Sample records for holocene tree-line variability

  1. Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs

    NARCIS (Netherlands)

    Nicolussi, Kurt; Kaufmann, Matthias; Patzelt, Gernot; van der Plicht, Johannes; Thurner, Andrea


    The altitude of the Alpine tree-line has often been used as proxy for the climatic conditions in the Holocene epoch. The usual approach for establishing a record for this proxy is the analysis of pollen and macro remains. We analysed living trees and subfossil logs from the timberline ecotone in the

  2. Holocene Tree Line and Climate Change on the Queen Charlotte Islands, Canada (United States)

    Pellatt, Marlow G.; Mathewes, Rolf W.


    Palynological study of two subalpine ponds on the Queen Charlotte Islands reveals changes in tree line and climate during the Holocene. The findings agree with previous reconstructions, from nearby Louise Pond on the Queen Charlotte Islands, that suggest a warmer-than-present climate and higher-than-present tree lines in the early Holocene (ca. 9600-6600 14C yr B.P.). Basal ages at SC1 Pond and Shangri-La Bog indicate that the basins did not hold permanent water before 7200 14C yr B.P., consistent with a warmer and drier early Holocene previously inferred from Louise Pond. Pollen and plant macrofossils indicate the initial establishment of subalpine conditions by 6090 ± 90 14C yr B.P., similar to the 5790 ± 130 14C yr B.P. age for cooling inferred from Louise Pond. Conditions similar to present were established at SC1 Pond by 3460 ± 100 14C yr B.P., confirming the previous estimate of 3400 14C yr B.P. at Louise Pond. This 3400 14C yr B.P. vegetation shift on the Queen Charlotte Islands corresponds with the beginning of the Tiedemann glacial advance in the south-coastal mountains of British Columbia (ca. 3300 14C yr B.P.), the Peyto and Robson glacial advances between 3300 and 2800 14C yr B.P. in the Rocky Mountains, and climatic cooling inferred from palynological studies throughout southern British Columbia, northern Washington, and southeast Alaska. These findings confirm that changes in regional climate influenced changes in vegetation in coastal British Columbia.

  3. Lake Ecosystem Responses to Holocene Climate Change at the Subarctic Tree-Line in Northern Sweden

    DEFF Research Database (Denmark)

    Reuss, Nina Steenberg; Hammarlund, Dan; Rundgren, Mats


    sedimentary pigments, diatoms, chironomids, pollen, biogenic silica (BSi), carbon (C), nitrogen (N) elemental and stable-isotope records, and total lake-water organic carbon (TOC) concentration inferred from near-infrared spectroscopy (NIRS), suggest that the Holocene development of Lake Seukokjaure...

  4. Variability of the tree-rings structure of Gmelin’s larch at northern tree line (peninsula of Taymyr

    Directory of Open Access Journals (Sweden)

    V. V. Fakhrutdinova


    Full Text Available The study of tree-ring cell structure changes as the result of tree adaptation to varying environmental conditions becomes increasingly important to predict future vegetation shifts under projected climate changes. The estimate of intrapopulation annual variability of wood anatomy characteristics is particularly informative. It helps to divide the contribution of different ecological factors to total features dispersion. In this work, a comparative analysis of individual and climatic variability of tree ring structure characteristics of Gmelin’s larch Larix gmelinii (Rupr. growth within northernmost forest was carried out. The trees from forest-tundra boundary has greater radial growth intensity, forms the bigger conductive zone in rings with wider mean lumen area in comparison with trees from closed forest. This result can be explained by adaptive features and height ecological xylem plasticity of larch. The tree rings structure of larch from boundary with tundra is determined by largely current weather conditions. Is because these ones evince high adaptive plasticity on the level of xylem structure. The xylem reflects joint changes of climate factors and local ecological conditions. The trees from closed forest are characterized by larger individual variability. The local conditions in oldest forest (for example, bad hydrothermal soil conditions inhibit the radial growth and sensitivity to environmental factors. In this case, the trees on individual level are tended to save the normal functioning of water-transport system. The significant differences in ratio individual to climate variability of tree ring structure characteristics can be caused by the different in the level of ecological habitat heterogeneity or the different in the level genetic within-population heterogeneity.

  5. Holocene climate variability and oceanographic changes off western South Africa (United States)

    Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold


    and nutrient-rich waters with active upwelling. Thus, sea surface temperatures are dominated by upwelling dynamics influenced by the latitudinal position of the southern westerlies rather than warm waters via the Agulhas leakage. The paleo-productivity changes during the late Holocene are controlled by the freshwater influx of the Orange River indicated by abundant fluvial-related taxa such as Brigantedinium spp., Protoperidinium americanum and Lejeunecysta oliva. This corroborates the increase of Poaceae/Asteraceae ratio suggesting increased summer rainfall in the SRZ. Therefore, the terrestrial (pollen) and marine (dinoflagellate cyst) records generated from the same sediment sequence enable a clear understanding of the mechanisms driving variability in the Holocene of South Africa and provide significant insight into the land-ocean linkages.

  6. Holocene Climate Variability on the Centennial and Millennial Time Scale

    Directory of Open Access Journals (Sweden)

    Eun Hee Lee


    Full Text Available There have been many suggestions and much debate about climate variability during the Holocene. However, their complex forcing factors and mechanisms have not yet been clearly identified. In this paper, we have examined the Holocene climate cycles and features based on the wavelet analyses of 14C, 10Be, and 18O records. The wavelet results of the 14C and 10Be data show that the cycles of ~2180-2310, ~970, ~500-520, ~350-360, and ~210-220 years are dominant, and the ~1720 and ~1500 year cycles are relatively weak and subdominant. In particular, the ~2180-2310 year periodicity corresponding to the Hallstatt cycle is constantly significant throughout the Holocene, while the ~970 year cycle corresponding to the Eddy cycle is mainly prominent in the early half of the Holocene. In addition, distinctive signals of the ~210-220 year period corresponding to the de Vries cycle appear recurrently in the wavelet distribution of 14C and 10Be, which coincide with the grand solar minima periods. These de Vries cycle events occurred every ~2270 years on average, implying a connection with the Hallstatt cycle. In contrast, the wavelet results of 18O data show that the cycles of ~1900-2000, ~900-1000, and ~550-560 years are dominant, while the ~2750 and ~2500 year cycles are subdominant. The periods of ~2750, ~2500, and ~1900 years being derived from the 18O records of NGRIP, GRIP and GISP2 ice cores, respectively, are rather longer or shorter than the Hallstatt cycle derived from the 14C and 10Be records. The records of these three sites all show the ~900-1000 year periodicity corresponding to the Eddy cycle in the early half of the Holocene.

  7. Sources of Holocene variability of oxygen isotopes in paleoclimate archives

    Directory of Open Access Journals (Sweden)

    A. N. LeGrande


    Full Text Available Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

  8. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms (United States)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing


    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  9. Assessing millennial-scale variability during the Holocene: A perspective from the western tropical Pacific (United States)

    Khider, D.; Jackson, C. S.; Stott, L. D.


    We investigate the relationship between tropical Pacific and Southern Ocean variability during the Holocene using the stable oxygen isotope and magnesium/calcium records of cooccurring planktonic and benthic foraminifera from a marine sediment core collected in the western equatorial Pacific. The planktonic record exhibits millennial-scale sea surface temperature (SST) oscillations over the Holocene of 0.5°C while the benthic δ18Oc document 0.10‰ millennial-scale changes of Upper Circumpolar Deep Water (UCDW), a water mass which outcrops in the Southern Ocean. Solar forcing as an explanation for millennial-scale SST variability requires (1) a large climate sensitivity and (2) a long 400 year delayed response, suggesting that if solar forcing is the cause of the variability, it would need to be considerably amplified by processes within the climate system at least at the core location. We also explore the possibility that SST variability arose from volcanic forcing using a simple red noise model. Our best estimates of volcanic forcing falls short of reproducing the amplitude of observed SST variations although it produces power at low-frequency similar to that observed in the MD81 record. Although we cannot totally discount the volcanic and solar forcing hypotheses, we are left to consider that the most plausible source for Holocene millennial-scale variability lies within the climate system itself. In particular, UCDW variability coincided with deep North Atlantic changes, indicating a role for the deep ocean in Holocene millennial-scale variability.

  10. Millennial Scale Variability of the AMOC and its Link to Climate During the Holocene (United States)

    Thornalley, D. J.; Oppo, D.; Keigwin, L. D.; Hall, I. R.; Moffa Sanchez, P.


    Several proxy and modelling studies suggest that there may have been considerable change in the operation the Atlantic Meridional Overturning Circulation (AMOC) during the Holocene. Yet despite its importance for regional and global climate, the Holocene history of the AMOC is poorly constrained. Improving our knowledge of past AMOC variability will contribute to our general understanding of the dynamics of ocean circulation and the role it may play in causing or amplifying climate variability on millennial timescales. We present Holocene grain-size records in depth transects from Blake Outer Ridge and Cape Hatteras, sampling the full-depth range of the Deep Western Boundary Current (DWBC), the lower limb of the AMOC. These records will complement a depth-transect of grain-size records sampling the Iceland-Scotland (I-S) overflow, showing Holocene variations that reflect deglacial meltwater forcing in the early Holocene and insolation-forced trends from the middle-to-late Holocene (Thornalley et al., 2013, Climate of the Past). We will also present detailed grain-size records for the last 2,000 years, both in a depth transect of cores off Cape Hatteras, and from cores in the Iceland Basin, sampling the I-S overflow. Our extensive datasets enable us to provide a coherent synthesis of changes in the flow strength of key components of the AMOC on centennial-millennial and orbital timescales, which we can use to develop our understanding of past millennial-scale climate variability. Specific questions to be addressed include: How well coupled are Holocene trends in Iceland-Scotland overflow and the DWBC? How did I-S overflow and the AMOC vary during the last millennia, including the last ~150 years since the end of the Little Ice Age? Initial results suggest a long-term anti-phasing of the Nordic overflows, wherein mid-late Holocene weakening of the I-S overflow has been compensated for by a strengthening of Denmark Strait overflow. We will also report on pronounced

  11. A Stalagmite record of Holocene Indonesian-Australian summer monsoon variability from the Australian tropics (United States)

    Denniston, Rhawn F.; Wyrwoll, Karl-Heinz; Polyak, Victor J.; Brown, Josephine R.; Asmerom, Yemane; Wanamaker, Alan D.; LaPointe, Zachary; Ellerbroek, Rebecca; Barthelmes, Michael; Cleary, Daniel; Cugley, John; Woods, David; Humphreys, William F.


    Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from ˜2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Niño/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Niño events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene.

  12. Millennial- to century-scale variability in Gulf of Mexico Holocene climate records (United States)

    Poore, R.Z.; Dowsett, H.J.; Verardo, S.; Quinn, T.M.


    Proxy records from two piston cores in the Gulf of Mexico (GOM) provide a detailed (50-100 year resolution) record of climate variability over the last 14,000 years. Long-term (millennial-scale) trends and changes are related to the transition from glacial to interglacial conditions and movement of the average position of the Intertropical Convergence Zone (ITCZ) related to orbital forcing. The ??18O of the surface-dwelling planktic foraminifer Globigerinoides ruber show negative excursions between 14 and 10.2 ka (radiocarbon years) that reflect influx of meltwater into the western GOM during melting of the Laurentide Ice Sheet. The relative abundance of the planktic foraminifer Globigerinoides sacculifer is related to transport of Caribbean water into the GOM. Maximum transport of Caribbean surface waters and moisture into the GOM associated with a northward migration of the average position of the ITCZ occurs between about 6.5 and 4.5 ka. In addition, abundance variations of G. sacculifer show century-scale variability throughout most of the Holocene. The GOM record is consistent with records from other areas, suggesting that century-scale variability is a pervasive feature of Holocene climate. The frequency of several cycles in the climate records is similar to cycles identified in proxy records of solar variability, indicating that at least some of the century-scale climate variability during the Holocene is due to external (solar) forcing.

  13. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  14. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard (United States)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis


    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  15. Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea

    Directory of Open Access Journals (Sweden)

    G. Siani


    Full Text Available Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs and oxygen isotope composition of seawater (δ18Ow from a high sedimentation core collected in the South Adriatic Sea (SAS. Core chronology is based on 10 AMS 14C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted paleohydrological periods that reflect (i a marked lowering of δ18Ow/salinity during the early to mid-Holocene (11.5 ka to 6.3 ka, including the two-step sapropel S1 deposition, followed during the mid- to upper Holocene by (ii a prevailing period of increased salinity and enhanced arid conditions in the South Adriatic Basin. Superimposed on these trends, short-term centennial-scale hydrological events punctuated the Holocene period in the SAS. During the early to mid-Holocene, two main SST coolings together with prominent δ18Ow/salinity lowering delineate the sapropel S1 interruption and the post-sapropel phase between 7.3 to 6.3 ka. After 6 ka, centennial-scale δ18Ow and G. bulloides δ13C lowering, mostly centered between 3 to 0.6 ka, reflect short-term hydrological changes related to more intensive runoff of the Po and/or Apennine rivers. These short-term events, even of lesser amplitude compared to the early to mid-Holocene period, may have induced a lowering of sea surface density and consequently reduced and/or inhibited the formation of deep bottom waters in the SAS. Comparison of the emerging centennial- to millennial-scale hydrological record with previous climatic records from the central Mediterranean area and north of the Alps reveal possible synchronicities (within the radiocarbon-dating uncertainty between phases of lower salinity in the SAS and periods of wetter climatic conditions around the north-central Adriatic Sea. Finally, wavelet analyses provide new clues about the potential origin of climate variability in the SAS, confirming

  16. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard (United States)

    van der Bilt, Willem G. M.; Bakke, Jostein; Vasskog, Kristian; D'Andrea, William J.; Bradley, Raymond S.; Ólafsdóttir, Sædis


    The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the

  17. Characterising Late-Holocene glacier variability in the southern tropical Andes (United States)

    Bromley, G.; Winckler, G.; Hall, B. L.; Schaefer, J. M.


    Accurate resolution of both the timing and magnitude of Late-Holocene climate events, such as the Little Ice Age, is vital in order to test different hypotheses for the causes and propagation of such climate variability. However, in contrast to higher latitudes, well-dated records from the tropics are relatively rare and the overall climatic structure of the last millennium remains unresolved. Much of this uncertainty stems from difficulties associated with radiocarbon dating in these dry, often high-altitude environments, a situation that now is being addressed through the application and refinement of cosmogenic surface-exposure methods. We present detailed Late-Holocene moraine records, resolved with radiocarbon and surface-exposure dating, from sites across the Andes of southern Peru. Specifically, we describe glacial records from both the arid Western Cordillera, where glaciation is limited by moisture availability, and the humid Eastern Cordillera, where ablation is controlled primarily by air temperature. In both locations, the most recent advance is marked by two to three unweathered terminal moraines located several hundred metres beyond the modern ice margins. Our chronology indicates that, while the advance occurred broadly in step with the classic 'Little Ice Age', the maximum glacial extent in southern Peru was achieved relatively early on and that the 18th and 19th centuries were dominated by glacier retreat. In a broader temporal context, our data also confirm that, in contrast to northern temperate latitudes, the event in southern Peru was the most recent significant interruption in a progressive Holocene retreat. The consistency in glacier response between the different climate zones suggests (i) that this pattern of Late-Holocene climate variability was of at least regional extent and (ii) that temperature fluctuations were the primary driving mechanism.

  18. Late Holocene Radiocarbon Variability in Northwest Atlantic Slope Waters

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, O; Edinger, E; Guilderson, T P; Ghaleb, B; Risk, M J; Scott, D B


    Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth, and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post bomb-{sup 14}C eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb {Delta}{sup 14}C signature (-67 {+-} 4{per_thousand}) to at least 1000 m depth. Surface water bomb-{sup 14}C signals were lagged and damped (peaking at {approx} +45{per_thousand} in the early 1980s) relative to other regions of the northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in {Delta}{sup 14}C is much stronger. In surface water, pre-bomb {Delta}{sup 14}C averaged -75 {+-} 5{per_thousand}. At 250-475 m depth, prebomb {Delta}{sup 14}C oscillated quasi-decadally between -80 and -100{per_thousand}, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, subfossil corals reveal no systematic changes in vertical {Delta}{sup 14}C gradients over the last 1200 years.

  19. Assessing the potential of Southern Caribbean corals for reconstructions of Holocene temperature variability

    International Nuclear Information System (INIS)

    Giry, Cyril; Felis, Thomas; Scheffers, Sander; Fensterer, Claudia


    We present a 40-year long monthly resolved Sr/Ca record from a fossil Diploria strigosa coral from Bonaire (Southern Caribbean Sea) dated with U/Th at 2.35 ka before present (BP). Secondary modifiers of this sea surface temperature (SST) proxy in annually-banded corals such as diagenetic alteration of the skeleton and skeletal growth-rate are investigated. Extensive diagenetic investigations reveal that this fossil coral skeleton is pristine which is further supported by clear annual cycles in the coral Sr/Ca record. No significant correlation between annual growth rate and Sr/Ca is observed, suggesting that the Sr/Ca record is not affected by coral growth. Therefore, we conclude that the observed interannual Sr/Ca variability was influenced by ambient SST variability. Spectral analysis of the annual mean Sr/Ca record reveals a dominant frequency centred at 6-7 years that is not associated with changes of the annual growth rate. The first monthly resolved coral Sr/Ca record from the Southern Caribbean Sea for preindustrial time suggests that fossil corals from Bonaire are suitable tools for reconstructing past SST variability. Coastal deposits on Bonaire provide abundant fossil D. strigosa colonies of Holocene age that can be accurately dated and used to reconstruct climate variability. Comparisons of long monthly resolved Sr/Ca records from multiple fossil corals will provide a mean to estimate seasonality and interannual to interdecadal SST variability of the Southern Caribbean Sea during the Holocene.

  20. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.


    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic

  1. Recently studied sedimentary records from the eastern Arabian Sea: Implications to Holocene monsoonal variability

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Kurian, S.

    stream_size 72460 stream_content_type text/plain stream_name Earth_Sci_India_1_258.pdf.txt stream_source_info Earth_Sci_India_1_258.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Agnihotri 1 of 14 10/15/2008 9:41 AM Earth Science India Vol.1 (IV), October, 2008, pp. 258-287 Recently studied sedimentary records from the eastern Arabian Sea: Implications to Holocene monsoonal variability Rajesh...

  2. Detrital events and hydroclimate variability in the Romanian Carpathians during the mid-to-late Holocene (United States)

    Longman, Jack; Ersek, Vasile; Veres, Daniel; Salzmann, Ulrich


    The Romanian Carpathians are located at the confluence of three major atmospheric pressure fields: the North Atlantic, the Mediterranean and the Siberian. Despite its importance for understanding past human impact and climate change, high-resolution palaeoenvironmental reconstructions of Holocene hydroclimate variability, and in particular records of extreme precipitation events in the area, are rare. Here we present a 7500-year-long high-resolution record of past climatic change and human impact recorded in a peatbog from the Southern Carpathians, integrating palynological, geochemical and sedimentological proxies. Natural climate fluctuations appear to be dominant until 4500 years before present (yr BP), followed by increasing importance of human impact. Sedimentological and geochemical analyses document regular minerogenic deposition within the bog, linked to periods of high precipitation. Such minerogenic depositional events began 4000 yr BP, with increased depositional rates during the Medieval Warm Period (MWP), the Little Ice Age (LIA) and during periods of societal upheaval (e.g. the Roman conquest of Dacia). The timing of minerogenic events appears to indicate a teleconnection between major shifts in North Atlantic Oscillation (NAO) and hydroclimate variability in southeastern Europe, with increased minerogenic deposition correlating to low NAO index values. By linking the minerogenic deposition to precipitation variability, we state that this link persists throughout the mid-to-late Holocene.

  3. Millennial-scale variability in the local radiocarbon reservoir age of south Florida during the Holocene (United States)

    Toth, Lauren T.; Cheng, Hai; Edwards, R. Lawrence; Ashe, Erica; Richey, Julie N.


    A growing body of research suggests that the marine environments of south Florida provide a critical link between the tropical and high-latitude Atlantic. Changes in the characteristics of water masses off south Florida may therefore have important implications for our understanding of climatic and oceanographic variability over a broad spatial scale; however, the sources of variability within this oceanic corridor remain poorly understood. Measurements of ΔR, the local offset of the radiocarbon reservoir age, from shallow-water marine environments can serve as a powerful tracer of water-mass sources that can be used to reconstruct variability in local-to regional-scale oceanography and hydrology. We combined radiocarbon and U-series measurements of Holocene-aged corals from the shallow-water environments of the Florida Keys reef tract (FKRT) with robust statistical modeling to quantify the millennial-scale variability in ΔR at locations with (“nearshore”) and without (“open ocean”) substantial terrestrial influence. Our reconstructions demonstrate that there was significant spatial and temporal variability in ΔR on the FKRT during the Holocene. Whereas ΔR was similar throughout the region after ∼4000 years ago, nearshore ΔR was significantly higher than in the open ocean during the middle Holocene. We suggest that the elevated nearshore ΔR from ∼8000 to 5000 years ago was most likely the result of greater groundwater influence associated with lower sea level at this time. In the open ocean, which would have been isolated from the influence of groundwater, ΔR was lowest ∼7000 years ago, and was highest ∼3000 years ago. We evaluated our open-ocean model of ΔR variability against records of local-to regional-scale oceanography and conclude that local upwelling was not a significant driver of open-ocean radiocarbon variability in this region. Instead, the millennial-scale trends in open-ocean ΔR were more likely a result of broader

  4. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes (United States)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie


    sediments might strongly react to anthropogenic deforestation, as carbon isotope time series from the adjacent Lake Holzmaar suggest. Reconstructions based on pollen with the pdf-method are robust to the human impact during the last 4000 years, but do not reproduce the fine scale climate variability that can be derived from the stable isotope series (Kühl et al., in press). In contrast, reconstructions on the basis of pollen data show relatively pronounced climate variability (here: January temperature) during the Mid-Holocene, which is known from many other European records. The oxygen isotope time series as available now indicate that at least some of the observed variability indeed reflects climate variability. However, stable carbon isotopes show little concordance. At this stage our results point in the direction that 1) the isotopic composition might reflect a shift in influencing factors during the Holocene, 2) climate trends can robustly be reconstructed with the pdf method and 3) fine scale climate variability can potentially be reconstructed using the pdf-method, given that climate sensitive taxa at their distribution limit are present. The latter two conclusions are of particular importance for the reconstruction of climatic trends and variability of interglacials older than the Holocene, when sites are rare and pollen is often the only suitable proxy in terrestrial records. Kühl, N., Moschen, R., Wagner, S., Brewer, S., Peyron, O., in press. A multiproxy record of Late Holocene natural and anthropogenic environmental change from the Sphagnum peat bog Dürres Maar, Germany: implications for quantitative climate reconstructions based on pollen. J. Quat. Sci., DOI: 10.1002/jqs.1342. Available online. Moschen, R., Kühl, N., Rehberger, I., Lücke, A., 2009. Stable carbon and oxygen isotopes in sub-fossil Sphagnum: Assessment of their applicability for palaeoclimatology. Chemical Geology 259, 262-272.

  5. Current and potential tree locations in tree line ecotone of Changbai Mountains, Northeast China: the controlling effects of topography. (United States)

    Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei


    Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountains. To test the hypothesis, we used IKONOS images and WorldView-1 image to identify the tree locations and developed a logistic regression model using topographical variables to identify the dominant controls of the tree locations. The results showed that aspect, wetness, and slope were dominant controls for tree locations on western side of the mountains, whereas altitude, SPI, and aspect were the dominant factors on northern side. The upmost altitude a tree can currently reach was 2140 m asl on the northern side and 2060 m asl on western side. The model predicted results showed that habitats above the current tree line on the both sides were available for trees. Tree recruitments under the current tree line may take advantage of the available habitats at higher elevations based on the current tree location. Our research confirmed the controlling effects of topography on the tree locations in the tree line ecotone of Changbai Mountains and suggested that it was essential to assess the tree response to topography in the research of tree line ecotone.

  6. Insights Into Deglacial Through Holocene Climate Variability At The Peru-Chile Margin From Very High Sedimentation Rate Marine Cores (United States)

    Chazen, C.; Dejong, H.; Altabet, M.; Herbert, T.


    The Peru-Chile upwelling system is situated at the epicenter of the modern ENSO System. The high settling flux of organic materials and poor ventilation of subsurface waters makes the Peru upwelling system one of the world's three major oxygen minimum/denitrification zones (Codispoti and Christensen, 1985). Extremely high sedimentation rates and permanent hypoxic/anoxic subsurface waters create excellent conditions for the preservation of organic matter. Despite the significance of this region in regards to paleoceanography and paleoclimatology, relatively little work has been done to characterize past Peruvian climate because carbonate dissolution hinders the use of conventional paleoclimate methods and hiatuses frequently interrupt the record. However, using nitrogen isotopes and alkenone paleothermometry on multiple sediment cores from the Margin we have managed to overcome many of these challenges to create a nearly continuous SST (Uk`37), productivity (C37total), biogenic opal and denitrification (δN15) record from the LGM through the late Holocene. Remarkably, recent work has revealed an annually laminated core, which spans from 1.4-8.0ka uninterrupted, providing a unique window into Holocene climate variability. Modern-day upwelling induced climate at the Peru-Chile margin is characterized by cold temperatures (21.5°C) high productivity and strong denitrification, which has persisted since the mid Holocene (4ka). The mid Holocene also marks the beginning of a dramatic increase in seasonality and ENSO variability consistent with other tropical climate indicators. Climate variability in the Mid-early Holocene shows a distinctively different pattern from that of the late Holocene; unproductive warm temperatures persist through the early Holocene in what can be described as a permanent El Niño-like state. Early tropical warming occurred near 17ka along with an unprecedented increase in denitrification, which is decoupled from local productivity. Early onset

  7. Mid-Holocene onset of high-amplitude decadal to centennial scale variability along the Peru Chile Margin (United States)

    Chazen, C. R.; Altabet, M.; Herbert, T. D.


    Understanding the natural climate variations in the eastern tropical Pacific is crucial for predicting the evolution of the El Niño-Southern Oscillation (ENSO) system and for anticipating the ways in which increases in atmospheric CO2 will affect climate. Here we present the first continuous, high-resolution (11-12 yr) climate record across the mid-Holocene transition (10ka-1.4ka) from the Peru-Chile Margin near the epicenter of the modern ENSO system. Although the high productivity of the Peru margin should promote high deposition rates, and the anaerobic bottom water conditions should inhibit sediment mixing by benthic organisms, nearly all sediment cores recovered from this region suffer from major gaps in Holocene sedimentation. Our data comes from a ~5 meter piston core collected from the mid-Peruvian shelf (15° 15"S, 75° 58"W, ~250mwd) in the heart of the oxygen minimum/denitrification zone that provides the first uninterrupted archive of conditions along the Peru-Chile margin. A suite of geochemical proxies allow us to reconstruct sea surface temperature (SST- Uk'37), phytoplankton productivity (C37total and %BSi), and thermocline ventilation (δ15N), variables that are tightly correlated to ENSO events today. Despite the observation that the mean late Holocene state of all three variables did not change over the last 10,000 years, our data reveal a dramatic increase in climate variability after the mid Holocene (~5ka); represented by prolonged periods (50-200yrs) of climate extremes, which are absent in the early Holocene. To further investigate these climate extremes we examine benthic foraminiferal assemblages and oxygen isotopes in combination with our other proxy records in selected late Holocene sections. The roughly centennial-scale oscillations do not show typical El Niño-La Niña correlations between proxies. We therefore posit that a significant fraction of super-ENSO variance during the course of the Holocene may originate outside the tropics

  8. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes (United States)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang


    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  9. Holocene climate variability in the winter rainfall zone of South Africa

    Directory of Open Access Journals (Sweden)

    S. Weldeab


    Full Text Available We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes, grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the winter rainfall zone (WRZ of South Africa occurred during the "Little Ice Age" (700–100 cal years BP most likely in response to a northward shift of the austral westerlies. Wet phases and strengthened coastal water upwellings are companied by a decrease of Agulhas water leakage into the South Atlantic and a reduced dust incursion over Antarctica, as indicated in previous studies. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS between 9000 and 5500 cal years BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the eastern South Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in the South Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation.

  10. Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Directory of Open Access Journals (Sweden)

    C. Martín-Puertas


    Full Text Available A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G and terrestrial (Zoñar Lake, Andalucia, Spain geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP. Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.

  11. Holocene footprints in Namibia: the influence of substrate on footprint variability. (United States)

    Morse, Sarita A; Bennett, Matthew R; Liutkus-Pierce, Cynthia; Thackeray, Francis; McClymont, Juliet; Savage, Russell; Crompton, Robin H


    We report a Holocene human and animal footprint site from the Namib Sand Sea, south of Walvis Bay, Namibia. Using these data, we explore intratrail footprint variability associated with small variations in substrate properties using a "whole foot" analytical technique developed for the studies in human ichnology. We demonstrate high levels of intratrail variability as a result of variations in grain size, depositional moisture content, and the degree of sediment disturbance, all of which determine the bearing capacity of the substrate. The two principal trails were examined, which had consistent stride and step lengths, and as such variations in print typology were primarily controlled by substrate rather than locomotor mechanics. Footprint typology varies with bearing capacity such that firm substrates show limited impressions associated with areas of peak plantar pressure, whereas softer substrates are associated with deep prints with narrow heels and reduced medial longitudinal arches. Substrates of medium bearing capacity give displacement rims and proximal movement of sediment, which obscures the true form of the medial longitudinal arch. A simple conceptual model is offered which summarizes these conclusions and is presented as a basis for further investigation into the control of substrate on footprint typology. The method, model, and results presented here are essential in the interpretation of any sites of greater paleoanthropological significance, such as recently reported from Ileret (1.5 Ma, Kenya; Bennett et al.: Science 323 (2009) 1197-1201). Copyright © 2013 Wiley Periodicals, Inc.

  12. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA (United States)

    Brock, J.C.; Palaseanu-Lovejoy, M.; Wright, C.W.; Nayegandhi, A.


    A portion of the northern Florida Keys reef tract was mapped with the NASA Experimental Advanced Airborne Research Lidar (EAARL) and the morphology of patch reefs was related to variations in Holocene sea level. Following creation of a lidar digital elevation model (DEM), geospatial analyses delineated morphologic attributes of 1,034 patch reefs (reef depth, basal area, height, volume, and topographic complexity). Morphometric analysis revealed two morphologically different populations of patch reefs associated with two distinct depth intervals above and below a water depth of 7.7 m. Compared to shallow reefs, the deep reefs were smaller in area and volume and showed no trend in topographic complexity relative to water depth. Shallow reefs were more variable in area and volume and became flatter and less topographically complex with decreasing water depth. The knoll-like morphology of deep reefs was interpreted as consistent with steady and relatively rapidly rising early Holocene sea level that restricted the lateral growth of reefs. The morphology of shallow 'pancake-shaped' reefs at the highest platform elevations was interpreted as consistent with fluctuating sea level during the late Holocene. Although the ultimate cause for the morphometric depth trends remains open to interpretation, these interpretations are compatible with a recent eustatic sea-level curve that hindcasts fluctuating late Holocene sea level. Thus it is suggested that the morphologic differences represent two stages of reef accretion that occurred during different sea-level conditions. ?? 2008 Springer-Verlag.

  13. Holocene Multi-Decadal to Millennial-Scale Hydrologic Variability on the South American Altiplano (United States)

    Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Burns, S.


    On orbital timescales, lacustrine sediment records in the tropical central Andes show massive changes in lake level due to mechanisms related to global-scale drivers, varying at precessional timescales. Here we use stable isotopic and diatom records from two lakes in the Lake Titicaca drainage basin to reconstruct multi- decadal to millennial scale precipitation variability during the last 7000 to 8000 years. The records are tightly coupled at multi-decadal to millennial scales with each other and with lake-level fluctuations in Lake Titicaca, indicating that the lakes are recording a regional climate signal. A quantitative reconstruction of precipitation from stable isotopic data indicates that the central Andes underwent significant wet to dry alternations at multi- centennial frequencies with an amplitude of 30 to 40% of total precipitation. A strong millennial-scale component, similar in duration to periods of increased ice rafted debris flux in the North Atlantic, is observed in both lake records, suggesting that tropical North Atlantic sea-surface temperature (SST) variability may partly control regional precipitation. No clear relationship is evident between these records and the inferred ENSO history from Lago Pallcacocha in the northern tropical Andes. In the instrumental period, regional precipitation variability on inter-annual timescales is clearly influenced by Pacific modes; for example, most El Ninos produce dry and warm conditions in this part of the central Andes. However, on longer timescales, the control of tropical Pacific modes is less clear. Our reconstructions suggest that the cold intervals of the Holocene Bond events are periods of increased precipitation in the central Andes, thus indicating an anti-phasing of precipitation variation in the southern tropics of South America relative to the Northern Hemisphere monsoon region.


    Energy Technology Data Exchange (ETDEWEB)

    Joseph H. Hartman


    This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern

  15. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes (United States)

    Balascio, Nicholas L.; D'Andrea, William J.; Gjerde, Marthe; Bakke, Jostein


    The response of the Arctic hydrologic cycle to global warming includes changes in precipitation patterns and moisture availability associated with variable sea ice extent and modes of atmospheric circulation. Reconstructions of past hydroclimate changes help constrain the natural range of these systems, identify the manners in which they respond to different forcing mechanisms, and reveal their connections to other components of the climate system, all of which lead to a better understanding of present and future changes. Here we examine hydroclimate changes during the Holocene in the High Arctic archipelago of Svalbard by reconstructing the isotopic composition of precipitation. We measured the hydrogen isotopic composition (δD values) of leaf wax compounds (n-alkanes; C25-C31) in a sediment core from Lake Hakluytvatnet on the island of Amsterdamøya, northwest Spitsbergen. We interpret δD values of mid-chain (C25) and long-chain (C29, C31) length n-alkanes to represent changes in the isotopic composition of lake water and precipitation over the last 12.9 ka. After deglaciation of the catchment, water supply became restricted and the lake experienced significant evaporative isotopic enrichment indicating warmer conditions from 12.8 to 7.5 ka. The isotope values suggest an increase in the delivery of moisture from warmer sub-polar air masses between 12.8 and 9.5 ka, followed by generally warm, but unstable conditions between 9.5 and 7.5 ka, possibly indicating a response to meltwater forcing. Sedimentary evidence indicates a hiatus in deposition c. 7.5-5.0 ka, likely as a result of desiccation of the lake. At c. 5.0 ka lacustrine sedimentation resumed and over the last 5 ka there was a progressive increase in the influence of polar air masses and colder conditions, which culminated in an abrupt shift to colder conditions at c. 1.8 ka. This late Holocene cooling ended c. 0.18 ka, when isotopic data indicate warmer conditions and greater influence of moisture

  16. Late Holocene Hydrologic Variability in the southeast Mojave Desert using sediments from Ford Lake, California (United States)

    Leidelmeijer, J.; Kirby, M.; Anderson, W. T., Jr.; Mayer, S. A.; Palermo, J. A.; Stout, C.; Shellhorn, A.; Weisberg, G.; Rangel, H.; Hess, B.


    Most published lacustrine studies located in the Mojave Desert focus on lakes that receive the majority of their water from the Mojave River (e.g., Silver Lake, Cronese Lakes, Soda Lake, etc). Consequently, these Mojave River-fed lake sites record coastal hydroclimatic signals rather than a solely Mojave-only signal. The reason for this signal-disconnect is that the Mojave River is sourced in the San Bernardino Mountains, where annual precipitation is dictated by coastal hydroclimates. Therefore, much remains unknown about how the Mojave Desert changed during the Holocene at sub-millennial time scales. To address this problem and fill in an important geographical gap, we focus on Ford Lake in the southeastern Mojave Desert. Ford Lake is an internally drained, closed basin, and it is completely disconnected from the Mojave River. As a result, it represents one of the first lakes studied in the Mojave Desert with a climate signal that is 100% Mojave. Sediments from Ford Lake provide valuable context for understanding hydroclimatic variability exclusive to the Mojave Desert. To date, two hand-dug 1.5 m trenches (depocenter and littoral zone) and 3 overlapping sediments cores from the lake's depocenter have been sampled. The total core length is 3.55 m and bottomed in coarse alluvium, suggesting we captured the complete lacustrine sediment package. Initial results by Mayer (2016) focused on the most recent 1200 calendar years before present, or the upper 2.16 m. Mayer (2016) found evidence for increased run-off (wetter climate) during the Little Ice Age and reduced run-off (drier climate) during the Medieval Climatic Anomaly. Here, we complete the study, improving age control using sediment charcoal. Grain size, magnetic susceptibility, percent total organic matter, percent total carbonate content, C:N ratios and C and N isotopic analyses are (will be) measured at 1 cm contiguous intervals. The Ford Lake record has been (will be) compared to pre-existing regional

  17. Effects of late Holocene climate variability and anthropogenic stressors on the vegetation of the Maya highlands (United States)

    Franco-Gaviria, F.; Correa-Metrio, A.; Cordero-Oviedo, C.; López-Pérez, M.; Cárdenes-Sandí, G. M.; Romero, F. M.


