart

    2007-01-01

    Holographic reduced representations (HRR) are based on superpositions of convolution-bound $n$-tuples, but the $n$-tuples cannot be regarded as vectors since the formalism is basis dependent. This is why HRR cannot be associated with geometric structures. Replacing convolutions by geometric products one arrives at reduced representations analogous to HRR but interpretable in terms of geometry. Variable bindings occurring in both HRR and its geometric analogue mathematically correspond to two ...

  11. Magnonic holographic imaging of magnetic microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, D.; Chiang, H.; Bhowmick, T.; Volodchenkov, A.D.; Ranjbar, M.; Liu, G.; Jiang, C.; Warren, C. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khivintsev, Y.; Filimonov, Y. [Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Saratov Branch, Saratov 410019 (Russian Federation); Saratov State University, Saratov 410012 (Russian Federation); Garay, J.; Lake, R.; Balandin, A.A. [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States); Khitun, A., E-mail: akhitun@engr.ucr.edu [Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA 92521 (United States)

    2017-04-15

    We propose and demonstrate a technique for magnetic microstructure imaging via their interaction with propagating spin waves. In this approach, the object of interest is placed on top of a magnetic testbed made of material with low spin wave damping. There are micro-antennas incorporated in the testbed. Two of these antennas are used for spin wave excitation while another one is used for the detecting of inductive voltage produced by the interfering spin waves. The measurements are repeated for different phase differences between the spin wave generating antennas which is equivalent to changing the angle of illumination. The collected data appear as a 3D plot – the holographic image of the object. We present experimental data showing magnonic holographic images of a low-coercivity Si/Co sample, a high-coercivity sample made of SrFe{sub 12}O{sub 19} and a diamagnetic copper sample. We also present images of the three samples consisting of a different amount of SrFe{sub 12}O{sub 19} powder. The imaging was accomplished on a Y{sub 3}Fe{sub 2}(FeO{sub 4}){sub 3} testbed at room temperature. The obtained data reveal the unique magnonic signatures of the objects. Experimental data is complemented by the results of numerical modeling, which qualitatively explain the characteristic features of the images. Potentially, magnonic holographic imaging may complement existing techniques and be utilized for non-destructive in-situ magnetic object characterization. The fundamental physical limits of this approach are also discussed. - Highlights: • A technique for magnetic microstructure imaging via their interaction with propagating spin waves is proposed. • In this technique, magnetic structures appear as 3D objects. • Several holographic images of magnetic microstructures are presented.

  12. Prehistory of holographic art: a personal view

    Science.gov (United States)

    Benyon, Margaret

    1998-02-01

    The history of art contains works by artists that may be seen as `holographic' in their aesthetic, philosophic and formal implications. This paper briefly explores some of these parallels, chosen for their interest as preholographic images. Examples are taken from works of Eastern and Western visionary art, works by individual artists such as Rembrandt and Marcel Duchamp, and from early 20th century art movements.

  13. Fourier RGB synthetic aperture color holographic capture for wide angle holographic display

    Science.gov (United States)

    Gołoś, Anna; Zaperty, Weronika; Finke, Grzegorz; Makowski, Piotr; Kozacki, Tomasz

    2016-09-01

    In this work we present a high pixel count color holographic registration system that is designed to provide 3D holographic content of real-world large objects. Captured data is dedicated for holographic displays with a wide-viewing angle. The registration in color is realized by means of sequential recording with the use of three RGB laser light sources. The applied Fourier configuration of capture system gives large viewing angle and an optimal coverage of the detector resolution. Moreover, it enables to filter out zero order and twin image. In this work the captured Fourier holograms are transformed to general Fresnel type that is more suitable for 3D holographic displays. High resolution and large pixel count of holographic data and its spatial continuity is achieved through synthetic aperture concept with camera scanning and subpixel correlation based stitching. This grants an access to many tools of numerical hologram processing e.g. continuous viewing angle adjustment, and control of 3D image position and size. In this paper the properties of 1D synthetic aperture (60000 x 2500 pixels) are investigated. Each of the RGB 1D SA holograms is composed of 71 frames, which after stitching result in approx. 150 Megapixel hologram pixel count and 12° angular field of view. In experimental part high quality numerical reconstructions for each type of the hologram are shown. Moreover, the captured holograms are used for generation of hybrid hologram that is assembled from a set of RGB holograms of different color statues of height below 20 cm. In the final experiment this hybrid hologram as well as RGB hologram of a single object are reconstructed in the color holographic display.

  14. M theory as a holographic field theory

    Science.gov (United States)

    Hořava, Petr

    1999-02-01

    We suggest that M theory could be nonperturbatively equivalent to a local quantum field theory. More precisely, we present a ``renormalizable'' gauge theory in eleven dimensions, and show that it exhibits various properties expected of quantum M theory, most notably the holographic principle of 't Hooft and Susskind. The theory also satisfies Mach's principle: A macroscopically large space-time (and the inertia of low-energy excitations) is generated by a large number of ``partons'' in the microscopic theory. We argue that at low energies in large eleven dimensions, the theory should be effectively described by eleven-dimensional supergravity. This effective description breaks down at much lower energies than naively expected, precisely when the system saturates the Bekenstein bound on energy density. We show that the number of partons scales like the area of the surface surrounding the system, and discuss how this holographic reduction of degrees of freedom affects the cosmological constant problem. We propose the holographic field theory as a candidate for a covariant, nonperturbative formulation of quantum M theory.

  15. Drawing Lines with Light in Holographic Space

    Science.gov (United States)

    Chang, Yin-Ren; Richardson, Martin

    2013-02-01

    This paper explores the dynamic and expressive possibilities of holographic art through a comparison of art history and technical media such as photography, film and holographic technologies. Examples of modern art and creative expression of time and motions are examined using the early 20th century art movement, Cubism, where subjects are portrayed to be seen simultaneously from different angles. Folding space is represented as subject matter as it can depict space from multiple points of time. The paper also investigates the way holographic art has explored time and space. The lenticular lens-based media reveal a more subjective poetic art in the form of the lyrical images and messages as spectators pass through time, or walk along with the piece of work through an interactive process. It is argued that photographic practice is another example of artistic representation in the form of aesthetic medium of time movement and as such shares a common ground with other dynamic expression that require time based interaction.

  16. Holographic Hall conductivities from dyonic backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Jonathan [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Papadimitriou, Ioannis [SISSA and INFN - Sezione di Trieste,Via Bonomea 265, I 34136 Trieste (Italy); Taliotis, Anastasios; Vanhoof, Joris [Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-07-20

    We develop a general framework for computing the holographic 2-point functions and the corresponding conductivities in asymptotically locally AdS backgrounds with an electric charge density, a constant magentic field, and possibly non-trivial scalar profiles, for a broad class of Einstein-Maxwell-Axion-Dilaton theories, including certain Chern-Simons terms. Holographic renormalization is carried out for any theory in this class and the computation of the renormalized AC conductivities at zero spatial momentum is reduced to solving a single decoupled first order Riccati equation. Moreover, we develop a first order fake supergravity formulalism for dyonic renormalization group flows in four dimensions, allowing us to construct analytically infinite families of such backgrounds by specifying a superpotential at will. These RG flows interpolate between AdS{sub 4} in the UV and a hyperscaling violating Lifshitz geometry in the IR with exponents 1holographic 1- and 2-point functions and the corresponding transport coefficients in any dyonic background, both in the context of AdS/CMT and AdS/QCD.

  17. Holographic Video Disc And Laser Scanning Optics.

    Science.gov (United States)

    Weingartner, I.; Rosenbruch, K. J.

    1983-10-01

    Holographic optical elements or systems of holographic elements may replace glass optical imaging systems or may be used for the correction of glass optics. The main advantages of such systems are their low weight, small and compact construction, and their simple and inexpensive manufacture. The disadvantages to be overcome are mainly the low light through-put and chromatic aberrations. In the special case of optics for video discs we present an optical imaging system which is capable of giving the required high resolution for illumination with polychromatic radiation of limited bandwidth in the case of semiconductor laser diodes. Optimization programs based on ray tracing yield highly corrected imaging systems by comparably simple holographic means. The use of only two surfaces gives very compact and lightweight systems, the image quality of which is described for monochromatic and polychro-matic irradiance by means of optical transfer functions. The holograms are recorded on photo-resist material with short wavelength laser radiation. Such holograms have almost no scatter light and do not alter their properties with time or under radiation. These holograms generate wavefronts for the correction of aberrations which, in the case of glass optics, could only be achieved by aspherical surfaces.

  18. Holographic coherent states from random tensor networks

    Science.gov (United States)

    Qi, Xiao-Liang; Yang, Zhao; You, Yi-Zhuang

    2017-08-01

    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We setup a framework in which all possible bulk spatial geometries, characterized by weighted adjacient matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded in this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.

  19. Holographic renormalization as a canonical transformation

    CERN Document Server

    Papadimitriou, Ioannis

    2010-01-01

    The gauge/string dualities have drawn attention to a class of variational problems on a boundary at infinity, which are not well defined unless a certain boundary term is added to the classical action. In the context of supergravity in asymptotically AdS spaces these problems are systematically addressed by the method of holographic renormalization. We argue that this class of a priori ill defined variational problems extends far beyond the realm of holographic dualities. As we show, exactly the same issues arise in gravity in non asymptotically AdS spaces, in point particles with certain unbounded from below potentials, and even fundamental strings in flat or AdS backgrounds. We show that the variational problem in all such cases can be made well defined by the following procedure, which is intrinsic to the system in question and does not rely on the existence of a holographically dual theory: (i) The first step is the construction of the space of the most general asymptotic solutions of the classical equati...

  20. 14 CFR 23.745 - Nose/tail wheel steering.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nose/tail wheel steering. 23.745 Section 23.745 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.745 Nose/tail wheel steering. (a) If nose/tail wheel steering is installed, it must be...

  1. Speed choice and steering behavior in curve driving

    NARCIS (Netherlands)

    Winsum, W. van; Godthelp, J.

    1996-01-01

    The relation between speed choice and steering performance during curve negotiation was studied in a driving simulator. The hypothesis was that curve radius and steering competence both affect steering error during curve driving, resulting in compensatory speed choice. In this, the control of safety

  2. Speed choice and steering behavior in curve driving

    NARCIS (Netherlands)

    van Winsum, W.; Godthelp, J

    The relation between speed choice and steering performance during curve negotiation was studied in a driving simulator. The hypothesis was that curve radius and steering competence both affect steering error during curve driving, resulting in compensatory speed choice. In this, the control of safety

  3. 46 CFR 167.65-25 - Steering gear tests.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear tests. 167.65-25 Section 167.65-25... SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the entire steering gear, the whistle, the means of...

  4. 46 CFR 61.20-1 - Steering gear.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steering gear. 61.20-1 Section 61.20-1 Shipping COAST... Periodic Tests of Machinery and Equipment § 61.20-1 Steering gear. (a) The marine inspector must inspect the steering gear at each inspection for certification for vessels whose Certificate of Inspections...