    Climate variability and human activities have shaped the vegetation communities of the Maya region of southern Mexico and Central America on centennial to millennial timescales. Most research efforts in the region have focused on the lowlands, with relatively little known about the environmental history of the regional highlands. Here we present data from two sediment sequences collected from lakes in the highlands of Chiapas, Mexico. Our aim was to disentangle the relative contributions of climate and human activities in the development of regional vegetation during the late Holocene. The records reveal a long-term trend towards drier conditions with superimposed centennial-scale droughts. A declining moisture trend from 3400 to 1500 cal yr BP is consistent with previously reported southward displacement of the Intertropical Convergence Zone, whereas periodic droughts were probably a consequence of drivers such as El Niño. These conditions, together with dense human occupation, converted the vegetation from forest to more open systems. According to the paleoecological records, cultural abandonment of the area occurred ca. 1500 cal yr BP, favoring forest recovery that was somewhat limited by low moisture availability. About 600 cal yr BP, wetter conditions promoted the establishment of modern montane cloud forests, which consist of a diverse mixture of temperate and tropical elements. The vegetation types that occupied the study area during the last few millennia have remained within the envelope defined by the modern vegetation mosaic. This finding highlights the importance of microhabitats in the maintenance biodiversity through time, even under scenarios of high climate variability and anthropogenic pressure.

  18. Multiproxy records of Holocene climate and glacier variability from sediment cores in the Cordillera Vilcabamba of southern Peru (United States)

    Schweinsberg, A. D.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.; Tapia, P. M.


    Sediments contained in glacier-fed lakes and bogs provide continuous high-resolution records of glacial activity, and preserve multiproxy evidence of Holocene climate change. Tropical glacier fluctuations offer critical insight on regional paleoclimatic trends and controls, however, continuous sediment records of past tropical climates are limited. Recent cosmogenic 10Be surface exposure ages of moraine sequences in the Cordillera Vilcabamba of southern Peru (13°20'S latitude) reveal a glacial culmination during the early Holocene and a less extensive glaciation coincident with the Little Ice Age of the Northern Hemisphere. Here we supplement the existing 10Be moraine chronology with the first continuous records of multiproxy climate data in this mountain range from sediment cores recovered from bogs in direct stratigraphic contact with 10Be-dated moraines. Radiocarbon-dated sedimentological changes in a 2-meter long bog core reveal that the Holocene is characterized by alternating inorganic and organic-rich laminae, suggesting high-frequency climatic variability. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Preliminary analyses of the bog core reveal approximately 70 diatom taxa that indicate both rheophilic and lentic environments. Initial results show a general decrease in magnetic susceptibility and clastic flux throughout the early to mid-Holocene, which suggests an interval of deglaciation. An episode of high clastic flux from 3.8 to 2.0 ka may reflect a late Holocene glacial readvance. Volcanic glass fragments and an anomalous peak in magnetic susceptibility may correspond to the historical 1600 AD eruption of Huaynaputina. Ten new bog and lake sediment cores were collected during the 2012 field expedition and analytical measurements are underway. Ongoing efforts are focused on analyzing diatom assemblage data, developing

  19. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA (United States)

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.


    A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during

  20. Holocene Millennial-scale Surface and Bottom Water Variability, Feni Drift, NE Atlantic Ocean: Foraminiferal Assemblages (United States)

    Lassen, S. J.; Richter, T. O.; de Stigter, H. C.; van Weering, T. C. E.; de Haas, H.

    A high-resolution sediment core from Feni Drift (ENAM9606, 56N 14W, 2543 m wa- ter depth) was investigated for planktonic and benthic foraminiferal assemblages dur- ing the last 12,000 years. During the Preboreal, peak abundances of T.quinqueloba indicate the passage of the Arctic front over the core site. Holocene planktonic foraminiferal assemblages indicate a gradual warming trend of surface water masses punctuated by a major cooling (8,200ky event s.l.), and possibly a slight cooling dur- ing the last 3,000 years. The interval from 10 to 5kyrs shows higher and fluctuating abundances of T.quinqueloba and G.bulloides, which suggest proximity of the subarc- tic front and enhanced spring blooms compared to the upper Holocene. Abundance peaks of N.pachyderma(s) and/or T.quinqueloba indicate a series of millennial-scale cooling events during the entire Holocene, which can be correlated to similar episodes previously described from other locations in the North Atlantic and Norwegian- Greenland Sea. Benthic foraminiferal assemblages indicate a gradual transition from seasonal, spring-bloom related food supply in the Lower Holocene (dominance of the phytodetritus species E.exigua) to possibly lower, but more sustained food supply in the Upper Holocene (dominance of C.obtusa and C.laevigata).

  1. North American Rocky Mountain Hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales (United States)

    Finney, B.; Anderson, L.; Berkelhammer, M. B.; Barron, J. A.; Steinman, B. A.; Abbott, M. B.


    A network of western North American lake sediment isotope records (calcium carbonate-δ18O) developed during the past decade provides substantial evidence of Pacific ocean-atmosphere forcing of precipitation variability during the Holocene. We present an overview of the eighteen lake carbonate-δ18O records located in the North American Rocky Mountains with a new compilation of modern lake water isotope measurements to characterize their sensitivity to variations in precipitation-δ18O and fractionation effects by evaporation. Comparative analysis of the carbonate-δ18O records that reflect precipitation isotope (δ18O) values (i.e., precipitation "isometers") indicates a sequence of time-varying in-phase and antiphase patterns between northern and southern regions during the Holocene that provide evidence for a highly non-stationary influence of Pacific ocean-atmosphere processes on the hydroclimate of western North America. We identify a prominent precipitation-δ18O dipole, which was sustained for ~2000 years between ~3.5 and 1.5 ka. The dipole contrasts with divergent earlier Holocene patterns and appears to indicate the onset of linkages between northern and tropical Pacific ocean-atmosphere dynamics as we know them today. These observations are informed by previous research on North Pacific precipitation-δ18O. Further investigation of short (observational) and long (Holocene) time scale patterns are needed to improve our understanding of the processes that 1) drive regional precipitation-δ18O responses to Pacific Ocean-atmosphere variability, and 2) cause varying internal ocean-atmosphere responses to external climate forcing.

  2. Punctuated Holocene climate of Vestfirðir, Iceland, linked to internal/external variables and oceanographic conditions (United States)

    Harning, David J.; Geirsdóttir, Áslaug; Miller, Gifford H.


    Emerging Holocene paleoclimate datasets point to a non-linear response of Icelandic climate against a background of steady orbital cooling. The Vestfirðir peninsula (NW Iceland) is an ideal target for continued climate reconstructions due to the presence of a small ice cap (Drangajökull) and numerous lakes, which provide two independent means to evaluate existing Icelandic climate records and to constrain the forcing mechanisms behind centennial-scale cold anomalies. Here, we present new evidence for Holocene expansions of Drangajökull based on 14C dates from entombed dead vegetation as well as two continuous Holocene lake sediment records. Lake sediments were analyzed for both bulk physical (MS) and biological (%TOC, δ13C, C/N, and BSi) parameters. Composite BSi and C/N records from the two lakes yield a sub-centennial qualitative perspective on algal (diatom) productivity and terrestrial landscape stability, respectively. The Vestfirðir lake proxies suggest initiation of the Holocene Thermal Maximum by ∼8.8 ka with subsequent and pronounced cooling not apparent until ∼3 ka. Synchronous periods of reduced algal productivity and accelerated landscape instability point to cold anomalies centered at ∼8.2, 6.6, 4.2, 3.3, 2.3, 1.8, 1, and 0.25 ka. Triggers for cold anomalies are linked to variable combinations of freshwater pulses, low total solar irradiance, explosive and effusive volcanism, and internal modes of climate variability, with cooling likely sustained by ocean/sea-ice feedbacks. The climate evolution reflected by our glacial and organic proxy records corresponds closely to marine records from the North Iceland Shelf.

  3. Tracking climate variability in the western Mediterranean during the Late Holocene: a multiproxy approach

    Directory of Open Access Journals (Sweden)

    V. Nieto-Moreno


    Full Text Available Climate variability in the western Mediterranean is reconstructed for the last 4000 yr using marine sediments recovered in the west Algerian-Balearic Basin, near the Alboran Basin. Fluctuations in chemical and mineralogical sediment composition as well as grain size distribution are linked to fluvial-eolian oscillations, changes in redox conditions and paleocurrent intensity. Multivariate analyses allowed us to characterize three main groups of geochemical and mineralogical proxies determining the sedimentary record of this region. These three statistical groups were applied to reconstruct paleoclimate conditions at high resolution during the Late Holocene. An increase in riverine input (fluvial-derived elements – Rb/Al, Ba/Al, REE/Al, Si/Al, Ti/Al, Mg/Al and K/Al ratios, and a decrease in Saharan eolian input (Zr/Al ratio depict the Roman Humid Period and the Little Ice Age, while drier environmental conditions are recognized during the Late Bronze Age-Iron Age, the Dark Ages and the Medieval Climate Anomaly. Additionally, faster bottom currents and more energetic hydrodynamic conditions for the former periods are evidenced by enhanced sortable silt (10-63 μm and quartz content, and by better oxygenated bottom waters – as reflected by decreasing redox-sensitive elements (V/Al, Cr/Al, Ni/Al and Zn/Al ratios. In contrast, opposite paleoceanographic conditions are distinguished during the latter periods, i.e. the Late Bronze Age-Iron Age, the Dark Ages and the Medieval Climate Anomaly. Although no Ba excess was registered, other paleoproductivity indicators (total organic carbon content, Br/Al ratio, and organometallic ligands such as U and Cu display the highest values during the Roman Humid Period, and together with increasing preservation of organic matter, this period exhibits by far the most intense productivity of the last 4000 yr. Fluctuations in detrital input into the basin as the main process managing deposition, reflected by the

  4. Late Pleistocene and Holocene Hydroclimate Variability in the Tropical Andes from Alpine Lake Sediments, Cordillera de Mérida, Venezuela (United States)

    Larsen, D. J.; Abbott, M. B.; Polissar, P. J.


    The tropics play a major role in the global hydrologic cycle and changes to tropical rainfall patterns have critical implications for water resources and ecosystem dynamics over large geographic scales. In tropical South America, late Pleistocene and Holocene precipitation variability has been documented in geologic records and associated with numerous external and internal variables, including changes in summer insolation, South American summer monsoon strength, Pacific Ocean sea surface temperatures, continental moisture recycling, and other climate processes. However, there are few records from the northern hemisphere tropical Americas, a key region for understanding interhemispheric linkages and the drivers of tropical hydroclimate variability. Here, we present a ~13 ka record of coupled hydroclimate and environmental changes from Laguna Brava, a small (~0.07 km2), hydrologically closed lake basin situated at 2400 m asl in the Cordillera de Mérida, Venezuela. Sediment cores collected from varying water depths and proximity to shore are placed in a chronologic framework using radiocarbon ages from terrestrial macrofossils, and analyzed for a suite of physical, bulk geochemical, and stable isotopic parameters. Compound specific hydrogen isotope (D/H) measurements of terrestrial plant waxes (long-chain n-alkanes) show a sharp increase in the late Pleistocene, followed by a long-term trend toward more negative values that suggest a ~20‰ decrease in the D/H ratios of South American tropical precipitation during the Holocene. This pattern is consistent in sign and magnitude to other South American precipitation reconstructions from both hemispheres, indicating interhemispheric similarities in tropical hydroclimate variability. Superimposed on this continent-scale trend are changes in moisture balance and environmental conditions in the Venezuelan Andes. We reconstruct these parameters at Laguna Brava at multidecadal and centennial resolution and evaluate this

  5. Holocene glacier variability: three case studies using an intermediate-complexity climate model

    NARCIS (Netherlands)

    Weber, S.L.; Oerlemans, J.


    Synthetic glacier length records are generated for the Holocene epoch using a process-based glacier model coupled to the intermediate-complexity climate model ECBilt. The glacier model consists of a massbalance component and an ice-flow component. The climate model is forced by the insolation change

  6. Tree Line Structure and Dynamics at the Northern Limit of the Larch Forest: Anabar Plateau, Siberia, Russia (United States)

    Kharuk, Viacheslav I.; Ranson, Kenneth J.; Im, Sergey T.; Oskorbin, Pavel A.; Dvinskaya, Maria L.; Ovchinnikov, Dmitriy V.


    The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration abundance, and age structure were analyzed. The location of the study area was within the forest-tundra ecotone (elevation range 170-450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along elevational transects. Tree natality/mortality and radial increment were determined based on dendrochronology analyses. Tree morphology, number of living and subfossil trees, regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and post-LIA tree lines and refugia boundaries were established. Long-term climate variables and drought index were included in the analysis. It was found that tree mortality from the 16th century through the beginning of the 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortality and radial growth decrease were observed to have occurred at the beginning of 18th century. Now larch, at its northern boundary in Siberia, is migrating into tundra areas. Upward tree migration was induced by warming in the middle of the 19th century. Refugia played an important role in repopulation of the forest-tundra ecotone by providing a seed source and shelter for recruitment of larch regeneration. Currently this ecotone is being repopulated mainly by tree cohorts that were established after the 1930s. The last two decades of warming did not result in an acceleration of regeneration recruitment because of increased drought conditions. The regeneration line reached (but did not exceed) the pre-LIA tree line location, although contemporary tree heights and stand densities are comparatively lower than in the pre-LIA period. The mean

  7. High-resolution paleoclimate records of Holocene hydroclimatic variability in the Eastern Colombian Andes from Lago de Tota (United States)

    Ahmed, M. N.; Bird, B. W.; Escobar, J.; Polissar, P. J.


    The Northern Hemisphere (NH) South American Monsoon (SAM) is a significant source of precipitation for the North Andes (north of 0˚) and has major control over regional hydroclimate variability. Holocene-length histories of NH SAM variability are few compared to the Southern Hemisphere (SH), limiting understanding of how these systems are connected on orbital and shorter timescales. Here, we present multi-proxy lake-sediment-based paleoclimate and paleohydrologic reconstructions from Lago de Tota, Colombia, using sedimentological, geochemical and leaf-wax hydrogen isotopic indicators from radiometically dated cores. The results indicate periods of wet and dry climate phases during the past 9000 BP with an average Holocene sedimentation rate 33cm/kyr. An increase in total organic matter (TOM) content and finer grain-size distributions was observed from 8000 to 3200 BP, suggesting a period of high lake level. This was followed by lower TOM and coarser grain sizes, suggesting lower lake levels from 3200 BP to the present. Although Tota's lake level pattern is antiphased with other lake level reconstructions from the NH and SH Andes, it is consistent with hypothesized changes in atmospheric convection over the Andes during the Holocene and the way in which they would be modified by the so-called dry island effect in the Colombian Andes. This suggests that a common forcing mechanism can be invoked to explain differing millennial-scale Andean hydroclimate changes, namely atmospheric convection. Orbital and Pacific atmosphere-forcing are therefore likely to have played a significant role in driving pan-Andean hydroclimate variability based on their inter-hemispheric influence on Andean convection.

  8. Mid- to late Holocene Indian Ocean Monsoon variability recorded in four speleothems from Socotra Island, Yemen (United States)

    Van Rampelbergh, Maïté; Fleitmann, Dominik; Verheyden, Sophie; Cheng, Hai; Edwards, Lawrence; De Geest, Peter; De Vleeschouwer, David; Burns, Stephen J.; Matter, Albert; Claeys, Philippe; Keppens, Eddy


    Four stalagmites covering the last 7.0 ka were sampled on Socotra, an island in the northern Indian Ocean to investigate the evolution of the northeast Indian Ocean Monsoon (IOM) since the mid Holocene. On Socotra, rain is delivered at the start of the southwest IOM in May-June and at the start of the northeast IOM from September to December. The Haggeher Mountains act as a barrier forcing precipitation brought by the northeast winds to fall preferentially on the eastern side of the island, where the studied caves are located. δ18O and δ13C and Mg/Ca and Sr/Ca signals in the stalagmites reflect precipitation amounts brought by the northeast winds. For stalagmite STM6, this amount effect is amplified by kinetic effects during calcite deposition. Combined interpretation of the stalagmites' signals suggest a weakening of the northeast precipitation between 6.0 and 3.8 ka. After 3.8 ka precipitation intensities remain constant with two superimposed drier periods, between 0 and 0.6 ka and from 2.2 to 3.8 ka. No link can be established with Greenland ice cores and with the summer IOM variability. In contrast to the stable northeast rainy season suggested by the records in this study, speleothem records from western Socotra indicate a wettening of the southwest rainy season on Socotra after 4.4 ka. The local wettening of western Socotra could relate to a more southerly path (more over the Indian Ocean) taken by the southwest winds. Stalagmite STM5, sampled at the fringe between both rain areas displays intermediate δ18O values. After 6.2 ka, similar precipitation changes are seen between eastern Socotra and northern Oman indicating that both regions are affected similarly by the monsoon. Different palaeoclimatologic records from the Arabian Peninsula currently located outside the ITCZ migration pathway display an abrupt drying around 6 ka due to their disconnection from the southwest rain influence. Records that are nowadays still receiving rain by the southwest winds

  9. Holocene temperature variability revealed by brGDGTs in subtropical southwestern China (United States)

    Feng, X.; Zhao, C.


    Subtropical areas are important source region of moisture and heat in global climate system. Paleoclimate reconstructions from these regions, especially quantitative records, would not only help to better understand the nature of climate system through time, but also provide important constraining dataset for long-term ecosystem variations in these ecological important areas. To date, quantitative climate records with reliable chronological controls are still limited from terrestrial archives in subtropical areas. Here we present a 50-year-resolution quantitative temperature record throughout the Holocene based on branched GDGTs at a small alpine lake, Tiancai Lake (26°38'E, 99°43'N, 3898 m.a.s.l) in southwestern China. The record is based on a temporal calibration between instrumental mean annual air temperature (MAAT) and brGDGT compounds (GDGT-IIIa, GDGT-IIa', GDGT-IIb, GDGT-Ia and GDGT-Ic). The MAAT was relatively low -0.6 ° between 11 and 7.5 ka, then abruptly increased 1 ° to 4 °until 7 ka. The MAAT was relatively warm 2° between 7 and 1 ka, then decreased to 1° over the last 1 ka. The Middle to Late Holocene was 3 ° warmer than the Early Holocene. The MAAT variation at Lake Tiancai is supported by changes in evergreen oaks and Tsuga from the same sediment core, suggesting that the growth of cold-tolerant forest in place of subtropical evergreen broadleaved forest has been driven by the decrease in MAAT. The early Holocene cold interval revealed by our record and pollen data is different with the chironomid-based summer temperature reconstruction from the same lake, the latter has been driven by summer insolation. This difference suggests that a pronounced winter contribution to the mean annual temperature during the early Holocene, which was probably caused by a low winter insolation, and strengthened by a sparse vegetation cover and influences of winter ice/snow cover in tropical high latitude regions.

  10. Decadal to millennial time scale climate variability in the Central Mediterranean during the Holocene: a reconstruction based on geochemical proxies from high resolution sedimentary records

    NARCIS (Netherlands)

    Goudeau, M.S.


    To assess potential anthropogenic contributions to future climate change it is necessary to understand natural climate variability. This can be achieved by studying climate variability during the Holocene, when similar basic climate boundary conditions persisted as today. During this period climate

  11. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns (United States)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.


    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  12. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers (United States)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.


    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  13. Paleolimnological reconstruction of environmental variability during the Late Pleistocene and Holocene in the south-east Baltic region (United States)

    Kublitskiy, Iurii; Subetto, Dmitriy; Druzhinina, Olga; Kulkova, Marianna; Arslanov, Khikmatula


    The main goal of our research is the high-resolution reconstruction of environmental and climatic changes in SE Baltic region since the Last Glacial Maximum by palaeolimnological data. The 6 objects - lakes and peat-bogs, were studied since 2009 in the Kaliningrad region, Russian Federation. According to palaeolimnological studies of bottom sediments of the Kamyshovoe Lake (N 54°22,6`; E22°42,8`, 189 m a.s.l.), located in the Vishtynets Highland, the south-east part of Kaliningrad district, the environmental and climatic changes after the late glacial have been reconstructed. At that moment the radiocarbon and loss-on-ignition (LOI) data, geochemistry and diatom analysis for the whole sediment core, and pollen analyze for the bottom part of the core have been completed. According to the pollen data the Alleröd interstadial starts at 13 200 cal. yrs BP and is marked by the rising of birch and pine pollen. The transition to the Younger Dryas around 12 700 cal. yrs BP corresponds with the development of patches of shrublands in which light-demanding species, such as juniper, flourished and communities of steppe herbs. The late Preboreal is marked by the appearance of Populus and an increase of the role of grasses in the vegetation cover 11 300-11 100 cal. yrs BP (Druzinina et al., 2015). The Holocene climatic zones have been identified by LOI and geochemistry analyses. The Boreal period started about 10 200 cal. yrs BP, Atlantic around 9100 cal. yrs BP, Subboreal 5800 cal. yrs BP, and Subatlantic 3200 cal. yrs BP (Kublitskiy et al., 2015). During the conference the new palaeolimnological data of environmental variability during the late Pleistocene and Holocene in SE Baltic region will be presented. Acknowledgements The investigations have been granted by the Russian Fund for Basic Research (12-05-33013, 13-05-41457, 15-35-50721). References Druzhinina, O., Subetto, D., Stančikaitė, M., Vaikutienė, G., Kublitsky, J., Arslanov, Kh., 2015. Sediment record from the

  14. Holocene climate variability in the western Mediterranean through a multiproxy analysis from Padul peat bog (Sierra Nevada, Spain) (United States)

    Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Sachse, Dirk


    The Iberian Peninsula, located in the Mediterranean area, is an interesting location for paleoclimate studies due to its geographic situation between arid and humid climates. Sediments from peat bogs and lakes from Sierra Nevada, in southeastern Iberian Peninsula, have been very informative in terms of how vegetation and wetland environments were impacted by Holocene climate change. These studies are essential if we want to understand the past climate change in the area, which is the key to identify the possible environmental response of the Sierra Nevada ecosystems to future climate scenarios. Padul basin, located in the southwest of the Sierra Nevada mountain range, contains a ca. 100 m-thick peat bog sedimentary sequence that was deposited during the past 1 Ma making this area interesting for paleoenvironmental and paleoclimatic reconstructions. A new 43 m-long sedimentary record has recently been retrieved from the Padul peat bog. In this study we have developed a multiproxy analysis of the Holocene part of the Padul-15-05 core including pollen analysis, XRF-core scanner, magnetic susceptibility and organic geochemistry, supported by an age control based on AMS radiocarbon dates, providing with information about vegetation and climate variability during the past 9.9 cal ka BP. This multiproxy reconstruction of the Padul-15-05 evidences the Mediterranean as a sensitive area with respect to global-scale climate system, showing relevant climate episodes such as the ca. 8, 7.5, 6.5 and 5.5 cal ka BP events during the early and middle Holocene. The trend to aridification to the late Holocene is interrupted by more arid and humid periods as the Iberian Roman Humid Period (from ca. 3 to 1.6 cal ka BP), the Dark Ages (from ca. 1.5 to 1.1 cal ka BP), the Medieval Climate Anomaly (from ca. 1.1 to 1.3 cal ka BP) and the Little Ice Age period (from ca. 500 to 100 cal yr BP).

  15. Variable uplift rate through time: Holocene coral reef and neotectonics of Lutao, eastern Taiwan (United States)

    Shen, Chuan-Chou; Wu, Chung-Che; Dai, Chang-Feng; Gong, Shou-Yeh


    Significant discrepancies have existed regarding rate and timing of the uplift of Lutao (Green Island), located at the border of the ongoing collision between the Eurasia continental plate and the Philippine Sea Plate. To document its neotectonic history, two cores were drilled into Holocene coral reefs exposed at the southeastern coast of Lutao. Twelve pristine fossil corals, nine taken from cores and three on the surface, were 230Th dated. The results show that the coral reefs started to develop at 8,736 ± 56 yr BP (before 1950 CE) with uplift rate varying from 3.6 mm/yr during 8.7-6.0 kyr BP to 1.2 mm/yr in the past six thousand years. Our study strongly suggests that the uplift rate can vary significantly on millennial time scale. Caution should be used when extrapolating uplift rate estimates based on Mid-late Holocene corals to early times for tectonic active locations, such as Lutao.

  16. Palaeoenvironmental transfer functions in a bayesian framework with application to holocene climate variability in the near east

    Energy Technology Data Exchange (ETDEWEB)

    Schoelzel, C. [Bonn Univ. (Germany). Meteorologisches Inst.


    This thesis presents the development of statistical climatological-botanical transfer functions in order to provide reconstructions of Holocene climate variability in the Near East region. Two classical concepts, the biomisation as well as the indicator taxa approach, are translated into a Bayesian network. Fossil pollen spectra of laminated sediments from the Ein Gedi location at the western shoreline of the Dead Sea and from the crater lake Birkat Ram in the northern Golan serve as proxy data, covering the past 10000 and 6500 years, respectively. The climatological variables are winter temperature, summer temperature, and annual precipitation, obtained from the 0.5 x 0.5 degree climatology CRU TS 1.0. The Bayesian biome model is based on the three main vegetation territories, the Mediterranean, the Irano-Turanian, and the Saharo-Arabian territory, which are digitized on the same grid as the climate data. From their spatial extend, a classification in the phase space is described by estimating the conditional probability for the existence of a certain biome given the climate. These biome specific likelihood functions are modelled by a generalised linear model, including second order monomials of the climate variables. A statistical mixture model is applied to the biome probabilities as estimated by the Ein Gedi data, resulting in a posterior probability density function for the three dimensional climate state vector. The indicator taxa model is based on the distribution of 15 Mediterranean taxa. Their spatial extend allows to estimate the taxon specific likelihood functions. In this case, they are conditional probability density functions for the climate state vector given the existence of a certain taxon. In order to address the general problem of multivariate non-normally distributed populations, multivariate normal Copulas are used, which allow to create distribution functions with gamma as well as normal marginal distributions. Applying the model to the Birkat

  17. Holocene climate variability and anthropogenic impacts from Lago Paixban, a perennial wetland in Peten, Guatemala (United States)

    Wahl, David B.; Hansen, Richard D.; Byrne, Roger; Anderson, Lysanna; Schreiner, T.


    Analyses of an ~ 6 m sediment core from Lago Paixban in Peten, Guatemala, document the complex evolution of a perennial wetland over the last 10,300 years. The basal sediment is comprised of alluvial/colluvial fill deposited in the early Holocene. The absence of pollen and gastropods in the basal sediments suggests intermittently dry conditions until ~ 9000 cal yr. BP (henceforth BP) when the basin began to hold water perennially. Lowland tropical forest taxa dominated the local vegetation at this time. A distinct band of carbonate dating to ~ 8200 BP suggests regionally dry conditions, possibly associated with the 8.2 ka event. Wetter conditions during the Holocene Thermal Maximum are indicated by evidence of a raised water level and an open water lake. The timing of this interval coincides with strengthening of the Central American Monsoon. An abrupt change at 5500 BP involved the development of a sawgrass marsh and onset of peat deposition. The lowest recorded water levels date to 5500–4500 BP. Pollen, isotope, geochemical, and sedimentological data indicate that the coring site was near the edge of the marsh during this period. A rise in the water table after 4500 BP persisted until around 3500 BP. Clay marl deposition from 3500 to 210 BP corresponds to the period of Maya settlement. An increase in δ13C, the presence of Zea pollen, and a reduction in the percentage of forest taxa pollen indicate agricultural activity at this time. In contrast to several nearby paleoenvironmental studies, proxy evidence from Lago Paixban indicates human presence through the Classic/Postclassic period transition (~ 1000 BP) and persisting until the arrival of Europeans. Cessation of human activity around 210 BP resulted in local afforestation and the re-establishment of the current sawgrass marsh at Lago Paixban.

  18. Holocene climate variability and anthropogenic impacts from Lago Paixban, a perennial wetland in Peten, Guatemala (United States)

    Wahl, David; Hansen, Richard D.; Byrne, Roger; Anderson, Lysanna; Schreiner, Thomas


    Analyses of an 6 m sediment core from Lago Paixban in Peten, Guatemala, document the complex evolution of a perennial wetland over the last 10,300 years. The basal sediment is comprised of alluvial/colluvial fill deposited in the early Holocene. The absence of pollen and gastropods in the basal sediments suggests intermittently dry conditions until 9000 cal yr. BP (henceforth BP) when the basin began to hold water perennially. Lowland tropical forest taxa dominated the local vegetation at this time. A distinct band of carbonate dating to 8200 BP suggests regionally dry conditions, possibly associated with the 8.2 ka event. Wetter conditions during the Holocene Thermal Maximum are indicated by evidence of a raised water level and an open water lake. The timing of this interval coincides with strengthening of the Central American Monsoon. An abrupt change at 5500 BP involved the development of a sawgrass marsh and onset of peat deposition. The lowest recorded water levels date to 5500-4500 BP. Pollen, isotope, geochemical, and sedimentological data indicate that the coring site was near the edge of the marsh during this period. A rise in the water table after 4500 BP persisted until around 3500 BP. Clay marl deposition from 3500 to 210 BP corresponds to the period of Maya settlement. An increase in δ13C, the presence of Zea pollen, and a reduction in the percentage of forest taxa pollen indicate agricultural activity at this time. In contrast to several nearby paleoenvironmental studies, proxy evidence from Lago Paixban indicates human presence through the Classic/Postclassic period transition ( 1000 BP) and persisting until the arrival of Europeans. Cessation of human activity around 210 BP resulted in local afforestation and the re-establishment of the current sawgrass marsh at Lago Paixban.

  19. Glacial-Holocene variability in pelagic denitrification and OMZ intensity along the NW Mexican Margin (United States)

    Ontiveros Cuadras, J. F.; Thunell, R.; Ruiz-Fernandez, A. C.; Machain-Castillo, M. L.; Tappa, E.


    Denitrification of fixed nitrogen represents a substantial loss of bioavailable nitrogen from the ocean, thus playing a major role in the global nitrogen cycle. Water-column (pelagic) denitrification occurs mostly in the oxygen minimum zones (OMZs), which are situated beneath coastal upwelling areas that are characterized by high settling fluxes of organic detritus and high rates of oxygen utilization from remineralization. Our study uses biogenic components (total organic carbon and opal) and δ15N values of sediments from the NW Mexican Margin to reconstruct variations in denitrification and strength of the OMZ in the eastern tropical North Pacific (ETNP) for the last 36,000 years. During the last glacial period (LGM, 23-18 kyr) the associations between relatively low δ15N values (7-8‰) and low TOC (2-4%) and opal (1-4%) content indicates reduced denitrification due to reduced upwelling and decreased flux of organic matter through the OMZ. This was followed by abrupt acceleration of water-column denitrification (δ15N, 7-10‰) and the strengthening of the OMZ during the latter half of Heinrich Stadial 1 (HS1; 18-14.7 kyr). However, the biogenic component of sediments deposited during HS1 do not increase appreciably, suggesting that the increase in denitrification was not driven by an increase in productivity. Furthermore, the increase in δ15N precedes the deglacial decrease in planktonic foraminiferal δ18O which mostly occurs during the Bolling Alerod (14.7-12.9 kyr). This suggests that the increase in denitrification was not a response to surface warming. Rather, we attribute the rapid increase in denitrification during HS1 to reduced ventilation of the ETNP OMZ. Following the peak in denitrification at the end of HS1, we observe a small but steady decline in δ15N over the last 15 kyr. Higher TOC in Holocene sediments relative to glacial sediments suggests that increased productivity has played a role in maintaining a strong OMZ throughout the Holocene.

  20. Holocene climate variability revealed by oxygen isotope analysis of Sphagnum cellulose from Walton Moss, northern England (United States)

    Daley, T. J.; Barber, K. E.; Street-Perrott, F. A.; Loader, N. J.; Marshall, J. D.; Crowley, S. F.; Fisher, E. H.


    Stable isotope analyses of Sphagnum alpha-cellulose, precipitation and bog water from three sites across northwestern Europe (Raheenmore, Ireland, Walton Moss, northern England and Dosenmoor, northern Germany) over a total period of 26 months were used to investigate the nature of the climatic signal recorded by Sphagnum moss. The δ18O values of modern alpha-cellulose tracked precipitation more closely than bog water, with a mean isotopic fractionation factor αcellulose-precipitation of 1.0274 ± 0.001 (1 σ) (≈27‰). Sub-samples of isolated Sphagnum alpha-cellulose were subsequently analysed from core WLM22, Walton Moss, northern England yielding a Sphagnum-specific isotope record spanning the last 4300 years. The palaeo-record, calibrated using the modern data, provides evidence for large amplitude variations in the estimated oxygen isotope composition of precipitation during the mid- to late Holocene. Estimates of palaeotemperature change derived from statistical relationships between modern surface air temperatures and δ18O precipitation values for the British Isles give unrealistically large variation in comparison to proxies from other archives. We conclude that use of such relationships to calibrate mid-latitude palaeo-data must be undertaken with caution. The δ18O record from Sphagnum cellulose was highly correlated with a palaeoecologically-derived index of bog surface wetness (BSW), suggesting a common climatic driver.

  1. Variability in north tropical atlantic over the last 20 000 years and holocene gulf stream activity

    International Nuclear Information System (INIS)

    Cleroux, C.


    Modern oceanographical studies shown that most of the ocean heat content in the North Atlantic Western Boundary Current region is stored in the upper 400 meters. To study past heat content and Gulf Stream activity, we performed coupled analyses of oxygen isotopic and trace elemental composition on several foraminifera species to reconstruct upper water column temperature and salinity. Calcification depths of Globorotalia inflata, Globorotalia truncatulinoides and Pulleniatina obliquiloculata have been constrain by correlating modern hydrographic data to oxygen isotopic measurement of North Atlantic core-top samples. We found that the three deep-dwelling foraminifera species have a preferred habitat at the base of the seasonal thermocline (Cleroux et al, 2007). The same set of North Atlantic core-tops has been used to define relationships between trace elemental compositions and temperature. We established calibrations between Mg/Ca ratio or Sr/Ca ratio and temperature for the three deep-dwelling foraminifera (Cleroux et al, submitted). We apply this strategy on the core MD99-2203 located off Cape Hatteras where the Gulf Stream separate from the United States coast. High-resolution surface reconstructions over the Holocene show low amplitude periodic temperature and salinity changes that could be related to NAO type mechanisms. Large hydrological changes in sub-surface reflect variations of Labrador current and Mode Water influences. Using recent studies on Mode Water formation and Gulf Stream heat advection, we interpret our results in term of ocean heat content and Gulf Stream activity. (author)

  2. Ice core evidence for secular variability and 200-year dipolar oscillations in atmospheric circulation over East Antarctica during the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Delmonte, B. [Laboratoire de Glaciologie et de Geophysique de l' Environnement (LGGE-CNRS), Saint Martin d' Heres (France); Department of Environmental Sciences, University Milano-Bicocca (Italy); Department of Geological Sciences, University of Siena (Italy); Petit, J.R.; Krinner, G. [Laboratoire de Glaciologie et de Geophysique de l' Environnement (LGGE-CNRS), Saint Martin d' Heres (France); Maggi, V. [Department of Environmental Sciences, University Milano-Bicocca (Italy); Jouzel, J. [Laboratoire des Sciences du Climat et de l' Environnement, UMR CEA-CNRS, Saclay (France); Udisti, R. [Chemistry Department, University of Florence (Italy)


    Two Holocene ice core records from East Antarctica (Vostok and EPICA-Dome C) were analysed for dust concentration and size distribution at a temporal resolution of 1 sample per {proportional_to}50 years. A series of volcanic markers randomly distributed over the common part of the ice cores (from 9.8 to 3.5 kyear BP) ensures accurate relative dating ({+-}33 years). Dust-size records from the two sites display oscillations structured in cycles with sub-millennial and secular scale frequencies that are apparently asynchronous. The power spectra of the composite sum ({sigma}) of the two dust-size records display spectral energy mostly for 150- to 500-year periodicities. On the other hand, the 200-year band is common to both records and the 200 year components of the two sites are out-of-phase (100-year lead or lag) over {proportional_to}5.5 kyear, a phenomenon also reflected by a significant (>99% conf. lev.) band in the power spectra of the composite difference ({delta}) of the two size records. During long-range transport, mineral dust originating from the Southern Hemisphere continents is graded to a variable extent depending on the altitude and duration of atmospheric transport. Relatively coarse dust is associated with air mass penetration from the middle-lower troposphere and conversely relatively fine dust with upper troposphere air masses or the influence of subsidence over the Antarctic plateau, a hypothesis already proposed for the changes that occurred during the Last Glacial Maximum to Holocene transition (Delmonte et al. 2004b). Moreover, we assume that the overall fluctuation of air mass advection over Antarctica depends on the meridional pressure gradient with respect to low latitudes, i.e. the Antarctic Oscillation (AAO). We therefore suggest a regional variability in atmospheric circulation over East Antarctica. The 150-500 year power spectrum of the composite ({sigma}) parameter represents the long term variability of the AAO, imprinted by secular

  3. Blue Carbon Sequestration in Florida Coastal Wetlands - Response to Recent Climate Change and Holocene Climate Variability (United States)

    Vaughn, D.; Bianchi, T. S.; Osborne, T.; Shields, M. R.; Kenney, W.


    Intertidal forests and salt marshes represent a major component of Florida's coasts and are essential to the health and integrity of coastal Florida's ecological and economic systems. In addition, coastal wetlands have been recognized as highly efficient carbon sinks with their ability to store carbon on time scales from centuries to millennia. Although losses of salt marshes, mangroves, and seagrass beds through both natural and anthropogenic forces are threatening their ability to act as carbon sinks globally, the poleward encroachment of mangroves into higher latitude salt marshes may lead to regional increases in carbon sequestration as mangroves store more carbon than salt marshes. For Florida, this encroachment of mangroves into salt marshes is prominent along the northern coasts where fewer freeze events have coincided with an increase in mangrove extent over the past several decades. Soil cores collected from a northeastern Florida wetland will allow us to determine whether the recent poleward encroachment of mangroves into northern Florida salt marshes has led to an increase in belowground carbon storage. The soil cores, which are approximately two to three meters in length, will also provide the first known record of carbon storage in a northern Florida wetland during the Holocene. Initial results from the top 40 cm, which represents 100 years based on dating of other northern Florida wetland cores, suggest more carbon is currently being stored within the transition between marsh and mangrove than in areas currently covered by salt marsh vegetation or mangroves. The transitional zone also has a much larger loss of carbon within the top 40 cm compared to the mangrove and marsh cores. Lignin-based degradation indices along with other biomarker data and 210Pb/137Cs ages will be presented to demonstrate how much of this loss of carbon may be related to degradation and how much may be related to changes in carbon sources.

  4. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Sergi [Queen' s University, PEARL, Department of Biology, Kingston, ON (Canada); Catalan, Jordi [CSIC, CSIC-UB Limnology Group, Centre for Advanced Studies of Blanes (CEAB), Blanes (Spain)


    In the last decade, much effort was dedicated to the reconstruction of past climate at high temporal resolution. Here, we show the suitability of chrysophyte cysts from lake sediments for revealing continental climate variability when used in sensitive sites, such as those in high mountains. We demonstrate that altitude is a main factor influencing the present distribution of chrysophytes and develop a transfer function to evaluate the local ''altitude anomaly'' on a lake site throughout time. Based on our knowledge of chrysophyte ecology, the altitude anomalies are interpreted as winter/spring climate signatures. The method was applied to a Holocene record from a lake in the Pyrenees showing submillennial climatic variability in this northwestern Mediterranean zone. A warming trend was present from the early Holocene to 4 kyear BP. Comparison with pollen-based reconstructions of summer temperatures denoted a contrasting decrease in continentality between the two parts of the Holocene. Oscillations of 1 cycle per ca. 2,000 years appeared throughout the record. The warmest Holocene winters were recorded during the Medieval Warm Period at ca. AD900 and 450 and the Roman Warm Period (2.7-2.4 kyear BP). Winters in the period AD1,050-1,175 were inferred to be as cold as in the Little Ice Age. The period between 3 and 7 kyear BPshowed lower intensity in the fluctuations than in early and late Holocene. The cold event, 8,200 years ago, appeared embedded in a warm fluctuation. Another cold fluctuation was recorded around 9 kyear BP, which is in agreement with Irish and Greenland records. (orig.)

  5. Reconstruction of El Niño - Southern oscillation variability during the Holocene

    NARCIS (Netherlands)

    Donders, T.H.


    The El Niño – Southern Oscillation (ENSO) in the tropical Pacific constitutes the largest source of global climate variability on interannual timescales. Every 2-7 year the El Niño phenomenon causes altered Pacific circulation, leading to widespread droughts and floods. However, the exact mechanisms

  6. Tracking climate variability in the western Mediterranean during the Late Holocene: A multiproxy approach

    NARCIS (Netherlands)

    Nieto-Moreno, V.; Martínez-Ruiz, F.; Giralt, S.; Jimenéz-Espejo, F.; Gallego-Torres, D.; Rodrigo-Gámiz, M.; Garcia-Orellana, J.; Ortega-Huertas, M.; de Lange, G.J.


    Climate variability in the western Mediterranean is reconstructed for the last 4000 yr using marine sediments recovered in the west Algerian-Balearic basin, near the Alboran basin. Fluctuations in chemical and mineralogical sediment composition as well as grain size distribution are linked to

  7. Latest Holocene Climate Variability revealed by a high-resolution multiple Proxy Record off Lisbon (Portugal) (United States)

    Abrantes, F.; Lebreiro, S.; Ferreira, A.; Gil, I.; Jonsdottir, H.; Rodrigues, T.; Kissel, C.; Grimalt, J.


    The North Atlantic Oscillation (NAO) is known to have a major influence on the wintertime climate of the Atlantic basin and surrounding countries, determining precipitation and wind conditions at mid-latitudes. A comparison of Hurrel's NAO index to the mean winter (January-March) discharge of the Iberian Tagus River reveals a good negative correlation to negative NAO, while the years of largest upwelling anomalies, as referred in the literature, appear to be in good agreement with positive NAO. On this basis, a better understanding of the long-term variability of the NAO and Atlantic climate variability can be gained from high-resolution climate records from the Lisbon area. Climate variability of the last 2,000 years is assessed through a multiple proxy study of sedimentary sequences recovered from the Tagus prodelta deposition center, off Lisbon (Western Iberia). Physical properties, XRF and magnetic properties from core logging, grain size, δ18O, TOC, CaCO3, total alkenones, n-alkanes, alkenone SST, diatoms, benthic and planktonic foraminiferal assemblage compositions and fluxes are the proxies employed. The age model for site D13902 is based on AMS C-14 dates from mollusc and planktonic foraminifera shells, the reservoir correction for which was obtained by dating 3 pre-bomb, mollusc shells from the study area. Preliminary results indicate a Little Ice Age (LIA - 1300 - 1600 AD) alkenone derived SSTs around 15 degC followed by a sharp and rapid increase towards 19 degC. In spite the strong variability observed for most records, this low temperature interval is marked by a general increase in organic carbon, total alkenone concentration, diatom and foraminiferal abundances, as well as an increase in the sediment fine fraction and XRF determined Fe content, pointing to important river input and higher productivity. The Medieval Warm Period (1080 - 1300 AD) is characterized by 17-18 degC SSTs, increased mean grain size, but lower magnetic susceptibility and Fe

  8. Late Holocene Drought Variability in Eastern North America: Evidence From the Peatland Archive (United States)

    Booth, R. K.; Jackson, S. T.


    Tree-ring based drought chronologies from semi-arid regions of western North America have revealed substantial variability in water balance during the past 1000 years, including episodes of persistent drought more severe than any observed during historical times. Delimitation of regional and continental-scale footprints of these past drought events, including their spatial patterning in humid regions where moisture-sensitive paleoclimate records are scarce, is critical to understanding their dynamics and potential causes. Ombrotrophic peatlands are scattered throughout humid regions of North America at mid-latitudes and represent an underutilized source of multidecadal-scale information on past moisture variations. We are developing a spatial network of peatland-derived paleoclimate and paleoecological records in eastern North America, in an effort to 1) determine whether large, decadal to multidecadal droughts of the past several thousand years were spatially and temporally coherent, 2) assess whether the magnitude of past drought events was sufficient to force ecological change in terrestrial ecosystems, and 3) assess the underlying mechanisms and dynamics of widespread drought in North America. We have completed water-level reconstructions based on testate-amoeba assemblages from two ombrotrophic peatlands in mid-continental North America, Hole in the Bog (NC Minnesota) and Minden Bog (SE Michgian). We also have developed reconstructions from three Sphagnum-dominated kettle peatlands, South Rhody Peatland (NC Michigan), Hornet Peatland (NW Wisconsin), and Irwin Smith Peatland (NE Michigan). Although these kettle peatlands are not truly ombrotrophic, high-magnitude water-table fluctuations should still be attributable to climate variability, and we use these records to supplement our interpretation of regional climate history. Our results indicate that all high-magnitude fluctuations in water balance were spatially extensive, affecting bog-surface moisture

  9. Reconstructing Late Holocene Climate Variability in North East China From Varved Maar Lake Sediments (United States)

    Panizzo, V. N.; Mackay, A. W.; Rioual, P.; Chu, G.; Leng, M. J.


    Reconstructing climatic variability over the past c. 2 ka years is recognised as a key PAGES timeframe (focus 2). However few high-resolution records exist from the climate sensitive region of N) China which receives the majority of its precipitation from the east Asian summer monsoon (EASM). Interactions between the EASM and the global climate system have great resonance. Such examples include how the EASM responded to changes in climate over the documented e.g. "Medieval Warm Period" (c. AD 900 - 1300), "Little Ice Age" (c. AD 1350-1850) and recent warming. At present, literature remains contradictory to such environmental changes in NE China over this time-frame due to poor chronological control, low resolution of existing studies and even due to the inexact terminology of these climatic periods. Xiaolongwan Lake (XLW) is a small, closed, maar lake located in the Long Gang Volcanic Field, NE China (42°18'N; 126°19'E). It is at an elevation of 655 m a.s.l. with a maximum depth of 15 m. A varve chronology has been created for a 143 cm composite core (2 cores collected in 2006), and here we present diatoms and organic geochemistry (δ13C, TOC, C/N) evidence for environmental change over the past c. 2 ka years. Results show a gradual change in diatom species, moving from a composition where opportunistic species (e.g. Achnanthidium minutissimum) dominate (between c. 100 BC to 500 years AD) at the beginning of the record to one comprised of benthic/epiphytic species (e.g. Staurosira construens var venter, Punctastriata discoidea, Gomphonema parvulum). The introduction after c. 1850 years AD of the planktonic diatom species, Discotella woltereckii, not previously seen in the record, coincides with recent warming. This may be a response to changing limnological conditions, such as decreasing duration of lake ice-cover. Bulk organic δ13C results conducted on a short core collected from XLW in summer 2007, show that over the past c. 350 years there is a distinct

  10. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM (United States)

    Davies, F. J.; Goosse, H.; Renssen, H.


    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and

  11. South America Monsoon variability on millennial to multi-centennial time scale during the Holocene in central eastern Brazil (United States)

    Strikis, N. M.; Cruz, F. W.; Cheng, H.; Karmann, I.; Vuille, M.; Edwards, R.; Wang, X.; Paula, M. S.; Novello, V. F.; Auler, A.


    A paleoprecipitation reconstruction based on high resolution and well-dated speleothem oxygen isotope records shows that the monsoon precipitation over central eastern Brazil underwent to strong variations on millennial to multi-centennial time-scales during the Holocene. This new record indicates that abrupt events of increase in monsoon precipitation are correlated to Bond events 6, 5 and 4 and also with 8.2 ky event during the early and mid-Holocene, with a mean amplitude of 1.5 % (PDB). The pacing and structure of such events are general consistent with variations in solar activity suggested by atmospheric Δ14 C records. In the late-Holocene, abrupt events of increase in monsoon precipitation peaking at 3.2, 2.7 and 2.3 ky B.P. are approximately synchronous with periods of low solar minima. In this regard, the most prominent event occurred during the late Holocene occurred at ~2.7 ky B.P. In addition, these positive anomalies of the precipitation recorded in central eastern Brazil are also in good agreement with variations in Titicaca lake level. The good correspondence between the speleothem and marine records imply that the variations in the north Atlantic sea surface temperature is the main forcing for abrupt millennial to multi-centennial precipitations variation within the region under influence of South American Monsoon.

  12. Sea ice and wind variability during the Holocene in East Antarctica: Insight on middle high latitude coupling

    NARCIS (Netherlands)

    Denis, D.; Crosta, X.; Barbera, L.; Masse, G.; Renssen, H.; Ther, O.; Giraudeau, J.


    Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at ∼140°E and eastern Prydz Bay at ∼77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale.

  13. Holocene climate variability in arid Central Asia as revealed from high-resolution sedimentological and geochemical analyses of laminated sediments from Lake Chatyr Kol (Central Tian Shan, Kyrgyzstan) (United States)

    Lauterbach, S.; Plessen, B.; Dulski, P.; Mingram, J.; Prasad, S.


    A pronounced trend from a predominantly wet climate during the early Holocene towards significantly drier conditions since the mid-Holocene, mainly attributed to the weakening of the Asian summer monsoon (ASM), is documented in numerous palaeoclimate records from the monsoon-influenced parts of Asia, e.g. the Tibetan Plateau and north- and southeastern China. In contrast, climate in the adjacent regions of mid-latitude arid Central Asia, located north and northwest of the Tibetan Plateau, is supposed to have been characterized by pronounced dry conditions during the early Holocene, wet conditions during the mid-Holocene and a rather moderate drying during the late Holocene, which is mainly attributed to the complex interplay between the mid-latitude Westerlies and the ASM. However, although mid-latitude Central Asia thus might represent a key region for the understanding of teleconnections between the ASM system and the Westerlies, knowledge about past climate development in this region is still ambiguous due to the limited number of high-resolution palaeoclimate records. Hence, new well-dated and highly resolved palaeoclimate records from this region are expected to provide important information about spatio-temporal changes in the regional interplay between Westerlies and ASM and thus aid the understanding of global climate teleconnections. As a part of the project CADY (Central Asian Climate Dynamics), aiming at reconstructing past climatic and hydrological variability in Central Asia, a sediment core of about 6.25 m length has been recovered from alpine Lake Chatyr Kol (40°36' N, 75°14' E, 3530 m a. s. l., surface area ~170 km2, maximum depth ~20 m), located in the Central Tian Shan of Kyrgyzstan. Sediment microfacies analysis on large-scale petrographic thin sections reveals continuously sub-mm scale laminated sediments throughout the record except for the uppermost ca. 60 cm. Microsedimentological characterization of these laminae, which are most probably

  14. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales (United States)

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.


    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  15. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales (United States)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.


    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  16. Reconstruction of Last Glacial to early Holocene monsoon variability from relict lake sediments of the Higher Central Himalaya, Uttrakhand, India

    DEFF Research Database (Denmark)

    Juyal, N.; Pant, R.K.; Basavaiah, N.


    .5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at 11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen. A close...... instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau....

  17. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: Timing and implications

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Kawahata, H.; Rao, V.P.

    ., 2005). Recently a 11,000 yr reconstruction of sunspots using tree ring ∆ 14 C data revealed exceptional changes in sunspot activity within the Holocene (Solanki et al., 2004). Since sun is the principal source of energy, changes in solar energy output... seem to be stimulated by the sun, suggest- ing the importance of small changes in solar activity lead- ing to perceptible changes in monsoon conditions. Acknowledgements We thank the Directors of National Centre for Ant- arctic and Ocean Research (NCAOR...

  18. El Niño Variability in the Coastal Desert of Southern Peru during the Mid-Holocene (United States)

    Fontugne, Michel; Usselmann, Pierre; Lavallée, Danièle; Julien, Michèle; Hatté, Christine


    Fourteen organic-rich sedimentary layers in the deposits at Quebrada de los Burros, in coastal southern Peru (Tacna department), lie between two debris-flow units, interpreted to result from El Niño events, at 8980 cal yr B.P. and after 3380 cal yr B.P., respectively. The accumulation of the fine-grained and low-energy sediments of this deposit during the mid-Holocene is incompatible with the occurrence of El Niño events in this region, as these would produce catastrophic flood deposits. The occurrence of organic-rich sediments and evidence of an enhancement of upwelling strength at this time imply the existence of a permanent water supply resulting from an increased condensation of fog at mid-altitudes. These results suggest a lower intensity and, perhaps, a lower frequency of occurrence of the El Niño phenomenon during the mid-Holocene. It is precisely during this period that the most important human settlements are found at this site, probably indicating the presence of reliable supply of fresh water. The chronologies for wetlands in the central south altiplano are out of phase with those indicating increased soil moisture episodes on the coast, implying a long-term difference in climate between these two regions.

  19. Soil N mineralization profiles of co-existing woody vegetation islands at the alpine tree line

    Czech Academy of Sciences Publication Activity Database

    Wang, L.; Godbold, Douglas


    Roč. 136, 5-6 (2017), s. 881-892 ISSN 1612-4669 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Tree line * Soil N mineralization * in situ field incubation * Soil N availability * Resin capsule * Woody vegetation islands Subject RIV: DF - Soil Science OBOR OECD: Soil science Impact factor: 2.017, year: 2016

  20. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. (United States)

    Dawes, Melissa A; Philipson, Christopher D; Fonti, Patrick; Bebi, Peter; Hättenschwiler, Stephan; Hagedorn, Frank; Rixen, Christian


    Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001-2009) and 6 years of soil warming (+4 °C; 2007-2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above-ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m(-2) ) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above-ground mass was not altered by soil warming or elevated CO2 . However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (-40% for all roots soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning. © 2014 John Wiley & Sons Ltd.

  1. A first look at the ACER-SST dataset: Mapping the spatio-temporal variability of sea-surface temperatures in the last Glacial and the Holocene (United States)

    Rehfeld, Kira; Laepple, Thomas; Bassinot, Franck; Daniau, Anne-Laure; Desprat, Stéphanie; Kim, Jung-Hyun; Fernanda Sánchez-Goñi, Maria; Harrison, Sandy


    Climate in the last Glacial was characterized by abrupt and large-scale changes around cold Heinrich-Events and warm Dansgaard-Oeschger excursions in the Northern high latitudes. The global repercussions of these periods of rapid dynamics are, to date, unconstrained. Here, we present a first statistical analysis of the global multi-proxy ACER (Abrupt Climate Changes and Environmental Responses) sea surface temperature dataset, spanning the last 80 thousand years, to investigate the spatial footprints of glacial climate dynamics. In a first step we evaluate the spatial and temporal variability throughout the Glacial period, and contrast them with that during the Holocene. In a second step we investigate to which extent a temporal synchroneity of extreme events during the Glacial is detectable in the proxy records, and analyze the reversibility of Glacial dynamics.

  2. Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral δ18O records from the South China Sea (United States)

    Sun, Donghuai; Gagan, Michael K.; Cheng, Hai; Scott-Gagan, Heather; Dykoski, Carolyn A.; Edwards, R. Lawrence; Su, Ruixia


    Understanding the full range of past monsoon variability, with reference to specific monsoon seasons, is essential to test coupled climate models and improve their predictive capabilities. We present a 54-year long, high-resolution skeletal oxygen isotope (δ18O) record extracted from a well-preserved, massive Porites sp. coral at Hainan Island, South China Sea, to investigate East Asian monsoon variability during summer and winter ∼4400 calendar yr ago. Analysis of modern coral δ18O confirms that Porites from Hainan Island are well positioned to record winter monsoon forcing of sea surface temperature (SST), as well as the influence of summer monsoon rainfall on sea surface salinity (SSS). The coral record for ∼4400 yr ago shows ∼9% amplification of the annual cycle of δ18O, in good agreement with coupled ocean-atmosphere models showing higher summer rainfall (lower coral δ18O) and cooler winter SSTs (higher coral δ18O) in response to greater Northern Hemisphere insolation seasonality during the Middle Holocene. Mean SSTs in the South China Sea during the Mid-Holocene were within 0.5 °C of modern values, yet the mean δ18O for the fossil coral is ∼0.6‰ higher than that for the modern coral, suggesting that the δ18O of surface seawater was higher by at least ∼0.5‰, relative to modern values. The 18O-enrichment is likely to be driven by greater advection of moisture towards the Asian landmass, enhanced monsoon wind-induced evaporation and vertical mixing, and/or invigorated advection of saltier 18O-enriched Pacific water into the relatively fresh South China Sea. The 18O-enrichment of the northern South China Sea ∼4400 yr ago contributes to mounting evidence for recent freshening of the tropical Western Pacific. Today, winter SST and summer SSS variability in the South China Sea reflect the interannual influence of ENSO and the biennial variability inherent to monsoon precipitation. Spectral analysis of winter SSTs ∼4400 yr ago reveals a

  3. Holocene monsoon variability inferred from Targo Xian peat bog in the Tangra Yumco basin, central Tibetan Plateau (United States)

    Henkel, Karoline; Haberzettl, Torsten; Miehe, Sabine; Frenzel, Peter; Daut, Gerhard; Dietze, Elisabeth; Kasper, Thomas; Ahlborn, Marieke; Mäusbacher, Roland


    The Tibetan Plateau is the greatest plateau on Earth with an average altitude of 4,500 m asl. Due to its high elevation, large area and significant role in the formation of the Asian Monsoon Systems (e.g., Indian Ocean and East-Asian Summer Monsoon) it is considered to react very sensitive to climate variations. The numerous lake systems on the Tibetan Plateau represent excellent archives reflecting variations in the strength of the monsoon system in terms of hydrological changes expressed in lake level fluctuations. For example, terraces and lacustrine deposits around the saline lake Tangra Yumco indicate lake level highstands up to ~215 m higher than the present lake level. To study Holocene lake level variations we investigated a 3.6 m long sediment core recovered from a peat bog (near the Targo Xian settlement, 30°46'N, 86°40'E) on a recessional lake level terrace ~150 m above the present shoreline of Tangra Yumco. In particular, our analyses of sedimentological (grain size), geochemical (CNS and ICP-OES) and mineralogical (XRD) data allow a detailed and high-resolution interpretation of the hydrological conditions during the Holocene. The existence of two carbonate layers in the Targo Xian record, separated by a sand layer and intercalated in peat sequences at the bottom and top of the core, provide evidence for two stable lake stages at the coring position. Peat at the bottom of the core, which is radiocarbon-dated to 11,130 +130/-345 cal BP, indicates wetland conditions similar to the Recent situation (Miehe et al., submitted). After a transition zone, a layer of pure aragonitic lake marl gives evidence for a lake stage. During this stage, high values of the total inorganic carbon (TIC) and Ca/Ti ratios as well as low C/N ratios point to a stable lake due to wet climatic conditions. This carbonate layer can be correlated with a 2-3 m thick carbonate layer found in outcrops around the present lake Tangra Yumco presenting a high lake level until approx. 2

  4. Current and Potential Tree Locations in Tree Line Ecotone of Changbai Mountains, Northeast China: The Controlling Effects of Topography


    Zong, Shengwei; Wu, Zhengfang; Xu, Jiawei; Li, Ming; Gao, Xiaofeng; He, Hongshi; Du, Haibo; Wang, Lei


    Tree line ecotone in the Changbai Mountains has undergone large changes in the past decades. Tree locations show variations on the four sides of the mountains, especially on the northern and western sides, which has not been fully explained. Previous studies attributed such variations to the variations in temperature. However, in this study, we hypothesized that topographic controls were responsible for causing the variations in the tree locations in tree line ecotone of the Changbai Mountain...

  5. Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: Pollen-based climatic reconstruction (United States)

    Willard, D.A.; Bernhardt, C.E.; Korejwo, D.A.; Meyers, S.R.


    We present paleoclimatic evidence for a series of Holocene millennial-scale cool intervals in eastern North America that occurred every ???1400 years and lasted ???300-500 years, based on pollen data from Chesapeake Bay in the mid-Atlantic region of the United States. The cool events are indicated by significant decreases in pine pollen, which we interpret as representing decreases in January temperatures of between 0.2??and 2??C. These temperature decreases include excursions during the Little Ice Age (???1300-1600 AD) and the 8 ka cold event. The timing of the pine minima is correlated with a series of quasi-periodic cold intervals documented by various proxies in Greenland, North Atlantic, and Alaskan cores and with solar minima interpreted from cosmogenic isotope records. These events may represent changes in circumpolar vortex size and configuration in response to intervals of decreased solar activity, which altered jet stream patterns to enhance meridional circulation over eastern North America. ?? 2004 Elsevier B.V. All rights reserved.

  6. Activity of Maly Aktru Glacier (Сentral Altai and changes tree line fluctuations in its basin for a historical period

    Directory of Open Access Journals (Sweden)

    A. N. Nazarov


    Full Text Available Major problems of dating of the glaciers activity from the wood residues found in moraines are discussed by the example of Maly Aktru Glacier. First of all, these are the underestimation of the glacier development features, the age of the sample itself and its content as well as losses of some outer rings. The study proves that disagreements between dendrochronological and radiocarbon ages of the samples are caused by manifestation of the Suess effect and contents of the wood cells. The reconstruction of June–July temperatures in the Aktru valley for two thousand years was used to reconstruct the altitudinal variability of the tree line thermal potential. Existence of a climatic optimum (I–IV A.D. had been revealed that brought to the higher position of the tree line in mid ages than its thermal potential could enable. On the basis of variability of growth indices for Siberian larch, it is shown that the medieval optimum stands out against a background of solely strong temperature depressions separating it from ancient and modern times, and the climate’s natural history is evidence that the current climate warming is an ordinary phenomenon.

  7. Late Holocene forest dynamics in the Gulf of Gaeta (central Mediterranean) in relation to NAO variability and human impact (United States)

    Di Rita, Federico; Lirer, Fabrizio; Bonomo, Sergio; Cascella, Antonio; Ferraro, Luciana; Florindo, Fabio; Insinga, Donatella Domenica; Lurcock, Pontus Conrad; Margaritelli, Giulia; Petrosino, Paola; Rettori, Roberto; Vallefuoco, Mattia; Magri, Donatella


    A new high-resolution pollen record, spanning the last five millennia, is presented from the Gulf of Gaeta (Tyrrhenian Sea, central Italy), with the aim of verifying if any vegetation change occurred in the central Mediterranean region in relation to specific well-known global and/or regional climate events, including the 4.2 ka event, the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), and to detect possible vegetation changes related to still under-investigated climate signals, for example the so-called "Bond 2" cold event around 2.8 ka BP. The vegetation dynamics of the Gaeta record shows a recurrent pattern of forest increase and decline punctuating the mid- and late Holocene. When the timing of these patterns is compared with the climate proxy data available from the same core (planktonic foraminifera assemblages and oxygen stable isotope record) and with the NAO (North Atlantic Oscillation) index, it clearly appears that the main driver for the forest fluctuations is climate, which may even overshadow the effects of human activity. We have found a clear correspondence between phases with negative NAO index and forest declines. In particular, around 4200 cal BP, a drop in AP (Arboreal Pollen) confirms the clearance recorded in many sites in Italy south of 43°N. Around 2800 cal BP, a vegetation change towards open conditions is found at a time when the NAO index clearly shows negative values. Between 800 and 1000 AD, a remarkable forest decline, coeval with a decrease in the frequencies of both Castanea and Olea, matches a shift in the oxygen isotope record towards positive values, indicating cooler temperatures, and a negative NAO. Between 1400-1850 AD, in the time period chronologically corresponding to the LIA (Little Ice Age), the Gaeta record shows a clear decline of the forest cover, particularly evident after 1550 AD, once again in correspondence with negative NAO index.

  8. Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps

    Directory of Open Access Journals (Sweden)

    R. Balestrini


    Full Text Available The study of nitrogen cycling in mountain areas has a long tradition, as it was applied to better understand and describe ecosystem functioning, as well as to quantify long-distance effects of human activities on remote environments. Nonetheless, very few studies, especially in Europe, have considered catchment features controlling nitrogen dynamics above the tree line with focus on running waters. In this study, relationships between some water chemistry descriptors – including nitrogen species and dissolved organic carbon (DOC – and catchment characteristics were evaluated for a range of sites located above the tree line (1950–2650 m a.s.l. at Val Masino, in the central Italian Alps. Land cover categories as well as elevation and slope were assessed at each site. Water samples were collected during the 2007 and 2008 snow free periods, with a nearly monthly frequency. In contrast to dissolved organic nitrogen, nitrate concentrations in running waters showed a spatial pattern strictly connected to the fractional extension of tundra and talus in each basin. Exponential models significantly described the relationships between maximum NO3 and the fraction of vegetated soil cover (negative relation and talus (positive relation, explaining almost 90% of nitrate variation in running waters. Similarly to nitrate but with an opposite behavior, DOC was positively correlated with vegetated soil cover and negatively correlated with talus. Therefore, land cover can be considered one of the most important factors affecting water quality in high-elevation catchments with contrasting effects on N and C pools.

  9. Bottom water production variability in the Ross Sea slope during the Late-Pleistocene-Holocene as revealed by benthic foraminifera and sediment geochemistry (United States)

    Asioli, A.; Langone, L.; Tateo, F.; Giannossi, M. L.; Giglio, F.; Summa, V.; Piva, A.; Ridente, D.; Trincardi, F.


    The Antarctic area produces bottom waters that ventilate the vast majority of the deep basins in the rest of the world ocean. The rate of formation in the source area and the strength of these cold bottom waters affect their flow toward the equator and are key factors affecting the Global Thermohaline Circulation during modern and past climate conditions. We present the results of a multidisciplinary study carried out on a core collected in 2377m of water depth on the slope off the Drygalski Basin (Ross Sea), along the modern path of the bottom waters. The goal of this research is to detect a qualitative signal of possible changes in the rate of bottom water production during the Late Pleistocene-Holocene by integrating micropaleontological and geochemical proxies. The micropaleontological signal is represented by the quantitative and qualitative variations of the agglutinated benthic foraminifera assemblages, while the amount of TOC, nitrogen, δ13C, δ15N, biogenic silica, CaCO3 in the sediment, along with the bulk rock mineralogy, provide information on the paleoproductivity and allow reconstruction of changes in the paleocirculation. The chronology is supported by 14C AMS datings on organic matter. Although this study is still in progress, the results obtained allow the following observations: 1) the Holocene sequence includes a major turnover around 8-8.5 calib kyr BP, leading to reduced nutrient utilization, probably reflecting an increased nutrient supply induced by an enhanced Upper Circumpolar Deep Water upwelling; 2) within this general context, the total concentration of benthic foraminifera preserved in the fossil component records millennial scale cycles of variable amplitude after 8.5 calib kyr BP and to present time. This oscillatory trend is paralleled by other parameters, such as the magnetic susceptibility, the dry density, the sheet silicates and the δ15N; 3) minima in foraminifera concentration reflect relatively increased dissolution, weaker

  10. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula (United States)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott


    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  11. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM. (United States)

    Su, Yaling; Chen, Feizhou; Liu, Zhengwen


    Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.

  12. Mid- to late-Holocene reservoir-age variability and isotope-based palaeoenvironmental reconstruction in the Limfjord, Denmark

    DEFF Research Database (Denmark)

    Philippsen, Bente; Olsen, Jesper; Lewis, Jonathan P.


    Palaeoenvironmental and 14C reservoir age variability in the Limfjord, a sound through northern Jutland, Denmark, was investigated for the period 7300 to 1300 cal yr BP. Shells and bulk sediment samples from a core from a former inlet, Kilen, were analysed by radiocarbon dating and stable isotope....... They are therefore used to differentiate between brackish and marine palaeo-conditions. 14C reservoir ages of shells vary from ΔR=−140 to +300 14C years. Between 7300 and 5400 cal. yr BP, reservoir age and stable isotope values are highly variable and indicate mixing of marine water and brackish surface waters...... with hard water effects. After 5400 cal. yr BP, the ΔR values stabilise and show an increasingly marine environment, with 14C reservoir ages close to 400 years (ΔR=0). After 2000 cal. yr BP, Kilen becomes brackish. Reservoir ages and stable isotope values are again highly variable and δ13C and C/N values...

  13. Holocene aridification of India (United States)

    Ponton, C.; Giosan, L.; Eglinton, T.I.; Fuller, D.Q.; Johnson, J.E.; Kumar, P.; Collett, T.S.


    Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long-term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity-adapted vegetation from ???4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants after that. The oxygen isotopic composition of planktonic foraminifer Globigerinoides ruber detects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub-millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ???4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water-conservation technology in south India. Copyright 2012 by the American Geophysical Union.

  14. Impact of Late Holocene climate variability and anthropogenic activities on Biscayne Bay (Florida, U.S.A.): evidence from diatoms (United States)

    Wachnicka, Anna; Gaiser, Evelyn; Wingard, Lynn; Briceño, Henry; Harlem, Peter


    Shallow marine ecosystems are experiencing significant environmental alterations as a result of changing climate and increasing human activities along coasts. Intensive urbanization of the southeast Florida coast and intensification of climate change over the last few centuries changed the character of coastal ecosystems in the semi-enclosed Biscayne Bay, Florida. In order to develop management policies for the Bay, it is vital to obtain reliable scientific evidence of past ecological conditions. The long-term records of subfossil diatoms obtained from No Name Bank and Featherbed Bank in the Central Biscayne Bay, and from the Card Sound Bank in the neighboring Card Sound, were used to study the magnitude of the environmental change caused by climate variability and water management over the last ~ 600 yr. Analyses of these records revealed that the major shifts in the diatom assemblage structures at No Name Bank occurred in 1956, at Featherbed Bank in 1966, and at Card Sound Bank in 1957. Smaller magnitude shifts were also recorded at Featherbed Bank in 1893, 1942, 1974 and 1983. Most of these changes coincided with severe drought periods that developed during the cold phases of El Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO), or when AMO was in warm phase and PDO was in the cold phase. Only the 1983 change coincided with an unusually wet period that developed during the warm phases of ENSO and PDO. Quantitative reconstructions of salinity using the weighted averaging partial least squares (WA-PLS) diatom-based salinity model revealed a gradual increase in salinity at the three coring locations over the last ~ 600 yr, which was primarily caused by continuously rising sea level and in the last several decades also by the reduction of the amount of freshwater inflow from the mainland. Concentration of sediment total nitrogen (TN), total phosphorus (TP) and total organic carbon (TOC) increased in the

  15. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia (United States)

    Mackay, Anson W.; Bezrukova, Elena V.; Leng, Melanie J.; Meaney, Miriam; Nunes, Ana; Piotrowska, Natalia; Self, Angela; Shchetnikov, Alexander; Shilland, Ewan; Tarasov, Pavel; Wang, Luo; White, Dustin


    Boreal ecosystems are highly vulnerable to climate change, and severe ecological impacts in the near future are virtually certain to occur. We undertook a multiproxy study on an alpine lake (ESM-1) at the modern tree-line in boreal, southern Siberia. Steppe and tundra biomes were extensive in eastern Sayan landscapes during the early Holocene. Boreal forest quickly expanded by 9.1 ka BP, and dominated the landscape until c 0.7 ka BP, when the greatest period of compositional turnover occurred. At this time, alpine meadow landscape expanded and Picea obovata colonised new habitats along river valleys and lake shorelines, because of prevailing cool, moist conditions. During the early Holocene, chironomid assemblages were dominated by cold stenotherms. Diatoms for much of the Holocene were dominated by alkaliphilous, fragilarioid taxa, up until 0.2 ka BP, when epiphytic species expanded, indicative of increased habitat availability. C/N mass ratios ranged between 9.5 and 13.5 (11.1-15.8 C/N atomic ratios), indicative of algal communities dominating organic matter contributions to bottom sediments with small, persistent contributions from vascular plants. However, δ13C values increased steadily from -34.9‰ during the early Holocene (9.3 ka BP) to -24.8‰ by 0.6 ka BP. This large shift in magnitude may be due to a number of factors, including increasing within-lake productivity, increasing disequilibrium between the isotopic balance of the lake with the atmosphere as the lake became isotopically ‘mature’, and declining soil respiration linked to small, but distinct retreat in forest biomes. The influence of climatic variables on landscape vegetation was assessed using redundancy analysis (RDA), a linear, direct ordination technique. Changes in July insolation at 60 °N significantly explained over one-fifth of the variation in species composition, while changes in estimates of northern hemisphere temperature and ice-rafted debris events in the North Atlantic

  16. Modeling a two-layer flow system at the subarctic, subalpine tree line during snowmelt (United States)

    Leenders, Erica E.; Woo, Ming-Ko


    In the subarctic it is common to encounter a two-layer flow system consisting of a porous organic cover overlying frozen or unfrozen mineral soils with much lower hydraulic conductivities. The "simple lumped reservoir parametric," or "semidistributed land-use-based runoff processes" (SLURP), model was adapted to simulate runoff generated by such a flow system from an upland shrub land to an open woodland downslope. A subalpine site in Wolf Creek, Yukon, Canada, was subdivided into two aggregated simulation areas (ASA), each being a unit characterized by a set of parameters. The model computes the vertical water balance and flow generation from several storages, and then routes the water out of the ASA. When applied to the 1999 snowmelt season, the model simulated the very low lateral flow and a large increase in storage in the mineral soil, as was observed in the field. The model was used to assess the sensitivity of the two-layer flow system under a range of temperature, snow cover, and frost conditions. Results show that within the range of possible climatic conditions, the hydrologic system is unlikely to yield significant runoff across the subalpine tree line, but if ground ice is abundant in the soil pores, percolation will be limited and fast flow from the surface layer is enhanced.