  5. Biogas production from steer manures in Vietnam

    DEFF Research Database (Denmark)

    Pham, Cuong H.; Saggar, Surinder; Vu, Cuong C.

    2017-01-01

    In developing countries, the simple biogas digesters installed underground without heating or stirring are seen as a 'green' technology to convert animal waste into biogas, a source of bio-energy. However, quantitative estimates of biogas production of manures from steers fed local feed diets...

  6. Governing Knowledge: Research Steering and Research Quality

    Science.gov (United States)

    Ozga, Jenny

    2008-01-01

    This article argues that the "quality" debate in education research is not so much about quality as about creating the conditions in which research and knowledge production in the field of education can be managed and steered. The criticisms of research in education have destabilised the field and promoted its closer dependence on and…

  7. Steered wheel for the support and/or steering of a vehicle, particularly hovercraft

    Energy Technology Data Exchange (ETDEWEB)

    Duell, H.J.; Kirchner, G.

    1977-04-07

    The invention concerns a steered wheel for the support or steering of a hovercraft, whose wheel suspension is provided with an eccentric journal for automatic setting in the direction of travel. So that the vehicle will not leave its track during changes of direction when the wheel is turned around the eccentric axis, according to the invention the wheel is supported on movable bearings at the journal in the direction of the driving axle.

  8. RESEARCH OF THE FORKLIFT POWER-ASSISTED STEERING SYSTEM BASED ON SAFETY STEERING SPEED CONTROL

    OpenAIRE

    He, Yan; Xiao, Benxian

    2015-01-01

    Enhancing the safety of forklift power-assisted steering system is a problem urgently to be solved in practice. First of all, forklift power-assisted steering system model is established according to Lagrange dynamical equations, and three variable assistance characteristics curve fitted for reach trucks is designed combined with fuzzy control algorithm. Then sliding mode variable-structure control method based on motor current control is used tracking the target current and making contrast w...

  9. Holographic bounds on the UV cutoff scale in inflationary cosmology

    DEFF Research Database (Denmark)

    Keski-Vakkuri, Esko; Sloth, Martin Snoager

    2003-01-01

    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating the e...

  10. Holographic renormalization of 3D minimal massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Qaemmaqami, Mohammad M.; Naseh, Ali [School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Shirzad, Ahmad [Department of Physics, Isfahan University of Technology,P.O.Box 84156-83111, Isfahan (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-19

    We study holographic renormalization of 3D minimal massive gravity using the Chern-Simons-like formulation of the model. We explicitly present Gibbons- Hawking term as well as all counterterms needed to make the action finite in terms of dreibein and spin-connection. This can be used to find correlation functions of stress tensor of holographic dual field theory.

  11. Reusable holographic velocimetry system based on polarization multiplexing in Bacteriorhodopsin

    NARCIS (Netherlands)

    Koek, W.D.; Chan, V.S.S.; Ooms, T.A.; Bhattacharya, N.; Westerweel, J.; Braat, J.J.M.

    2005-01-01

    We present a novel holographic particle image velocimetry (HPIV) system using a reversible holographic material as the recording medium. In HPIV the three-dimensional flow field throughout a volume is detected by adding small tracer particles to a normally transparent medium. By recording the

  12. Observation Properties Analysis of Geo-SAR with Attitude Steering

    Directory of Open Access Journals (Sweden)

    Tian Yu-run

    2014-02-01

    Full Text Available Attitude Steering has been widely applied to the current low orbit SAR system to decrease the rang/azimuth coupling of the received data. This paper focuses on the impacts of attitude steering to the observation properties of Geo-SAR, namely, Doppler parameters, range swath, and rang cell migration effect, and a comparisonbetween 3 different ways of attitude steering is made. Based on the simulation results, the necessity of attitude steering for Geo-SAR is validated, and for Geo-SAR on elliptical orbit, 2D attitude steering is the most effective.

  13. Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications

    Directory of Open Access Journals (Sweden)

    Y. J. Liu

    2008-01-01

    Full Text Available By combining polymer-dispersed liquid crystal (PDLC and holography, holographic PDLC (H-PDLC has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.

  14. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  15. Development of laser materials processing and laser metrology techniques. The measurement method of small deformation by using holographic interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Jun; Moon, Sang Jun; Choi, Jang Sub; Bae, Kang Sik; Park, Jung Hwan [Junpook National University, Kwangju (Korea, Republic of); Na, Uey Kyun [Kunsan University, Kunsan (Korea, Republic of)

    1995-08-01

    Conventional inspection methods using ultrasonic wave or x-ray, eddy current for non-destructive testing in nuclear power plants have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money and manpower. And the area to be inspected is limited by the location of probe or film. These difficulties make the inspection a time-consuming work. We propose a noncontact optical defect detection method using the real time holographic interferometry. This method has an advantage that the inspection can be performed at a time for relatively wide area which illuminated by the laser beam, a coherent light source and can help an inspector to recognize not only defects but also the high stressed areas. The goal of this project is the investigation of the method which can inspect pressure vessels in which defects existed with the holographic interferometry. summarized. (author). 20 refs.

  16. How relativistic motion affects Einstein-Podolsky-Rosen steering

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Ye, Liu

    2017-09-01

    In this letter, the dynamic behavior of Einstein-Podolsky-Rosen (EPR) steering and the redistribution of EPR steering under a relativistic framework are investigated. Specifically, we explore the scenario that particle A held by Alice is in a flat space-time and another particle B held by Bob entangled with A is in a non-inertial framework. The results show that EPR steering from Alice to Bob is dramatically destroyed by the Unruh effect caused by the acceleration of Bob. Besides, EPR steering possess asymmetry, and EPR steering asymmetry increases with growing intensity of the Unruh effect, implying that the Unruh effect can bring about EPR steering asymmetry. Furthermore, the reduced physically accessible EPR steering from Alice to Bob is distributed to the physically inaccessible EPR steering (from Alice to anti-Bob or from Bob to anti-Bob). Notably, unlike entanglement and quantum discord, only one of the EPR steering from Alice to anti-Bob and Bob to anti-Bob experiences a sudden birth with increase in the acceleration parameter, which means that they cannot simultaneously survive. That is, the monogamous relationship of EPR steering is still tenable in such a scenario. Consequently, we believe that EPR steering could also serve as an important information resource within long-distance quantum secure communication under the relativistic framework.

  17. Active disturbance rejection control in steering by wire haptic systems.

    Science.gov (United States)

    Rodriguez-Angeles, A; Garcia-Antonio, J A

    2014-07-01

    This paper introduces a steering by wired haptic system based on disturbance rejection control techniques. High gain Generalized Proportional Integral (GPI) observers are considered for the estimation of tire and steering wheel dynamic disturbances. These disturbances are on line canceled to ensure tracking between the commanded steering wheel angle and the tire orientation angle. The estimated disturbances at the steering rack are feedback to the steering wheel to provide a haptic interface with the driver. The overall system behaves as a bilateral master-slave system. Very few sensors and minimum knowledge of the dynamic model are required. Experimental results are presented on a prototype platform that consists on: (1) half of the steering rack of a beetle VW vehicle, (2) a steering wheel. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Method of Controlling Steering of a Ground Vehicle

    Science.gov (United States)

    Dawson, Andrew D. (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor)

    2016-01-01

    A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.

  19. Iterative signal separation based multiple phase estimation in digital holographic interferometry.

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2015-10-05

    We propose a new method for signal separation from a multicomponent interference field recorded in a digital holographic interferometry setup. The setup consisting of multiple object illuminating beams results in an interference field containing multiple signal components. The proposed method utilizes an amplitude discrimination criteria established by setting different intensities to the object illuminating beams in order to separate the signal components iteratively. The signal separation is performed in a small block of the interference field at a time. The augmentation of the block matrix with its own rows and columns is performed which has an effect of noise subspace inflation. This operation offers an improved noise robustness to the signal separation capability of the proposed method. The simulation and experimental results are provided to substantiate the applicability of the proposed method in multidimensional deformation measurement.

  20. Mueller imaging polarimetry of holographic polarization gratings inscribed in azopolymer films.

    Science.gov (United States)

    Martinez-Ponce, Geminiano

    2016-09-19

    Three types of polarization gratings have been recorded in azopolymer films by the symmetrical superposition of different orthogonal pairs of polarized beams. The inscribed holographic elements have been analyzed microscopically in a Mueller polarimeter in order to image the optical anisotropies photoinduced in the film. In the most of cases, the spatial modulation of diattenuation, birefringence, and optical rotation reproduced quite well previous results reported in the literature. Nevertheless, in the particular case of coherent superposition of p- and s-polarized beams, the spatial frequency for optical rotation (related to the Stokes parameter V) was different from the one observed in linear anisotropy (related to the Stokes parameter U). It is shown by theory and experiment that, in the polarized field used to record this polarization grating, the fourth-Stokes parameter changes sign, which implies a change in circular polarization handedness, practically once between two adjacent maxima.

  1. Compact Holographic Projection Display Using Liquid-Crystal-on-Silicon Spatial Light Modulator

    Science.gov (United States)

    Hsu, Wei-Feng; Weng, Ming-Hong

    2016-01-01

    This paper presents a holographic projection display in which a phase-only spatial light modulator (SLM) performs three functions: beam shaping, image display, and speckle reduction. The functions of beam shaping and image display are performed by dividing the SLM window into four sub-windows loaded with different diffractive phase elements (DPEs). The DPEs are calculated using a modified iterative Fourier transform algorithm (IFTA). The function of speckle reduction is performed using temporal integration of display images containing speckles. The speckle contrast ratio of the display image is 0.39 due to the integration of eight speckled images. The system can be extended to display full-color images also by using temporal addition of elementary color images. Because the system configuration needs only an SLM, a Fourier transform lens, and two mirrors, the system volume is very small, becoming a potential candidate for micro projectors. PMID:28773889

  2. Multiplexing storage using angular variation in a transmission holographic polymer dispersed liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Jung, Yeon-Gil, E-mail: jungyg@changwon.ac.kr

    2015-12-01

    Simultaneous angular multiplexing of transmission gratings in a holographic polymer dispersed liquid crystal (HPDLC) film as a function of resin and film compositions, irradiation intensity, and cell thickness has been studied by exposing the material to three coherent laser beams. It was found that the diffraction efficiency monotonically increases with irradiation intensity and cell gap, whereas a maximum of 43% is obtained at specific compositions of trimethylolpropane triacrylate (TMPTA)/N-vinylpyrrolidone (NVP) = 8/1 and polymer/LC = 65/35. The multiplexed gratings have been captured using SEM imaging and the reconstructed images using a charge-coupled device camera, showing successful reconstructed images of gratings. - Highlights: • Multiplex images were well recorded using simultaneous angular method. • The periodic structures of the LC and polymer regions were well prepared. • The angular selectivity was variable nevertheless fabrication by three beams. • The images were successfully reconstructed in gratings of same spot.

  3. Polarization-Independent Electrically Tunable Holographic Polymer Dispersed Liquid Crystals Grating Doped with Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Hui LI

    2017-08-01

    Full Text Available This study proposes a holographic grating made of polymer dispersed liquid crystal (PDLC, with a small amount of chiral molecules doped into PDLC material. The major advantage of this grating is that it is independent of light polarization. This characteristic was verified by applying the interference beam intensity of a He-Cd laser at 150 mW/cm2, with an incidence angle between the two interference beams of 24°, for an irradiation curing duration of 120 s. The observed periodic structure of the grating is consistent with the theoretical value. As chiral molecules are doped, nematic-LC experiences a phase-change in the grating. However, the electro-optical features are only slightly affected. This proposed grating has greatly potential in 3D imaging because of its polarization-independent feature.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16312

  4. Compact Holographic Projection Display Using Liquid-Crystal-on-Silicon Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Wei-Feng Hsu

    2016-09-01

    Full Text Available This paper presents a holographic projection display in which a phase-only spatial light modulator (SLM performs three functions: beam shaping, image display, and speckle reduction. The functions of beam shaping and image display are performed by dividing the SLM window into four sub-windows loaded with different diffractive phase elements (DPEs. The DPEs are calculated using a modified iterative Fourier transform algorithm (IFTA. The function of speckle reduction is performed using temporal integration of display images containing speckles. The speckle contrast ratio of the display image is 0.39 due to the integration of eight speckled images. The system can be extended to display full-color images also by using temporal addition of elementary color images. Because the system configuration needs only an SLM, a Fourier transform lens, and two mirrors, the system volume is very small, becoming a potential candidate for micro projectors.

  5. Bessel beams with spatial oscillating polarization

    Science.gov (United States)

    Fu, Shiyao; Zhang, Shikun; Gao, Chunqing

    2016-01-01

    Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174

  6. Improving sensitivity of photorefractive polymer composites for holographic display applications

    Science.gov (United States)

    Christenson, Cory W.

    This work presents recent progress in the area of organic photorefractive polymer composites. These materials have been previously shown to be a suitable medium for dynamic holographic displays, with multiple colors and single frame writing times on the order of seconds. However, these materials still require large electric fields and high intensity lasers to function effectively. Recent advancements in improving these areas are discussed, including a review of the history and state-of-the-art in photorefractive polymer composites. The addition of electron traps via low loading of the electron-transporting molecule Alq3 is shown to dramatically improve the diffraction efficiency and reduce the required field. The grating formation also proceeds faster by more than one order of magnitude, leading to an increase in sensitivity by a factor of 3. The dynamics of these materials also show evidence of competing gratings indicative of bipolar charge transport and trapping. The addition of an amorphous polycarbonate (APC) buffer layer is reported to have a similar effect on the steady-state diffraction efficiency, and the further doping with a fullerene derivative (PCBM) allows a 3x increase in the efficiency in the reflection geometry, which is normally poor due to the small grating spacing. These composites reveal the fundamental limits of the reflection geometry, based on the physics of high frequency gratings. A reversal in the direction and increase in the magnitude of the two-beam coupling energy transfer is also observed. The use of interdigitated coplanar electrodes, instead of the standard uniform electrodes in a parallel-plate geometry, is shown to result in large diffraction efficiency with symmetric writing beams due to the increased projection field. The efficiency is similar to that achieved in the standard samples with large slant angles and much better than those geometries typically used in applications, with the benefit that the writing beams do not have

  7. Conditional steering under the von Neumann scenario

    Science.gov (United States)

    Mukherjee, Kaushiki; Paul, Biswajit; Karmakar, Sumana; Sarkar, Debasis; Mukherjee, Amit; Bhattacharya, Some Sankar; Roy, Arup

    2017-08-01

    In Phys. Lett. A 166, 293 (1992), 10.1016/0375-9601(92)90711-T, Popescu and Rohrlich characterized nonlocality of pure n -partite entangled systems by studying bipartite violation of local realism when n -2 number of parties perform projective measurements on their particles. A pertinent question in this scenario is whether similar characterization is possible for n -partite mixed entangled states also. In the present work we have followed an analogous approach so as to explore whether given a tripartite mixed entangled state the conditional bipartite states obtained by performing projective measurement on the third party demonstrate a weaker form of nonlocality, quantum steering. We also compare this phenomenon of conditional steering with existing notions of tripartite correlations.

  8. Most incompatible measurements for robust steering tests

    Science.gov (United States)

    Bavaresco, Jessica; Quintino, Marco Túlio; Guerini, Leonardo; Maciel, Thiago O.; Cavalcanti, Daniel; Cunha, Marcelo Terra

    2017-08-01

    We address the problem of characterizing the steerability of quantum states under restrictive measurement scenarios, i.e., the problem of determining whether a quantum state can demonstrate steering when subjected to N measurements of k outcomes. We consider the cases of either general positive operator-valued measures (POVMs) or specific kinds of measurements (e.g., projective or symmetric). We propose general methods to calculate lower and upper bounds for the white-noise robustness of a d -dimensional quantum state under different measurement scenarios that are also applicable to the study of the noise robustness of the incompatibility of sets of unknown qudit measurements. We show that some mutually unbiased bases, symmetric informationally complete measurements, and other symmetric choices of measurements are not optimal for steering the isotropic states and provide candidates for the most incompatible sets of measurements in each case. Finally, we provide numerical evidence that nonprojective POVMs do not improve over projective ones for this task.

  9. Encoding pitch contours using current steering

    OpenAIRE

    Luo, Xin; Landsberger, David M.; Padilla, Monica; Srinivasan, Arthi G.

    2010-01-01

    This study investigated cochlear implant (CI) users’ ability to perceive pitch cues from time-varying virtual channels (VCs) to identify pitch contours. Seven CI users were tested on apical, medial, and basal electrode pairs with stimulus durations from 100 to 1000 ms. In one stimulus set, 9 pitch contours were created by steering current between the component electrodes and the VC halfway between the electrodes. Another stimulus set only contained 3 pitch contours (flat, falling, and rising)...

  10. Single beam write and/or replay of spatial heterodyne holograms

    Science.gov (United States)

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  11. A simple holographic scenario for gapped quenches

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Esperanza; Bosch, Guillermo Milans del [Instituto de Física Teórica IFT UAM/CSIC, Universidad Autónoma de Madrid,28049 Cantoblanco, Madrid (Spain)

    2017-02-24

    We construct gravitational backgrounds dual to a family of field theories parameterized by a relevant coupling. They combine a non-trivial scalar field profile with a naked singularity. The naked singularity is necessary to preserve Lorentz invariance along the boundary directions. The singularity is however excised by introducing an infrared cutoff in the geometry. The holographic dictionary associated to the infrared boundary is developed. We implement quenches between two different values of the coupling. This requires considering time dependent boundary conditions for the scalar field both at the AdS boundary and the infrared wall.

  12. Persistent superconductor currents in holographic lattices.

    Science.gov (United States)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-07-04

    We consider a persistent superconductor current along the direction with no translational symmetry in a holographic gravity model. Incorporating a lattice structure into the model, we numerically construct novel solutions of hairy charged stationary black branes with momentum or rotation along the latticed direction. The lattice structure prevents the horizon from rotating, and the total momentum is only carried by matter fields outside the black brane horizon. This is consistent with the black hole rigidity theorem, and it suggests that in dual field theory with lattices, superconductor currents are made up of "composite" fields, rather than "fractionalized" degrees of freedom. We also show that our solutions are consistent with the superfluid hydrodynamics.

  13. Holographic collisions in non-conformal theories

    Science.gov (United States)

    Attems, Maximilian; Casalderrey-Solana, Jorge; Mateos, David; Santos-Oliván, Daniel; Sopuerta, Carlos F.; Triana, Miquel; Zilhão, Miguel

    2017-01-01

    We numerically simulate gravitational shock wave collisions in a holographic model dual to a non-conformal four-dimensional gauge theory. We find two novel effects associated to the non-zero bulk viscosity of the resulting plasma. First, the hydrodynamization time increases. Second, if the bulk viscosity is large enough then the plasma becomes well described by hydrodynamics before the energy density and the average pressure begin to obey the equilibrium equation of state. We discuss implications for the quark-gluon plasma created in heavy ion collision experiments.

  14. Holographic Lattices Give the Graviton a Mass

    CERN Document Server

    Blake, Mike; Vegh, David

    2014-01-01

    We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.

  15. Holographic Quark Matter and Neutron Stars.

    Science.gov (United States)

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  16. Heavy quarkonium in a holographic basis

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-07-01

    Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.

  17. Imperfection Tolerances For On-line Dipsersion Free Steering in the Main LINAC of CLIC

    CERN Document Server

    Pfingstner, J; Schulte, D

    2013-01-01

    Long-term ground motion misaligns the elements of the main linac of CLIC over time. Especially the misaligned quadrupoles create dispersion and hence the beam quality is decreased gradually due to an effect called chromatic dilution. Over longer time periods, orbit feedback systems are not capable to fully recover the beam quality and have to be supplemented by dispersion correction algorithms. In this paper, such and dispersion correction algorithm is presented, which is an extended version of the well-known dispersion free steering algorithm. This extended algorithm can recover the beam quality over long time scaled without stopping the accelerator operation (on-line). Tolerances for different imperfections of the system have been identified and a strong sensitivity to the resolution of the wake field monitors of the main linac accelerating structures has been identified. This problem can be mitigated by using a local excitation scheme as will be shown in this work.

  18. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  19. The Volume Holographic Optical Storage Potential in Azobenzene Containing Polymers

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Sanchez, Carlos; Alcalá, Rafael

    2009-01-01

    to be suitable for holographic storage applications. However, they still present several problems, mainly those related with light sensitivity, response time and stability of the stored information. In this article we review the work performed on volume holographic storage using azobenzene containing polymers......Volume holographic data storage is one of the most promising techniques to improve both the storage capacity of devices and the transfer data rate. Among the materials proposed as storage data media, azobenzene containing polymers have received much attention. Some of their properties seem...

  20. Volume holographic storage in photorefractives: material peculiarities and memory performances

    Science.gov (United States)

    Tao, Shiquan

    1998-08-01

    In this paper we review the currently achievable performances of holographic memories stored in photorefractive crystals. We discuss the dependence of the memory performances on the material peculiarities in three major aspects: storage capacity, data transfer rate,and image fidelity. In the recent years the research at Beijing Polytechnic University on the photorefractive holographic storage has been focused to the optimization of the storage capacity and diffraction efficiency, as well as the influence of noises on the fidelity of reconstructed images. Our research shows again that the realization of volume holographic storage technology requests materials with perfect properties.