  17. Biodiversity and climate change: consequences for upper tree line in Slovakia

    Directory of Open Access Journals (Sweden)

    Minďaš Jozef


    Full Text Available Study of the effects of climate change on upper tree limit has mainly focused on the diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species diversity changes due to climate change has been analysed via gap model and biodiversity indices. Gap models are individually based on simulations of establishment, growth, and mortality of each tree on the forest plot. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values according to the CGCM3.1 (global model, KNMI and MPI (regional models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo occurrence. Hill’s index of biodiversity in the upper forest line increased by 30 – 35% for horizon of 2050, resp. by 45 – 50% modeled for the horizon of 2075. Calculated values of Shannon’s index show an even higher increase due to climate change. For horizon 2050 is a roughly of three fold increase and horizon for 2075 by almost fivefold increase in the value of the index. Results from the gap model indicate the increase of tree species diversity 2 – 2,5 times.

  18. The Growth of Bosnian Pine (Pinus hedreichii Christ.) at Tree-Line Locations from Kosovo and its Response to Climate


    Bojaxhi, Faruk; Toromani, Elvin


    Background and Purpose: Pinus heldreichii Christ. is a sub-endemic species occurring at tree-line locations in Kosovo and covering an area of 2500 ha. In high elevation sites radial growth is mainly controlled by low temperatures. The main purpose of this study was the analysis of radial growth of P. heldreichii and its response to local climate conditions. Materials and Methods: Research sites comprise of three high elevation stands of P. heldreichii with specific site conditions. Core sa...

  19. Late-glacial and Holocene Vegetation and Climate Variability, Including Major Droughts, in the Sky Lakes Region of Southeastern New York State (United States)

    Menking, Kirsten M.; Peteet, Dorothy M.; Anderson, Roger Y.


    Sediment cores from Lakes Minnewaska and Mohonk in the Shawangunk Mountains of southeastern New York were analyzed for pollen, plantmacrofossils, macroscopic charcoal, organic carbon content, carbon isotopic composition, carbon/nitrogen ratio, and lithologic changes to determine the vegetation and landscape history of the greater Catskill Mountain region since deglaciation. Pollen stratigraphy generally matches the New England pollen zones identified by Deevey (1939) and Davis (1969), with boreal genera (Picea, Abies) present during the late Pleistocene yielding to a mixed Pinus, Quercus and Tsuga forest in the early Holocene. Lake Minnewaska sediments record the Younger Dryas and possibly the 8.2 cal kyr BP climatic events in pollen and sediment chemistry along with an 1400 cal yr interval of wet conditions (increasing Tsuga and declining Quercus) centered about 6400 cal yr BP. BothMinnewaska andMohonk reveal a protracted drought interval in themiddle Holocene, 5700-4100 cal yr BP, during which Pinus rigida colonized the watershed, lake levels fell, and frequent fires led to enhanced hillslope erosion. Together, the records show at least three wet-dry cycles throughout the Holocene and both similarities and differences to climate records in New England and central New York. Drought intervals raise concerns for water resources in the New York City metropolitan area and may reflect a combination of enhanced La Niña, negative phase NAO, and positive phase PNA climatic patterns and/or northward shifts of storm tracks.

  20. Integrating the EMPD with an Alpine altitudinal training set to reconstruct climate variables in Holocene pollen records from high-altitude peat bogs (United States)

    Furlanetto, Giulia; Badino, Federica; Brunetti, Michele; Champvillair, Elena; De Amicis, Mattia; Maggi, Valter; Pini, Roberta; Ravazzi, Cesare; Vallé, Francesca


    Temperatures and precipitation are the main environmental factors influencing vegetation and pollen production. Knowing the modern climate optima and tolerances of those plants represented in fossil assemblages and assuming that the relationships between plants and climate in the past are not dissimilar from the modern ones, fossil pollen records offer many descriptors to reconstruct past climate variables. The aim of our work is to investigate the potential of high-altitude pollen records from an Alpine peat bog (TBValter, close to the Ruitor Glacier, Western Italian Alps) for quantitative paleoclimate estimates. The idea behind is that high-altitude ecosystems are more sensitive to climate changes, especially to changes in July temperatures that severely affect the timberline ecotone. Meantime, we met with difficulties when considering the factors involved in pollen dispersal over a complex altitudinal mountain pattern, such as the Alps. We used the EMPD-European Modern Pollen Database (Davis et al., 2013) as modern training set to be compared with our high-altitude fossil site. The EMPD dataset is valuable in that it provides a large geographic coverage of main ecological and climate gradients (at sub-continental scale) but lacks in sampling of altitudinal gradients and high-altitude sites in the Alps. We therefore designed an independent altitudinal training set for the alpine valley hosting our fossil site. 27 sampling plots were selected along a 1700m-elevational transect. In a first step, each plot was provided with (i) 3 moss polsters collected following the guidelines provided by Cañellas-Boltà et al. (2009) and analyzed separately to account for differences in pollen deposition at small scale, (ii) morphometrical parameters obtained through a high-resolution DEM, and (iii) temperature and precipitation were estimated by means of weighted linear regression of the meteorological variable versus elevation, locally evaluated for each site (Brunetti et al

  1. Growth dynamics of tree-line and lake-shore Scots pine (Pinus sylvestris L. in the central Scandinavian Mountains during the Medieval Climate Anomaly and the early Little Ice Age

    Directory of Open Access Journals (Sweden)

    Hans W Linderholm


    Full Text Available Trees growing at their altitudinal or latitudinal distribution in Fennoscandia have been widely used to reconstruct warm season temperatures, and the region hosts some of the world’s longest tree-ring chronologies. These multi-millennial long chronologies have mainly been built from tree remains found in lakes (subfossil wood from lake-shore trees. We used a unique dataset of Scots pine tree-ring data collected from wood remains found on a mountain slope in the central Scandinavian Mountains, yielding a chronology spanning over much of the last 1200 years. This data was compared with a local subfossil wood chronology with the aim to 1 describe growth variability in two environments during the Medieval Climate Anomaly (MCA and the early Little Ice Age (LIA, and 2 investigate differences in growth characteristics during these contrasting periods. It was shown that the local tree-line during both the MCA and early LIA was almost 150 m higher that at present. Based on living pines from the two environments, tree-line pine growth was strongly associated with mid-summer temperatures, while the lake-shore trees showed an additional response to summer precipitation. During the MCA, regarded to be a period of favourable climate in the region, the tree-ring data from both environments showed strong coherency and moderate growth variability. In the early LIA, the two chronologies were less coherent, with the tree-line chronology showing more variability, suggesting different growth responses in the two environments during this period of less favourable growing conditions. Our results indicate that tree-ring width chronologies mainly based on lake-shore trees may need to be re-evaluated.

  2. Holocene fire dynamics in Fennoscandia (United States)

    Clear, Jennifer; Seppa, Heikki; Kuosmanen, Niina; Molinari, Chiara; Lehsten, Veiko; Allen, Katherine; Bradshaw, Richard


    Prescribed burning is advocated in Fennoscandia to promote regeneration and to encourage biodiversity. This method of forest management is based on the perception that fire was much more frequent in the recent past and over a century of active fire suppression has created a boreal forest ecosystem almost free of natural fire. The absence of fire is thought to have contributed to the widespread dominance of Picea abies (Norway spruce) with the successive spruce dominated forest further reducing fire ignition potential. However, humans have altered the natural fire dynamics of Fennoscandia since the early- to mid-Holocene and disentangling the anthropogenic driven fire dynamics from the natural fire dynamics is challenging. Through palaeoecology and sedimentary charcoal deposits we are able to explore the Holocene spatial and temporal variability and changing drivers of fire and vegetation dynamics in Fennoscandia. At the local-scale, two forest hollow environments (history are compared to identify unique and mutual changes in disturbance history. Pollen derived quantitative reconstruction of vegetation at both the local- and regional-scale identifies local-scale disturbance dynamics and large-scale ecosystem response. Spatio-temporal heterogeneity and variability in biomass burning is explored throughout Fennoscandia and Denmark to identify the changing drives of fire dynamics throughout the Holocene. Palaeo-vegetation reconstructions are compared to process-based, climate driven dynamic vegetation model output to test the significance of fire frequency as a driver of vegetation composition and dynamics. Early-Holocene fire regimes in Fennoscandia are driven by natural climate variations and fuel availability. The establishment and spread of Norway spruce is driven by an increase in continentality of climate, but local natural and anthropogenic ecosystem disturbance may have aided this spread. The expansion of spruce led to a step-wise reduction in regional biomass

  3. Evidence of Suess solar-cycle bursts in Holocene speleothem d18O records

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Jacobsen, B. H.; Riisager, Peter


    Several studies indicate that changes in solar activity may have driven Holocene subtropical monsoon variability on decadal and centennial timescales, but the strength and nature of this link remains debated. In this study, we combine a recent mapping of the Holocene solar-cycle activity with four...... in driving centennial-scale changes in the hydrological cycle in the subtropics during the Holocene....

  4. The Growth of Bosnian Pine (Pinus hedreichii Christ. at Tree-Line Locations from Kosovo and its Response to Climate

    Directory of Open Access Journals (Sweden)

    Faruk Bojaxhi


    Full Text Available Background and Purpose: Pinus heldreichii Christ. is a sub-endemic species occurring at tree-line locations in Kosovo and covering an area of 2500 ha. In high elevation sites radial growth is mainly controlled by low temperatures. The main purpose of this study was the analysis of radial growth of P. heldreichii and its response to local climate conditions. Materials and Methods: Research sites comprise of three high elevation stands of P. heldreichii with specific site conditions. Core samples were collected from 98 healthy dominant and co-dominant trees at breast height using increment borer. They were prepared and cross-dated using standard dendrochronological methods, while tree-ring widths were measured to the nearest 0.001 mm using the TSAP software. The ARSTAN program was used to standardize the tree-ring widths and to calculate dendrochronological statistical parameters. The growth-climate relationship was investigated using bootstrapped correlation function analysing the residual chronologies of each sampled site as a dependent variable and the climatic data from May of the (n-1 year up to the October of the n year for the common period 1951-2013 as an independent variable. Results: The length of Bosnian pine chronologies ranged from 175 to 541 years. All chronologies had high values of first-order autocorrelation indicating that radial growth of P. heldreichii is affected by the climate conditions of the previous growing year. Koritnik chronology had the highest values of the mean sensitivity due to the influence of drought stress. This conclusion is also supported by the result of growth-climate relationship where radial growth is negatively correlated with June temperatures and positively associated with July and August precipitation. We found that radial growth of young trees from Koritnik site is limited by the combined effect of temperatures and summer drought stress. In high elevation sites, temperature is expected to control the

  5. Molecules in the mud: Combining ancient DNA and lipid biomarkers to reconstruct vegetation response to climate variability during the Last Interglacial and the Holocene on Baffin Island, Arctic Canada (United States)

    Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.


    Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.

  6. Holocene glacial fluctuations in southern South America (United States)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.


    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  7. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. (United States)

    Rundqvist, Sara; Hedenås, Henrik; Sandström, Anneli; Emanuelsson, Urban; Eriksson, Håkan; Jonasson, Christer; Callaghan, Terry V


    Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (tree stems (> or =3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.

  8. Spatial and Temporal Variability of Dust Deposition in the San Juan Mountains, CO: A Network of Late Holocene Lake Sediment Records (United States)

    Arcusa, S.; Routson, C.; McKay, N.


    Millions of stakeholders living in the arid southwestern US rely on snowmelt from the San Juan Mountains of Colorado. However, dust deposition on snow accelerates snowmelt, challenging water management. Dustiness in the southwestern US is primarily mediated by drought, which is projected to increase in frequency and severity. Over the past several millennia, multidecadal-length megadroughts are hypothesized to have enhanced regional dustiness. These past megadroughts were more frequent during the Roman (ca. 1-400 CE) and Medieval (ca. 800-1300 CE) time periods and were similar in duration and severity to those projected for the future. Developing an understanding of the temporal and spatial patterns of past dust deposition in the San Juan Mountains will help inform adaptation strategies for future droughts. A network of short sediment cores from six alpine lakes in the San Juan Mountains were collected in 2016 and 2017 to investigate the spatial patterns of dust deposition. The range in lake basin characteristics in the network, such as catchment size, helps to constrain the influence of secondary dust deposition. Grain size analysis and X-ray Fluorescence were combined with radiocarbon dating to trace the temporal patterns in dust flux over the Late Holocene (the last 2000 years). The End-member Modelling Algorithm (EMMA) was used to estimate the dust proportion in the lake sediment, distinguishing from locally derived catchment material. Comparisons to modern dust-on-snow samples were made to identify the dust size distribution. The results show that deposition trends were not uniform between the south-eastern and north-western San Juans, with increasing trends towards the present in the former, possibly reflecting a shift in dust sources associated with changes in wind speed and direction. Dust levels greater than long term averages were recorded during the Medieval and Roman periods. The network also showed the influence of lake basin parameters, such as the

  9. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model (United States)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf


    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  10. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf


    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  11. Multidecadal, centennial, and millennial variability in sardine and anchovy abundances in the western North Pacific and climate-fish linkages during the late Holocene (United States)

    Kuwae, Michinobu; Yamamoto, Masanobu; Sagawa, Takuya; Ikehara, Ken; Irino, Tomohisa; Takemura, Keiji; Takeoka, Hidetaka; Sugimoto, Takashige


    Paleorecords of pelagic fish abundance could better define the nature of fishery productivity dynamics and help understand responses of pelagic fish stocks to long-term climate changes. We report a high-resolution record of sardine and anchovy scale deposition rates (SDRs) from Beppu Bay, Southwest Japan, showing multidecadal and centennial variability in the abundance of Japanese sardine and Japanese anchovy during the last 2850 years. Variations in the sardine SDR showed periodicities at ∼50, ∼100, and ∼300 yr, while variations in the anchovy SDR showed periodicities at ∼30 and ∼260 yr. Comparisons between and correlation analyses of the time series of the sardine and anchovy SDRs demonstrate that there is not a consistent out-of-phase relationship during the last 2850 years. This indicates that the multidecadal alternations in the sardine and anchovy populations commonly seen in the 20th century did not necessarily occur during earlier periods. The Japanese sardine SDR record shows a long-term decreasing trend in the amplitudes of the multidecadal to centennial fluctuations. This decreasing trend may have resulted from an increasing trend in the winter sea surface temperature in the western North Pacific. The multicentennial variability in sardine abundance during the last millennium is consistent with the variabilities in the abnormal snow index in East Asia and the American tree ring-based Pacific Decadal Oscillation index, suggesting a basin-wide or regional climate-marine ecosystem linkage.

  12. Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring (United States)

    Moore, Peggy E.; Alvarez, Otto; McKinney, Shawn T.; Li, Wenkai; Brooks, Matthew L.; Guo, Qinghua


    Whitebark pine and foxtail pine serve foundational roles in the subalpine zone of the Sierra Nevada. They provide the dominant structure in tree-line forests and regulate key ecosystem processes and community dynamics. Climate change models suggest that there will be changes in temperature regimes and in the timing and magnitude of precipitation within the current distribution of these species, and these changes may alter the species’ distributional limits. Other stressors include the non-native pathogen white pine blister rust and mountain pine beetle, which have played a role in the decline of whitebark pine throughout much of its range. The National Park Service is monitoring status and trends of these species. This report provides complementary information in the form of habitat suitability models to predict climate change impacts on the future distribution of these species within Sierra Nevada national parks.We used maximum entropy modeling to build habitat suitability models by relating species occurrence to environmental variables. Species occurrence was available from 328 locations for whitebark pine and 244 for foxtail pine across the species’ distributions within the parks. We constructed current climate surfaces for modeling by interpolating data from weather stations. Climate surfaces included mean, minimum, and maximum temperature and total precipitation for January, April, July, and October. We downscaled five general circulation models for the 2050s and the 2090s from ~125 km2 to 1 km2 under both an optimistic and an extreme climate scenario to bracket potential climatic change and its influence on projected suitable habitat. To describe anticipated changes in the distribution of suitable habitat, we compared, for each species, climate scenario, and time period, the current models with future models in terms of proportional change in habitat size, elevation distribution, model center points, and where habitat is predicted to expand or contract

  13. Late-Holocene hydroclimate and atmospheric circulation variability in southern Patagonia: insights from triple stable isotopes (δ18O, δ13C, δD) of peat bog Sphagnum moss (United States)

    Xia, Z.; Yu, Z.; Zheng, Y.; Loisel, J.; Huang, Y.


    The Southern Hemisphere Westerly Winds (SHWWs) exert important influences on regional and global climates, but their long-term behaviors and dynamics are still poorly understood but critical for projecting future changes. Here we present a 5,500-year record from a Sphagnum-dominated peat bog located on the lee side of the Andes at 54.2 °S in southern Patagonia—based on plant macrofossils, Sphagnum cellulose δ18O and δ13C, and lipid δD data—to document and understand the variability in hydroclimate and atmospheric circulation. There is a striking negative correlation between cellulose δ18O and the Southern Annular Mode (SAM) index over the last millennium; particularly the 2.5‰ negative shift of δ18O is concurrent with the observed positive trend in the SAM over the recent decades. The interval of Medieval Climate Anomaly (MCA, 850-600 yr BP) is characterized by a 2.5‰ negative shift of δ18O and low δ13C values, while the Little Ice Age (LIA, 500-300 yr BP) is characterized by a 2.5‰ positive shift of δ18O and high δ13C values. Furthermore, we find the largest negative shift of δ18O ( 3‰) at 2,300 yr BP, suggesting a significantly positive shift in the SAM. We interpret high Sphagnum abundance and high cellulose δ13C values to reflect great moss moisture conditions, while cellulose δ18O variations primarily reflect moisture sources and atmospheric circulation. During the positive phase of SAM (e.g., the MCA and recent decades), strengthened SHWWs enhance the rain-shadow effect, resulting in dry climate and 18O-depleted precipitation (low δ18O values) in the study region. During the negative phase of SAM (e.g., the LIA), weakened SHWWs reduce rain-shadow effect, resulting in wet climate and high δ18O values caused by increases in moisture contributions from the southerly and easterly flows that do not experience strong Rayleigh distillation process during air mass transports. Furthermore, coupling cellulose δ18O and lipid δD enables

  14. The Caribbean conundrum of Holocene sea level. (United States)

    Jackson, Luke; Mound, Jon


    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.


    Directory of Open Access Journals (Sweden)

    A. P. Mikhailovich


    Full Text Available A method of processing and presentation of the repeated landscape photographs for analysis of spatio-temporal dynamics of woody vegetation in tree line ecotone the Polar Urals (mountain Rai-Iz was developed. It is intended to solve problems with the use of such photographs so as to help the researcher to gain an integral representation of the space under study, obtain additional information about the region of interest, create and update annotation to photographs, and develop thematic maps using repeated landscape photography.

  16. Clinal variation of some mammals during the Holocene in Missouri (United States)

    Purdue, James R.


    Eastern cottontail ( Sylvilagus floridanus), fox squirrel ( Sciurus niger), and gray squirrel ( Sciurus carolinensis) were examined for clinal variation during the Holocene. Modern samples of all three species displayed strong east-west patterns along the western edge of the eastern deciduous forest: S. floridanus and S. niger decrease and S. carolinensis increases in size. Archeological samples of S. carolinensis from Rodgers Shelter (23BE125), Benton County, Missouri, and Graham Cave (23MT2), Montgomery County, Missouri, indicated an increase in size from early to middle Holocene. Sylvilagus floridanus from Rodgers Shelter decreased in size from early to middle Holocene and then increased during the late Holocene to modern proportions. A literature survey reveals that clinal variation is a common phenomenon among modern homeotherms. In introduced species, clinal variation has developed after relatively few generations, indicating rapid adaptations to environmental conditions; often winter climatic variables are implicated. Morphological variation in the study species during the Holocene is interpreted as a response to changing climates. Studies of morphological clines may lead to another valuable data source for reconstructing past ecologies.

  17. Volcanic influence on centennial to millennial Holocene Greenland temperature change. (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu


    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  18. The Late-Glacial and Holocene Marboré Lake sequence (2612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability (United States)

    Leunda, Maria; González-Sampériz, Penélope; Gil-Romera, Graciela; Aranbarri, Josu; Moreno, Ana; Oliva-Urcia, Belén; Sevilla-Callejo, Miguel; Valero-Garcés, Blas


    This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6-10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane belt since 9.3 kyr cal BP until mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and Mediterranean context. The increase of herbaceous taxa during the late-Holocene (3.5 kyr cal BP-present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not evident until 1.3 kyr cal BP when Olea proportions from lowland areas and other anthropogenic indicators clearly expand. Our study demonstrates the need to perform local experimental approaches to check the effect of ice phenology on high altitude lakes sensitivity to vegetation changes to obtain

  19. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line. (United States)

    Dawes, Melissa A; Zweifel, Roman; Dawes, Nicholas; Rixen, Christian; Hagedorn, Frank


    To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species. © 2014 WSL Institute for Snow and Avalanche Research - SLF. New Phytologist © 2014 New Phytologist Trust.

  20. Holocene Sea-Level Database For The Caribbean Region (United States)

    Khan, N. S.; Horton, B.; Engelhart, S. E.; Peltier, W. R.; Scatena, F. N.; Vane, C. H.; Liu, S.


    Holocene relative sea-level (RSL) records from far-field locations are important for understanding the driving mechanisms controlling the nature and timing of the mid-late Holocene reduction in global meltwaters and providing background rates of late Holocene RSL change with which to compare the magnitude of 20th century RSL rise. The Caribbean region has traditionally been considered far-field (i.e., with negligible glacio-isostatic adjustment (GIA) influence), although recent investigations indicate otherwise. Here, we consider the spatial variability in glacio-isostatic, tectonic and local contributions on RSL records from the circum-Caribbean region to infer a Holocene eustatic sea-level signal. We have constructed a database of quality-controlled, spatially comprehensive, Holocene RSL observations for the circum-Caribbean region. The database contains over 500 index points, which locate the position of RSL in time and space. The database incorporates sea-level observations from a latitudinal range of 5°N to 25°N and longitudinal range of 55°W to 90°W. We include sea-level observations from 11 ka BP to present, although the majority of the index points in the database are younger than 8 ka BP. The database is sub-divided into 13 regions based on the distance from the former Laurentide Ice Sheet and regional tectonic setting. The index points were primarily derived from mangrove peat deposits, which in the Caribbean form in the upper half of the tidal range, and corals (predominantly Acropora palmata), the growth of which is constrained to the upper 5 m of water depth. The index points are classified on the basis of their susceptibility to compaction (e.g., intercalated, basal). The influence of temporal changes in tidal range on index points is also considered. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, except at sites in Suriname/Guayana and possibly Trinidad

  1. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter


    Background and Aims Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Methods Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Key Results Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May–June. Conclusions Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world. PMID:22210848

  2. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy. (United States)

    Liang, Eryuan; Lu, Xiaoming; Ren, Ping; Li, Xiaoxia; Zhu, Liping; Eckstein, Dieter


    Dendroclimatology is playing an important role in understanding past climatic changes on the Tibetan Plateau. Forests, however, are mainly confined to the eastern Tibetan Plateau. On the central Tibetan Plateau, in contrast, shrubs and dwarf shrubs need to be studied instead of trees as a source of climate information. The objectives of this study were to check the dendrochronological potential of the dwarf shrub Wilson juniper (Juniperus pingii var. wilsonii) growing from 4740 to 4780 m a.s.l. and to identify the climatic factors controlling its radial growth. Forty-three discs from 33 stems of Wilson juniper were sampled near the north-eastern shore of the Nam Co (Heavenly Lake). Cross-dating was performed along two directions of each stem, avoiding the compression-wood side as far as possible. A ring-width chronology was developed after a negative exponential function or a straight line of any slope had been fit to the raw measurements. Then, correlations were calculated between the standard ring-width chronology and monthly climate data recorded by a weather station around 100 km away. Our study has shown high dendrochronological potential of Wilson juniper, based on its longevity (one individual was 324 years old), well-defined growth rings, reliable cross-dating between individuals and distinct climatic signals reflected by the ring-width variability. Unlike dwarf shrubs in the circum-arctic tundra ecosystem which positively responded to above-average temperature in the growing season, moisture turned out to be growth limiting for Wilson juniper, particularly the loss of moisture caused by high maximum temperatures in May-June. Because of the wide distribution of shrub and dwarf shrub species on the central Tibetan Plateau, an exciting prospect was opened up to extend the presently existing tree-ring networks far up into one of the largest tundra regions of the world.

  3. A Holocene temperature reconstruction from northern New Zealand: a test of North Atlantic Holocene climate patterns as a global template (United States)

    van den Bos, Valerie; Rees, Andrew; Newnham, Rewi; Augustinus, Paul


    Holocene climate variability has been well defined in the North Atlantic (Walker et al., 2012), but the global extent of this climate change stratigraphy is debatable. If the North Atlantic serves as a global template for Holocene climate, then New Zealand (NZ) is ideally positioned to test this assertion, as it is distal from the northern drivers. Additionally, it is one of the few landmasses in the Southern Hemisphere that is influenced by both sub-tropical and extra-tropical climatic regimes, which may be more important controls in the southern mid-latitudes. Although much work has been done to characterise the Holocene in NZ using pollen, most of these records lack the resolution or sensitivity to determine whether abrupt or short-lived events occurred. The NZ-INTIMATE climate event stratigraphy lacks a type section for the Holocene (Alloway et al., 2007). Records from northern NZ typically show little change, other than a possible early Holocene warming. Here, we present a combined pollen and chironomid temperature reconstruction from Lake Pupuke (northern NZ), the first of its kind in NZ that covers the entire Holocene. By comparing mean annual temperatures reconstructed from fossil pollen and mean summer temperatures inferred from chironomid remains, we can assess changes in seasonality. Mean summer temperature was reconstructed from the chironomid record using a weighted averaging partial least squares (WA-PLS) model (n comp = 2, r2booth = 0.77, RMSEP = 1.4°C) developed from an expanded version of Dieffenbacher-Krall et al. (2007)'s chironomid training set. Preliminary results show evidence for cool summers during the early Holocene as well as around the period of the Little Ice Age as defined in the North Atlantic region. These and other climate patterns determined from the Pupuke chironomid and pollen records will be compared with other evidence from northern New Zealand and with the North Atlantic record of Holocene climate variability. References

  4. Holocene reef development where wave energy reduces accommodation (United States)

    Grossman, Eric E.; Fletcher, Charles H.


    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  5. Fire history and climate variability during the Mid-Late Holocene in the Picos de Europa (Cantabrian Mountains, NW Spain), based on sedimentary sequence of Belbín (United States)

    Ruiz-Fernández, Jesús; Nieuwendam, Alexandre; Oliva, Marc; Lopes, Vera; Cruces, Anabela; Conceição Freitas, Maria; Janeiro, Ana; López-Sáez, José Antonio; García-Hernández, Cristina


    The environmental changes during the last millennia in the Mediterranian Region (including the Cantabrian Mountains in the NW part of the Iberian Peninsula) are partially related to fire activity, generated by early human societies for grazing purposes. Fire activity has mostly been reconstructed based on the analysis of pollen, spores and other macro- and microscopic organic remains, such as charcoal particles. However, new techniques (as the analysis of micro-scale frost weathering of quartz grains), can provide further information about the magnitude and intensity of fire as a landscape modeler. The purpose of this work was to analyze a sedimentary sequence collected from Belbín depression in the Western Massif of the Picos de Europa (Cantabrian Mountains, NW Spain) by using an innovative multi-proxy approach, in order to reconstruct the fire history in this area. The Picos de Europa Mountains constitute the highest and most extensive massif in the Cantabrian Mountains. This area encloses three different massifs separated by deep gorges carved by four rivers (Dobra, Cares, Duje and Deva). The Western Massif is the largest of the three units (137 km2). The Picos de Europa are essentially composed by Carboniferous limestones. This mountain area was heavily glaciated during the Last Glaciation, though the post-glacial environmental evolution is still poorly understood. Within the Western Massif, the mid-altitude area of Belbín is a karstic depression dammed by a lateral moraine generated by Enol Glacier during the Last Glaciation. Between 23 and 8 ky cal BP this depression was a lake that became progressively infilled with sediments, and nowadays it is occupied by grasslands (Ruiz-Fernández et al., 2016). In order to study the environmental changes during the Mid-Late Holocene in this massif, a 182 cm-long sequence was retrieved in the Belbín area. The core was subsampled every centimeter in the top most superficial 60 cm. The laboratory analyses were: 1

  6. Aridity of Central Asia through the Holocene (United States)

    Aizen, E. M.; Aizen, V. B.; Mayewski, P. A.; Zhou, H.; Rodda, C.; Joswiak, D.; Takeuchi, N.; Fujita, K.; Kurbatov, A.; Grigholm, B. O.


    The dynamics of aridity in Central Asia for over the past 12,000 years has been analyzed using deep ice core records recovered from the Siberian Altai, Tien Shan and Pamir glaciers. An analysis of aridity in the 20-21 centuries based on the long-term meteorological observations complements the paleo- climate reconstruction. The goal of our research is to examine an aridity (at low and high temperatures) in Central Asia as a complex of characteristics including air temperature-precipitation relationship (Koppen, 1918, Geiger, 1961, Mezencev, 1973), intensity of dust loading and biomass burning. The stable isotope ratio, soluble ionic and insoluble particulate geochemical components and oxalate preserved in ice were considered in relation to climatic and environmental changes; and to determine the main aerosol sources using ground- and upper-level meteorological data. Multivariate statistical methods were employed for examination of the main geo-chemical components responsible for the preserved aridity variability. Insoluble particle concentrations preserved in the ice core were affected mainly by precipitation regimes and wind speed. Concentration of all size particles was found to be negatively correlated with monthly temperatures indicating low temperatures during the dry particle deposition. Two abrupt depletions in stable isotope records, i.e., Younger Dryas and Centurial Sever Drought (CSD), occurred during cold, dry, windy periods of intensified dust storms in large desert areas. When climate became colder and drier, the Central Asian deserts extended, wind speeds increased loading mineral dust to atmosphere, which formed inversion while the convection processes and precipitation occurrence were limited. Warmer and wetter conditions are associated with less dust loading that occurred during the Holocene climate optimum, medieval warm and modern warm periods. The sudden climate transitions are accompanied by the most intensifying mineral dust loading. From the

  7. The magnitude of a mid-Holocene sea-level highstand in the Strait of Makassar

    NARCIS (Netherlands)

    Mann, T.; Rovere, A.; Schöne, T.; Klicpera, A.; Stocchi, P.; Lukman, M.; Westphal, H.


    Knowledge on the timing andmagnitude of past sea-level changes is essential to understandmodern and futuresea-level variability.Holocene sea-level data fromliterature on thewest coast of Sulawesi, central Indonesia, suggestthat this region experienced two relative sea-level highstands over the last

  8. Insolation driven biomagnetic response to Holocene Warm Period in semi-arid East Asia

    NARCIS (Netherlands)

    Liu, S.; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang


    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly

  9. Middle and late Holocene climate change and human impact inferred from diatoms, algae and aquatic macrophyte pollen in sediments from Lake Montcortès (NE Iberian Peninsula)

    NARCIS (Netherlands)

    Scussolini, P.; Vegas-Vilarrúbia, T.; Rull, V.; Corella, J.P.; Valero-Garcés, B.; Gomà, J.


    During the middle and late Holocene, the Iberian Peninsula underwent large climatic and hydrologic changes, but the temporal resolution and regional distribution of available palaeoenvironmental records is still insufficient for a comprehensive assessment of the regional variability. The high

  10. Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake.

    Directory of Open Access Journals (Sweden)

    T E Arnold

    Full Text Available We carried out geochemical analyses on a sediment core from Lake Harris, Florida (USA to identify sources of organic matter to the sediment throughout the Holocene, and relate changes in those sources to shifts in past climate and environmental conditions. We hypothesized that the sources of organic matter changed in response to regional hydrologic shifts following de-glaciation, and to human population expansion in the state during the 20th century. Hydroclimate shifts in Florida were related to: 1 a steady rise in relative sea level and the fresh water table that began in the early Holocene, 2 wetland formation and expansion ca. 5,000 cal yrs BP, and 3 the onset of the modern El Niño (ENSO cycle ~3,000 cal yrs BP. Stratigraphic changes in sediment variables from Lake Harris reflect each of these hydroclimate periods. Early in the Holocene, Lake Harris was a marsh-like system in a relatively dry, open-prairie environment. Organic sediments deposited at that time were derived largely from terrestrial sources, as inferred from high TOC/TN ratios, a dominance of longer-chain of n-alkanes (n-C29-31, relatively negative organic carbon isotope values (δ13CTOC, and low biogenic silica concentrations. In the middle Holocene, a positive shift in δ13CTOC coincided with the onset of wetter conditions in Florida. Submerged macrophyte biomarkers (n-C21-23 dominated, and during that period bulk organic carbon isotope values were most similar to δ13C values of mid-chain-length n-alkanes. In the late Holocene, δ13CTOC values declined, CaCO3 levels decreased to trace amounts, organic carbon concentrations increased and diatom biogenic silica concentrations increased from 10 to 120 mg g-1. Around 2,900 cal yrs BP, the effects of ENSO intensified and many Florida lakes deepened to their current limnetic state. Concentrations of algal and cyanobacterial biomarkers in the Lake Harris core increased by orders of magnitude after about AD 1940, in response to

  11. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland (United States)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís


    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the

  12. Lacustrine Records of Holocene Mountain Glacier Fluctuations from Western Greenland (United States)

    Schweinsberg, A.; Briner, J. P.; Bennike, O.


    Recent studies have focused on documenting fluctuations of the Greenland Ice Sheet margin throughout the Holocene but few data exist that constrain past changes of local glaciers independent of the ice sheet. Our research combines proglacial lake sediment analysis with cosmogenic 10Be dating of Holocene moraines and radiocarbon dating of ice-cap-killed vegetation with an overall objective to use this multi-proxy approach to generate a detailed record of the coupled climate-glacier system through the Holocene. Here, we present lacustrine records of mountain glacier variability from continuous pro-glacial lake sediment sequences recovered from two glaciated catchments in northeastern Nuussuaq, western Greenland. We use radiocarbon-dated sediments from Sikuiui and Pauiaivik lakes to reconstruct the timing of advance and retreat of local glaciers. Sediments were characterized with magnetic susceptibility (MS), gamma density, Itrax XRF and visible reflectance spectroscopy at 0.2 cm intervals and sediment organic matter at 0.5 cm intervals. Basal radiocarbon ages provide minimum-age constraints on deglaciation from Sikuiui and Pauiaivik lakes of ~9.6 and 8.7 ka, respectively. Organic-rich gyttja from deglaciation until ~5.0 ka in Pauiaivik Lake suggests minimal glacial extent there while slightly elevated MS values from ~9.0 - 7.0 ka in Sikuiui Lake may reflect early Holocene glacial advances. Minerogenic sediment input gradually increases starting at ~5.0 ka in Pauiaivik Lake, which we interpret as the onset of Neoglaciation in the catchment. Furthermore, a distinct episode of enhanced glacial activity from ~4.0 - 2.2 ka in Sikuiui Lake may be correlative to a period of persistent snowline lowering evidenced by radiocarbon dates of ice-killed vegetation from nearby ice cap margins. Results from these lacustrine records and our ice-killed vegetation dataset suggest a middle Holocene onset of Neoglaciation ~5.0 - 4.0 ka in this region. We are supplementing these records

  13. A Holocene record of ocean productivity and upwelling from the northern California continental slope (United States)

    Addison, Jason A.; Barron, John A.; Finney, Bruce P.; Kusler, Jennifer E.; Bukry, David; Heusser, Linda E.; Alexander, Clark R.


    The Holocene upwelling history of the northern California continental slope is examined using the high-resolution record of TN062-O550 (40.9°N, 124.6°W, 550 m water depth). This 7-m-long marine sediment core spans the last ∼7500 years, and we use it to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with Holocene millennial-scale warm intervals. A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test this hypothesis. The record of biogenic accumulation in TN062-O550 shows considerable Holocene variability despite being located within 50 km of the mouth of the Eel River, which is one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at ∼2900 calibrated years before present (cal yr BP) indicates the onset of modern upwelling in the CCS, and this period also corresponds to the most intense period of upwelling in the last 7500 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification at TN062-O550 corresponds closely to that seen at nearby ODP Site 1019, as well as in the Santa Barbara Basin of southern California. Other CCS records with less refined age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we suggest that CCS warming may be conducive to upwelling intensification, though future changes are unclear as the mechanisms forcing SST variability may differ.