  1. Inflation via logarithmic entropy-corrected holographic dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F.; Felegary, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Setare, M.R. [University of Kurdistan, Department of Science, Bijar (Iran, Islamic Republic of)

    2016-12-15

    We study the inflation in terms of the logarithmic entropy-corrected holographic dark energy (LECHDE) model with future event horizon, particle horizon, and Hubble horizon cut-offs, and we compare the results with those obtained in the study of inflation by the holographic dark energy HDE model. In comparison, the spectrum of primordial scalar power spectrum in the LECHDE model becomes redder than the spectrum in the HDE model. Moreover, the consistency with the observational data in the LECHDE model of inflation constrains the reheating temperature and Hubble parameter by one parameter of holographic dark energy and two new parameters of logarithmic corrections. (orig.)

  2. Lifshitz holographic superconductor in Hořava–Lifshitz gravity

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cheng-Jian, E-mail: rocengeng@hotmail.com [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Kuang, Xiao-Mei, E-mail: xmeikuang@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2016-08-10

    We study the holographic phase transition of superconductor dual to a Lifshitz black brane probed by an anisotropic scalar field in the probe limit in Hořava–Lifshitz gravity. With the use of numerical and analytical method, we investigate how the critical temperature of the condensation is affected by the Lifshitz exponent z, α-correction term in the action as well as the dimensions of the gravity. We also numerically explore the condensation of the dual operator and optical conductivity of the holographic system. Various interesting properties of the holographic condensation affected by the parameters of model are discussed.

  3. Solitonic approach to holographic nuclear physics

    Science.gov (United States)

    Baldino, Salvatore; Bolognesi, Stefano; Gudnason, Sven Bjarke; Koksal, Deniz

    2017-08-01

    We discuss nuclear physics in the Sakai-Sugimoto model in the limit of a large number Nc of colors and large 't Hooft coupling λ . In this limit the individual baryons are described by classical solitons whose size is much smaller than the typical distance at which they settle in a nuclear bound state. We can thus use the linear approximation outside the instanton cores to compute the interaction potential. We find the classical geometry of nuclear bound states for baryon number up to 8. One of the interesting features that we find is that holographic nuclear physics provides a natural description for lightly bound states when λ is large. For the case of two nuclei, we also find the topology and metric of the manifold of zero modes and, quantizing it, we find that the ground state can be identified with the deuteron state. We discuss the relations with other methods in the literature used to study Skyrmions and holographic nuclear physics. We discuss 1 /Nc and 1 /λ corrections and the challenges to overcome to reach the phenomenological values to fit with real QCD.

  4. Holographic superconductor on a novel insulator

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Wu, Meng-He

    2018-01-01

    We construct a holographic superconductor model, based on a gravity theory, which exhibits novel metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity. This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high {T}{{c}} cuprates. We expect that this work can shed light on understanding the mechanism of high {T}{{c}} superconductivity from the holographic side. Supported by Natural Science Foundation of China (11575195, 11775036, 11305018), Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by Natural Science Foundation of Liaoning Province (201602013)

  5. S -duality for holographic p -wave superconductors

    Science.gov (United States)

    Gorsky, Alexander; Gubankova, Elena; Meyer, René; Zayakin, Andrey

    2017-11-01

    We consider the generalization of the S -duality transformation previously investigated in the context of the fractional quantum Hall effect (FQHE) and s -wave superconductivity to p -wave superconductivity in 2 +1 dimensions in the framework of the AdS /CFT correspondence. The vector Cooper condensate transforms under the S -duality action to the pseudovector condensate at the dual side. The 3 +1 -dimensional Einstein-Yang-Mills theory, the holographic dual to p -wave superconductivity, is used to investigate the S -duality action via the AdS /CFT correspondence. It is shown that, in order to implement the duality transformation, chemical potentials on both the electric and magnetic sides of the duality have to be introduced. A relation for the product of the non-Abelian conductivities in the dual models is derived. We also conjecture a flavor S -duality transformation in the holographic dual to 3 +1 -dimensional QCD low-energy QCD with non-Abelian flavor gauge groups. The conjectured S -duality interchanges isospin and baryonic chemical potentials.

  6. Holographic Dynamics from Multiscale Entanglement Renormalization Ansatz

    CERN Document Server

    Chua, Victor; Tiwari, Apoorv; Ryu, Shinsei

    2016-01-01

    The Multiscale Entanglement Renormalization Ansatz (MERA) is a tensor network based variational ansatz that is capable of capturing many of the key physical properties of strongly correlated ground states such as criticality and topological order. MERA also shares many deep relationships with the AdS/CFT (gauge-gravity) correspondence by realizing a UV complete holographic duality within the tensor networks framework. Motivated by this, we have re-purposed the MERA tensor network as an analysis tool to study the real-time evolution of the 1D transverse Ising model in its low energy excited state sector. We performed this analysis by allowing the ancilla qubits of the MERA tensor network to acquire quantum fluctuations, which yields a unitary transform between the physical (boundary) and ancilla qubit (bulk) Hilbert spaces. This then defines a reversible quantum circuit which is used as a `holographic transform' to study excited states and their real-time dynamics from the point of the bulk ancillae. In the ga...

  7. The holographic dual of the Penrose transform

    Science.gov (United States)

    Neiman, Yasha

    2018-01-01

    We consider the holographic duality between type-A higher-spin gravity in AdS4 and the free U( N) vector model. In the bulk, linearized solutions can be translated into twistor functions via the Penrose transform. We propose a holographic dual to this transform, which translates between twistor functions and CFT sources and operators. We present a twistorial expression for the partition function, which makes global higher-spin symmetry manifest, and appears to automatically include all necessary contact terms. In this picture, twistor space provides a fully nonlocal, gauge-invariant description underlying both bulk and boundary spacetime pictures. While the bulk theory is handled at the linear level, our formula for the partition function includes the effects of bulk interactions. Thus, the CFT is used to solve the bulk, with twistors as a language common to both. A key ingredient in our result is the study of ordinary spacetime symmetries within the fundamental representation of higher-spin algebra. The object that makes these "square root" spacetime symmetries manifest becomes the kernel of our boundary/twistor transform, while the original Penrose transform is identified as a "square root" of CPT.

  8. Random holographic "large worlds" with emergent dimensions

    Science.gov (United States)

    Trugenberger, Carlo A.

    2016-11-01

    I propose a random network model governed by a Gaussian weight corresponding to Ising link antiferromagnetism as a model for emergent quantum space-time. In this model, discrete space is fundamental, not a regularization; its spectral dimension ds is not a model input but is, rather, completely determined by the antiferromagnetic coupling constant. Perturbative terms suppressing triangles and favoring squares lead to locally Euclidean ground states that are Ricci flat "large worlds" with power-law extension. I then consider the quenched graphs of lowest energy for ds=2 and ds=3 , and I show how quenching leads to the spontaneous emergence of embedding spaces of Hausdorff dimension dH=4 and dH=5 , respectively. One of the additional, spontaneous dimensions can be interpreted as time, causality being an emergent property that arises in the large N limit (with N the number of vertices). For ds=2 , the quenched graphs constitute a discrete version of a 5D-space-filling surface with a number of fundamental degrees of freedom scaling like N2 /5, a graph version of the holographic principle. These holographic degrees of freedom can be identified with the squares of the quenched graphs, which, being triangle-free, are the fundamental area (or loop) quanta.

  9. Archiving Saudi heritage using the holographic medium

    Science.gov (United States)

    Althagafi, A.; Richardson, M.

    2015-03-01

    This paper focuses on the use of the Yuri Nikolaevich DENISYUK holographic recording process to document, archive and display Saudi heritage. The goal of this research is to develop a technique of archiving heritage by using a high-tech holographic process to capture a three-dimensional presentation of ancient jewelry artifacts of the Saudi Heritage in particular. This study concentrates on five particular items of handmade authentic ancient metal jewelry from different parts of Saudi Arabia. When conducting this research experiments were conducted using both red-green sensitive plates sensitive to 633 nm and 532 nm respectively. Material thickness ranged between 1.5 and 3 millimeters were used, consequently in the dark room, varied chemicals for developing the holograms were employed. Red and green laser devices were also used with exposure times between 8 to 18 seconds of laser light dispersion through diffused surfaces in reflection holography. The outcome in each case was varied. The holograms captured the jewelry pieces with all the engravings and minute details, thus archiving the Saudi Heritage of that time. What makes holograms a revolutionary method for presenting valuable and/or ancient artifacts is the fact that they offer a more practical and convenient solution to travel around the world than displaying the originals items. Thus, museum visitors can enjoy and appreciate the precious artifacts otherwise unseen and lost without holography.

  10. Holographic superconductor on Q-lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Peng; Niu, Chao [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China); Wu, Jian-Pin [Department of Physics, School of Mathematics and Physics, Bohai University,Jinzhou, 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, 100190 (China); Xian, Zhuo-Yu [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing, 100049 (China)

    2015-02-10

    We construct the simplest gravitational dual model of a superconductor on Q-lattices. We analyze the condition for the existence of a critical temperature at which the charged scalar field will condense. In contrast to the holographic superconductor on ionic lattices, the presence of Q-lattices will suppress the condensate of the scalar field and lower the critical temperature. In particular, when the Q-lattice background is dual to a deep insulating phase, the condensation would never occur for some small charges. Furthermore, we numerically compute the optical conductivity in the superconducting regime. It turns out that the presence of Q-lattice does not remove the pole in the imaginary part of the conductivity, ensuring the appearance of a delta function in the real part. We also evaluate the gap which in general depends on the charge of the scalar field as well as the Q-lattice parameters. Nevertheless, when the charge of the scalar field is relatively large and approaches the probe limit, the gap becomes universal with ω{sub g}≃9T{sub c} which is consistent with the result for conventional holographic superconductors.

  11. Noncontact holographic detection for photoacoustic tomography

    Science.gov (United States)

    Buj, Christian; Münter, Michael; Schmarbeck, Benedikt; Horstmann, Jens; Hüttmann, Gereon; Brinkmann, Ralf

    2017-10-01

    A holographic method for high-speed, noncontact photoacoustic tomography is introduced and evaluated. Relative changes of the object's topography, induced by the impact of thermoelastic pressure waves, were determined at nanometer sensitivity without physical contact. The object's surface was illuminated with nanosecond laser pulses and imaged with a high-speed CMOS camera. From two interferograms measured before and after excitation of the acoustic wave, surface displacement was calculated and then used as the basis for a tomographic reconstruction of the initial pressure caused by optical absorption. The holographic detection scheme enables variable sampling rates of the photoacoustic signal of up to 50 MHz. The total acquisition times for complete volumes with 230 MVoxel is far below 1 s. Measurements of silicone and porcine skin tissue phantoms with embedded artificial absorbers, which served as a model for human subcutaneous vascular networks, were possible. Three-dimensional reconstructions of the absorbing structures show details with a diameter of 310 μm up to a depth of 2.5 mm. Theoretical limitations and the experimental sensitivity, as well as the potential for in vivo imaging depending on the detection repetition rate, are analyzed and discussed.

  12. Sonorous images through digital holographic images

    Science.gov (United States)

    Azevedo, Isabel; Sandford-Richardson, Elizabeth

    2017-03-01

    The art of the last fifty years has significantly surrounded the presence of the body, the relationship between human and interactive technologies. Today in interactive art, there are not only representations that speak of the body but actions and behaviours that involve the body. In holography, the image appears and disappears from the observer's vision field; because the holographic image is light, we can see multidimensional spaces, shapes and colours existing on the same time, presence and absence of the image on the holographic plate. And the image can be flowing in front of the plate that sometimes people try touching it with his hands. That means, to the viewer will be interactive events, with no beginning or end that can be perceived in any direction, forward or backward, depending on the relative position and the time the viewer spends in front of the hologram. To explore that feature we are proposing an installation with four holograms, and several sources of different kind of sounds connected with each hologram. When viewers will move in front of each hologram they will activate different sources of sound. The search is not only about the images in the holograms, but also the looking for different types of sounds that this demand will require. The digital holograms were produced using the HoloCam Portable Light System with the 35 mm camera Canon 700D to capture image information, it was then edited on computer using the Motion 5 and Final Cut Pro X programs.

  13. Holographic free energy and thermodynamic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research, Kolkata, Nadia (India); West Bengal State University, Department of Physics, Barasat (India); Inter University Centre for Astronomy and Astrophysics, Pune (India)

    2016-12-15

    We obtain the free energy and thermodynamic geometry of holographic superconductors in 2 + 1 dimensions. The gravitational theory in the bulk dual to this 2 + 1-dimensional strongly coupled theory lives in the 3 + 1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method. (orig.)

  14. Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals.

    Science.gov (United States)

    Luo, D; Dai, H T; Demir, H V; Sun, X W; Yang, H Z; Ji, W

    2012-04-09

    The observation of spatial angle dependent lasing from a dye-doped two-dimensional photonic crystal (2D PC) holographic polymer dispersed liquid crystals made of hexagonal lattice structure is reported. With the increasing output angle of the laser beam in the plane perpendicular to the 2D PC, the lasing wavelength is red-shifted. By analyzing the lasing oscillation trace, we found that the effective lattice constant changes with the output angle, causing the spatial angle dependent lasing.

  15. Bypassing absorbing objects in focused ultrasound using computer generated holographic technique.

    Science.gov (United States)

    Hertzberg, Y; Navon, G

    2011-12-01

    Focused ultrasound (FUS) technology is based on heating a small volume of tissue, while keeping the temperature outside the focus region with minimal heating only. Several FUS applications, such as brain and liver, suffer from the existence of ultrasound absorbers in the acoustic path between the transducer and the focus. These absorbers are a potential risk for the FUS therapy since they might cause to unwanted heating outside the focus region. An acoustic simulation based solution for reducing absorbers' heating is proposed, demonstrated, and compared to the standard geometrical solution. The proposed solution uses 3D continuous acoustic holograms, generated by the Gerchberg-Saxton (GS) algorithm, which are described and demonstrated for the first time using ultrasound planar phased-array transducer. Holograms were generated using the iterative GS algorithm and fast Fourier transform (FFT) acoustic simulation. The performances of the holograms are demonstrated by temperature elevation images of the absorber, acquired by GE 1.5T MRI scanner equipped with InSightec FUS planar phased-array transducer built out of 986 transmitting elements. The acoustic holographic technology is demonstrated numerically and experimentally using the three letters patterns, "T," "A," and "U," which were manually built into 1 × 1 cm masks to represent the requested target fields. 3D holograms of a focused ultrasound field with a hole in intensity at the absorber region were generated and compared to the standard geometrical solution. The proposed holographic solution results in 76% reduction of heating on absorber, while keeping similar heating at the focus. In the present work we show for the first time the generation of efficient and uniform continuous ultrasound holograms in 3D. We use the holographic technology to generate a FUS beams that bypasses an absorber in the acoustic path to reduce unnecessary heating and potential clinical risk. The developed technique is superior

  16. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  17. Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications

    Science.gov (United States)

    Xiang, Yu; Kogias, Ioannis; Adesso, Gerardo; He, Qiongyi

    2017-01-01

    We derive laws for the distribution of quantum steering among different parties in multipartite Gaussian states under Gaussian measurements. We prove that a monogamy relation akin to the generalized Coffman-Kundu-Wootters inequality holds quantitatively for a recently introduced measure of Gaussian steering. We then define the residual Gaussian steering, stemming from the monogamy inequality, as an indicator of collective steering-type correlations. For pure three-mode Gaussian states, the residual acts as a quantifier of genuine multipartite steering, and is interpreted operationally in terms of the guaranteed key rate in the task of secure quantum secret sharing. Optimal resource states for the latter protocol are identified, and their possible experimental implementation discussed. Our results pin down the role of multipartite steering for quantum communication.

  18. Working paper on public steering of privately owned sports facilities

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård

    This short paper discusses how municipalities can steer privately owned sports facilities. Firstly I analyse why steering of privately owned facilities is an interesting subject. Secondly I discuss what the advantages and drawbacks of using different approaches for steering sports facilities are....... Finally I discuss the methodological challenges of measuring activities in sports facilities – and take a closer look at the advantages and drawbacks of using manual and thermal techniques for registering activity....

  19. Modeling of accelerator systems and experimental verification of Quarter-Wave Resonator steering

    Science.gov (United States)

    Benatti, Carla

    beam pipe, which has the potential to induce steering on the beam. These additional complications make this a significant device to study in order to optimize the accelerator's overall performance. The NSCL and ReA, along with FRIB, are first introduced to provide background and motivate the central modeling objectives presented throughout this work. In the next chapter, underlying beam physics principles are then discussed, as they form the basis from which modeling methods are derived. The modeling methods presented include multi-particle tracking and beam envelope matrix transport. The following chapter investigates modeling elements in more detail, including quadrupoles, solenoids, and coaxial accelerating cavities. Assemblies of accelerator elements, or lattices, have been modeled as well, and a method for modeling multiple charge state transport using linear matrix methods is also given. Finally, an experiment studying beam steering induced by QWR resonators is presented, the first systematic experimental investigation of this effect. As mentioned earlier, characterization of this steering on beam properties is important for accurate modeling of the beam transport through the linac. The measurement technique devised at ReA investigates the effect's dependence on the beam's vertical offset within the cavity, the cavity amplitude, and the beam energy upon entrance into the cavity. The results from this experiment agree well with the analytical predictions based on geometrical parameters calculated from on-axis field profiles. The incorporation of this effect into modeling codes has the potential to speed up complex accelerator operations and tuning procedures in systems using QWRs.

  20. Dispersion Free Steering for YASP and dispersion correction for TI8

    CERN Document Server

    Wenninger, J

    2009-01-01

    The LHC injection tests performed in August 2008 revealed a horizontal dispersion mismatch for both the TI2 and the TI8 transfer lines. While the error for TI2 is acceptable and most likely due to an error of the initial conditions at the entrance of the line, the TI8 dispersion error is rather severe. No unambiguous source of the dispersion mismatch could be identified, even tough large strength errors on some quadrupoles could explain part of the problem [1]. Steering and energy matching of both TI2 and TI8 are tricky due to the limited sampling of the trajectories by the beam position monitors. The possibility that the dispersion error may be due to the kicks from misaligned quadrupoles and from orbit correctors was pointed by E. Gianfelice and first tests yielded encouraging results [2]. The SPS and LHC steering program YASP was therefore upgraded to be able to perform combined orbit (or trajectory) and dispersion corrections, so called Dispersion Free Steering (DFS) that was already used at LEP [3]. This...

  1. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...... is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults...

  2. Analysis of Vehicle Steering and Driving Bifurcation Characteristics

    Directory of Open Access Journals (Sweden)

    Xianbin Wang

    2015-01-01

    Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.

  3. Holographic butterfly effect and diffusion in quantum critical region

    Science.gov (United States)

    Ling, Yi; Xian, Zhuo-Yu

    2017-09-01

    We investigate the butterfly effect and charge diffusion near the quantum phase transition in holographic approach. We argue that their criticality is controlled by the holographic scaling geometry with deformations induced by a relevant operator at finite temperature. Specifically, in the quantum critical region controlled by a single fixed point, the butterfly velocity decreases when deviating from the critical point. While, in the non-critical region, the behavior of the butterfly velocity depends on the specific phase at low temperature. Moreover, in the holographic Berezinskii-Kosterlitz-Thouless transition, the universal behavior of the butterfly velocity is absent. Finally, the tendency of our holographic results matches with the numerical results of Bose-Hubbard model. A comparison between our result and that in the O( N ) nonlinear sigma model is also given.

  4. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  5. Quantitative measurement of holographic image quality using Adobe Photoshop

    Science.gov (United States)

    Wesly, E.

    2013-02-01

    Measurement of the characteristics of image holograms in regards to diffraction efficiency and signal to noise ratio are demonstrated, using readily available digital cameras and image editing software. Illustrations and case studies, using currently available holographic recording materials, are presented.

  6. A novel collinear optical setup for holographic data storage system

    Science.gov (United States)

    Horimai, Hideyoshi; Li, Jun

    2004-09-01

    In this paper, A novel collinear optical setup for holographic data storage system is presented. Simulated/experimental results are given. Combined with sub-page based data format, the system is simple and robust.

  7. Holographic Gratings in Azobenzene Side-Chain Polymethacrylates

    DEFF Research Database (Denmark)

    Andruzzi, Luisa; Altomare, Angelina; Ciardelli, Francesco

    1999-01-01

    Optical storage properties of thin unoriented liquid crystalline and amorphous side-chain azobenzene polymethacrylate films are examined by polarization holographic measurements. The investigated materials are free radical copolymers derived from two photochromic monomers, 6-(4-oxy-4...

  8. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  9. Reflection mode holographic recording in methylene blue-sensitized ...

    Indian Academy of Sciences (India)

    2014-02-13

    out rates has increased considerably. Thus, in recent years much attention has been centred on three-dimensional (3D) holographic disks [1,2]. Many recent studies have focussed on the characterization and optimization of ...

  10. Holographic Renormalization of general dilaton-axion gravity

    CERN Document Server

    Papadimitriou, Ioannis

    2011-01-01

    We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.

  11. Holographic entanglement entropy in 2D holographic superconductor via AdS3/CFT2

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2015-07-01

    Full Text Available The aim of the present letter is to find the holographic entanglement entropy (HEE in 2D holographic superconductors (HSC. Indeed, it is possible to compute the exact form of this entropy due to an advantage of approximate solutions inside normal and superconducting phases with backreactions. By making the UV and IR limits applied to the integrals, an approximate expression for HEE is obtained. In case the software cannot calculate minimal surface integrals analytically, it offers the possibility to proceed with a numerical evaluation of the corresponding terms. We'll understand how the area formula incorporates the structure of the domain wall approximation. We see that HEE changes linearly with belt angle. It's due to the extensivity of this type of entropy and the emergent of an entropic force. We find that the wider belt angle corresponds to a larger holographic surface. Another remarkable observation is that no “confinement/deconfinement” phase transition point exists in our 2D dual field theory. Furthermore, we observe that the slope of the HEE with respect to the temperature dSdT decreases, thanks to the emergence extra degree of freedom(s in low temperature system. A first order phase transition is detected near the critical point.