  14. Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia (United States)

    Perner, Kerstin; Moros, Matthias; De Deckker, Patrick; Blanz, Thomas; Wacker, Lukas; Telford, Richard; Siegel, Herbert; Schneider, Ralph; Jansen, Eystein


    The Leeuwin Current (LC), an eastern boundary current, transports tropical waters from the Indo-Pacific Warm Pool (IPWP) towards southern latitudes and modulates oceanic conditions offshore southern Australia. New, high-resolution planktic foraminifer assemblage data and alkenone-derived sea surface temperatures (SST) provide an in-depth view on LC variability and mechanisms driving the current's properties during the mid to late Holocene (last c. 7.4 ka BP). Our marine reconstructions highlight a longer-term mid to late Holocene reduction of tropical heat export from the IPWP area into the LC. Mid Holocene (c. 7.4 to 3.5 ka BP) occurrence of high SSTs (>19.5 °C), tropical planktic foraminifera and a well-stratified water column document an enhanced heat export from the tropics. From c. 3.5 ka BP onwards, a weaker LC and a notably reduced tropical heat export cause oceanic cooling offshore southern Australia. The observed mid to late Holocene trends likely result from large-scale changes in the IPWP's heat storage linked to the El Niño-Southern Oscillation (ENSO) phenomenon. We propose that a strong and warm LC occurs in response to a La Niña-like state of ENSO during the mid Holocene. The late Holocene LC cooling, however, results from a shift towards an El Niño-like state and a more variable ENSO system that causes cooling of the IPWP. Superimposed on these longer-term trends we find evidence of distinct late Holocene millennial-scale phases of enhanced El Niño/La Niña development, which appear synchronous with northern hemispheric climatic variability. Phases of dominant El Niño-like states occur parallel to North Atlantic cold phases: the '2800 years BP cooling event', the 'Dark Ages' and the 'Little Ice Age', whereas the 'Roman Warm Period' and the 'Medieval Climate Anomaly' parallel periods of a predominant La Niña-like state. Our findings provide further evidence of coherent interhemispheric climatic and oceanic conditions during the mid to late

  15. Glaciation in the Andes during the Lateglacial and Holocene (United States)

    Rodbell, Donald T.; Smith, Jacqueline A.; Mark, Bryan G.


    This review updates the chronology of Andean glaciation during the Lateglacial and the Holocene from the numerous articles and reviews published over the past three decades. The Andes, which include some of the world's wettest and driest mountainous regions, offer an unparalleled opportunity to elucidate spatial and temporal patterns of glaciation along a continuous 68-degree meridional transect. The geographic and altitudinal extent of modern glaciers and the sensitivity of both modern and former glaciers to respond to changes in specific climatic variables reflect broad-scale atmospheric circulation and consequent regional moisture patterns. Glaciers in the tropical Andes and in the mid-latitude Andes are likely to have been far more sensitive to changes in temperature than glaciers in the dry subtropical Andes. Broad-scale temporal and spatial patterns of glaciation during the Lateglacial are apparent. In the southernmost Andes, the Lateglacial chronology appears to have a strong Antarctic signature with the best-dated moraines correlating closely with the Antarctic Cold Reversal. The southernmost Andes do not appear to have experienced a significant ice advance coeval with the Younger Dryas (YD) climatic reversal. At the other end of the Andes, from ˜0 to 9°N, a stronger YD connection may exist, but critical stratigraphic and geochronologic work is required before a YD ice advance can be fully demonstrated. In the central Andes of Peru, well-dated moraines record a significant ice readvance at the onset of the YD, but ice was retreating during much of the remaining YD interval. The spatial-temporal pattern of Holocene glaciation exhibits tantalizing but incomplete evidence for an Early to Mid-Holocene ice advance(s) in many regions, but not in the arid subtropical Andes, where moraines deposited during or slightly prior to the Little Ice Age (LIA) record the most extensive advance of the Holocene. In many regions, there is strong evidence for Neoglacial

  16. Lakeside cemeteries in the Sahara: 5000 years of holocene population and environmental change.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available BACKGROUND: Approximately two hundred human burials were discovered on the edge of a paleolake in Niger that provide a uniquely preserved record of human occupation in the Sahara during the Holocene ( approximately 8000 B.C.E. to the present. Called Gobero, this suite of closely spaced sites chronicles the rapid pace of biosocial change in the southern Sahara in response to severe climatic fluctuation. METHODOLOGY/PRINCIPAL FINDINGS: Two main occupational phases are identified that correspond with humid intervals in the early and mid-Holocene, based on 78 direct AMS radiocarbon dates on human remains, fauna and artifacts, as well as 9 OSL dates on paleodune sand. The older occupants have craniofacial dimensions that demonstrate similarities with mid-Holocene occupants of the southern Sahara and Late Pleistocene to early Holocene inhabitants of the Maghreb. Their hyperflexed burials compose the earliest cemetery in the Sahara dating to approximately 7500 B.C.E. These early occupants abandon the area under arid conditions and, when humid conditions return approximately 4600 B.C.E., are replaced by a more gracile people with elaborated grave goods including animal bone and ivory ornaments. CONCLUSIONS/SIGNIFICANCE: The principal significance of Gobero lies in its extraordinary human, faunal, and archaeological record, from which we conclude the following: The early Holocene occupants at Gobero (7700-6200 B.C.E. were largely sedentary hunter-fisher-gatherers with lakeside funerary sites that include the earliest recorded cemetery in the Sahara.Principal components analysis of craniometric variables closely allies the early Holocene occupants at Gobero with a skeletally robust, trans-Saharan assemblage of Late Pleistocene to mid-Holocene human populations from the Maghreb and southern Sahara.Gobero was abandoned during a period of severe aridification possibly as long as one millennium (6200-5200 B.C.E.More gracile humans arrived in the mid-Holocene

  17. The Mt Logan Holocene-late Wisconsinan isotope record

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Fisher, David; Osterberg, Erich


    Mt Logan • stable isotopes • Holocene • ENSO • peat • N Pacific • sudden change Udgivelsesdato: August......Mt Logan • stable isotopes • Holocene • ENSO • peat • N Pacific • sudden change Udgivelsesdato: August...

  18. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models (United States)

    Meador, E.; Morrill, C.


    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  19. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence (United States)

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng


    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest

  20. Transient coupling relationships of the Holocene Australian monsoon (United States)

    McRobie, F. H.; Stemler, T.; Wyrwoll, K.-H.


    The northwest Australian summer monsoon owes a notable degree of its interannual variability to interactions with other regional monsoon systems. Therefore, changes in the nature of these relationships may contribute to variability in monsoon strength over longer time scales. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Niño-related proxy records, have been qualitative, relying on 'curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9000 years. The resulting networks demonstrate the existence of coupling relationships between regional monsoon systems on millennial time scales, but also highlight the transient nature of teleconnections during this period. In the context of the northwest Australian summer monsoon, we recognise a shift in coupling relationships from strong interhemispheric links with East Asian and ITCZ-related proxy records in the mid-Holocene to significantly weaker coupling in the later Holocene. Although the identified links cannot explain the underlying physical processes leading to coupling between regional monsoon systems, this method provides a step towards understanding the role that changes in teleconnections play in millennial-to orbital-scale climate variability.

  1. The Holocene History of Placentia Bay, Newfoundland

    DEFF Research Database (Denmark)

    Sheldon, Christina; Seidenkrantz, Marit-Solveig; Reynisson, Njall


    Marine sediments analyzed from cores taken in Placentia Bay, Newfoundland, located in the Labrador Sea, captured oceanographic and climatic changes from the end of the Younger Dryas through the Holocene. Placentia Bay is an ideal site to capture changes in both the south-flowing Labrador Current ...

  2. Identification of Holocene millennial-scale forcing in the North Atlantic area: Ocean/atmosphere contribution (United States)

    Debret, M.; Masson-Delmotte, V.; Christophe, C.; de Vernal, A.; Massei, N.; Eynaud, F.; Nicolle, M.; Frank, N.; Mary, Y.; Magny, M.


    Millennial (1500-year) cycles were evidenced decades ago from the advance and retreat of glaciers but many subsequent studies failed to demonstrate the unequivocal character of such oscillation from paleoclimate time series. Hence, the identification of a persistent 1500 year periodicity remains controversial both for the last glacial episode and the Holocene. Applying wavelet analysis to Holocene climate records, we have identified synchronous millennial-scale oscillations which permit to establish a North Atlantic millennial variability index (NAV-Index), maximum at 5330 ± 245, 3560 ± 190, 1810 ± 160 cal years BP and minimum at 4430 ± 250, 2640 ± 225 and 970 ± 200 years before present. This NAV-index was compared with the millennial variability of cosmogenic 10Be isotope, a proxy of solar activity. Differences between the two sets of records suggest that an internal mechanism (Ocean/atmosphere) must be at the origin of the North Atlantic millennial scale variability. Our data document an increased coherence and magnitude of the North Atlantic millennial variability since 6000 cal. years BP, with a frequency of 1780 ± 240 years. During the early Holocene, deglacial meltwater fluxes had strong regional impact and the coupling between subpolar gyre migration and Atlantic meridional oceanic circulation observed since afterward seems to be related to the end of the Laurentide and Inuitian ice sheet meltwater discharge. Hence, we may conclude that the evolution of this millennial oscillation in the future will depend upon the Greenland stability or melting.

  3. Mid to Late Holocene climate variability and anthropogenic impacts

    DEFF Research Database (Denmark)

    Olsen, J.; Noe-Nygaard, Nanna; Wolfe, B. B.


    this was interrupted by very wet conditions from 5,300 to 5,150, 4,300 to 4,050 and 3,700 to 3,450 cal year BP. The timing of the latter two moist intervals is consistent with other Scandinavian paleoclimatic records. Dry conditions at Lake Bliden between 3,450 and 2,800 cal year BP is consistent with other...... paleolimnological records from southern Sweden but contrasts with records in central Sweden, possibly suggesting a more northerly trajectory of prevailing westerlies carrying moisture from the North Atlantic at this time. Overall, fluctuating moisture conditions at Lake Bliden appear to be strongly linked...... susceptibility, d13CORG, d13Ccarb and d18Ocarb records suggest that the Medieval Warm Period was dry and the Little Ice Age was wet....

  4. Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest

    Directory of Open Access Journals (Sweden)

    Ahmed El-Guellab


    Full Text Available Background Cumulative impacts of wildfires and forest harvesting can cause shifts from closed-crown forest to open woodland in boreal ecosystems. To lower the probability of occurrence of such catastrophic regime shifts, forest logging must decrease when fire frequency increases, so that the combined disturbance rate does not exceed the Holocene maximum. Knowing how climate warming will affect fire regimes is thus crucial to sustainably manage the forest. This study aimed to provide a guide to determine sustainable forest harvesting levels, by reconstructing the Holocene fire history at the northern limit of commercial forestry in Quebec using charcoal particles preserved in lake sediments. Methods Sediment cores were sampled from four lakes located close to the northern limit of commercial forestry in Quebec. The cores were sliced into consecutive 0.5 cm thick subsamples from which 1 cm3 was extracted to count and measure charcoal particles larger than 150 microns. Age-depth models were obtained for each core based on accelerator mass spectroscopy (AMS radiocarbon dates. Holocene fire histories were reconstructed by combining charcoal counts and age-depth models to obtain charcoal accumulation rates and, after statistical treatment, long-term trends in fire occurrence (expressed as number of fires per 1000 years. Results Fire occurrence varied between the four studied sites, but fires generally occurred more often during warm and dry periods of the Holocene, especially during the Holocene Thermal Maximum (7000–3500 cal. BP, when fire occurrence was twice as high as at present. Conclusions The current fire regime in the study area is still within the natural range of variability observed over the Holocene. However, climatic conditions comparable to the Holocene Thermal Maximum could be reached within the next few decades, thus substantially reducing the amount of wood available to the forest industry.

  5. Multi-Decadal to Millennial Scale Holocene Hydrologic Variation in the Southern Hemisphere Tropics of South America (United States)

    Ekdahl, E. J.; Fritz, S. C.; Baker, P. A.; Burns, S. J.; Coley, K.; Rigsby, C. A.


    Numerous sites in the Northern Hemisphere show multi-decadal to millennial scale climate variation during the Holocene, many of which have been correlated with changes in atmospheric radiocarbon production or with changes in North Atlantic oceanic circulation. The manifestation of such climate variability in the hydrology of the Southern Hemisphere tropics of South America is unclear, because of the limited number of records at suitably high resolution. In the Lake Titicaca drainage basin of Bolivia and Peru, high-resolution lacustrine records reveal the overall pattern of Holocene lake-level change, the influence of precessional forcing of the South American Summer Monsoon, and the effects of high-frequency climate variability in records of lake productivity and lake ecology. Precessional forcing of regional precipitation is evident in the Lake Titicaca basin as a massive (ca. 85 m) mid-Holocene decline in lake level beginning about 7800 cal yr BP and a subsequent rise in lake level after 4000 cal yr BP. Here we show that multi-decadal to millennial-scale climate variability, superimposed upon the envelope of change at orbital time scales, is similar in timing and pattern to the ice-rafted debris record of Holocene Bond events in the North Atlantic. A high-resolution carbon isotopic record from Lake Titicaca that spans the entire Holocene suggests that cold intervals of Holocene Bond events are periods of increased precipitation, thus indicating an anti-phasing of precipitation variation on the Altiplano relative to the Northern Hemisphere tropics. A similar pattern of variation is also evident in high-resolution (2-30 yr spacing) diatom and geochemical records that span the last 7000 yr from two smaller lakes, Lagos Umayo and Lagunillas, in the Lake Titicaca drainage basin.

  6. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia


    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang


    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8?ka and decrease at ~5.9?ka in Dali Lake coincided respectively wit...

  7. Late-glacial to Holocene aeolian deposition in northeastern Europe - The timing of sedimentation at the Iisaku site (NE Estonia)

    DEFF Research Database (Denmark)

    Kalinska-Nartisa, Edyta; Nartiss, Maris; Thiel, Christine


    The Late-glacial and Holocene aeolian inland dune complex at Iisaku (NE Estonia) has been investigated using an accurate and detailed compilation of the sedimentary properties and chronological framework. The quartz grains forming the dunes are very variable, reflecting aeolian, weathering...

  8. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record

    DEFF Research Database (Denmark)

    Møller, Henrik S.; Jensen, Karin G.; Kuijpers, Antoon


      Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminifera records of a 3.5 m long gravity core from Ameralik fjord, southern West Greenland, is used for reconstructing late Holocene environmental changes in this area. The changes are linked...... to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core covers the last 4400 years and may include the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4-3.2 ka BP) is characterized by high accumulation rates...

  9. Multi-proxy Organic Geochemical Reconstruction of Holocene Hydroclimate Near the Western Greenland Ice Sheet Margin (United States)

    Cluett, A.; Thomas, E. K.


    Anthropogenic warming is projected to drive profound change to the Arctic hydrological cycle within the century, most notably in the intensification of rainfall, with potential feedbacks to the climate system and cryosphere. However, the relationship between hydroclimate and cryosphere variability is poorly constrained in the long-term due to a scarcity of high-resolution hydroclimate records from the Arctic. We analyze the stable hydrogen isotopes (dD) of leaf wax biomarkers from lacustrine sediments spanning the Holocene to 9000 cal. year B.P. from Lake Gus (67.032ºN, 52.427ºW, 300 m a.s.l.; informal name), a small lake approximately 90 km from the modern western margin of the Greenland Ice Sheet. We interpret the signal of aquatic leaf wax isotopes in the context of a survey of 100 modern lake water samples from western Greenland across an aridity gradient to better understand the combined climatological and hydrological controls on lake water dD in the study area. We compare variability of aquatic and terrestrial leaf wax isotopes to infer changes in relative moisture throughout the Holocene, and complement our leaf wax record with analysis of glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones, to produce records of summer temperature. Pairing temperature and leaf wax isotope records provides a means to constrain the changing dD-temperature relationship throughout the Holocene and infer moisture source variability. In combination, these proxies produce a comprehensive hydroclimate record at approximately centennial scale to evaluate shifts in relative moisture, temperature, and moisture source, and to investigate the interaction between hydroclimate and Greenland Ice Sheet margin fluctuations through the Holocene.

  10. Early Holocene humidity patterns in the Iberian Peninsula reconstructed from lake, pollen and speleothem records (United States)

    Morellón, Mario; Aranbarri, Josu; Moreno, Ana; González-Sampériz, Penélope; Valero-Garcés, Blas L.


    Comparison of selected, well-dated, lacustrine, speleothem and terrestrial pollen records spanning the Holocene onset and the Early Holocene (ca. 11.7-8 cal kyrs BP) in the Iberian Peninsula shows large hydrological fluctuations and landscape changes with a complex regional pattern in timing and intensity. Marine pollen records from Alboran, the Mediterranean and off shore Atlantic sites show a step-wise increase in moisture and forest during this transition. However, available continental records point to two main patterns of spatial and temporal hydrological variability: i) Atlantic-influenced sites located at the northwestern areas (Enol, Sanabria, Lucenza, PRD-4), characterized by a gradual increase in humidity from the end of the Younger Dryas to the Mid Holocene, similarly to most North Atlantic records; and ii) continental and Mediterranean-influenced sites (Laguna Grande, Villarquemado, Fuentillejo, Padul, Estanya, Banyoles, Salines), with prolonged arid conditions of variable temporal extension after the Younger Dryas, followed by an abrupt increase in moisture at 10-9 cal kyrs BP. Different local climate conditions influenced by topography or the variable sensitivity (gradual versus threshold values) of the proxies analyzed in each case are evaluated. Vegetation composition (conifers versus mesothermophilous taxa) and resilience would explain a subdued response of vegetation in central continental areas while in Mediterranean sites, insufficient summer moisture availability could not maintain high lake levels and promote mesophyte forest, in contrast to Atlantic-influenced areas. Comparison with available climate models, Greenland ice cores, North Atlantic marine sequences and continental records from Central and Northern Europe and the whole Mediterranean region underlines the distinctive character of the hydrological changes occurred in inner Iberia throughout the Early Holocene. The persistent arid conditions might be explained by the intensification

  11. Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea

    Directory of Open Access Journals (Sweden)

    N. Combourieu-Nebout


    Full Text Available The high-resolution multiproxy study of the Adriatic marine core MD 90-917 provides new insights to reconstruct vegetation and regional climate changes over the southcentral Mediterranean during the Younger Dryas (YD and Holocene. Pollen records show the rapid forest colonization of the Italian and Balkan borderlands and the gradual installation of the Mediterranean association during the Holocene. Quantitative estimates based on pollen data provide Holocene precipitations and temperatures in the Adriatic Sea using a multi-method approach. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite and eolian (kaolinite contributions to the site, and thus act as an additional proxy with which to evaluate precipitation changes in the Holocene. Vegetation climate reconstructions show the response to the Preboreal oscillation (PBO, most likely driven by changes in temperature and seasonal precipitation, which is linked to increasing river inputs from Adriatic rivers recorded by increase in clay mineral contribution to marine sediments. Pollen-inferred temperature declines during the early–mid Holocene, then increases during the mid–late Holocene, similar to southwestern Mediterranean climatic patterns during the Holocene. Several short vegetation and climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum (170–200 mm between 8000 and 7000 similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 cal yr BP (calendar years before present and between 7500 and 7000 cal yr BP and are correlated with increased river inputs around the Adriatic Basin respectively from the northern (7700 event and from the central Adriatic borderlands (7500–7000 event. During the mid-Holocene, the wet summers lead to permanent moisture all year

  12. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland (United States)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.


    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been

  13. Holocene Dynamics of Temperate Rainforests in West-Central Patagonia

    Directory of Open Access Journals (Sweden)

    Virginia Iglesias


    Full Text Available Analyses of long-term ecosystem dynamics offer insights into the conditions that have led to stability vs. rapid change in the past and the importance of disturbance in regulating community composition. In this study, we (1 used lithology, pollen, and charcoal data from Mallín Casanova (47°S to reconstruct the wetland, vegetation, and fire history of west-central Patagonia; and (2 compared the records with independent paleoenvironmental and archeological information to assess the effects of past climate and human activity on ecosystem dynamics. Pollen data indicate that Nothofagus-Pilgerodendron forests were established by 9,000 cal yr BP. Although the biodiversity of the understory increased between 8,480 and 5,630 cal yr BP, forests remained relatively unchanged from 9,000 to 2,000 cal yr BP. The charcoal record registers high fire-episode frequency in the early Holocene followed by low biomass burning between 6,500 and 2,000 cal yr BP. Covarying trends in charcoal, bog development, and Neoglacial advances suggest that climate was the primary driver of these changes. After 2,000 cal yr BP, the proxy data indicate (a increased fire-episode frequency; (b centennial-scale shifts in bog and forest composition; (c the emergence of vegetation-fire linkages not recorded in previous times; and (d paludification in the last 500 years possibly associated with forest loss. Our results therefore suggest that Nothofagus-Pilgerodendron dominance was maintained through much of the Holocene despite long-term changes in climate and fire. Unparalleled fluctuations in local ecosystems during the last two millennia were governed by disturbance-vegetation-hydrology feedbacks likely triggered by greater climate variability and deforestation.

  14. Contrasting Responses of the Humboldt Current Ecosystem between the Holocene and MIS5e Interglacials Revealed from Multiple Sediment Records (United States)

    Salvatteci, R.; Schneider, R. R.; Blanz, T.; Martinez, P.; Crosta, X.


    The Humboldt Current Ecosystem (HCE) off Peru yields about 10% of the global fish catch, producing more fish per unit area than any other region in the world. The high productivity is maintained by the upwelling of cold, nutrient-rich water from the oxygen minimum zone (OMZ), driven by strong trade winds. However, the potential impacts of climate change on upwelling dynamics and oceanographic conditions in the near future are uncertain, threatening local and global economies. Here, we unravel the response of the HCE to contrasting climatic conditions during the last two interglacials (i.e. Holocene and MIS5e) providing an independent insight about the relation between climatic factors and upwelling and productivity dynamics. For this purpose, we used multiple cores to reconstruct past changes in OMZ and upwelling intensity, productivity and fish biomass variability. Chronologies for the Holocene were obtained by multiple 14C ages and laminae correlations among cores, while for the MIS5e they were mainly done by correlation of prominent features in several proxies with other published records. We used a multiproxy approach including alkenones to reconstruct sea surface temperatures, δ15N as a proxy for water column denitrification, redox sensitive metals as proxies for sediment redox conditions, and diatom and fish debris assemblages to reconstruct ecological changes. The results show a very different response of the HCE to climate conditions during the last 2 interglacials, likely driven by changes in Tropical Pacific dynamics. During the Holocene we find that 1) the Late Holocene exhibits higher multi-centennial scale variability compared to the Early Holocene, 2) increased upwelling and a weak OMZ during the mid-Holocene, and 3) long term increase in productivity (diatoms and fishes) from the Early to the Late Holocene. During the MIS5e we find an 1) intense OMZ, 2) strong water column stratification, 3) high siliceous biomass, and 4) low fish biomass compared

  15. Aeolian sands and buried soils in the Mecklenburg Lake District, NE Germany: Holocene land-use history and pedo-geomorphic response (United States)

    Küster, Mathias; Fülling, Alexander; Kaiser, Knut; Ulrich, Jens


    The present study is a pedo-geomorphic approach to reconstructing Holocene aeolian sand dynamics in the Mecklenburg Lake District (NE Germany). Stratigraphical, sedimentological and soil research supplemented by morphogenetic interpretations of the genesis of dunes and aeolian sands are discussed. A complex Late Holocene aeolian stratigraphy within a drift sand area was developed at the shore of Lake Müritz. The results were confirmed using palynological records, archaeological data and regional history. Accelerated aeolian activity was triggered by the intensification of settlement and land-use activities during the 13th and in the 15th to 16th century AD. After a period of stability beginning with population decline during the ‘Thirty Years War' and continuing through the 18th century, a final aeolian phase due to the establishment of glassworks was identified during the 19th century AD. We assume a direct link between Holocene aeolian dynamics and human activities. Prehistoric Holocene drift sands on terrestrial sites have not been documented in the Mecklenburg Lake District so far. This might be explained either by erosion and incorporation of older aeolian sediments during younger aeolian phases and/or a lower regional land-use intensity in older periods of the Holocene. The investigated drift sands are stratigraphically and sedimentologically characterised by a high degree of heterogeneity, reflecting the spatial and temporal variability of Holocene human impact.

  16. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation (United States)

    Baker, P. A.; Fritz, S. C.; Garland, J.; Ekdahl, E.


    A growing number of sites in the Northern Hemisphere show centennial- to millennial-scale climate variation that has been correlated with change in solar variability or with change in North Atlantic circulation. However, it is unclear how (or whether) these oscillations in the climate system are manifest in the Southern Hemisphere because of a lack of sites with suitably high sampling resolution. In this paper, we reconstruct the lake-level history of Lake Titicaca, using the carbon isotopic content of sedimentary organic matter, to evaluate centennial- to millennial-scale precipitation variation and its phasing relative to sites in the Northern Hemisphere. The pattern and timing of lake-level change in Lake Titicaca is similar to the ice-rafted debris record of Holocene Bond events, demonstrating a possible coupling between precipitation variation on the Altiplano and North Atlantic sea-surface temperatures (SSTs). The cold periods of the Holocene Bond events correspond with periods of increased precipitation on the Altiplano. Holocene precipitation variability on the Altiplano is anti-phased with respect to precipitation in the Northern Hemisphere monsoon region. More generally, the tropical Andes underwent large changes in precipitation on centennial-to-millennial timescales during the Holocene.

  17. Holocene environmental changes and climate development in Greenland

    International Nuclear Information System (INIS)

    Engels, Stefan; Helmens, Karin


    The primary aim of this report is to give an overview of the Holocene environmental and climatic changes in Greenland and to describe the development of the periglacial environment during the Holocene. Special emphasis is given to the influence of the ice sheet on its surroundings, both in terms of time (with respect to the response of the biosphere to deglaciation or ice sheet proximity) and in space (through the influence of the ice sheet on the regional climate, more specifically on temperature and aridity). Published records are reviewed, and regional trends are summarized. A range of different natural archives is available for such studies, including ice-core data, marine records, and continental sources of information, including peat profiles and lacustrine records. Because of the high number of lakes in all ice-free areas of Greenland, the lacustrine records offer the opportunity to get a spatial overview of past changes in environment and climate as well. This report focuses on (palaeo-) ecological studies, as it is intended to assemble basic information for future studies on adaptation of the biosphere to changes in climate. There is a bias towards pollen- and macro-remain-based reconstructions of past changes, as these dominate performed palaeoecological studies in Greenland; unfortunately, only a limited number of studies exist that include more modern proxies such as diatoms or chironomids (climate-indicators), but where available in the literature, these have been included. The report starts with an introduction where the current climatic and biological zonation of Greenland is discussed together with an overview of the geology of Greenland (on the full geological timescale) in order to put the following sections in perspective. Chapter 2 discusses the ice sheet history of Greenland from the Last Glacial Maximum (LGM) onward where special emphasis is given to the spatial variability of deglaciation at the onset of the Holocene. To enhance the

  18. Holocene environmental changes and climate development in Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Engels, Stefan; Helmens, Karin (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))


    The primary aim of this report is to give an overview of the Holocene environmental and climatic changes in Greenland and to describe the development of the periglacial environment during the Holocene. Special emphasis is given to the influence of the ice sheet on its surroundings, both in terms of time (with respect to the response of the biosphere to deglaciation or ice sheet proximity) and in space (through the influence of the ice sheet on the regional climate, more specifically on temperature and aridity). Published records are reviewed, and regional trends are summarized. A range of different natural archives is available for such studies, including ice-core data, marine records, and continental sources of information, including peat profiles and lacustrine records. Because of the high number of lakes in all ice-free areas of Greenland, the lacustrine records offer the opportunity to get a spatial overview of past changes in environment and climate as well. This report focuses on (palaeo-) ecological studies, as it is intended to assemble basic information for future studies on adaptation of the biosphere to changes in climate. There is a bias towards pollen- and macro-remain-based reconstructions of past changes, as these dominate performed palaeoecological studies in Greenland; unfortunately, only a limited number of studies exist that include more modern proxies such as diatoms or chironomids (climate-indicators), but where available in the literature, these have been included. The report starts with an introduction where the current climatic and biological zonation of Greenland is discussed together with an overview of the geology of Greenland (on the full geological timescale) in order to put the following sections in perspective. Chapter 2 discusses the ice sheet history of Greenland from the Last Glacial Maximum (LGM) onward where special emphasis is given to the spatial variability of deglaciation at the onset of the Holocene. To enhance the

  19. Isotope heterogeneity of Pre-Holocene groundwater in Iceland

    DEFF Research Database (Denmark)

    Sveinbjörnsdóttir, Á.E.; Arnorsson, S.; Heinemeier, Jan


    In recent years, it has been shown that groundwater with a Pre-Holocene component is more common in the Icelandic bedrock than previously thought. Some of the Pre-Holocene water samples are more depleted in delta H-2 and delta O-18 than any mean annual precipitation in Iceland today due to the cold...... climate at that time. However, most often Pre-Holocene water components cannot be detected based on the water isotopes alone due to mixing with younger and isotopically heavier water. The Cl concentration in relation to the water isotopes in specific areas has proved to be a good indicator of a Pre......-Holocene component in the groundwater. The deuterium excess value may also help to identify water from a different climate regime, if no oxygen shift has occurred. The relative abundance of a Pre-Holocene water component of the Icelandic groundwater has led to the understanding that combined interpretation of water...

  20. Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine (United States)

    Knebel, H.J.


    redistributed Holocene sediments: (1) atop the shallow margins; (2) within constricted channels; (3) around topographic highs; and (4) over the shallow bedrock sill at the bay mouth. The variable distribution, characteristics, and thickness (0 to more than 30 m) of Holocene deposits in Penobscot Bay primarily reflect: (1) the irregular glacially eroded bedrock topography beneath the bay; (2) the paleogeography of the bay during the sea-level lowstand; (3) the postglacial location of the ancestral Penobscot River; and (4) the wave and current regime during and since the Holocene sea-level transgression. ?? 1986.

  1. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, H.D.; Dunbar, R.B. [Stanford University, Geological and Environmental Sciences, Stanford, CA (United States)


    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease ({proportional_to}85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano. (orig.)

  2. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America (United States)

    Rowe, H. D.; Dunbar, R. B.


    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  3. Causes of early Holocene desertification in arid central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Liya [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); University of Kiel, Institute of Geosciences, Kiel (Germany); Chen, Fahu [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); Morrill, Carrie [University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); NOAA' s National Climatic Data Center, Paleoclimatology Branch, Boulder, CO (United States); Otto-Bliesner, Bette L.; Rosenbloom, Nan [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States)


    Paleoclimate records of effective moisture (precipitation minus evaporation, or P-E) show a dry (low effective moisture) period in mid-latitude arid/semi-arid central Asia during the early Holocene (11,000-8,000 years ago) relative to the middle and late Holocene, in contrast to evidence for greater-than-present precipitation at the same time in the south and east Asian monsoonal areas. To investigate the spatial differences in climate response over mid-latitude central Asia and monsoonal Asia we conducted a series of simulations with the Community Climate System Model version 3 coupled climate model for the early, middle and late Holocene. The simulations test the climatic impact of all important forcings for the early Holocene, including changes in orbital parameters, the presence of the remnant Laurentide ice sheet and deglacial freshening of the North Atlantic. Model results clearly show the early Holocene patterns indicated by proxy records, including both the decreased effective moisture in arid central Asia, which occurs in the model primarily during the winter months, and the increase in summer monsoon precipitation in south and east Asia. The model results suggest that dry conditions in the early Holocene in central Asia are closely related to decreased water vapor advection due to reduced westerly wind speed and less evaporation upstream from the Mediterranean, Black, and Caspian Seas in boreal winter. As an extra forcing to the early Holocene climate system, the Laurentide ice sheet and meltwater fluxes have a substantial cooling effect over high latitudes, especially just over and downstream of the ice sheets, but contribute only to a small degree to the early Holocene aridity in central Asia. Instead, most of the effective moisture signal can be explained by orbital forcing decreasing the early Holocene latitudinal temperature gradient and wintertime surface temperature. We find little evidence for regional subsidence related to a stronger summer Asian

  4. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene. (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G


    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land

  5. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available Holocene sequences in the humid tropical region of Kerala, South-western (SW India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The

  6. A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece

    Directory of Open Access Journals (Sweden)

    A. Francke


    Full Text Available A Late Glacial to Holocene sediment sequence (Co1260, 717 cm from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

  7. Peat in the 'Niayes' of Senegal: depositional environment and Holocene evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lezine, A.-M.; Chateauneuf, J.-J. (Laboratoire de Geologie du Quaternaire, Marseille (France). Faculte des Sciences de Luminy)


    The 'Niayes' peat deposits north of Dakar, in Senegal, provide an unusual opportunity to study the continental and littoral detrital environment of the Holocene in West Africa. These organic deposits, that may attain a thickness of 10 m, accumulated in Late Pleistocene interdune basins whose extent and morphology depend closely upon the palaeohydrologic evolution of and the continental model for this zone during the Holocene. The present sub-Canarian climate of this region allows the preservation of an azonal vegetation of Guinean chorological affinity that is evidence of the wider development of now more southerly vegetation during the older Holocene. The nature of the sedimentary facies of these peatfields is closely related to the altitude of the basins of accumulation and the position of the fresh/salt water interface which conditions the recharge of the shallow aquifer. Thus, fresh-water and mangrove-swamp peats exist more or less closely associated according to the site. {sup 14}C age determination gives ages for these deposits between 12000 B.P. and the present, and detailed palynological studies have shown that there were two periods of climatic optimum, one between 9000 and 7000 B.P. and one between 4000 and 2000 B.P. The highly variable rates of sedimentation (0.2-12,5 mm/y for the continental zones and 2 mm/y for the mangrove swamps) are related to the paleotopography of the water-table or to very local fluctuations of sea level. The evolution of the vegetal biomass, evaluated both qualitatively (relative representation of the various vegetation levels) and quantitatively (concentration of pollen per gram of dry sediment) during the course of the Holocene enables reconstruction of the complete climatic and hydrologic history of the region up to dawn of the Present. 38 refs., 5 figs., 1 tab.

  8. Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans (United States)

    Cable, Stefanie; Christiansen, Hanne H.; Westergaard-Nielsen, Andreas; Kroon, Aart; Elberling, Bo


    In High Arctic northern Greenland, future responses to climatic changes are poorly understood on a landscape scale. Here, we present a study of the geomorphology and cryostratigraphy in the Zackenberg Valley in NE Greenland (74°N) containing a geomorphological map and a simplified geocryological map, combined with analyses of 13 permafrost cores and two exposures. Cores from a solifluction sheet, alluvial fans, and an emerged delta were studied with regards to cryostructures, ice and total carbon contents, grain size distribution, and pore water electrical conductivity; and the samples were AMS 14C dated. The near-surface permafrost on slopes and alluvial fans is ice rich, as opposed to the ice-poor epigenetic permafrost in the emerged delta. Ground ice and carbon distribution are closely linked to sediment transport processes, which largely depend on lithology and topography. Holocene alluvial fans on the lowermost hillslopes, covering 12% of the study area, represent paleoenvironmental archives. During the contrasting climates of the Holocene, the alluvial fans continued to aggrade - through the warmer early Holocene Optimum, the colder late Holocene, and the following climate warming - and by 0.45 mm a- 1, on average. This is caused by three factors: sedimentation, ground ice aggradation, and vegetation growth and is reflected by AMS 14C dating and continuously alternating cryostructures. Highly variable sedimentation rates in space and time at the alluvial fans have been detected. This is also reflected by alternating lenticular and microlenticular cryostructures indicating syngenetic permafrost aggradation during sedimentation with suspended and organic-matrix cryostructures indicating quasi-syngenetic permafrost aggradation in response to vegetation growth in periods with reduced or no sedimentation. Over time, this causes organic matter to become buried, indicating that alluvial fans represent effective carbon sinks that have previously been overlooked.

  9. A Geochemical and Sedimentary Record of High Southern Latitude Holocene Climate Evolution from Lago Fagnano, Tierra del Fuego

    Energy Technology Data Exchange (ETDEWEB)

    Moy, C M; Dunbar, R B; Guilderson, T P; Waldmann, N; Mucciarone, D A; Recasens, C; Austin, J A; Anselmetti, F S


    Situated at the southern margin of the hemispheric westerly wind belt and immediately north of the Antarctic Polar Frontal zone, Tierra del Fuego is well-positioned to monitor coupled changes in the ocean-atmosphere system of the high southern latitudes. Here we describe a Holocene paleoclimate record from sediment cores obtained from Lago Fagnano, a large lake in southern Tierra del Fuego at 55{sup o}S, to investigate past changes in climate related to these two important features of the global climate system. We use an AMS radiocarbon chronology for the last 8,000 years based on pollen concentrates, thereby avoiding contamination from bedrock-derived lignite. Our chronology is consistent with a tephrochronologic age date for deposits from the middle Holocene Volcan Hudson eruption. Combining bulk organic isotopic ({delta}{sup 13}C and {delta}{sup 15}N) and elemental (C and N) parameters with physical sediment properties allow us to better understand sediment provenance and transport mechanisms and to interpret Holocene climate and tectonic change during the last 8,000 years. Co-variability and long-term trends in C/N ratio, carbon accumulation rate, and magnetic susceptibility reflect an overall Holocene increase in the delivery of terrestrial organic and lithogenic material to the deep eastern basin. We attribute this variability to westerly wind-derived precipitation. Increased wind strength and precipitation in the late Holocene drives the Nothofagus forest eastward and enhances run-off and terrigenous inputs to the lake. Superimposed on the long-term trend are a series of abrupt 9 negative departures in C/N ratio, which constrain the presence of seismically-driven mass flow events in the record. We identify an increase in bulk {delta}{sup 13}C between 7,000 and 5,000 cal yr BP that we attribute to enhanced aquatic productivity driven by warmer summer temperatures. The Lago Fagnano {delta}{sup 13}C record shows similarities with Holocene records of sea surface

  10. Reconstruction of early Holocene paleoclimate and environment in the SW Kola region, Russian Arctic (United States)

    Grekov, Ivan; Kolka, Vasiliy; Syrykh, Liudmila; Nazarova, Larisa


    In the current period of the global climate change it becomes necessary to have a clear understanding of not only the changes taking place in the components of the natural environment, but also to understand development of all interactions between those components. Quaternary terrigenic sediments and lakes of the Kola Peninsula store information about the development of the region in the Late Glacial and Holocene: movements of the glacier, neotectonic activity, post-glacial rebound, formation and development of natural environments after deglaciation. Multi-proxy study of landscapes evolution of the Kola Peninsula in the Late Quaternary will help to establish a detailed reconstruction of climatic and environmental changes of this poor studied sector of the Arctic. Quaternary history on the Kola Peninsula is represented mainly by Late Pleistocene and Holocene sediments covering the Baltic Shield (Lavrova, 1960; Evzerov, 2015). Several palaeolimnological investigations in the Baltic Shield area have been performed earlier (Donner et al., 1977; Anundsen, 1985; Berglund, 2004). Studies of the southern coast of the Kola Peninsula have shown that marine transgression took place in the Late Pleistocene that was then replaced by a regression with variable speed. The slowdown of the uplift of the area took place between 8800 - 6800 BP (cal. years) and corresponded to the time of the Tapes transgression of the Arctic Ocean (Evzerov et al. 2010; Kolka, et al., 2013). Palaeoclimatic studies based on micro-paleontological analyzes indicate uneven development of the Kola Peninsula landscapes in the Late Glacial and Early Holocene. The northern coast of the Peninsula became free of ice first. In this area tundra-steppe vegetation was established for a short time and was later replaced by tundra (Snyder et al, 2000). Southern part of the Kola Peninsula was dependent on the conditions of deglaciation of the White Sea basin and cleared of ice much later (Evzerov et al., 2010; Kolka

  11. New high-resolution record of Holocene climate change in the Weddell Sea from combined biomarker analysis of the Patriot Hills blue ice area (United States)

    Fogwill, Christopher; Turney, Chris; Baker, Andy; Ellis, Bethany; Cooper, Alan; Etheridge, David; Rubino, Mauro; Thornton, David; Fernando, Francisco; Bird, Michale; Munksgaard, Niels


    We report preliminary analysis of biomarkers (including dissolved organic matter (DOM) and DNA) from the Patriot Hills blue ice area (BIA), from the Ellsworth Mountains in the Weddell Sea Embayment. Preliminary isotopic and multiple gas analysis (CO2, CH4, N2O and CO) demonstrate that the Holocene comprises more than 50% of the 800m long BIA record, and in combination isotopic and biomarker analysis reveals a remarkable record of centennial variability through the Holocene in this sector of the Weddell Sea. Analysis using a Horiba Aqualog - which measures the fluorescence of DOM by producing a map of the fluorescence through an excitation-emission matrix (EEM) - identifies the presence of two marine protein-like components in both modern snow pit samples and within the Holocene part of Patriot Hills BIA transect. Intriguingly, the modern seasonal trends in DOM, recorded in contemporary snow pits, have relatively low signals compared to those recorded in the mid-Holocene record, suggesting a reduction in DOM signal in contemporary times. Given that the δD excess data suggests the source of precipitation has remained constant through the Holocene, the biomarker signal must relate to multi-year marine productivity signals from the Weddell Sea. The marked variability in DOM between the mid-Holocene and contemporary times can only relate to periods of sustained, enhanced biological productivity in the Weddell Sea associated with shifts in Southern Annular Mode, sea ice variability, changes in ventilation or polynya activity. Here we discuss the possible drivers of these changes and describe how this approach at this BIA could benefit conventional ice core records regionally.

  12. On the Holocene evolution of the Ayeyawady megadelta

    Directory of Open Access Journals (Sweden)

    L. Giosan


    Full Text Available The Ayeyawady delta is the last Asian megadelta whose evolution has remained essentially unexplored so far. Unlike most other deltas across the world, the Ayeyawady has not yet been affected by dam construction, providing a unique view on largely natural deltaic processes benefiting from abundant sediment loads affected by tectonics and monsoon hydroclimate. To alleviate the information gap and provide a baseline for future work, here we provide a first model for the Holocene development of this megadelta based on drill core sediments collected in 2016 and 2017, dated with radiocarbon and optically stimulated luminescence, together with a reevaluation of published maps, charts and scientific literature. Altogether, these data indicate that Ayeyawady is a mud-dominated delta with tidal and wave influences. The sediment-rich Ayeyawady River built meander belt alluvial ridges with avulsive characters. A more advanced coast in the western half of the delta (i.e., the Pathein lobe was probably favored by the more western location of the early course of the river. Radiogenic isotopic fingerprinting of the sediment suggests that the Pathein lobe coast does not receive significant sediment from neighboring rivers. However, the eastern region of the delta (i.e., Yangon lobe is offset inland and extends east into the mudflats of the Sittaung estuary. Wave-built beach ridge construction during the late Holocene, similar to several other deltas across the Indian monsoon domain, suggests a common climatic control on monsoonal delta morphodynamics through variability in discharge, changes in wave climate or both. Correlation of the delta morphological and stratigraphic architecture information on land with the shelf bathymetry, as well as its tectonic, sedimentary and hydrodynamic characteristics, provides insight on the peculiar growth style of the Ayeyawady delta. The offset between the western Pathein lobe and the eastern deltaic coast appears to be driven

  13. Late Holocene sea ice conditions in Herald Canyon, Chukchi Sea (United States)

    Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.


    Sea ice in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea ice minimum edge, and is thus an ideal location for the reconstruction of past sea ice variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea ice and surface water productivity indicate stable sea ice conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea ice to open water biota. Most importantly, our results indicate that the ongoing rapid ice retreat in the Chukchi Sea of recent decades was unprecedented during the

  14. Advances in Holocene mountain geomorphology inspired by sediment budget methodology (United States)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel


    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments

  15. Insolation driven biomagnetic response to Holocene Warm Period in semi-arid East Asia


    Liu, S.; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang


    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively wit...

  16. Holocene sea levels of Visakhapatnam shelf, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.M.; Rao, T.C.S.

    The Holocene sea level changes in the shelf areas off Visakhapatnam was studied from sediment distribution pattern and shallow seismic profiling. Morphological features on the shelf indicate a Late Pleistocene regression down to about -130 m below...

  17. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States (United States)

    Anderson, Lesleigh


    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  18. The effect of a dynamic background albedo scheme on Sahel/Sahara precipitation during the mid-Holocene

    Directory of Open Access Journals (Sweden)

    F. S. E. Vamborg


    Full Text Available We have implemented a new albedo scheme that takes the dynamic behaviour of the surface below the canopy into account, into the land-surface scheme of the MPI-ESM. The standard (static scheme calculates the seasonal canopy albedo as a function of leaf area index, whereas the background albedo is a gridbox constant derived from satellite measurements. The new (dynamic scheme additionally models the background albedo as a slowly changing function of organic matter in the ground and of litter and standing dead biomass covering the ground. We use the two schemes to investigate the interactions between vegetation, albedo and precipitation in the Sahel/Sahara for two time-slices: pre-industrial and mid-Holocene. The dynamic scheme represents the seasonal cycle of albedo and the correspondence between annual mean albedo and vegetation cover in a more consistent way than the static scheme. It thus gives a better estimate of albedo change between the two time periods. With the introduction of the dynamic scheme, precipitation is increased by 30 mm yr−1 for the pre-industrial simulation and by about 80 mm yr−1 for the mid-Holocene simulation. The present-day dry bias in the Sahel of standard ECHAM5 is thus reduced and the sensitivity of precipitation to mid-Holocene external forcing is increased by around one third. The locations of mid-Holocene lakes, as estimated from reconstructions, lie south of the modelled desert border in both mid-Holocene simulations. The magnitude of simulated rainfall in this area is too low to fully sustain lakes, however it is captured better with the dynamic scheme. The dynamic scheme leads to increased vegetation variability in the remaining desert region, indicating a higher frequency of green spells, thus reaching a better agreement with the vegetation distribution as derived from pollen records.

  19. Holocene vegetation history from fossil rodent middens near Arequipa, Peru (United States)

    Holmgren, C.A.; Betancourt, J.L.; Rylander, K.A.; Roque, J.; Tovar, O.; Zeballos, H.; Linares, E.; Quade, Jay


    Rodent (Abrocoma, Lagidium, Phyllotis) middens collected from 2350 to 2750 m elevation near Arequipa, Peru (16??S), provide an ???9600-yr vegetation history of the northern Atacama Desert, based on identification of >50 species of plant macrofossils. These midden floras show considerable stability throughout the Holocene, with slightly more mesophytic plant assemblages in the middle Holocene. Unlike the southwestern United States, rodent middens of mid-Holocene age are common. In the Arequipa area, the midden record does not reflect any effects of a mid-Holocene mega drought proposed from the extreme lowstand (100 m below modern levels, >6000 to 3500 yr B.P.) of Lake Titicaca, only 200 km east of Arequipa. This is perhaps not surprising, given other evidence for wetter summers on the Pacific slope of the Andes during the middle Holocene as well as the poor correlation of summer rainfall among modern weather stations in the central AndesAtacama Desert. The apparent difference in paleoclimatic reconstructions suggests that it is premature to relate changes observed during the Holocene to changes in El Nin??o Southern Oscillation modes. ?? 2001 University of Washington.

  20. Pleistocene Indian Monsoon Rainfall Variability (United States)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.


    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  1. Southwest Greenland's Alpine Glacier History: Recent Glacier Change in the Context of the Holocene Geologic Record (United States)

    Larocca, L. J.; Axford, Y.; Lasher, G. E.; Lee, C. W.


    Due to anthropogenic climate change, the Arctic region is currently undergoing major transformation, and is expected to continue warming much faster than the global average. To put recent and future changes into context, a longer-term understanding of this region's past response to natural climate variability is needed. Given their sensitivity to modest climate change, small alpine glaciers and ice caps on Greenland's coastal margin (beyond the Greenland Ice Sheet) represent ideal features to record climate variability through the Holocene. Here we investigate the Holocene history of a small ( 160 square km) ice cap and adjacent alpine glaciers, located in southwest Greenland approximately 50 km south of Nuuk. We employ measurements on sediment cores from a glacier-fed lake in combination with geospatial analysis of satellite images spanning the past several decades. Sedimentary indicators of sediment source and thus glacial activity, including organic matter abundance, inferred chlorophyll-a content, sediment major element abundances, grain size, and magnetic susceptibility are presented from cores collected from a distal glacier-fed lake (informally referred to here as Per's Lake) in the summer of 2015. These parameters reflect changes in the amount and character of inorganic detrital input into the lake, which may be linked to the size of the upstream glaciers and ice cap and allow us to reconstruct their status through the Holocene. Additionally, we present a complementary record of recent changes in Equilibrium Line Altitude (ELA) for the upstream alpine glaciers. Modern ELAs are inferred using the accumulation area ratio (AAR) method in ArcGIS via Landsat and Worldview-2 satellite imagery, along with elevation data obtained from digital elevation models (DEMs). Paleo-ELAs are inferred from the positions of moraines and trim lines marking the glaciers' most recent expanded state, which we attribute to the Little Ice Age (LIA). This approach will allow us to

  2. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries (United States)

    Constable, C.


    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow

  3. Evidence for a possible modern and mid-Holocene solar influence on climate from Lake Titicaca, South America (United States)

    Theissen, K. M.; Dunbar, R. B.


    In tropical regions, there are few paleoclimate archives with the necessary resolution to investigate climate variability at interannual-to-decadal timescales prior to the onset of the instrumental record. Interannual variability associated with the El Niño Southern Oscillation (ENSO) is well documented in the instrumental record and the importance of the precessional forcing of millennial variability has been established in studies of tropical paleoclimate records. In contrast, decade-to-century variability is still poorly understood. Here, we examine interannual to decadal variability in the northern Altiplano of South America using digital image analysis of a floating interval of varved sediments of middle Holocene age (~6160-6310 yr BP) from Lake Titicaca. Multi-taper method (MTM) and wavelet frequency-domain analyses were performed on a time series generated from a gray-scaled digital image of the mm-thick laminations. Our results indicate significant power at a decadal periodicity (10-12 years) associated with the Schwabe cycle of solar activity. Frequency-domain analysis also indicates power at 2-2.5 year periodicities associated with ENSO. Similarly, spectral analysis of a 75 year instrumental record of Titicaca lake level shows significant power at both solar and ENSO periodicities. Although both of the examined records are short, our results imply that during both the mid-Holocene and modern times, solar and ENSO variability may have contributed to high frequency climate fluctuations over the northern Altiplano. We suspect that solar influence on large-scale atmospheric circulation features may account for the decadal variability in the mid-Holocene and present-day water balance of the Altiplano.

  4. Some aspects of climate variability in the north east Ethiopian ...

    African Journals Online (AJOL)

    This paper presents a review of climate variability in the northeast Ethiopian Highlands, particularly Wollo and Tigray, during the last 10000 years (the Holocene) and an analysis of rainfall variability during the historical period. To date little work has been done on climate reconstruction in Tigray and Wollo, however, ...

  5. Holocene palaeoenvironmental history of the Amazonian mangrove belt (United States)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão


    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  6. Quantifying the effects of land use and climate on Holocene vegetation in Europe (United States)

    Marquer, Laurent; Gaillard, Marie-José; Sugita, Shinya; Poska, Anneli; Trondman, Anna-Kari; Mazier, Florence; Nielsen, Anne Birgitte; Fyfe, Ralph M.; Jönsson, Anna Maria; Smith, Benjamin; Kaplan, Jed O.; Alenius, Teija; Birks, H. John B.; Bjune, Anne E.; Christiansen, Jörg; Dodson, John; Edwards, Kevin J.; Giesecke, Thomas; Herzschuh, Ulrike; Kangur, Mihkel; Koff, Tiiu; Latałowa, Małgorzata; Lechterbeck, Jutta; Olofsson, Jörgen; Seppä, Heikki


    Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen-based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming

  7. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Braconnot, P.; Zheng, W. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Luan, Y. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Chinese Academy of Sciences (CAS), State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Brewer, Simon [University of Wyoming, Department of Botany, Laramie, WY (United States)


    We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Nina events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Nino events. The impact of ice-sheet melting may have offset the impact of insolation on El Nino Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records. (orig.)

  8. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record

    DEFF Research Database (Denmark)

    Møller, Henrik S.; Jensen, Karin G.; Kuijpers, Antoon


      Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminifera records of a 3.5 m long gravity core from Ameralik fjord, southern West Greenland, is used for reconstructing late Holocene environmental changes in this area. The changes are linked...... to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core covers the last 4400 years and may include the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4-3.2 ka BP) is characterized by high accumulation rates...... conditions were further characterised by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions...

  9. Holocene molluscan assemblages in the Magellan region

    Directory of Open Access Journals (Sweden)

    Sandra Gordillo


    Full Text Available In the Magellan region, much of the shoreline of the Beagle Channel coast (54°53´S; 67° - 68°W is bordered by Holocene raised beaches, which contain a large number of molluscs and other shelled taxa. The purpose of this work is to document the presence of various molluscan assemblages deposited with little or no postmortem transportation. An epifaunal Chlamys patagonica palaeocommunity (ca. 8,000 - 7,000 BP and three infaunal (Tawera gayi, Ameghinomya antiqua - Hiatella solida and Ameghinomya antiqua - Ensis macha palaeocommunities (ca. 4,400 - 4,000 BP were recognized. All the assemblages studied represent shallow, subtidal, cold-temperate environments. Based on comparisons with modern benthic communities in this region, these associations show that no remarkable ecologic and climatic changes occurred during the period ca. 8,000 - 4,000 BP. Thus, an apparent stability of modern marine communities over a period of several thousand years is suggested.

  10. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.


    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  11. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.


    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  12. Holocene Evolution and Sediment Provenance of Horn Island, Mississippi, USA (United States)

    Schulze, N.; Wallace, D. J.; Miner, M. D.


    As one of the most stable islands in the Mississippi-Alabama barrier island chain, Horn Island provides critical habitat, plays an important role in regulating estuarine conditions in the Mississippi Sound, and helps to attenuate wave energy and storm surge for the mainland. The provenance of sediments comprising Horn Island is largely unknown and has implications for mode of island genesis and evolution. The existing literature proposes that island chain formation was initiated by bar emergence from a subaqueous spit that grew laterally westward from Dauphin Island in the east. Decelerating sea level rise 4,000 to 5,000 years ago facilitated island formation. This proposed mode of formation is supported by a lone radiocarbon date from lagoonal sediments below Horn Island, suggesting the system formed after 4,615 ± 215 years BP. Rivers supplying suspended sediment include the Mississippi, Pascagoula, Mobile and Apalachicola, but the variable nature of their paths and sediment supply means that Horn Island has received differing amounts of sediment from these proximal rivers throughout the Holocene. To analyze the stratigraphy and sediment characteristics of Horn Island, we will utilize 24 vibracores (up to 6 meters in length) from offshore Horn Island that were obtained by the United States Geological Survey (USGS) and 9 onshore drill cores (up to 28 meters in length) from the Mississippi Department of Environmental Quality. High-resolution LiDAR data collected by the National Oceanic and Atmospheric Administration in 2010 will be used to describe modern geomorphic barrier environments. We will employ down-core x-ray diffraction and x-ray fluorescence analyses to identify mineralogical and chemical signatures that potentially correspond to unique signatures of the fluvial sources of proximal rivers. New radiocarbon ages will be used to constrain the timing of island formation and alterations in sediment supply. High-resolution shallow geophysical data will provide

  13. Origin and dynamics of the northern South American coastal savanna belt during the Holocene - the role of climate, sea-level, fire and humans (United States)

    Alizadeh, Kamaleddin; Cohen, Marcelo; Behling, Hermann


    Presence of a coastal savanna belt expanding from British Guiana to northeastern Brazil cannot be explained by present-day climate. Using pollen and charcoal analyses on an 11.6 k old sediment core from a coastal depression in the savanna belt near the mouth of the Amazon River we investigated the paleoenvironmental history to shed light on this question. Results indicate that small areas of savanna accompanied by a forest type composed primarily by the genus Micropholis (Sapotaceae) that has no modern analog existed at the beginning of the Holocene. After 11,200 cal yr BP, savanna accompanied by few trees replaced the forest. In depressions swamp forest developed and by ca 10,000 cal yr BP replaced by Mauritia swamps. Between 8500 and 5600 cal yr BP gallery forest (composed mainly of Euphorbiaceae) and swamp forest succeeded the treeless savanna. The modern vegetation with alternating gallery forest and savanna developed after 5600 cal yr BP. We suggest that the early Holocene no-analog forest is a relict of previously more extensive forest under cooler and moister Lateglacial conditions. The early Holocene savanna expansion indicates a drier phase probably related to the shift of the Intertropical Convergence Zone (ITCZ) towards its northernmost position. The mid-Holocene forest expansion is probably a result of the combined influence of equatorwards shift of ITCZ joining the South Atlantic Convergence Zone (SACZ). The ecosystem variability during the last 5600 cal yr BP, formed perhaps under influence of intensified ENSO condition. High charcoal concentrations, especially during the early Holocene, indicate that natural and/or anthropogenic fires may have maintained the savanna. However, our results propose that climate change is the main driving factor for the formation of the coastal savanna in this region. Our results also show that the early Holocene sea level rise established mangroves near the study site until 7500 cal yr BP and promoted swamp formation in

  14. Holocene glacier and climate variations in Vestfirðir, Iceland, from the modeling of Drangajökull ice cap (United States)

    Anderson, Leif S.; Flowers, Gwenn E.; Jarosch, Alexander H.; Aðalgeirsdóttir, Guðfinna Th; Geirsdóttir, Áslaug; Miller, Gifford H.; Harning, David J.; Thorsteinsson, Thorsteinn; Magnússon, Eyjólfur; Pálsson, Finnur


    Drangajökull is a maritime ice cap located in northwest (Vestfirðir) Iceland. Drangajökull's evolution is therefore closely linked to atmospheric and ocean variability. In order to better constrain the Holocene climate and glacier history of Vestfirðir we model the past evolution of Drangajökull ice cap. Simulations from 10 ka to present are forced by general circulation model output, ice-core-based temperature reconstructions, and sea-surface temperature reconstructions. Based on these 10-thousand year simulations, Drangajökull did not persist through the Holocene. We estimate that air temperatures were 2.5-3.0 °C higher during the Holocene Thermal Maximum than the local 1960-1990 average. Simulations support Drangajökull's late Holocene inception between 2 and 1 ka, though intermittent ice likely occupied cirques as early as 2.6 ka. Drangajökull is primarily a Little Ice Age ice cap: it expanded between 1300 and 1750 CE, with the most rapid growth occurring between 1600 and 1750 CE. The maximum Holocene extent of Drangajökull occurred between 1700 and 1925 CE, despite the lowest late Holocene temperatures, occurring between 1650 and 1720 CE. Between 1700 and 1925 CE temperatures were likely 0.6-0.8 °C lower than the 1950-2015 reference temperature. The modern equilibrium line altitude (ELA) is bracketed by topographic thresholds: a 1 °C temperature increase from the modern ELA would eliminate the ice cap's accumulation area, while a reduction of 0.5 °C would lead to the rapid expansion of the ice cap across Vestfirðir. The proximity of Drangajökull to topographic thresholds may explain its late inception and rapid expansion during the Little Ice Age.

  15. One Isotope, Two Tales: using plant and cosmogenic 14C to constrain Holocene glacier activity on Baffin Island. (United States)

    Pendleton, S.; Miller, G. H.; Lifton, N. A.; Young, N. E.


    As the cryosphere continues to undergo rapid and accelerating change, it is more important than ever to understand past glacier activity to predict the future of the cryosphere. However, continuous Holocene glacier records are notoriously difficult to reconstruct because an advancing glacier will re-incorporate previous deposits so that moraines typically only record the farthest downvalley glacier expansion. Here we combine dates of ice margin advance from in situ dead vegetation with in situ cosmogenic 14C (in situ 14C) from preserved bedrock surfaces at the same locations to further constrain the timing of ice-free episodes during the Holocene following deglaciation on southern Baffin Island. Radiocarbon ages from recently exposed in situ plants suggest that ice last advanced over sample locations at 9.4, 9.2, 9.0, and 3.7 ka and that they remained ice covered until modern times. Associated in situ 14C inventories are variable, but well above background levels, suggesting some amount of Holocene in situ 14C production. Using plant 14C ages representing the beginning of ice coverage and in situ 14C inventories representative of exposure prior to ice coverage, a simple model of cosmogenic in situ 14C production (accounting for muon production through ice) provides constraints timing and duration of ice-free times at sample locations prior to their most recent burial. Using conservative Holocene ice thicknesses, the locations buried at 9.4, 9.2, and 9.0 ka require, at minimum, 1000 years of pre-burial exposure to match the observed in situ 14C inventory. This suggests these locations were ice free by at least 10 ka and likely earlier. The in situ 14C inventory at the location buried at 3.7 ka limits prior exposure to 2000 years, suggesting that this location experienced more complex Holocene ice cover/burial history. These pilot data show that valuable information regarding periods of exposure is contained within in situ 14C inventories. Additional paired plant and

  16. Holocene evolution of Apalachicola Bay, Florida (United States)

    Osterman, L.E.; Twichell, D.C.; Poore, R.Z.


    A program of geophysical mapping and vibracoring was conducted to better understand the geologic evolution of Apalachicola Bay. Analyses of the geophysical data and sediment cores along with age control provided by 34 AMS 14C dates on marine shells and wood reveal the following history. As sea level rose in the early Holocene, fluvial deposits filled the Apalachicola River paleochannel, which extended southward under the central part of the bay and seaward across the continental shelf. Sediments to either side of the paleochannel contain abundant wood fragments, with dates documenting that those areas were forested at 8,000 14C years b.p. As sea level continued to rise, spits formed of headland prodelta deposits. Between ???6,400 and ???2,500 14C years b.p., an Apalachicola prodelta prograded and receded several times across the inner shelf that underlies the western part of the bay. An eastern deltaic lobe was active for a shorter time, between ???5,800 and 5,100 14C years b.p. Estuarine benthic foraminiferal assemblages occurred in the western bay as early as 6,400 14C years b.p., and indicate that there was some physical barrier to open-ocean circulation and shelf species established by that time. It is considered that shoals formed in the region of the present barrier islands as the rising sea flooded an interstream divide. Estuarine conditions were established very early in the post-glacial flooding of the bay. ?? 2009 US Government.

  17. Holocene coastal paleoenvironmental record, Bay of Brest (United States)

    Fernane, Assia; Gandouin, Emmanuel; Goslin, Jérôme; Penaud, Aurélie; Van Vliet lanoë, Brigitte


    Coastal areas are sensitive environments regarding the risk of submersion and the impact on biodiversity induced by salinity changes. These areas thus provide good palaeocecological archives to monitor palaeo sea level changes and the associated adaptation of different biological communities. The north-western coast of France has poorly been investigated regarding its Holocene palaeoecological signatures (Morzadec-Kerfourn, 1974; Naughton et al., 2007). Chironomids have been recognized to be an efficient tool for palaeoclimate and palaeosalinity reconstructions in lakes (Brooks, 2006), and more recently in river floodplains (Gandouin et al, 2006). In this study, environmental changes related to both climate processes and human disturbances, were reconstructed over the last 5000 years, based on pollen and chironomid assemblages from two coastal cores retrieved at Pors Milin (Brittany, NW France). The sedimentary sequences consist of terrestrial peaty layers interdigited with marine clastic deposits. The study area is composed by a sandy beach, truncating the peat, limited by a high sandy bar, and a back marsh developed at + 4 m NGF. Pollen and chironomid results reveal that anthropogenic factors would mainly control environmental changes that occurred in this sector. The disappearance of many chironomid taxa (inhabitants of main river channel) and the dramatic fall in diversity may have been induced by the development of the Merovingian forest clearance at Pors Milin. Indeed, we suggest that the development of agriculture, the river embankment and the draining of wetlands may explain the chironomid habitat loss and the subsequent fall of biodiversity. This change in faunal assemblages occurred synchronously with a decrease in the "arborean / non arborean" pollen ratio reflecting the land opening of the watershed. Several nitrophilous and anthropogenic pollen taxa reinforce our hypothesis concerning the development of agricultural and livestock farming activities at

  18. Holocene Evolution of Qing'ao Embayment, Southern China (United States)

    Switzer, A. D.; Yu, F.; Chen, B.; Zheng, Z.; Wang, D.


    The Holocene evolution of the Qing'ao embayment, Nan'ao Island, southern China, is primarily the result of the interaction of tectonic activity, climate variation and changes in relative sea level. Characterizing the evolutionary history of the relatively small Qing'ao embayment during the Holocene will help improve our understanding of the driving mechanisms of coastal evolution in the area. To reconstruct the Holocene evolution history we analyzed the grain size, loss on ignition (LOI) and carbonate content of modern and core samples. Modern environmental analogs were examined in surface samples ranging from the coastal sand dunes through to offshore. The results of these modern samples suggest that dune sand (mean size of ~2.33Phi) are slightly finer than beach sand (mean size of 2.13Phi), and nearshore sediment is much coarser than offshore sediment (mean size of 5.90Phi). This modern analogs were then applied to 8 percussion cores from the Qing'ao embayment. A chronological framework obtained from 11 radiocarbon samples suggests that the embayment started to accept deposition since early Holocene, ~8500 cal. yr. BP. Three main phases of Holocene evolution were identified. A basin wide shell-rich sand sheet forms the basal Holocene facies and overlies clay rich presumably Pleistocene sediments or bedrock. This facies records an initial sedimentation phase associated with the early Holocene transgression into the embayment (~8500-6000 cal. yr. BP). The basal facies grades upward to a mixed sandy-mud facies which includes lagoonal clayey-silts, flood tide delta sands and records an estuarine phase lasting from ~6000-1000 cal. yr. BP that appears coincident with falling regional sea levels. Coincident with the estuarine phase is a period of coastal dune building recorded as yet undated massive sands that are found in the upper fill. Toward the end of the estuarine phase it is apparent that dune migration has restricted the lagoon entrance and that this was

  19. Early Holocene climate oscillations recorded in three Greenland ice cores

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Vinther, Bo Møllesøe; Clausen, Henrik Brink


    around 9.3 ka before present, and the Preboreal Oscillation during the first centuries of the Holocene. For each of these sections, we present a d18O anomaly curve and a common accumulation signal that represents regional changes in the accumulation rate over the Greenland ice cap....... and accumulation anomalies that are common to the three cores in the Early Holocene (7.9–11.7 ka before present). Three time periods with significant and synchronous anomalies in the d18O and accumulation signals stand out: the well-known 8.2 ka event, an event of shorter duration but of almost similar amplitude...

  20. Zoonotic parasites associated with felines from the Patagonian Holocene

    Directory of Open Access Journals (Sweden)

    Martín Horacio Fugassa


    Full Text Available Feline coprolites were examined for parasites with the aim of studying ancient infections that occurred in the Patagonian region during the Holocene period. Eggs compatible to Trichuris sp., Calodium sp., Eucoleus sp., Nematodirus sp., Oesophagostomum sp. (Nematoda, Monoecocestus sp. (Cestoda and Eimeria macusaniensis (Coccidia were recovered from faecal samples. The results obtained from the analysis provide evidence of consumption by felids of the viscera of both rodents and camelids. This knowledge allows for improved explanations as to the distribution of parasitism and its significance to the health of humans and animals inhabiting the area under study during the Middle Holocene.

  1. Holocene lake-level fluctuations of Lake Aricota, Southern Peru (United States)

    Placzek, C.; Quade, Jay; Betancourt, J.L.


    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  2. Holocene millennial to centennial scale carbonate cycles (leeward margin, Great Bahama Bank) (United States)

    Roth, S.; Reijmer, J. J. G.


    The main research topic of this project is the evaluation of Holocene to Recent climatic variability and the impact on shallow-water sediment production of carbonate platforms. A 38m long sediment core (MD992201) was analyzed, obtained from 290m water depth on the leeward margin of Great Bahama Bank. Fourteen Accelerator Mass Spectrometry (AMS) dates determined a core bottom age of 7,230 years BP and permitted the construction of a precise time frame. With a sampling interval of 5cm, a decadal time resolution could be achieved. Sedimentation rates varied between 3 to 14m/kyr. Carbonate content ranges from 96 to almost 100wt%, most of which is aragonite (83-92wt%). High Magnesium Calcite (HMC) makes up the second major fraction with 2-9wt%, while Low Magnesium Calcite occurs with minor percentages (0.5-4wt%). Singular Spectrum Analysis (SSA) of the aragonitic carbonate phase showed two different trends and two primary oscillatory signals. Aragonite production on Great Bahama Bank started at 7,230yr BP when the Holocene sea-level rise flooded the shallow platform top. The first eigenvector captures this long-term trend extending over the entire Mid to Late Holocene succession displaying the Holocene sea-level fluctuations. The second trend indicates millennial scale variations, which can be attributed to a combination of geomagnetic shielding and solar parameters. The two quasi-periodic signals show wavelengths of 400-600 years and approx. 210 years. These oscillations are interpreted in terms of instabilities of the thermohaline circulation and solar parameters, respectively. The oscillatory aragonite signals and oxygen isotope derived temperatures (planktonic foraminifers) agree with northern hemisphere temperature changes (e.g. Medieval Warm Period and Little Ice Age) and the delta-14C record of tree rings (e.g. Oort to Dalton solar minima). This study shows that carbonate platform systems not only respond to sea-level variations but also are precise recorders of

  3. Holocene Planktonic Foraminiferal Assemblage Shifts on the California Margin; Environmental Forcing of Medieval Chumash Society? (United States)

    Fisler, J. A.; Hendy, I.


    The contribution of D. Kennett and J.P. Kennett to recent literature on native Chumash cultural evolution has linked societal changes between 500 and 1300 A.D. with a rapidly-changing environment. As large-amplitude fluctuations in surface water and climate conditions at the California Margin would have had severe implications for local flora and fauna, high resolution paleooceanographic records from ODP Site 893 should record these environmental changes. The planktonic foraminifera of Santa Barbara Basin are known to be sensitive to climate change over glacial/interglacial and stadial/interstadial time scales. Here we present a Holocene record of planktonic foraminiferal assemblage change that demonstrates this sensitivity continued through what is generally considered to be a warm stable climatic interval. Absolute numbers of planktonic foraminifera specimens decreased through the Holocene, from a peak of over 30,000 specimens/cm3 at 9 kyr BP to several thousand in the last millennia. Eurythermal, high nutrient species G. bulloides and G. quinqueloba show opposite abundance trends throughout deglaciation, with significant decreases in G. bulloides abundance during the Late Holocene while G. quinqueloba increases in abundance. Significant assemblage shifts occurring at 2 kyr BP are particularly pronounced in N. pachyderma dextral/sinistral ratios. Large fluctuations in the dextral/sinistral ratio occur during this interval, varying between 50 and 95%. The most recent decrease in the ratio occurs 800 yrs BP before returning to modern values at 500 yr BP. Assemblage data suggest more dramatic environmental change than indicated by planktonic oxygen isotope records. While N. pachyderma dextral/sinistral ratios generally follow oxygen isotopes throughout the Holocene, the records decouple at 2 kyr BP when the first substantial decrease in the ratio occurs. Salinity may, in part, explain this observation. ODP Site 893 is located at the confluence of the cool

  4. Late Holocene vegetation changes in relation with climate fluctuations and human activity in Languedoc (southern France) (United States)

    Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.


    Holocene climate fluctuations and human activity since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to better understand Mediterranean paleoenvironmental changes over the last millennia remains a challenging issue. High-resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of high-frequency climate variability coincide in time with the rapid climatic events observed in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of sclerophyllous taxa and loss of forest cover result from anthropogenic impact. Classical Antiquity is characterized by a major reforestation event related to the concentration of rural activity and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while the cover of olive, chestnut and walnut expands in relation to increasing human influence. The present-day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.

  5. Major hydrologic shifts in northwest Florida during the Holocene from a lacustrine sediment record (United States)

    Rodysill, J. R.; Donnelly, J. P.


    Recent climate extremes have threatened water resource availability and destroyed homes and infrastructure along the heavily populated northern Gulf of Mexico coast. Water resources in Northwest Florida, in particular, suffer from declining aquifer levels and salt water intrusion despite the presence of extensive river and aquifer systems. Intensive water resource management has been necessary to meet water supply demands during recent droughts. Advanced preparedness for abrupt climate events requires the ability to anticipate when hydrologic extremes are likely to occur; however, the long-term history of hydrologic extremes is not well known, and the instrumental record is too short to resolve longer-term hydrologic variability. Reconstructing the pre-instrumental hydrologic history is essential to building our understanding of the timing of and the driving forces behind wet and dry extremes. Here we present a new record of paleohydrology in northwest Florida based upon variations in sediment lithology and geochemistry from Rattlesnake Lake. We see evidence for both brief and long-lived changes in the lake environment during the Holocene. We compare our record to published pollen-based reconstructions of paleohydrology to examine the spatial and temporal patterns of paleohydrologic extremes across the northern Gulf of Mexico region during the Holocene.