  12. Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror

    Science.gov (United States)

    Onural, Levent

    2017-02-01

    Even barely acceptable quality holographic 3D video displays require hundreds of mega pixels with a pixel size in the order of a fraction of a micrometer, when conventional flat panel SLM arrangement is used. Smaller pixel sizes are essential to get larger diffraction angles. Common flat display panels, however, have pixel sizes in the order of tens of micrometers, and this results in diffraction angles in the order of one degree. Here in this design, an array of commonly available (similar to high-end mobile phone display panels) flat display panels, is used. Each flat panel, as an element of the array, directs its outgoing low-diffraction angle light beam to corresponding small portion of a large size paraboloid mirror; the mirror then reflects the slowly-expanding, information carrying beam to direct it at a certain exit angle; this beam constitutes a portion of the final real ghost-like 3D holographic image. The collection of those components from all such flat display panels cover the entire 360-degrees and thus constitute the final real 3D table-top holographic display with a 360-degrees viewing angle. The size of the resultant display is smaller compared to the physical size of the paraboloid mirror, or the overall size of the display panel array; however, an acceptable size table top display can be easily constructed for living-room viewing. A matching camera can also be designed by reversing the optical paths and by replacing the flat display panels by flat wavefront capture devices.

  13. High-index-contrast grating reflector with beam steering ability for the transmitted beam

    DEFF Research Database (Denmark)

    Carletti, Luca; Malureanu, Radu; Mørk, Jesper

    2011-01-01

    High-index contrast grating mirrors providing wave front control of the transmitted light as well as high reflectivity over a broad bandwidth are suggested and both numerically and experimentally investigated. General design rules to engineer these structures for different applications are derive....... Such grating mirrors would have a significant impact on low cost laser fabrication, since a more efficient integration of optoelectronic modules can be achieved by avoiding expensive external lens systems.......High-index contrast grating mirrors providing wave front control of the transmitted light as well as high reflectivity over a broad bandwidth are suggested and both numerically and experimentally investigated. General design rules to engineer these structures for different applications are derived...

  14. Holographic model for dilepton production in p-p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ballon Bayona, C.A., E-mail: c.a.m.ballonbayona@durham.ac.uk [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, RJ 22290-180 (Brazil); Centre for Particle Theory, University of Durham, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom); Boschi-Filho, Henrique, E-mail: boschi@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil)

    2011-10-01

    We propose a holographic model for dilepton production in proton-proton collisions through the exchange of vector mesons. The holographic hard wall model is used to describe the dynamics and interactions of vector mesons and baryons. We estimate the parameters {lambda}, {mu}, {nu} that characterize the angular distribution of the produced dileptons in a region of q{sub T}{sup 2}<

  15. Note on the butterfly effect in holographic superconductor models

    Science.gov (United States)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin

    2017-05-01

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  16. Clocks, computers, black holes, spacetime foam, and holographic principle

    OpenAIRE

    Ng, Y. Jack

    2000-01-01

    What do simple clocks, simple computers, black holes, space-time foam, and holographic principle have in common? I will show that the physics behind them is inter-related, linking together our concepts of information, gravity, and quantum uncertainty. Thus, the physics that sets the limits to computation and clock precision also yields Hawking radiation of black holes and the holographic principle. Moreover, the latter two strongly imply that space-time undergoes much larger quantum fluctuati...

  17. Note on the butterfly effect in holographic superconductor models

    Directory of Open Access Journals (Sweden)

    Yi Ling

    2017-05-01

    Full Text Available In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  18. Handbook of Holographic Interferometry: Optical and Digital Methods

    Science.gov (United States)

    Kreis, Thomas

    2005-01-01

    The book presents the principles and methods of holographic interferometry - a coherent-optical measurement technique for deformation and stress analysis, for the determination of refractive-index distributions, or applied to non-destructive testing. Emphasis of the book is on the quantitative computer-aided evaluation of the holographic interferograms. Based upon wave-optics the evaluation methods, their implementation in computer-algorithms, and their applications in engineering are described.

  19. Note on the butterfly effect in holographic superconductor models

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China)

    2017-05-10

    In this note we remark that the butterfly effect can be used to diagnose the phase transition of superconductivity in a holographic framework. Specifically, we compute the butterfly velocity in a charged black hole background as well as anisotropic backgrounds with Q-lattice structure. In both cases we find its derivative to the temperature is discontinuous at critical points. We also propose that the butterfly velocity can signalize the occurrence of thermal phase transition in general holographic models.

  20. Holographic Refraction and the Measurement of Spherical Ametropia.

    Science.gov (United States)

    Nguyen, Nicholas Hoai Nam

    2016-10-01

    To evaluate the performance of a holographic logMAR chart for the subjective spherical refraction of the human eye. Bland-Altman analysis was used to assess the level of agreement between subjective spherical refraction using the holographic logMAR chart and conventional autorefraction and subjective spherical refraction. The 95% limits of agreement (LoA) were calculated between holographic refraction and the two standard methods (subjective and autorefraction). Holographic refraction has a lower mean spherical refraction when compared to conventional refraction (LoA 0.11 ± 0.65 D) and when compared to autorefraction (LoA 0.36 ± 0.77 D). After correcting for systemic bias, this is comparable between autorefraction and conventional subjective refraction (LoA 0.45 ± 0.79 D). After correcting for differences in vergence distance and chromatic aberration between holographic and conventional refraction, approximately 65% (group 1) of measurements between holography and conventional subjective refraction were similar (MD = 0.13 D, SD = 0.00 D). The remaining 35% (group 2) had a mean difference of 0.45 D (SD = 0.12 D) between the two subjective methods. Descriptive statistics showed group 2's mean age (21 years, SD = 13 years) was considerably lower than group 1's mean age (41 years, SD = 17), suggesting accommodation may have a role in the greater mean difference of group 2. Overall, holographic refraction has good agreement with conventional refraction and is a viable alternative for spherical subjective refraction. A larger bias between holographic and conventional refraction was found in younger subjects than older subjects, suggesting an association between accommodation and myopic over-correction during holographic refraction.

  1. Holographic superconductors in Einstein-æther gravity

    Science.gov (United States)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  2. On the existence of a holographic description of the LHC quark-gluon plasmas

    Science.gov (United States)

    McInnes, Brett; Ong, Yen Chin

    2017-04-01

    Peripheral collisions of heavy ions can give rise to extremely intense magnetic fields. It has been suggested that these fields might invalidate the holographic description of the corresponding quark-gluon plasmas, assuming that these can be modelled by strongly coupled field theories. In the case of the plasmas produced in collisions at the RHIC facility (including in the beam energy scans), it is known how to deal with this problem: one has to take into account the large angular momenta generated in these plasmas, and the effects of the baryonic chemical potential. But this does not work for the plasmas produced in peripheral collisions at the LHC. However, these results neglect some (less significant) aspects of bulk physics; could it be that the problem is resolved by taking into account these lower-order effects? Here we use a bulk dilatonic field (fully compatible with boundary data, as well as with the asymptotically AdS character of the bulk geometry) as a model of these effects, and show that this is unlikely to be the solution. Thus, the existence of a consistent holographic description of the most extreme LHC plasmas remains open to question.

  3. On the existence of a holographic description of the LHC quark–gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Department of Mathematics, National University of Singapore, Singapore 119076 (Singapore); Ong, Yen Chin, E-mail: ongyenchin@sjtu.edu.cn [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-04-15

    Peripheral collisions of heavy ions can give rise to extremely intense magnetic fields. It has been suggested that these fields might invalidate the holographic description of the corresponding quark–gluon plasmas, assuming that these can be modelled by strongly coupled field theories. In the case of the plasmas produced in collisions at the RHIC facility (including in the beam energy scans), it is known how to deal with this problem: one has to take into account the large angular momenta generated in these plasmas, and the effects of the baryonic chemical potential. But this does not work for the plasmas produced in peripheral collisions at the LHC. However, these results neglect some (less significant) aspects of bulk physics; could it be that the problem is resolved by taking into account these lower-order effects? Here we use a bulk dilatonic field (fully compatible with boundary data, as well as with the asymptotically AdS character of the bulk geometry) as a model of these effects, and show that this is unlikely to be the solution. Thus, the existence of a consistent holographic description of the most extreme LHC plasmas remains open to question.

  4. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers.

    Science.gov (United States)

    Bzdek, Bryan R; Collard, Liam; Sprittles, James E; Hudson, Andrew J; Reid, Jonathan P

    2016-08-07

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.

  5. Lensless digital holographic microscope using in-line configuration and laser diode illumination

    Science.gov (United States)

    Göring, Lena; Finkeldey, Markus; Adinda-Ougba, Adamou; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    In this paper we present a lensless transmission digital holographic microscope for the investigation of transparent samples. The setup consists of a laser diode, an object positioned on a cover slip and a CMOS sensor. We use a laser diode for illumination which emits a divergent beam and acts as a point source, so that additional components such as a pinhole are not required. The laser diode is operated below the lasing threshold to decrease the coherence length and thus to reduce speckle noise. Due to the compact and small size of the setup, it requires minimized effort for applications in field operation. The lensless setup was characterized by using an USAF-target for determining the resolution of the system which is 2.2 μm. In the following, transparent or semitransparent samples are investigated. Microstructured plastic samples are placed on the specimen holder and characterized by the holographic microscope. By applying the angular spectrum method on the recorded images, we are able to reconstruct the investigated objects. The in-line geometry of the setup facilitates the simplicity of the setup but also induces optical errors, for instance twin images. Twin images superimpose with the object's signal and require additional numerical reconstruction algorithms. For reducing the effect of the twin image problem, we apply an iterative phase retrieval algorithm. In the conclusion, we discuss the resolution and quality of the recorded images and evaluate the numerical reconstruction process.

  6. On the existence of a holographic description of the LHC quark–gluon plasmas

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2017-04-01

    Full Text Available Peripheral collisions of heavy ions can give rise to extremely intense magnetic fields. It has been suggested that these fields might invalidate the holographic description of the corresponding quark–gluon plasmas, assuming that these can be modelled by strongly coupled field theories. In the case of the plasmas produced in collisions at the RHIC facility (including in the beam energy scans, it is known how to deal with this problem: one has to take into account the large angular momenta generated in these plasmas, and the effects of the baryonic chemical potential. But this does not work for the plasmas produced in peripheral collisions at the LHC. However, these results neglect some (less significant aspects of bulk physics; could it be that the problem is resolved by taking into account these lower-order effects? Here we use a bulk dilatonic field (fully compatible with boundary data, as well as with the asymptotically AdS character of the bulk geometry as a model of these effects, and show that this is unlikely to be the solution. Thus, the existence of a consistent holographic description of the most extreme LHC plasmas remains open to question.