  6. Rock art at the pleistocene/holocene boundary in Eastern South America. (United States)

    Neves, Walter A; Araujo, Astolfo G M; Bernardo, Danilo V; Kipnis, Renato; Feathers, James K


    Most investigations regarding the first americans have primarily focused on four themes: when the New World was settled by humans; where they came from; how many migrations or colonization pulses from elsewhere were involved in the process; and what kinds of subsistence patterns and material culture they developed during the first millennia of colonization. Little is known, however, about the symbolic world of the first humans who settled the New World, because artistic manifestations either as rock-art, ornaments, and portable art objects dated to the Pleistocene/Holocene transition are exceedingly rare in the Americas. Here we report a pecked anthropomorphic figure engraved in the bedrock of Lapa do Santo, an archaeological site located in Central Brazil. The horizontal projection of the radiocarbon ages obtained at the north profile suggests a minimum age of 9,370 ± 40 BP, (cal BP 10,700 to 10,500) for the petroglyph that is further supported by optically stimulated luminescence (OSL) dates from sediment in the same stratigraphic unit, located between two ages from 11.7 ± 0.8 ka BP to 9.9 ± 0.7 ka BP. These data allow us to suggest that the anthropomorphic figure is the oldest reliably dated figurative petroglyph ever found in the New World, indicating that cultural variability during the Pleistocene/Holocene boundary in South America was not restricted to stone tools and subsistence, but also encompassed the symbolic dimension.

  7. Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene

    Directory of Open Access Journals (Sweden)

    S. Dietrich


    Full Text Available In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1 the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2 Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3 Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.

  8. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA (United States)

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.


    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  9. Stalagmite-derived Last Glacial Maximum - Mid Holocene Indian Monsoon Record from Krem Mawmluh, Meghalaya, NE India (United States)

    Lone, M. A.; Routh, J.; Kumar, V.; Mangini, A.; Rangarajan, R.; Ghosh, P.; Munnuru Singamshetty, K.; Shen, C. C.; Ahmad, S. M.; Mii, H. S.


    Seasonal reversals in monsoon winds strongly influence rainfall patterns on the Indian sub-continent regulating the socio-economy of south Asian region. High-resolution centennial-millennial scale records of climate change from the core zone of the monsoon impacted region are nonetheless very few. Here, we report Indian summer monsoon (ISM) variability record from an 87-cm long stalagmite (KM-1) from Krem Mawmluh in the Khasi Hills, Meghalaya. The absolute dated stalagmite record ranges from 22.7 (LGM) to 6.7 ka (Mid Holocene), revealing last glacial-interglacial paleoclimatic changes over the Indian sub-continent. A sharp change in δ18O ( 5‰) and growth rate post Younger Dryas (YD) is marked by continued rapid speleogenesis in KM-1 and coincides with monsoon intensification during the early Holocene. Prominent multi-centennial to millennial scale dry phases in ISM activity are observed from LGM to YD. During early to mid-Holocene, the record shows significant multi-decadal to centennial scale changes. The high frequency δ18O variations referring to abrupt changes in ISM activity are believed to be driven by changes in temperature and shifting of Inter-Tropical Convergence Zone.

  10. Estimation of potential and actual evapotranspiration of boreal forest ecosystems in the European part of Russia during the Holocene

    International Nuclear Information System (INIS)

    Olchev, A; Novenko, E


    A simple regression model for calculating annual actual evapotranspiration (ET) and potential evapotranspiration (PET), as well as annual transpiration (TR) of mature boreal forests grown in the European part of Russia in the Holocene using paleoclimatic and paleobotanical data (air temperature, precipitation, forest species compositions) is presented. The model is based on nonlinear approximations of annual values of ET, TR and PET obtained by the Levenberg–Marquardt method using the results of numerical simulations of ET, TR and PET provided by a process-based Mixfor-SVAT model for forests with different species compositions under various thermal and moistening conditions. The results of ET, TR and PET reconstructions for the Holocene show large variability and high correlation with the air temperature pattern. Minimal values of ET and PET are obtained for the Younger Dryas cold phase (11.0–10.0 14 C kyr BP) when ET varied between 320 and 370 mm yr −1 and PET varied between 410 and 480 mm yr −1 . During the Late Atlantic periods of the Holocene (4.5–5.1 14 C kyr BP), ET and PET reached maximal values (ET: 430–450 mm yr −1 and PET: 550–570 mm yr −1 ).

  11. How much rainfall sustained a Green Sahara during the mid-Holocene? (United States)

    Hopcroft, Peter; Valdes, Paul; Harper, Anna


    The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding

  12. Anthropogenic and geomorphic controls on peatland dynamics in contrasting floodplain environments during the Holocene and its impact on carbon storage (United States)

    Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan


    Peatlands are an important store of carbon in terrestrial environments, and scientific interest in peatlands has increased strongly in the light of the recent global climatic changes. Much attention has been paid to peatland dynamics in extensive arctic and boreal wetlands or to blanket peat in temperate regions. Nevertheless, long-term dynamics of peat in alluvial wetlands in temperate regions remains largely underresearched. In this study, data from three contrasting environments were used to provide more insights in the anthropogenic and geomorphic controls on peatland dynamics. The results show a high variability in alluvial peatland dynamics between the different study sites. In the central Belgian Loess Belt, alluvial peatlands developed during the early Holocene but gradually disappeared from the Mid-Holocene onwards due to the gradual intensification of agricultural activities in the catchment and consequent higher sedimentation rates in the floodplain system. The end of peat growth is shown to be diachronous at catchment scale, ranging between 6500 and 500 cal a BP. The disappearance of the alluvial peatlands has important implications since it potentially reduces the storage of locally produced C. Nevertheless, it was shown that this reduced production of local C but was outbalanced by the burial of hillslope derived C. Also within the sandy catchments of the Belgian Campine region alluvial peatlands initiated in the early Holocene but, here, they abruptly disappeared in the Mid-Holocene before the onset of intense agricultural activities in the catchment. This suggests that for the sandy regions, anthropogenic impact on peatland dynamics is less important compared to natural factors. For these regions, the disappearance of alluvial peatland formation resulted in a sharp decline in alluvial carbon storage as there is no compensation through hillslope derived C input. For the upper Dee catchment in NE Scotland, Holocene carbon floodplain storage varies

  13. Holocene climatic fluctuations from Lower Brahmaputra flood plain ...

    Indian Academy of Sciences (India)

    BP which is well-matched with the peak period of the Holocene climatic optimum. However, during ... Warm Period and Little Ice Age (LIA) in this ... The maximum temperature is 30.4 ..... V 2007 Climatic changes during the last 1800 yrs from.

  14. Diagenesis of Holocene reef and associated beachrock of certain ...

    Indian Academy of Sciences (India)

    ally exposed corals of Holocene and Last Inter- glacial age, which may be subjected to diagenesis, primarily in the ... During the period of low tide, spring reef flat is covered by ..... Kallankurichchi formation, Ariyalur group, South India and its ...

  15. NW Pacific mid-depth ventilation changes during the Holocene (United States)

    Rella, S.; Uchida, M.


    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  16. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.


    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  17. Holocene eolian activity in the Minot dune field, North Dakota (United States)

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.


    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  18. North Atlantic-Fennoscandian Holocene climate trends and mechanisms

    NARCIS (Netherlands)

    Sejrup, H.P.; Seppä, H.; McKay, N.; Kaufman, D.S.; Geirsdottir, A.; de Vernal, A.; Renssen, H.; Husum, K.; Jennings, A.; Andrews, J.T.


    To investigate the mechanisms behind Holocene regional climate trends from north of 58°N in the North Atlantic-Fennoscandian region Principal Component Analysis (PCA) was performed and a temperature anomaly stack produced from 81 proxy derived summer temperature time series from 74 sites. The PC

  19. The Holocene in the coastal zone of Uruguay

    International Nuclear Information System (INIS)

    Garcia Rodriguez, F.


    This book represents a compilation of several scientific Holocene paleoenvironmental aspects of the coastal zone in Uruguay. It includes information about geological, geomorphological, evolutionary genetics, paleontological, paleobotanic, paleoclimatological, paleolimnological, paleoceanographic and archeologic aspects. The chapters presented were arbitrated by national and foreign recognized scientists

  20. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.


    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  1. Holocene sea level, a semi-empirical contemplation (United States)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.


    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  2. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A. (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig


    Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by

  3. Miscanti-1: Human occupation during the arid Mid-Holocene event in the high-altitude lakes of the Atacama Desert, South America (United States)

    Núñez, Lautaro; Loyola, Rodrigo; Cartajena, Isabel; López, Patricio; Santander, Boris; Maldonado, Antonio; de Souza, Patricio; Carrasco, Carlos


    This paper presents an interdisciplinary study of the Miscanti-1 archaeological site, located in the Holocene terrace deposits accumulated on the eastern margin of Miscanti Lake (4120 m.a.s.l.), northern Chile (23.7° S, 67.7° W). The human response to environmental and climatic variability in the Mid-Holocene (9500-4500 cal yr BP) is discussed through the zooarchaeological, lithic and paleoenvironmental records. We propose that, due to the increased aridity of the period, Miscanti Lake became a brackish paleowetland that attracted discrete groups of hunter-gatherers from lower elevation Andean areas. In contrast with the high frequency of human occupations known for the humid Late Pleistocene and Early Holocene (12600-9500 yr cal BP), the Miscanti-1 site is one of the few occupations recorded in the Atacama Highlands during the Mid-Holocene period. Data analysis suggests logistic and short-term campsite use for hunting the wild camelids that were attracted by the wetlands and fresh water (8100-8300 yr cal BP). In contrast to previous proposals for this period, we propose that access to high altitude environments did not cease, but was made possible by a shift to highly scheduled mobility and a specialized bifacial technology. Finally, the temporal and spatial links of Miscanti-1 are discussed in a regional context.

  4. Holocene aeolian activity in the Dinggye area (Southern Tibet, China) (United States)

    Pan, Meihui; Wu, Yongqiu; Zheng, Yinghua; Tan, Lihua


    The Dinggye area (Southern Tibet) contains numerous aeolian sediments, including modern and ancient aeolian sand deposition. In this study, we determined the chronological sequences of several profiles of Holocene paleo-aeolian deposits using Optically Stimulate Luminescence (OSL) and radiocarbon (Accelerator Mass Spectrometry (AMS) 14C and conventional 14C) dating. Using the grain size, magnetic susceptibility, organic content and chrome characteristics of the deposits, we reconstructed the Holocene aeolian processes in the Dinggye area. The results from the paleo-aeolian depositional record indicate multiple changes in the intensity of aeolian activity and soil fixing with alternations between cool-dry and warm-humid climate conditions in the Dinggye area during the Holocene. From 12.8 ka B.P. to the present, the climate has fluctuated frequently. From 12.8 to 11.6 ka B.P. and from 9.3 to 4.9 ka B.P., the climate was warm and humid with weak aeolian activity, and a sandy paleosol developed. The peak Holocene megathermal period and the main period of pedogenesis in the study area was from 6.6 to 4.9 ka B.P. Between 11.6 and 9.3 ka B.P. and since 2.0 ka B.P., the sandlot expanded due to a cool, dry and windy climate; aeolian activity was strong and caused the development of moving dunes. The period between 4.9 and 2.0 ka B.P. was relatively cool and dry with slightly strengthened aeolian activity that developed stationary and semi-stationary dunes. In general, the Holocene events recorded by the paleo-aeolian deposits correspond well with those interpreted by other methods, such as records from ice-cores, lacustrine deposits and tree rings, but there are minor discrepancies between the methods.

  5. Timing and magnitude of the Caribbean mid-Holocene highstand (United States)

    Ashe, E.; Khan, N.; Horton, B.; Brocard, G. Y.; Dutton, A.; Engelhart, S. E.; Kopp, R. E.; Hill, D. F.; Peltier, W. R.; Scatena, F. N.


    We present a database of published and new relative sea-level (RSL) data for the past 13 ka, which constrains the Holocene sea-level histories of the Caribbean coast of Central and South America (Florida Keys, USA to Guyana) and the Bahamas and Greater and Lesser Antilles islands. Our evaluation of mangrove peat and Acropora palmata sea-level indicators from geological investigations provides 503 sea-level index points and 242 limiting dates. We subdivide the database into 21 regions based on the availability of data, tectonic setting, and distance from the former Laurentide ice sheet. Most index points (75%) and limiting dates (90%) are <8 ka, although there is an unusual temporal distribution with the greatest amount of the data (~28%) occurring between 6-8 ka. We reassess and screen radiocarbon and U/Th ages of mangrove peat and coral data. We use the stratigraphic position (overburden thickness) of index points account for sediment compaction, and use the paleotidal model of Hill et al. (2011) to account for Holocene changes in paleotidal range. A noisy-input Gaussian process regression model calculates that the rates of RSL change were highest during the early Holocene (3-8 mm/yr) and have decreased over time (< 2 mm/yr), which is related to the reduction of ice equivalent meltwater input and collapse of the proglacial forebulge during the Holocene. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, with the exception of a small highstand (<2 m) on the northern coast of South America along the Orinoco Delta and Suriname/Guyana located furthest away from the former Laurentide Ice Sheet. The different sea-level histories are an ongoing isostatic response to deglaciation of the Laurentide Ice Sheet and suggest subsidence resulting from collapse of the proglacial forebulge reaches further south than previously considered.

  6. New evidence for "far-field" Holocene sea level oscillations and links to global climate records (United States)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.


    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  7. The Holocene and the Late Deglaciation: timing and development on the northern Svalbard margin (United States)

    Slubowska, M. A.; Koc, N.; Rasmussen, T. L.


    Svalbard is located in the high Arctic (76§ to 81§ N and 10§ to 28§ E) at the northernmost reach of the warmer West Spitsbergen Current, which forms the continuation of the North Atlantic Current. At this position, close to the Polar Front, even small variations in the current are expected to have large effects on the regional climate. Therefore, the Svalbard area is ideal for monitoring past changes in the ocean circulation as well as the timing and the nature of the Svalbard ice sheet disintegration. We have investigated core NP94-51 SC2 (80§ 21,346 N, 16§ 17,970 E, 400m water depth and 714 cm long) retrieved from the mouth of the Hinlopen Strait in the Arctic Ocean, north of Svalbard. The main objective of this study is to document a) the deglaciation history of the area, b) the Holocene climate variability on the decadal time scales using sedimentological, physical and biological analysis. AMS-14C dating gives the age of approximately 14,000 BP for the bottom of the core. The Holocene interglacial is represented by c. 5 m. A detailed analysis of different oceanographic proxies such as: ice rafted debris, magnetic susceptibility, spectral reflectance (L*a*b scale), benthic and planktic foraminiferal fauna, diatom flora, grain size and radiocarbon dates (AMS-14C) were used to reconstruct the paleoceanographic evolution of the area. The results show that disintegration of the Hinlopen Strait ice sheet and, possibly, the northern margin of the Svalbard ice sheet began at 14,000 BP. The influx of the subsurface Atlantic waters into the area began during the Bolling interstadial at 12,600 BP, while the surface waters were still cold and of low salinity. The retreat of the sea ice cover occurred together with the opening of the surface waters at 10,800 BP. During major part of the Younger Dryas (10,800 - 10,000 BP) the Polar Front was located close to the core site. At 10,100 BP the Polar Front retreated from that area. In comparison to the deglaciation

  8. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S, New Zealand

    Directory of Open Access Journals (Sweden)

    I. M. Browne


    Full Text Available The Southern Hemisphere westerly winds (SHWWs play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW and outgassing of CO2 in the Southern Ocean, on interannual to glacial–interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E, located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS and bulk organic δ13C and atomic C ∕ N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from  ∼  1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after  ∼  1600 yr BP that appears to be broadly symmetrical across the Pacific Basin

  9. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand (United States)

    Browne, Imogen M.; Moy, Christopher M.; Riesselman, Christina R.; Neil, Helen L.; Curtin, Lorelei G.; Gorman, Andrew R.; Wilson, Gary S.


    The Southern Hemisphere westerly winds (SHWWs) play a major role in controlling wind-driven upwelling of Circumpolar Deep Water (CDW) and outgassing of CO2 in the Southern Ocean, on interannual to glacial-interglacial timescales. Despite their significance in the global carbon cycle, our understanding of millennial- and centennial-scale changes in the strength and latitudinal position of the westerlies during the Holocene (especially since 5000 yr BP) is limited by a scarcity of palaeoclimate records from comparable latitudes. Here, we reconstruct middle to late Holocene SHWW variability using a fjord sediment core collected from the subantarctic Auckland Islands (51° S, 166° E), located in the modern centre of the westerly wind belt. Changes in drainage basin response to variability in the strength of the SHWW at this latitude are interpreted from downcore variations in magnetic susceptibility (MS) and bulk organic δ13C and atomic C / N, which monitor influxes of lithogenous and terrestrial vs. marine organic matter, respectively. The fjord water column response to SHWW variability is evaluated using benthic foraminifer δ18O and δ13C, both of which are influenced by the isotopic composition of shelf water masses entering the fjord. Using these data, we provide marine and terrestrial-based evidence for increased wind strength from ˜ 1600 to 900 yr BP at subantarctic latitudes that is broadly consistent with previous studies of climate-driven vegetation change at the Auckland Islands. Comparison with a SHWW reconstruction using similar proxies from Fiordland suggests a northward migration of the SHWW over New Zealand during the first half of the last millennium. Comparison with palaeoclimate and palaeoceanographic records from southern South America and West Antarctica indicates a late Holocene strengthening of the SHWW after ˜ 1600 yr BP that appears to be broadly symmetrical across the Pacific Basin. Contemporaneous increases in SHWW at localities on either

  10. Holocene Paleoceanographic Environments at the Chukchi-Alaskan Margin: Implications for Future Changes (United States)

    Polyak, L.; Nam, S. I.; Dipre, G.; Kim, S. Y.; Ortiz, J. D.; Darby, D. A.


    The impacts of the North Pacific oceanic and atmospheric system on the Arctic Ocean result in accelerated sea-ice retreat and related changes in hydrography and biota in the western Arctic. Paleoclimatic records from the Pacific sector of the Arctic are key for understanding the long-term history of these interactions. As opposed to stratigraphically long but strongly compressed sediment cores recovered from the deep Arctic Ocean, sediment depocenters on the Chukchi-Alaskan margin yield continuous, medium to high resolution records formed since the last deglaciation. While early Holocene conditions were non-analogous to modern environments due to the effects of prolonged deglaciation and insufficiently high sea levels, mid to late Holocene sediments are more relevant for recent and modern climate variability. Notably, a large depocenter at the Alaskan margin has sedimentation rates estimated as high as a few millimeters per year, thus providing a decadal to near-annual resolution. This high accumulation can be explained by sediment delivery via the Alaskan Coastal Current originating from the Bering Sea and supposedly controlled by the Aleutian Low pressure center. Preliminary results from sediment cores recovering the last several centuries, along with a comparison with other paleoclimatic proxy records from the Arctic-North Pacific region, indicate a persistent role of the Aleutian Low in the Bering Strait inflow and attendant deposition. More proxy studies are underway to reconstruct the history of this circulation system and its relationship with sea ice extent. The expected results will improve our understanding of natural variability in oceanic and atmospheric conditions at the Chukchi-Alaskan margin, a critical area for modulating the Arctic climate change.

  11. Late Pleistocene to early Holocene environmental changes on Store Koldewey, coastal north-east Greenland

    Directory of Open Access Journals (Sweden)

    Martin Klug


    Full Text Available A lake sediment sequence from southern Store Koldewey, north-east Greenland, has been investigated using a multidisciplinary approach, including geophysical, geochemical, biogeochemical, biological and sedimentological methods. Chronological constraints are provided by accelerator mass spectrometry (AMS 14C dating of bulk sediment and complemented with published water moss ages. The record consists of three major sediment units. Their individual structural, textural, geophysical and geochemical characteristics indicate variable input of sediment and meltwater due to variable proximity of the ice margin and therefore reflect the growth and decay of a local glacier during the late Weichselian. Radiocarbon dating of bulk sediment samples from the lowermost unit gave ages of 42 to 34 calibrated thousand years (cal Ky B.P. and indicates that this material is redeposited in the lake basin during or after the ice advance at the end of the Pleistocene. Increased meltwater and sediment input from a retreating ice margin following the Younger Dryas is indicated by the occurrence of a sandy to gravely section. Fine-grained and laminated sediments were deposited during the Pleistocene–Holocene transition and indicate calm sedimentation conditions with an ice margin outside of the lake catchment. The reoccurrence of coarse sediments during the early Holocene may indicate increased meltwater input in response to the cold spell at about 9.3 Kya with increased snow accumulation rather than fluctuations of local glaciers. The dating results furthermore show that AMS 14C dating of bulk sediment samples deposited during glacier decay in High Arctic environments can give problematic ages.

  12. Lipid biomarkers in Holocene and glacial sediments from ancient Lake Ohrid (Macedonia, Albania

    Directory of Open Access Journals (Sweden)

    J. Holtvoeth


    Full Text Available Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event. Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats, in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.

  13. Patagonian and southern South Atlantic view of Holocene climate (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Denton, G. H.; Anderson, R. F.; Vandergoes, M. J.; Finkel, R. C.; Schwartz, R.; Travis, S. G.; Garcia, J. L.; Martini, M. A.; Nielsen, S. H. H.


    We present a comprehensive 10Be chronology for Holocene moraines in the Lago Argentino basin, on the east side of the South Patagonian Icefield. We focus on three different areas, where prior studies show ample glacier moraine records exist because they were formed by outlet glaciers sensitive to climate change. The 10Be dated records are from the Lago Pearson, Herminita Península-Brazo Upsala, and Lago Frías areas, which span a distance of almost 100 km adjacent to the modern Icefield. New 10Be ages show that expanded glaciers and moraine building events occurred at least at 6120 ± 390 (n = 13), 4450 ± 220 (n = 7), 1450 or 1410 ± 110 (n = 18), 360 ± 30 (n = 5), and 240 ± 20 (n = 8) years ago. Furthermore, other less well-dated glacier expansions of the Upsala Glacier occurred between 1400 and ∼1000 and ∼2300 and ∼2000 years ago. The most extensive glaciers occurred over the interval from ∼6100 to ∼4500 years ago, and their margins over the last ∼600 years were well within and lower than those in the middle Holocene. The 10Be ages agree with 14C-limiting data for the glacier histories in this area. We then link southern South American, adjacent South Atlantic, and other Southern Hemisphere records to elucidate broader regional patterns of climate and their possible causes. In the early Holocene, a far southward position of the westerly winds fostered warmth, small Patagonian glaciers, and reduced sea ice coverage over the South Atlantic. Although we infer a pronounced southward displacement of the westerlies during the early Holocene, these conditions did not occur throughout the southern mid-high latitudes, an important exception being over the southwest Pacific sector. Subsequently, a northward locus and/or expansion of the winds over the Patagonia-South Atlantic sector promoted the largest glaciers between ∼6100 and ∼4500 years ago and greatest sea ice coverage. Over the last few millennia, the South Patagonian Icefield has experienced

  14. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.


    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  15. Holocene sea-level changes in the Falkland Islands (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike


    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  16. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition (United States)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu


    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  17. Holocene Faunal Trends in West Siberia and Their Causes (United States)

    Gashev, S. N.; Aleshina, A. O.; Zuban, I. A.; Lupinos, M. Y.; Mardonova, L. B.; Mitropolskiy, M. G.; Selyukov, A. G.; Sorokina, N. V.; Stolbov, V. A.; Shapovalov, S. I.


    Based on an analysis of the transformation of vertebrate and invertebrate fauna of West Siberia in the Holocene, the classification and periodization of the main faunal trends are presented. Against the background of changing environmental conditions, the key regularities of the faunal dynamics, and the ways some species penetrate into the territory of the region and others disappear from the beginning of the Holocene to the present time have been indicated. Three global and four fluctuating trends are identified. The anthropogenic trend is ascertained separately. A conclusion is made about the prevailing causes of these changes, associated primarily with periodic climatic processes of different levels, determined by planetary geological and cosmic cycles. It is emphasized that, in the historical period, anthropogenic factors play a significant role in the regional faunal dynamics.

  18. The Holocene vegetation history of northern West Jutland

    DEFF Research Database (Denmark)

    Odgaard, Bent Vad


    . The Holocene history of each lake basin was investigated by mapping of sediment distribution, analysis of loss-on-ignition, coarse inorganic matter, humus content, mineral magnetics, 6°C. pollen and selected other microfossils. These techniques were supplemented by plant macrofossil analysis at one site....... Holocene terrestrial vegetational development was inferred at each site from analyses of pollen and microscopical charred particles. Chronologies were provided by numerous I4C dates. Stratigraphies of wet ground and terrestrial pollen and spore types were zooned by stratigraphically constrained cluster......, the synchronous timing of relatively rapid inferred change in lake and terrestrial vegetation around AD 600 may reflect changes in climate as well as in land-use. Redundancy analysis was used to develop a model between fire intensity (inferred from microscopical charred particles) and vegetational response...

  19. On the evolution of a holocene barrier coast

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel

    in a distinct stratal stacking pattern of each of the investigated coastal barrier systems. We conclude that the overall infilling of the barrier systems over the Holocene was mainly controlled by sea-level rise and sediment supply. However, major storms and tidal channel migration have greatly affected......This thesis investigates the sedimentary evolution of a Holocene barrier coast with special focus on how barrier system stratigraphy is affected by changes in sea-level and sediment supply. Coastal barrier systems comprise about 13% of the world’s coastlines and they are mportant components...... of the stratigraphic record of the Earth. Sea-level rise and sediment supply are the two most important factors controlling barrier system evolution. Detailed depositional reconstructions of a number of barrier systems from the Danish Wadden Sea area have been carried out in order to evaluate the sedimentary effects...

  20. Biotic turnover rates during the Pleistocene-Holocene transition (United States)

    Stivrins, Normunds; Soininen, Janne; Amon, Leeli; Fontana, Sonia L.; Gryguc, Gražyna; Heikkilä, Maija; Heiri, Oliver; Kisielienė, Dalia; Reitalu, Triin; Stančikaitė, Miglė; Veski, Siim; Seppä, Heikki


    The Northern Hemisphere is currently warming at the rate which is unprecedented during the Holocene. Quantitative palaeoclimatic records show that the most recent time in the geological history with comparable warming rates was during the Pleistocene-Holocene transition (PHT) about 14,000 to 11,000 years ago. To better understand the biotic response to rapid temperature change, we explore the community turnover rates during the PHT by focusing on the Baltic region in the southeastern sector of the Scandinavian Ice Sheet, where an exceptionally dense network on microfossil and macrofossil data that reflect the biotic community history are available. We further use a composite chironomid-based summer temperature reconstruction compiled specifically for our study region to calculate the rate of temperature change during the PHT. The fastest biotic turnover in the terrestrial and aquatic communities occurred during the Younger Dryas-Holocene shift at 11,700 years ago. This general shift in species composition was accompanied by regional extinctions, including disappearance of mammoth (Mammuthus primigenius) and reindeer (Rangifer tarandus) and many arctic-alpine plant taxa, such as Dryas octopetala, Salix polaris and Saxifraga aizoides, from the region. This rapid biotic turnover rate occurred when the rate of warming was 0.17 °C/decade, thus slightly lower than the current Northern Hemisphere warming of 0.2 °C/decade. We therefore conclude that the Younger Dryas-Holocene shift with its rapid turnover rates and associated regional extinctions represents an important palaeoanalogue to the current high latitude warming and gives insights about the probable future turnover rates and patterns of the terrestrial and aquatic ecosystem change.

  1. Tectonic controls of Holocene erosion in a glaciated orogen


    Adams, Byron A.; Ehlers, Todd A.


    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  2. The Holocene Sedimentation in Sandstone Rockshelters of Northern Bohemia

    Czech Academy of Sciences Publication Activity Database

    Cílek, Václav


    Roč. 11, - (2000), s. 66-69 ISSN 1210-9606. [International Conference on Past Global Changes Upper Pleistocene and Holocene Climatic Variations. Prague, 06.09.2000-09.09.2000] Grant - others:US(XC) National Geographic Society 6330-98 "The last foragers of the Northern Europe" Institutional research plan: CEZ:AV0Z3013912 Subject RIV: DB - Geology ; Mineralogy

  3. The Acridian plagues, a new Holocene and Pleistocene palaeoclimatic indicator (United States)

    Meco, Joaquín; Petit-Maire, Nicole; Ballester, Javier; Betancort, Juan F.; Ramos, Antonio J. G.


    Five palaeosols, intercalated within the Quaternary dune beds of Fuerteventura and Lanzarote (Canary Islands), off the Moroccan coast, mark wetter climatic episodes. In all of them, billions of calcified insect ootheca testify to past occurrences of Acridian plagues, such as those reaching the western Sahara following heavy rainfall events over the Sahel. The most massive infestation is in the Holocene, and should coincide with the climax of Saharo-Sahelian humidity at the peak of the present interglacial.

  4. Biomarker records of Holocene climate variations in Asian interior (United States)

    Song, M.; Liu, Z.; Liu, W.; Zhao, C.; Li, S.; He, Y.


    Understanding Holocene climate fluctuation may provide clues to projection of future climate change. Lake sediments in the arid central Asia (ACA), as an archive of past climate information, keep attracting considerable interest. We have retrieved several sediment cores from Lake Manas, an endorheic lake in Zunggar desert, Xinjiang Province, China. Biomarker proxies including alkenone Uk'37, %C37:4 and C37 concentration (C37 Conc), and physical proxies including density and magnetic susceptibility (MS) have been analyzed. We have found substantial climatic and environmental changes during the late Holocene. Density, MS and Uk'37 values are high during Medieval Warm Period (MWP) and C37 Conc is very low. During the Little Ice Age, density and MS decrease, Uk'37 values drop to near 0.1, C37 Conc is increased by 2 to 3 magnitude. Thus, warm and dry conditions dominated MWP while cold and wet conditions dominated LIA, a typical "Westerly" pattern which is opposite to the hydrological variation in Asian monsoonal regions. Biomarker records' correlation with solar irradiance (SI), the North Atlantic Oscillation (NAO), the 1000year ACA Moisture Index (ACAM), and the North Hemisphere Temperature (NHT) suggests SI as one of the forcing factor on temperature fluctuation and cold and wet LIA possibly resulting from westerly-jet shift, negative NAO oscillation and the lower evaporation induced by the decrease of temperature. Biomarker records for the whole Holocene will be also presented.

  5. Late Glacial and Holocene Flow Dynamics of the Denmark Strait Overflow Water (United States)

    Williams, M.; Schmidt, D. N.; Andersen, M. B.; Barker, S.; McCave, I. N. N.


    The overflow of dense water from the Nordic Seas to the North Atlantic across the Greenland-Scotland Ridge forms a major component of the deep branch of the Atlantic Meridional Overturning Circulation and influences the climate system in Northwest Europe. Research has focused on deep convection of the Iceland Scotland Overflow Water (ISOW) and its links to climate variability in the North Atlantic. Our understanding of the history of the Denmark Strait Overflow Water (DSOW) is significantly less constrained and yet it accounts for half of the total overflow production today. We focus on the Eirik Drift south of Greenland in the vicinity of the DSOW. Down-core 230Thxs derived sediment focusing factors (Ψ) and measurements of the mean size of sortable silt reveal winnowed sediments during the Last Glacial Maximum and Heinrich 1 suggesting an influx of vigorous southern sourced waters and restricted DSOW production. Reduced overflow may be due to glacial isostatic processes which shoaled the Denmark Strait sill combined with a southward shift of deep convection sites in response to enhanced ice cover in the Nordic Seas. Intensification of the DSOW is evident between 9 and 13ka BP indicating initial deepening of the Denmark Strait sill and northward migration of the locus of deep water production. Ψ values for the Holocene suggest an active DSOW with a shift in the flow regime at 6.8 ka BP indicated by a reduction and subsequent stabilization of mean size sortable silt during the mid-late Holocene. This is corroborated by other studies showing a reorganization of the deep water after 7ka. An establishment of the Labrador Sea Water at intermediate depths altered the density structure of the deep western boundary current and weakened the ISOW. Changes in deep water circulation occur as North Atlantic climate entered Neoglacial cooling determined by Mg/Ca derived sea surface temperatures and abundances of the polar planktic foraminifera species N. pachyderma. They

  6. Reconstructing Mid- to Late Holocene Sea-Level Change from Coral Microatolls, French Polynesia (United States)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.


    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the Anthropocene. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level changes in French Polynesia encompassing the last 6,000 years were reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to

  7. A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA (United States)

    Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.


    Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP

  8. Macrophysical climate models and Holocene hunter-gatherer subsistence shifts in Central Texas, USA (United States)

    Mauldin, R. P.; Munoz, C.


    We use stable carbon isotopic values from bone collagen, as well as carbon values from carbonate extracted from bone apatite from 69 prehistoric human skeletal samples to investigate past resource use and climate relationships over the Middle and Late Holocene in Central Texas. Bone samples come from seven archaeological sites and samples date from 6,900 BP to the close of the prehistoric sequence at about 350 BP. Carbon isotopes from these samples suggest four broad dietary trends. From 6,900 through about 3,800 BP, carbon isotopes suggest a gradual increase in the consumption of resources that ultimately use a C3 photosynthetic pathway. A decline in δ13C in both collagen and carbonate values follows, suggesting a decrease in C3 resource use through roughly 2,900 BP. A variable, but once again increasing pattern on C3 resource use by prehistoric hunter-gatherers is indicated in bone isotopes through about 1,000 BP. After that date, a decrease in C3 resource dependence, with hints at greater subsistence diversity, is suggested through the close of the sequence at 350 BP. To assess the impact of climate shifts on this isotopic pattern, we developed a series of macrophysical climate models (MCM) for several locations in Central Texas focusing on fall, winter, and early spring precipitation. This fall-spring rainfall should closely determine C3 production. If subsistence shifts are responding to climate-induced changes in resource availability, then the measured hunter-gatherer carbon isotope trends summarized above should pattern with C3 production as monitored by the modeled fall-spring precipitation values. For the Middle Holocene portion of the sequence, the precipitation models suggest increasing C3 production, consistent with increasing C3 dependence shown in the isotopic data. A decline in C3 production between 3,900 and 3,000 BP in the models is also consistent with the isotopic decline at that point. After 3,000 BP, however, the coupling between fall

  9. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia (United States)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.


    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for Neoglacial advances in western Canada. Taken together, these data: a) do not support the summer insolation hypothesis for Holocene glacier fluctuations in southernmost Patagonia; b) confirm paleobotanical evidence for a warm, dry early Holocene; and c) suggest that many Neoglacial advances in southernmost Patagonia and western North America

  10. Holocene Enviromental Changes in AN Amazonian Floodplain Lake (United States)

    Moreira, L.; Moreira-Turcq, P. F.; Turcq, B.; Cordeiro, R. C.


    The floodplains lakes are built due to the fluctuations in the level of the rivers, which causes the formation of bars and accumulation of sediment carried by the rivers and its tributaries. Thus, significant quantities of organic matter can accumulate within these lakes that might represent important carbon sinks. The organic sedimentation process in the floodplains remains unknown as well as very little is known about past conditions in the Amazonian floodplains. Because these gaps, the aim of this work is to provide, through sedimentological, mineralogical and organic geochemical analysis of a 124-cm long core collected in Lago Comprido (eastern Amazonia), evidences of paleoenviromental changes during the Holocene. The core COM1 was analysed using radiocarbon dates, organic carbon concentration, C/N ratio, delta 13C and diatoms. The core points out different sedimentary environments that occurs in the last 9900 years cal BP. The record is divided into three phases: - phase III (124-94 cm, 9900 to 3200 cal years BP): this interval is characterized by delta 13C values typical of graminea, suggesting dry conditions with longer low water levels of the Amazon River. Supporting evidence for driest conditions during this period comes from low organic carbon values due to oxidation and absence of diatoms in the sediment. The carbon flux was very low, reaching an average of 0.9 g C/m2/year. - phase II (93-46 cm, 3200 to 940 years cal BP): increasing lake level beginning in this phase. The delta 13C values ranged between -25% and -29%, which are thought to represent terrestrial plants. This may indicate the presence of a flooded vegetation in this site. The freshwater planktonic diatoms Aulacoseira sp start to increase in this phase, additional evidence that the period of the annual high water stands was probably longer than before. Carbon flux increases, reaching an average of 5 g C/m2/year. - phase I (45-0cm, < 940 years cal BP): the delta 13C values and CN ratios did

  11. Pluvial Phases In The Sahara During The Holocene: A Multi-disciplinary Comparison (United States)

    Barnikel, F.; Becht, M.