  7. Einstein-Podolsky-Rosen steering and quantum steering ellipsoids: Optimal two-qubit states and projective measurements

    Science.gov (United States)

    McCloskey, R.; Ferraro, A.; Paternostro, M.

    2017-01-01

    We identify the families of states that maximize some recently proposed quantifiers of Einstein-Podolsky-Rosen (EPR) steering and the volume of the quantum steering ellipsoid (QSE). The optimal measurements which maximize genuine EPR steering measures are discussed and we develop a way to find them using the QSE. We thus explore the links between genuine EPR steering and the QSE and introduce states that can be the most useful for one-sided device-independent quantum cryptography for a given amount of noise.

  8. Study on control schemes of flexible steering system of a multi-axle all-wheel-steering robot

    Directory of Open Access Journals (Sweden)

    Pingxia Zhang

    2016-05-01

    Full Text Available It is well known that a multi-axle wheeled robot possesses larger load capability and also higher drive performance. However, its steering flexibility is degraded due to the large number of wheels. In order to solve this problem, in this article, we proposed three control schemes based on the center of rotation or the steering angles of both the first- and last-axle wheels. To release these control schemes, steering mode selection and also the left wheel’s steering angle in a specific axle are added approaching a practical application. Thereafter, the remaining wheels’ steering angles can be calculated with the Ackerman steering theorem. In order to verify the control effects, a five-axle all-wheel-steering wheeled robot has been developed with the Bluetooth wireless monitor system. Based on the newly designed robot, validation experiments are carried out, such as lateral movement, situ rotation, and multi-mode steering within a narrow space. The results indicate that the proposed design in this article can ensure a more flexible and faster movement within a narrow space. It shows large potential in obstacle avoidance compared with the conventional partial-wheel steering mode.

  9. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  10. A pocket device for high-throughput optofluidic holographic microscopy

    Science.gov (United States)

    Mandracchia, B.; Bianco, V.; Wang, Z.; Paturzo, M.; Bramanti, A.; Pioggia, G.; Ferraro, P.

    2017-06-01

    Here we introduce a compact holographic microscope embedded onboard a Lab-on-a-Chip (LoC) platform. A wavefront division interferometer is realized by writing a polymer grating onto the channel to extract a reference wave from the object wave impinging the LoC. A portion of the beam reaches the samples flowing along the channel path, carrying their information content to the recording device, while one of the diffraction orders from the grating acts as an off-axis reference wave. Polymeric micro-lenses are delivered forward the chip by Pyro-ElectroHydroDynamic (Pyro-EHD) inkjet printing techniques. Thus, all the required optical components are embedded onboard a pocket device, and fast, non-iterative, reconstruction algorithms can be used. We use our device in combination with a novel high-throughput technique, named Space-Time Digital Holography (STDH). STDH exploits the samples motion inside microfluidic channels to obtain a synthetic hologram, mapped in a hybrid space-time domain, and with intrinsic useful features. Indeed, a single Linear Sensor Array (LSA) is sufficient to build up a synthetic representation of the entire experiment (i.e. the STDH) with unlimited Field of View (FoV) along the scanning direction, independently from the magnification factor. The throughput of the imaging system is dramatically increased as STDH provides unlimited FoV, refocusable imaging of samples inside the liquid volume with no need for hologram stitching. To test our embedded STDH microscopy module, we counted, imaged and tracked in 3D with high-throughput red blood cells moving inside the channel volume under non ideal flow conditions.

  11. Multimode lasing from the microcavity of an octagonal quasi-crystal based on holographic polymer-dispersed liquid crystals.

    Science.gov (United States)

    Li, Ming Shian; Fuh, Andy Ying-Guey; Wu, Shing-Trong

    2012-08-01

    An eightfold photonic quasi-crystal (PQC) sample is fabricated holographically using two-beam interference with multi-exposure based on polymer-dispersed liquid crystals. The transmission spectra from the finite-difference time-domain (FDTD) simulation prove the photonic stop band of the rotational symmetry structure of the sample. The resonant mode of the circular microcavity formed in the PQC is calculated. Amplified spontaneous emission and multimode lasing action are demonstrated from the pumped laser-dye-doped PQC microcavity using a Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) pulse laser.

  12. Holographic renormalization group and cosmology in theories with quasilocalized gravity

    Energy Technology Data Exchange (ETDEWEB)

    Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John

    2001-03-15

    We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.

  13. Noncommutative effects of spacetime on holographic superconductors

    Directory of Open Access Journals (Sweden)

    Debabrata Ghorai

    2016-07-01

    Full Text Available The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  14. Noncommutative effects of spacetime on holographic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)

    2016-07-10

    The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  15. Holographic bulk reconstruction with α' corrections

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  16. Towards a Holographic Marginal Fermi Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kristan; Kachru, Shamit; Karch, Andreas; Polchinski, Joseph; Silverstein, Eva

    2011-08-15

    We present an infinite class of 2+1 dimensional field theories which, after coupling to semi-holographic fermions, exhibit strange metallic behavior in a suitable large N limit. These theories describe lattices of hypermultiplet defects interacting with parity-preserving supersymmetric Chern-Simons theories with U(N) x U(N) gauge groups at levels {+-}k. They have dual gravitational descriptions in terms of lattices of probe M2 branes in AdS{sub 4} x S{sup 7}/Z{sub k} (for N >> 1,N >> k{sup 5}) or probe D2 branes in AdS{sub 4} x CP{sup 3} (for N >> k >> 1,N << k{sup 5}). We discuss several challenges one faces in maintaining the success of these models at finite N, including backreaction of the probes in the gravity solutions and radiative corrections in the weakly coupled field theory limit.

  17. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  18. Photovoltaic concentrator using a holographic optical element.

    Science.gov (United States)

    Zhang, Y W; Ih, C S; Yan, H F; Chang, M J

    1988-08-15

    A photovoltaic concentrator is proposed that uses equatorial tracking (the rotation axis of a concentrator points to the North Star), so that the change of the sun's altitude angle is minimized. The solar concentrator consists of a Fresnel lens (objective), a holographic optical element made on photoresist with 90% diffraction efficiency, and a field lens (making the sunlight come from different fields of view uniformly falling on the solar cell). The accuracy of the original 2-D tracking is reduced several orders over previous methods; however, it may be that only 1-D tracking is needed. A theoretical analysis and a study model have been made, and a reasonable concentration ratio has been obtained. Therefore, it can be expected that the cost will be much lower than an accurate 2-D tracking system.

  19. Holographic superconductivity from higher derivative theory

    Science.gov (United States)

    Wu, Jian-Pin; Liu, Peng

    2017-11-01

    We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  20. Quantum corrections to holographic mutual information

    Energy Technology Data Exchange (ETDEWEB)

    Agón, Cesar A. [Martin Fisher School of Physics, Brandeis University,Waltham, MA 02453 (United States); Faulkner, Thomas [University of Illinois, Urbana-Champaign,Urbana, IL 61801-3080 (United States)

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy http://dx.doi.org/10.1088/1751-8113/46/28/285402. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal http://dx.doi.org/10.1007/JHEP11(2013)074 this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.

  1. Asymmetric dense matter in holographic QCD

    Directory of Open Access Journals (Sweden)

    Shin Ik Jae

    2012-02-01

    Full Text Available We study asymmetric dense matter in holographic QCD.We construct asymmetric dense matter by considering two quark flavor branes with dierent quark masses in a D4/D6/D6 model. To calculate the symmetry energy in nuclear matter, we consider two quarks with equal masses and observe that the symmetry energy increases with the total charge showing the stiff dependence. This behavior is universal in the sense that the result is independent of parameters in the model. We also study strange (or hyperon matter with one light and one intermediate mass quarks. In addition to the vacuum properties of asymmetric matter, we calculate meson masses in asymmetric dense matter and discuss our results in the light of in-medium kaon masses.

  2. Holographic construction of excited CFT states

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Ariana; Skenderis, Kostas [STAG Research Centre and Mathematical Sciences, University of Southampton,High-field, Southampton SO17 1BJ (United Kingdom)

    2016-04-15

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S{sup 1} or on R{sup 1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  3. A Comment on Holographic Luttinger Theorem

    CERN Document Server

    Hashimoto, Koji

    2012-01-01

    Robustness of the Luttinger theorem for fermionic liquids is examined in holography. The statement of the Luttinger theorem, the equality between the fermion charge density and the volume enclosed by the Fermi surface, can be mapped to a Gauss's law in the gravity dual, a la Sachdev. We show that various deformations in the gravity dual, such as inclusion of magnetic fields, a parity-violating theta-term, dilatonic deformations, and higher-derivative corrections, do not violate the holographic derivation of the Luttinger theorem, as long as the theory is in a confining phase. Therefore a robustness of the theorem is found for strongly correlated fermions coupled with strongly coupled sectors which admit gravity duals. On the other hand, in the deconfined phase, we also show that the deficit appearing in the Luttinger theorem is again universal. It measures a total deficit which measures the charge of the deconfined ("fractionalized") fermions, independent of the deformation parameters.

  4. Holographic Polytropic f(T Gravity Models

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2015-01-01

    Full Text Available The present paper reports a study on the cosmological consequences arising from reconstructing f(T gravity through new holographic polytropic dark energy. We assume two approaches, namely, a particular form of Hubble parameter H and a solution for f(T. We obtain the deceleration parameter and effective equation of state, as well as torsion equation of state parameters from total density and pressure in both cases. It is interesting to mention here that the deceleration and torsion equation of state represent transition from deceleration to acceleration phase. We study the statefinder parameters under both approaches which result in the fact that statefinder trajectories are found to attain ΛCDM point. The comparison with observational data represents consistent results. Also, we discuss the stability of reconstructed models through squared speed of sound which represents stability in late times.

  5. Holograph in noncommutative geometry: Part 1

    CERN Document Server

    Wang, Jingbo

    2010-01-01

    In this paper, we consider the holograph principle emergent from noncommutative geometry, based on the spectral action principle. We show that under some appropriate conditions, the gravity theory on a manifold with boundary could be equivalent to a gauge theory $SU(N)$ on the boundary. Then an expression for $N$ with the geometrical quantities of the manifold is given. Based on this result, we find that the volume of the manifold and the boundary have some discrete structure. Applying the result to the black hole, we get that the radium of the Schwarzschild black hole is quantized. We also find an explanation why the extremal RN-black hole has zero temperature but with finite entropy.

  6. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  7. Holographic superconductivity from higher derivative theory

    Directory of Open Access Journals (Sweden)

    Jian-Pin Wu

    2017-11-01

    Full Text Available We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC phase. The phase diagram (γ1,Tˆc and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  8. Understanding the holographic principle via RG flow

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    This is a review of some recent works which demonstrate how the classical equations of gravity in AdS themselves hold the key to understanding their holographic origin in the form of a strongly coupled large $N$ QFT whose algebra of local operators can be generated by a few (single-trace) elements. I discuss how this can be realised by reformulating Einstein's equations in AdS in the form of a non-perturbative RG flow that further leads to a new approach towards constructing strongly interacting QFTs. In particular, the RG flow can self-determine the UV data that are otherwise obtained by solving classical gravity equations and demanding that the solutions do not have naked singularities. For a concrete demonstration, I focus on the hydrodynamic limit in which case this RG flow connects the AdS/CFT correspondence with the membrane paradigm, and also reproduces the known values of the dual QFT transport coefficients.

  9. Digital Holographic Microscopy Principles, Techniques, and Applications

    CERN Document Server

    Kim, Myung K

    2011-01-01

    Digital holography is an emerging field of new paradigm in general imaging applications. By replacing the photochemical procedures with electronic imaging and having a direct numerical access to the complex optical field, a wide range of new imaging capabilities become available, many of them difficult or infeasible in conventional holography. An increasing number of researchers—not only in optical physics and optical engineering, but also in diverse applications areas such as microbiology, medicine, marine science, particle analysis, microelectromechanics, and metrology—are realizing and exploiting the new capabilities of digital holography. Digital Holographic Microscopy: Principles, Techniques, and Applications, by Dr. Myung K. Kim, is intended to provide a brief but consistent introduction to the principles of digital holography as well as to give an organized overview of the large number of techniques and applications being developed. This will also shed some light on the range of possibilities for f...

  10. Synfograms: a new generation of holographic applications

    Science.gov (United States)

    Meulien Öhlmann, Odile; Öhlmann, Dietmar; Zacharovas, Stanislovas J.

    2008-04-01

    The new synthetic Four-dimensional printing technique (Syn4D) Synfogram is introducing time (animation) into spatial configuration of the imprinted three-dimensional shapes. While lenticular solutions offer 2 to 9 stereoscopic images Syn4D offers large format, full colors true 3D visualization printing of 300 to 2500 frames imprinted as holographic dots. This past 2 years Syn4D high-resolution displays proved to be extremely efficient for museums presentation, engineering design, automobile prototyping, and advertising virtual presentation as well as, for portrait and fashion applications. The main advantages of syn4D is that it offers a very easy way of using a variety of digital media, like most of 3D Modelling programs, 3D scan system, video sequences, digital photography, tomography as well as the Syn4D camera track system for life recording of spatial scenes changing in time. The use of digital holographic printer in conjunction with Syn4D image acquiring and processing devices separates printing and imaging creation in such a way that makes four-dimensional printing similar to a conventional digital photography processes where imaging and printing are usually separated in space and time. Besides making content easy to prepare, Syn4D has also developed new display and lighting solutions for trade show, museum, POP, merchandising, etc. The introduction of Synfograms is opening new applications for real life and virtual 4D displays. In this paper we will analyse the 3D market, the properties of the Synfograms and specific applications, the problems we encounter, solutions we find, discuss about customers demand and need for new product development.

  11. Holographic spin networks from tensor network states

    Science.gov (United States)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.

    2018-01-01

    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  12. The ATLAS high level trigger steering

    Science.gov (United States)

    Berger, N.; Bold, T.; Eifert, T.; Fischer, G.; George, S.; Haller, J.; Hoecker, A.; Masik, J.; Nedden, M. Z.; Reale, V. P.; Risler, C.; Schiavi, C.; Stelzer, J.; Wu, X.

    2008-07-01

    The High Level Trigger (HLT) of the ATLAS experiment at the Large Hadron Collider receives events which pass the LVL1 trigger at ~75 kHz and has to reduce the rate to ~200 Hz while retaining the most interesting physics. It is a software trigger and performs the reduction in two stages: the LVL2 trigger and the Event Filter (EF). At the heart of the HLT is the Steering software. To minimise processing time and data transfers it implements the novel event selection strategies of seeded, step-wise reconstruction and early rejection. The HLT is seeded by regions of interest identified at LVL1. These and the static configuration determine which algorithms are run to reconstruct event data and test the validity of trigger signatures. The decision to reject the event or continue is based on the valid signatures, taking into account pre-scale and pass-through. After the EF, event classification tags are assigned for streaming purposes. Several new features for commissioning and operation have been added: comprehensive monitoring is now built in to the framework; for validation and debugging, reconstructed data can be written out; the steering is integrated with the new configuration (presented separately), and topological and global triggers have been added. This paper will present details of the final design and its implementation, the principles behind it, and the requirements and constraints it is subject to. The experience gained from technical runs with realistic trigger menus will be described.

  13. Optimization Under Uncertainty for Wake Steering Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Annoni, Jennifer [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Ryan N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fleming, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ning, Andrew [Brigham Young University

    2017-08-03

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degree of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).

  14. Encoding pitch contours using current steering.

    Science.gov (United States)

    Luo, Xin; Landsberger, David M; Padilla, Monica; Srinivasan, Arthi G

    2010-09-01

    This study investigated cochlear implant (CI) users' ability to perceive pitch cues from time-varying virtual channels (VCs) to identify pitch contours. Seven CI users were tested on apical, medial, and basal electrode pairs with stimulus durations from 100 to 1000 ms. In one stimulus set, 9 pitch contours were created by steering current between the component electrodes and the VC halfway between the electrodes. Another stimulus set only contained 3 pitch contours (flat, falling, and rising). VC discrimination was also tested on the same electrodes. The total current level of dual-electrode stimuli was linearly interpolated between those of single-electrode stimuli to minimize loudness changes. The results showed that pitch contour identification (PCI) scores were similar across electrode locations, and significantly improved at longer durations. For durations longer than 300 ms, 2 subjects had nearly perfect 9-contour identification, and 5 subjects perfectly identified the 3 basic contours. Both PCI and VC discrimination varied greatly across subjects. Cumulative d(') values for VC discrimination were significantly correlated with 100-, 200-, and 500-ms PCI scores. These results verify the feasibility of encoding pitch contours using current steering, and suggest that identification of such pitch contours strongly relies on CI users' sensitivity to VCs.

  15. Multiple branched adaptive steered molecular dynamics

    Science.gov (United States)

    Ozer, Gungor; Keyes, Thomas; Quirk, Stephen; Hernandez, Rigoberto

    2014-08-01

    Steered molecular dynamics, SMD, [S. Park and K. Schulten, J. Chem. Phys. 120, 5946 (2004)] combined with Jarzynski's equality has been used widely in generating free energy profiles for various biological problems, e.g., protein folding and ligand binding. However, the calculated averages are generally dominated by "rare events" from the ensemble of nonequilibrium trajectories. The recently proposed adaptive steered molecular dynamics, ASMD, introduced a new idea for selecting important events and eliminating the non-contributing trajectories, thus decreasing the overall computation needed. ASMD was shown to reduce the number of trajectories needed by a factor of 10 in a benchmarking study of decaalanine stretching. Here we propose a novel, highly efficient "multiple branching" (MB) version, MB-ASMD, which obtains a more complete enhanced sampling of the important trajectories, while still eliminating non-contributing segments. Compared to selecting a single configuration in ASMD, MB-ASMD offers to select multiple configurations at each segment along the reaction coordinate based on the distribution of work trajectories. We show that MB-ASMD has all benefits of ASMD such as faster convergence of the PMF even when pulling 1000 times faster than the reversible limit while greatly reducing the probability of getting trapped in a non-significant path. We also analyze the hydrogen bond breaking within the decaalanine peptide as we force the helix into a random coil and confirm ASMD results with less noise in the numerical averages.

  16. Pharmacokinetics of phenylbutazone in beef steers.

    Science.gov (United States)

    de Veau, I F; Pedersoli, W; Cullison, R; Baker, J

    2002-06-01

    Phenylbutazone was administered intravenously to a group of 11 beef steers at a dosage of 6 mg/kg of body weight. Whole plasma and protein-free plasma were analyzed for phenylbutazone residues. Pharmacokinetic parameters of total and free phenylbutazone in plasma were calculated using a noncompartmental method. In regards to whole plasma data, the mean volume of distribution at steady state (Vss), was 140 mL/kg body weight, with a mean (+/-SEM) terminal elimination half-life (t1/2) of 34 +/- 9 h. The mean clearance was 3.2 mL/h/kg body weight. The Vss, as determined from the protein-free plasma fraction, was 54093 mL/kg body weight. This larger Vss of free phenylbutazone compared with total plasma phenylbutazone was attributed to a high degree of plasma protein binding, as well as the greater penetration of free phenylbutazone into tissues. The mean t1/2 of free phenylbutazone was 35 +/- 12 h. This similarity to the t1/2 estimated from total plasma phenylbutazone data is attributed to an equilibrium between free and plasma phenylbutazone during the terminal elimination phase. The pharmacokinetic parameters of free and total plasma phenylbutazone in beef steers are statistically similar to those previously reported for lactating dairy cows.

  17. Steering healthcare service delivery: a regulatory perspective.

    Science.gov (United States)

    Prakash, Gyan

    2015-01-01

    The purpose of this paper is to explore regulation in India's healthcare sector and makes recommendations needed for enhancing the healthcare service. The literature was reviewed to understand healthcare's regulatory context. To understand the current healthcare system, qualitative data were collected from state-level officials, public and private hospital staff. A patient survey was performed to assess service quality (QoS). Regulation plays a central role in driving healthcare QoS. India needs to strengthen market and institutional co-production based approaches for steering its healthcare in which delivery processes are complex and pose different challenges. This study assesses current healthcare regulation in an Indian state and presents a framework for studying and strengthening regulation. Agile regulation should be based on service delivery issues (pull approach) rather than monitoring and sanctions based regulatory environment (push approach). Healthcare pitfalls across the world seem to follow similar follies. India's complexity and experience is useful for emerging and developed economies. The author reviewed around 70 publications and synthesised them in healthcare regulatory contexts. Patient's perception of private providers could be a key input towards steering regulation. Identifying gaps across QoS dimensions would be useful in taking corrective measures.

  18. Steering into the Curve: Getting Real in the Classroom

    Science.gov (United States)

    Uhl, Christopher

    2010-01-01

    Dozens and dozens of little deaths occur in college classrooms each day as teachers, mostly because of fear, steer themselves and their students away from what is alive and real and toward what is dead, safe, and boring. In this paper, I use a collection of stories to describe a practice that enlivens classroom dynamics that I call "Steering Into…

  19. The effect of varying path properties in path steering tasks

    NARCIS (Netherlands)

    L. Liu (Lei); R. van Liere (Robert)

    2010-01-01

    textabstractPath steering is a primitive 3D interaction task that requires the user to navigate through a path of a given length and width. In a previous paper, we have conducted controlled experiments in which users operated a pen input device to steer a cursor through a 3D path subject to

  20. Revisiting path steering for 3D manipulation tasks

    NARCIS (Netherlands)

    L. Liu (Lei); J.-B. Martens; R. van Liere (Robert)

    2010-01-01

    htmlabstractThe law of path steering, as proposed by Accot and Zhai, describes a quantitative relationship between human temporal performance and the path spatial characteristics. The steering law is formulated as a continuous goal crossing task, in which a large number of goals are crossed along