    The understanding of low latitude palaeoclimatic dynamics is incomplete without a thorough analysis of the wide-spread fluctuations between humid and arid phases in the Sahara. It is especially the holocene that has been scrutinized in respect to lake and river deposits, pollen analysis, macrorest analysis, groundwater dating, remote sensing, pedology, archaeology and even glottochronology. During the last decades a lot of teams from different countries (e.g. French in the west and south, Germans in the south and east, Americans, Italians and Polish in the east and many more) have evaluated numerous data gained from different disciplines all over the Sahara. Inten- sive work has shed new light on climate dynamics especially in the eastern part. But even there, as in other parts as well, the data are insufficient to explain palaeoclimatic variability to a satisfying degree. Meticulous analysis of the published data has shown grave inconsistencies between the different disciplines concerning dates for pluvial phases (differences up to several millenia), the intensity of rainfall, the face of the palaeoenvironment and the like. Our aim is to show the areas that lack sufficient data and to point out the huge problems that arise from the differing research results in other parts. Since a valid assessment of holocene palaeoclimatic dynamics for large parts of the globe is unthinkable without a proper understanding of emergence, form and ending of pluvial phases in the Sahara, more multi-disciplinary work is neces- sary. Furthermore, all data, especially the radiocarbon datings, need to be collected and made accessible for all disciplines in a data bank.

  12. The Deglacial to Holocene Paleoceanography of Bering Strait: Results From the SWERUS-C3 Program (United States)

    Jakobsson, M.; Anderson, L. G.; Backman, J.; Barrientos, N.; Björk, G. M.; Coxall, H.; Cronin, T. M.; De Boer, A. M.; Gemery, L.; Jerram, K.; Johansson, C.; Kirchner, N.; Mayer, L. A.; Mörth, C. M.; Nilsson, J.; Noormets, R. R. N. N.; O'Regan, M.; Pearce, C.; Semiletov, I. P.; Stranne, C.


    The climate-carbon-cryosphere (C3) interactions in the East Siberian Arctic Ocean and related ocean, river and land areas of the Arctic have been the focus for the SWERUS-C3 Program (Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). This multi-investigator, multi-disciplinary program was carried out on a two-leg 90-day long expedition in 2014 with Swedish icebreaker Oden. One component of the expedition consisted of geophysical mapping and coring of Herald Canyon, located on the Chukchi Sea shelf north of the Bering Strait in the western Arctic Ocean. Herald Canyon is strategically placed to capture the history of the Pacific-Arctic Ocean connection and related changes in Arctic Ocean paleoceanography. Here we present a summary of key results from analyses of the marine geophysical mapping data and cores collected from Herald Canyon on the shelf and slope that proved to be particularly well suited for paleoceanographic reconstruction. For example, we provide a new age constraint of 11 cal ka BP on sediments from the uppermost slope for the initial flooding of the Bering Land Bridge and reestablishment of the Pacific-Arctic Ocean connection following the last glaciation. This age corresponds to meltwater pulse 1b (MWP1b) known as a post-Younger Dryas warming in many sea level and paleoclimate records. In addition, high late Holocene sedimentation rates that range between about 100 and 300 cm kyr-1, in Herald Canyon permitted paleoceanographic reconstructions of ocean circulation and sea ice cover at centennial scales throughout the late Holocene. Evidence suggests varying influence from inflowing Pacific water into the western Arctic Ocean including some evidence for quasi-cyclic variability in several paleoceanographic parameters, e.g. micropaleontological assemblages, isotope geochemistry and sediment physical properties.

  13. Exceptional preservation of children's footprints from a Holocene footprint site in Namibia (United States)

    Bennett, Matthew R.; Morse, Sarita A.; Liutkus-Pierce, Cynthia; McClymont, Juliet; Evans, Mary; Crompton, Robin H.; Francis Thackeray, J.


    Here we report on a Holocene inter-dune site close to Walvis Bay (Namibia) which contains exceptionally well-preserved children's footprints. The footprint surface is dated using Optically Stimulated Luminescence (OSL) methods to approximately 1.5 ka. These dates are compared to those obtained at nearby footprint sites and used to verify a model of diachronous footprint surfaces and also add to the archaeological data available for the communities that occupied these near-coastal areas during the Holocene. This model of diachronous footprint surfaces has implications for other soft-sediment footprint sites such as the 1.5 Ma old footprints at Ileret (Kenya). The distribution of both human and animal tracks, is consistent with the passage of small flock of small ungulates (probably sheep/goats) followed by a group of approximately 9 ± 2 individuals (children or young adults). Age estimates from the tracks suggest that some of the individuals may have been as young as five years old. Variation in track topology across this sedimentologically uniform surface is explained in terms of variations in gait and weight/stature of the individual print makers and is used to corroborate a model of footprint morphology developed at a nearby site. The significance of the site within the literature on human footprints lies in the quality of the track preservation, their topological variability despite a potentially uniform substrate, and the small size of the tracks, and therefore the inferred young age of the track-makers. The site provides an emotive insight into the life of the track-makers.

  14. Last Glacial Maximum to Holocene climate evolution controlled by sea-level change, Leeuwin Current, and Australian Monsoon in the Northwestern Australia (United States)

    Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.


    The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.

  15. Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks (United States)

    Franke, Jasper G.; Werner, Johannes P.; Donner, Reik V.


    Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.

  16. A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya.

    Directory of Open Access Journals (Sweden)

    Colin J Courtney Mustaphi

    Full Text Available High-elevation ecosystems, such as those on Mount Kenya are undergoing significant changes, with accelerated glacial ice losses over the twentieth century creating new space for alpine plants to establish. These ecosystems respond rapidly to climatic variability and within decades of glacial retreat, Afroalpine pioneering taxa stabilize barren land and facilitate soil development, promoting complex patches of alpine vegetation. Periglacial lake sediment records can be used to examine centennial and millennial scale variations in alpine and montane vegetation compositions. Here we present a 5300-year composite pollen record from an alpine tarn (4370 m asl in the Hausberg Valley of Mount Kenya. Overall, the record shows little apparent variation in the pollen assemblage through time with abundant montane forest taxa derived and transported from mid elevations, notably high abundances of aerophilous Podocarpus pollen. Afroalpine taxa included Alchemilla, Helichrysum and Dendrosenecio-type, reflecting local vegetation cover. Pollen from the ericaceous zone was present throughout the record and Poaceae percentages were high, similar to other high elevation pollen records from eastern Africa. The Oblong Tarn record pollen assemblage composition and abundances of Podocarpus and Poaceae since the late Holocene (~4000 cal yr BP-present are similar to pollen records from mid-to-high elevation sites of nearby high mountains such as Mount Elgon and Kilimanjaro. These results suggest a significant amount of uphill pollen transport with only minor apparent variation in local taxa. Slight decreasing trends in alpine and ericaceous taxonomic groups show a long-term response to global late Holocene cooling and a step decrease in rate of change estimated from the pollen assemblages at 3100 cal yr BP in response to regional hydroclimatic variability. Changes in the principal component axis scores of the pollen assemblage were coherent with an independent mid

  17. Holocene climate aridification trend and human impact interrupted by millennial- and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula) (United States)

    Ramos-Román, María J.; Jiménez-Moreno, Gonzalo; Camuera, Jon; García-Alix, Antonio; Anderson, R. Scott; Jiménez-Espejo, Francisco J.; Carrión, José S.


    Holocene centennial-scale paleoenvironmental variability has been described in a multiproxy analysis (i.e., lithology, geochemistry, macrofossil, and microfossil analyses) of a paleoecological record from the Padul Basin in Sierra Nevada, southern Iberian Peninsula. This sequence covers a relevant time interval hitherto unreported in the studies of the Padul sedimentary sequence. The ˜ 4700-year record has preserved proxies of climate variability, with vegetation, lake levels, and sedimentological change during the Holocene in one of the most unique and southernmost wetlands in Europe. The progressive middle and late Holocene trend toward arid conditions identified by numerous authors in the western Mediterranean region, mostly related to a decrease in summer insolation, is also documented in this record; here it is also superimposed by centennial-scale variability in humidity. In turn, this record shows centennial-scale climate oscillations in temperature that correlate with well-known climatic events during the late Holocene in the western Mediterranean region, synchronous with variability in solar and atmospheric dynamics. The multiproxy Padul record first shows a transition from a relatively humid middle Holocene in the western Mediterranean region to more aridity from ˜ 4700 to ˜ 2800 cal yr BP. A relatively warm and humid period occurred between ˜ 2600 and ˜ 1600 cal yr BP, coinciding with persistent negative North Atlantic Oscillation (NAO) conditions and the historic Iberian-Roman Humid Period. Enhanced arid conditions, co-occurring with overall positive NAO conditions and increasing solar activity, are observed between ˜ 1550 and ˜ 450 cal yr BP (˜ 400 to ˜ 1400 CE) and colder and warmer conditions occurred during the Dark Ages and Medieval Climate Anomaly (MCA), respectively. Slightly wetter conditions took place during the end of the MCA and the first part of the Little Ice Age, which could be related to a change towards negative NAO conditions

  18. Assessing Covariation of Holocene Monsoon Intensity and Local Moisture Conditions in Eastern and Southwestern Amazon Basin Using Speleothem δ18O and 87Sr/86Sr Values (United States)

    Ward, B. M.; Wong, C. I.; Novello, V. F.; Silva, L.; McGee, D.; Cheng, H.; Wang, X.; Edwards, R. L.; Cruz, F. W., Sr.; Santos, R. V.


    δ18O records from South America offer insight into past variability of the South American Monsoon System (SAMS). Potential, however, for understanding local moisture conditions is limited as precipitation δ18O is strongly influenced by regional climate dynamics. Here we create Holocene speleothem 87Sr/86Sr records at 200-yr resolution using TIMS methods in the Center for Isotope Geochemistry at Boston College to complement existing Holocene δ18O speleothem records and investigate local moisture conditions above caves located in the eastern Amazon Basin (PAR - 4°S, 55°W) and southwestern Brazil (JAR - 21°S, 56°W). Speleothem 87Sr/86Sr variability is interpreted to reflect differences in the extent of water-rock interaction due to differences in infiltration rates under wet and dry conditions. Drier conditions promote longer residence time, enhanced water-rock interaction, and greater evolution of dripwater 87Sr/86Sr values from an initial isotopic signature acquired from the soil to the signature of the cave host rock. PAR speleothem 87Sr/86Sr values range from 0.71024 to 0.71067 and are bracketed by soil (0.71710 to 0.70956) and bedrock (0.70852 to 0.70899) values. JAR speleothem 87Sr/86Sr values range from 0.71216 to 0.71539 and are greater than bedrock values (0.70825 to 0.71219), although some speleothem values exceed the single analysis conducted of the soil isotopic composition (0.71473). JAR speleothem 87Sr/86Sr values increase from the early to mid Holocene, consistent with increase in local moisture availability associated with intensification of the SAMS suggested by decreasing δ18O values in many records from the region. Speleothem 87Sr/86Sr values at JAR decrease from the mid to late Holocene, consistent with an increase in δ18O values at PAR that suggest a decline in monsoon intensity. 87Sr/86Sr variability at JAR, however, is positively correlated with the δ18O record. Preliminary 87Sr/86Sr results from PAR are only broadly consistent with

  19. Holocene climate aridification trend and human impact interrupted by millennial- and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. J. Ramos-Román


    Full Text Available Holocene centennial-scale paleoenvironmental variability has been described in a multiproxy analysis (i.e., lithology, geochemistry, macrofossil, and microfossil analyses of a paleoecological record from the Padul Basin in Sierra Nevada, southern Iberian Peninsula. This sequence covers a relevant time interval hitherto unreported in the studies of the Padul sedimentary sequence. The  ∼  4700-year record has preserved proxies of climate variability, with vegetation, lake levels, and sedimentological change during the Holocene in one of the most unique and southernmost wetlands in Europe. The progressive middle and late Holocene trend toward arid conditions identified by numerous authors in the western Mediterranean region, mostly related to a decrease in summer insolation, is also documented in this record; here it is also superimposed by centennial-scale variability in humidity. In turn, this record shows centennial-scale climate oscillations in temperature that correlate with well-known climatic events during the late Holocene in the western Mediterranean region, synchronous with variability in solar and atmospheric dynamics. The multiproxy Padul record first shows a transition from a relatively humid middle Holocene in the western Mediterranean region to more aridity from  ∼  4700 to  ∼  2800 cal yr BP. A relatively warm and humid period occurred between  ∼  2600 and  ∼  1600 cal yr BP, coinciding with persistent negative North Atlantic Oscillation (NAO conditions and the historic Iberian–Roman Humid Period. Enhanced arid conditions, co-occurring with overall positive NAO conditions and increasing solar activity, are observed between  ∼  1550 and  ∼  450 cal yr BP (∼  400 to  ∼  1400 CE and colder and warmer conditions occurred during the Dark Ages and Medieval Climate Anomaly (MCA, respectively. Slightly wetter conditions took place during the end of

  20. Comparison of Forced ENSO-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene (United States)

    Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell


    Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.

  1. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe) (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas


    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  2. Holocene tephrostratigraphy of southern Chiloé Continental (Andean southern volcanic zone; ~43°S), Chile (United States)

    Lachowycz, S.; Smith, V. C.; Pyle, D. M.; Mather, T. A.


    The eruptive history of the volcanoes in the southern part of the Andean Southern Volcanic Zone (42.5-45°S) is very poorly constrained: only several late Quaternary eruptions have been identified, mostly from study of sparse roadcuts [1]. In this study, we further constrain the Holocene explosive eruption history around 43°S by identifying and analysing tephra layers preserved in a ~3.25m long peat core from Cuesta Moraga [2], ~35km east of Yanteles volcano. Cryptotephra was extracted following the method of [3], in addition to macrotephra; owing to the vicinity of the sampling site to the tephra sources, cryptotephra was found throughout the core stratigraphy, but was sufficiently variable in concentration that discrete layers were identifiable and attributed to specific eruptions. Chemical analysis of the glass by electron microprobe shows that the tephra layers originate from a number of volcanoes in the region. This new tephrostratigraphy improves our knowledge of the important history of explosive volcanism in this area, potentially tying the tephrostratigraphies of surrounding areas (e.g., [4]) and allowing improved evaluation of regional volcanic risk. [1] Naranjo, J.A.., and C. R. Stern, 2004. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista geológica de Chile, 31, pp. 225-240. [2] Heusser, C.J., et al., 1992. Paleoecology of late Quaterary deposits in Chiloé Continental, Chile. Revista Chilena de Historia Natural, 65, pp. 235-245. [3] Blockley, S.P.E., et al., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24, pp. 1952-1960. [4] Watt, S.F.L., et al., 2011. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ~42°S), southern Chile. Quaternary International, 246, pp. 324-343.

  3. Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene

    NARCIS (Netherlands)

    Warden, L.A.; van der Meer, M.T.J.; Moros, Matthias; Sinninghe Damsté, J.S.


    The Baltic Sea has had a complex salinity history since the last deglaciation. Here we show how distributions of alkenones and their δD values varied with past fluctuations in salinity in the Baltic Sea over the Holocene by examining a Holocene record (11.2–0.1 cal kyr BP) from the Arkona Basin.

  4. Non-uniform and diachronous Holocene floodplain evolution: a case study from the Dijle catchment, Belgium

    NARCIS (Netherlands)

    Broothaerts, N.; Notebaert, B.; Verstraeten, G.; Kasse, C.; Bohncke, S.J.P.; Vandenberghe, J.


    Fluvial architecture changed under the influence of increasing human impact throughout the Holocene in many north-west European catchments. Typically, peat formation - in a marshy environment during the Early and Middle Holocene - is replaced by clastic overbank deposition. In this study we show the

  5. Timing, cause and consequences of mid-Holocene climate transition in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Naik, Dinesh K.; Nigam, R.; Gaur, A.S.

    -50,000 years cal BP. Radiocarbon 51, 1111-1150. Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., Sadori, L., 2011. The mid-Holocene climatic transition in the Mediterranean: Causes and consequences. The Holocene 21, 3-13. Ruddiman, W.F., Ellis, E...

  6. Paleoclimatic and paleoenvironmental reconstruction for middle and late holocene in Uruguay southeastern New contributions

    International Nuclear Information System (INIS)

    Del Puerto, L.; Bracco, R.; Inda, H.; Garcia, F.; Panario, D.; Castineira, C.; Capdepont, I.


    This work is about the study carried out within the framework of the environmental evolution and the prehistoric human occupation on coastal lagoons in the east of Uruguay. The analysis of the sediments in the zone enable the reconstruction of the Holocene climate history as well as the construction of the Paleoclimatic and paleoenvironmental model belong to the middle and late Holocene

  7. Holocene river history of the Danube: human-environment interactions on its islands in Hungary (United States)

    Viczián, István; Balogh, János; Kis, Éva; Szeberényi, József


    A change in the frequency and magnitude of floods is the main response of river systems to climatic change. Natural floods are highly sensitive to even modest changes of climate. The discharge and the characteristics of floods basically determine the floodplain evolution and the feasibility of human land use and inhabitation on the islands and floodplains. The study revealed that those small islands of large rivers which have the surface rising only some meters above the river are particularly suitable research objects of Holocene climate variability as they are exposed to floods, react sensitively to environmental changes and their evolution may be paralleled with human history. The research area covers the islands of the Danube along the river between Komárom and Paks in Hungary, which is about 250 km, includes more than 50 smaller or formerly existing islands and two extensive islands: the Szentendre Island and Csepel Island. Data gathered from 570 archaeological sites of those islands from Neolithic to Modern Ages were analysed and interpreted in accordance with climate history and floodplain evolution. Nevertheless, the study is not only about river and its environmental history but it demonstrates the role of river and climatic variability in the history of mankind. The environment of the floodplain, the river hydrology, the sedimentation, the formation of islands and the incision and aggradation of surrounding riverbeds, the frequency of devastating floods have significantly changed through the historical time periods, which is reflected in the number and locations of archaeological sites on the islands. Their occupation history reflects the changes in discharge, climate, geomorphology, floods and human impacts and indicates historical periods with low or high probability of inundation. The most favourable periods for an island's occupation concerning the flood risk of its surfaces - and consequently of the banks along the river - are the first parts of a

  8. Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region (United States)

    Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin


    Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.

  9. The Holocene Geoarchaeology of the Desert Nile in Northern Sudan (United States)

    Woodward, Jamie; Macklin, Mark; Spencer, Neal; Welsby, Derek; Dalton, Matthew; Hay, Sophie; Hardy, Andrew


    Invited Paper Forty years ago Colin Renfrew declared that "every archaeological problem starts as a problem in geoarchaeology" (Renfrew, 1976 p. 2). With this assertion in mind, this paper draws upon the findings from field research in two sectors of the Nile Valley of Northern Sudan dedicated to the exploration of human-environment interactions during the middle and late Holocene. This part of the Nile corridor contains a rich cultural record and an exceptionally well preserved Holocene fluvial archive. A distinctive feature of these records is the variety of evidence for interaction between desert and river over a range of spatial and temporal scales. This interaction presented both challenges and opportunities for its ancient inhabitants. This paper will present evidence for large-scale landscape changes driven by shifts in global climate. It will also show how we have integrated the archaeological and geological records in the Northern Dongola Reach and at Amara West - where long-term field projects led by archaeologists from the British Museum have recognised the importance of a sustained commitment to interdisciplinary research to achieve a fully integrated geoarchaeological approach across a range of scales. The former project is a large-scale landscape survey with multiple sites across an 80 km reach of the Nile whilst the latter has a strong focus on a single New Kingdom town site and changes in its environmental setting. By combining multiple archaeological and geological datasets - and pioneering the use of OSL dating and strontium isotope analysis in the Desert Nile - we have developed a new understanding of human responses to Holocene climate and landscape change in this region. Renfrew, C. (1976) Archaeology and the earth sciences. In: D.A. Davidson and M.I. Shackley (eds) Geoarchaeology: Earth Science and the Past, Duckworth, London, 1-5.

  10. Holocene closure of Lib Pond, Marshall Islands.

    Directory of Open Access Journals (Sweden)

    Conor L Myhrvold

    Full Text Available Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ and El Niño Southern Oscillation (ENSO. We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  11. Holocene closure of Lib Pond, Marshall Islands. (United States)

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P


    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  12. Palynological Investigation of the Holocene Thermal Optimum in New Zealand (United States)

    Newnham, R. M.; McGlone, M. S.; Wilmshurst, J. M.


    It has long been assumed in New Zealand (NZ) that the Holocene Thermal Optimum (HTO) occurred at the beginning of the Holocene. Nearly 40 years ago, Hendy and Wilson pioneered the use of 18O/16O composition of calcite in NZ speleothems to reconstruct past climate and in so doing showed an HTO occurring earlier in NZ than in comparable Northern Hemisphere records (Hendy & Wilson,1968). More recent work on NZ speleothems (Williams et al., 2005) corroborates the concept of an early HTO dated between ca 11.7 and 10.6 ka, but there is no definitive description of the event as a NZ-wide phenomenon, no intensive dating of it, nor temperature quantification. Moreover, there is no firm conclusion as to whether it is registered consistently between different proxies and across NZ regions. Until recently, attempts to quantify past climate change from NZ pollen data have been hindered by failure to demonstrate robust relationships between modern pollen assemblages and climate due, it is thought, to strong anthropogenic modification of natural vegetation patterns and steep climatic gradients (Norton et al., 1986). However, as deforestation commenced only ca 700 years ago, and is unambiguously detected in pollen records from throughout NZ, an almost unique opportunity exists to develop pollen-climate transfer functions using pre-human pollen-vegetation sources. McGlone and Wilmshurst have assembled an extensive (138-site) `modern' pollen database, based on ca 700 yr BP pre-deforestation pollen assemblages from peat and lake cores. This now provides a basis for more secure pollen-climate reconstruction than hitherto has been possible. Statistical modelling of the environmental determinants of patterns in the pre-deforestation pollen database indicates the strongest relationship (r2 > 0.8) is with Mean Annual Temperature (MAT) and suggests that this parameter can be reliably reconstructed, with error estimates, from Late Quaternary NZ pollen profiles. We use this database to

  13. Changes in Holocene relative sea-level and coastal morphology

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Sander, Lasse; Clemmensen, Lars B


    Changes in relative sea-level (RSL) during the Holocene are reconstructed based on ground-penetrating radar (GPR) data collected across a raised beach ridge system on the island of Samsø, Denmark. The internal architecture of the beach ridge and swale deposits is divided into characteristic radar...... ridge progradation through time. The vertical levels of identified downlap points are combined with an age model based on optically stimulated luminescence-dated samples to reconstruct RSL for the past c. 5000 years. Overall, the reconstruction shows that the period between c. 4800 and 3800 yr BP...

  14. Appalachian Piedmont landscapes from the Permian to the Holocene (United States)

    Cleaves, E.T.


    Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast

  15. Reconciling divergent trends and millennial variations in Holocene temperatures (United States)

    Marsicek, Jeremiah; Shuman, Bryan N.; Bartlein, Patrick J.; Shafer, Sarah L.; Brewer, Simon


    Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in ‘growing degree days’—a measure of the accumulated warmth above five degrees Celsius per year—of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that

  16. Holocene glaciation of the central Sierra Nevada, California (United States)

    Bowerman, Nicole D.; Clark, Douglas H.


    Sediment cores from two bedrock-dammed lakes in North Fork Big Pine Creek, Sierra Nevada, California, preserve the most detailed and complete record of Holocene glaciation yet recovered in the region. The lakes are fed by outwash from the Palisade Glacier, the largest (˜1.3 km 2) and presumably longest-lived glacier in the range, and capture essentially all of the rock flour it produces. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. The lakes have therefore received continuous sedimentation from the basin since the retreat of the Tioga glacier (Last Glacial Maximum) and capture rock flour related to all post-LGM advances. A total of eight long cores (up to 5.5 m sediment depth) and one short surface sediment short core preserve a coherent record of fluctuating rock flour flux to the lakes through the Holocene. Age constraints on rock flour spikes in First and Second lakes based on 31 14C-dated macrofossils indicate Holocene glaciation began ˜3200 cal yr B P, followed by a possible glacier maximum at ˜2800 cal yr B P and four distinct glacier maxima at ˜2200, ˜1600, ˜700 and ˜250-170 cal yr. B.P., the most recent maximum being the largest. Reconstruction of the equilibrium-line altitudes (ELA) associated with each distinct advance recorded in the moraines (Recess Peak, Matthes, and modern) indicates ELA depressions (relative to modern) of ˜250 m and 90 m for Recess Peak and Matthes advances, respectively. These differences represent decreases in summer temperatures of 1.7-2.8 °C (Recess Peak) and 0.2-2° (Matthes), and increases in winter precipitation of 22-34 cm snow water equivalent (s.w.e.) (Recess Peak) and 3-26 cm s.w.e. (Matthes) compared to modern conditions. Although small, these changes are significant and similar to those noted in the Cascade Range to the north, and represent a significant departure from historical climate trends in the region.

  17. New data for natural situation of Prebaikal region in holocene

    International Nuclear Information System (INIS)

    Kuz'min, S.B.; Dan'ko, L.V.; Snytko, V.A.; Bezrukova, E.V.; Orlova, L.A.


    On the basis of the radiocarbon dating data one performed a comprehensive study of the paragenetic series of loose deposits of the layers located in the Baikal Lake western coast central part. The main changes of the natural situations of the Baikal Lake region in the holocene were revealed to take place in the early Subatlantic period (2290+-90 14 C years ago), in the latter half of the Medieval optimum (1410 - 1040+-60 14 C years ago) and in the Cryogenic period (885+-30 - 365+-30 14 C years ago) [ru

  18. Vegetation and land carbon feedbacks in the high-resolution transient Holocene simulations using the MPI Earth system model (United States)

    Brovkin, Victor; Lorenz, Stephan; Raddatz, Thomas


    Plants influence climate through changes in the land surface biophysics (albedo, transpiration) and concentrations of the atmospheric greenhouse gases. One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon due to productivity decrease. This decadal- scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies. Members of the Hamburg Holocene Team: Jürgen Bader1, Sebastian Bathiany2, Victor Brovkin1, Martin Claussen1,3, Traute Cr

  19. Holocene environmental changes in northern Lebanon as inferred from a multiproxy study on lacustrine-palustrine sediment (United States)

    Vidal, Laurence; Jenna, Hage-Hassen; Demory, François; Develle, Anne-Lise; van Campo, Elise; Elias, Ata


    The reconstruction of the Levantine post-glacial environmental evolution is essential to understand the interactions between variability of regional water cycle, dynamics of the global climate, and cultural evolution. We present a paleolacustrine record from the karstic Yammouneh basin (34.06N-34.09N; 36.0E-36.03E, 1360 m a.s.l.), located on the eastern flank of Mount Lebanon (northern Levant). Holocene sediments (retrieved from gully and a trenbch) (1.5 to 3.6 m thick) consist of pale lacustrine chalk interrupted by an ash layer and remarkable centimetric beds of ocher to dark brown silty clays used, in addition to 14C ages, as stratigraphical markers. Lacustrine biogenic remains are diversified and abundant (ostracods, gastropods, charophytes, chlorophyceae, plant debris…) all reflecting a freswater, generally shallow waterbody. We analysed the sediment mineralogy and geochemistry, TOM contents, magnetic properties, pollen and calcite oxygen isotope composition derived from ostracod shells. These sequences are compared to former data from 2 trenches and 1 core collected in different points of the basin (Daeron et al., 2007; Develle et al., 2009, 2010). A total of 42 AMS 14C dating (partly carbonized wood) provide a solid chronology from the YD to present. Results reveal the following main features : 1- intervals dominated by authigenic calcite suggest that the major water supply was the karstic springs, which still deliver Ca-rich water and low surface runoff; 2- the lake oxygen isotope composition has been impacted by the source isotope composition throughout the Holocene and by increased inland rainfall during the early Holocene; 3- a decideous oak forest, implying much more soil water availability than today, was developed around the lake from ca. 11.5 to 9.5 kyr (the very bad pollen preservation after 8.3 kyr reflects oxidation or frequent oscillations of the water level); 4- four paleosols evidenced from lithofacies and magnetic properties are identified

  20. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model (United States)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.


    -scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies.

  1. Reconstructing Holocene hematite and goethite variations in the Indus Canyon to trace changes in the Asian monsoon system (United States)

    Koehler, Cornelia; Clift, Peter; Pressling, Nicola; Limmer, David; Giosan, Liviu; Tabrez, Ali


    In order to study Holocene Asian monsoon variations, we reconstructed changes in chemical weathering by examining sediments from the Indus Canyon. During the late Holocene, the Asian monsoon system had periods of high and low intensities that influenced the civilisations living in its realm. For example, the demise of the Harappan civilisation has been linked to a weakened monsoon system around 4 ka. The sediments in the Indus Canyon, which originate from the River Indus and its Himalayan tributaries, provide an ideal, natural environmental archive of the South Asian monsoon system. In order to investigate the alternation between arid and humid monsoonal climatic conditions, variations are traced using the magnetic minerals hematite and goethite, which form under distinct environmental conditions: goethite is stable under humid conditions, whereas hematite forms from the dehydration of goethite under arid conditions. The two minerals are characterised and quantified using environmental magnetic measurements, as well as diffuse reflectance spectrometry. Combining both approaches will enable us to reconstruct variations in chemical weathering over time. Furthermore, because this is governed by temperature and the availability of moisture, our weathering record will allow us to understand monsoon variability during the Holocene and test whether summer rain intensity has been decreasing in SW Asia since 8 ka. In addition, the multi-component analysis of colour reflectance spectra identifies different mineral components including hematite/goethite, clay mineral mixtures, calcite and organics. We will present our results from the multi-sensor core logger equipped with a Minolta spectrometer, measuring both magnetic susceptibility and the optical properties of the split sediment cores. Initial results indicate the presence of hematite and goethite in the sediment. There is an increasing hematite content up the cores, indicating an aridification trend during the Holocene

  2. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec (United States)

    Andy, H.; Blarquez, O.; Grondin, P.


    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem

  3. Late Holocene monsoon climate as evidenced by proxy records from a lacustrine sediment sequence in western Guangdong, South China (United States)

    Zhong, Wei; Cao, jiayuan; Xue, Jibin; Ouyang, Jun; Tang, Xiaohong; Yin, Huanling; Liao, Congyun; Long, Kun


    The study of a 300-cm-thick exposed lacustrine sediment section in the Hedong village in Zhaoqing area which is located in sub-tropical west Guangdong Province in South China, demonstrates that the lacustrine sedimentary sequence possibly contains evidence for exploring variation of Asian monsoon climate. Multi-proxy records, including the humification intensity, total organic carbon, and grain size fractions, reveal a general trend towards dry and cold conditions in the late Holocene that this is because of a decrease in solar insolation on an orbital scale. Three intensified Asian summer monsoon (ASM) intervals (˜3300-3000 cal yr BP, ˜2600-1600 cal yr BP, and ˜900-600 cal yr BP), and three weakened ASM intervals (˜4000-3300 cal yr BP, ˜3000-2600 cal yr BP, and ˜1600-900 cal yr BP) are identified. Our humification record (HDcal) shows a good correlation on multi-centennial scale with the tree ring Δ14C record, a proxy of solar activity. A spectral analysis of HDcal reveals four significant cycles, i.e., ˜1250 yr, 300 yr, 110 yr, and 70 yr, and most of these cycles are related to the solar activity. Our findings indicate that solar output and oceanic-atmospheric circulation probably have influenced the late Holocene climate variability in the study region.

  4. Sediment records of Yellow River channel migration and Holocene environmental evolution of the Hetao Plain, northern China (United States)

    Wang, Jingzhong; Wu, Jinglu; Pan, Baotian; Jia, Hongjuan; Li, Xiao; Wei, Hao


    The origin and evolution of lakes in the Hetao Plain, northern China, were influenced by climate variation, channel migration, and human activity. We analyzed a suite of sediment cores from the region to investigate Yellow River channel migration and environmental change in this region over the Holocene. Short sediment cores show that environmental indicators changed markedly around CE 1850, a time that corresponds to flood events, when large amounts of river water accumulated in the western part of the Hetao Plain, giving rise to abundant small lakes. Multiple sediment variables (environmental proxies) from two long cores collected in the Tushenze Paleolake area show that sediments deposited between 12.0 and 9.0 cal ka BP were yellow clay, indicative of fluvial deposition and channel migration. From 9.0 to 7.5 cal ka BP, sand was deposited, reflecting a desert environment. From 7.5 to 2.2 cal ka BP, however, the sediments were blue-gray clay that represents lacustrine facies of Lake Tushenze, which owes its origin to an increase in strength of the East Asian monsoon. At about 2.2 cal ka BP, the north branch of the Yellow River was flooded, and the Tushenze Paleolake developed further. Around 2.0 cal ka BP, the paleolake shrank and eolian sedimentation was recorded. The analyzed sediment records are consistent with the written history from the region, which documents channel migration and environmental changes in the Hetao Plain over the Holocene.

  5. Mid-Holocene Strengthening of the Bering Strait Inflow to the Arctic and its Linkage With the North Atlantic Subpolar Gyre Circulation (United States)

    Yamamoto, M.; Nam, S. I.; Polyak, L.; Kobayashi, D.; Suzuki, K.; Irino, T.; Shimada, K.


    The Bering Strait inflow (BSI) is an important element of the Arctic Ocean circulation system. We report records of the chlorite/illite ratios in three sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BSI during the Holocene. The BSI approximation by the chlorite/illite record, despite a considerable geographic variability, consistently shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of higher atmospheric pressure over the Aleutian Basin. The intensified BSI was associated with decrease in sea-ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting a major influence of the BSI on sea-ice and biological conditions in the Chukchi Sea. Multi-century to millennial fluctuations, presumably controlled by solar activity, were also identified. This middle Holocene strengthening of the BSI was coeval with intense subpolar gyre circulation in the North Atlantic. We propose that the BSI is linked with the North Atlantic circulation via an atmospheric teleconnection between the Aleutian and Icelandic Lows.

  6. Holocene tephra deposits in the northern Okinawa Trough

    Institute of Scientific and Technical Information of China (English)


    The mineralogical and geochemical characteristics of sediments of Core CSH1, which was collected from the northern Okinawa Trough, indicate that large amounts of volcanic materials have deposited in the northern Okinawa Trough during the Holocene. On the basis of down-core variations in mineral and element contents of sediments, two layers in the uppermost section of Core CSH1 characterized by high quartz, Na2O, MnO, K2O, uranium contents and low contents of clay minerals, volatiles, Fe2O3, MgO, CaO and strontium, have been identified as the tephra deposits. Systematic grain-size measurements also suggest that sediments from the northern Okinawa Trough are made up of terrigenous materials and volcanic ashes with different proportion during the Holocene. The sediments of tephra layers in Core CSH1 show bi-modal patterns in grain-size distribution with modal grain-sizes of 74.3 and 7.81 μm,respectively. According to the radiocarbon dating on shells of zooplankton foraminifera, two tephra layers in Core CSH1, formed at 7 250 and 10 870 a BP (cal), approximately correspond to the K-Ah tephra [7 300 a BP (cal)] and the eruption of Kuju Volcano (12~10 ka BP), respectively.

  7. Global monsoons in the mid-Holocene and oceanic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Kutzbach, J. [Center for Climatic Research, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, WI 53706 (United States); Harrison, S.P. [Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena (Germany); Otto-Bliesner, B. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307 (United States)


    The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. (orig.)

  8. Holocene sea-level fluctuation in the southern hemisphere (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  9. Late Pleistocene and Holocene mammal extinctions on continental Africa (United States)

    Faith, J. Tyler


    Understanding the cause of late Quaternary mammal extinctions is the subject of intense debate spanning the fields of archeology and paleontology. In the global context, the losses on continental Africa have received little attention and are poorly understood. This study aims to inspire new discussion of African extinctions through a review of the extinct species and the chronology and possible causes of those extinctions. There are at least 24 large mammal (> 5 kg) species known to have disappeared from continental Africa during the late Pleistocene or Holocene, indicating a much greater taxonomic breadth than previously recognized. Among the better sampled taxa, these losses are restricted to the terminal Pleistocene and early Holocene, between 13,000 and 6000 yrs ago. The African extinctions preferentially affected species that are grazers or prefer grasslands. Where good terrestrial paleoenvironmental records are present, extinctions are associated with changes in the availability, productivity, or structure of grassland habitats, suggesting that environmental changes played a decisive role in the losses. In the broader evolutionary context, these extinctions represent recent examples of selective taxonomic winnowing characterized by the loss of grassland specialists and the establishment of large mammal communities composed of more ecologically flexible taxa over the last million years. There is little reason to believe that humans played an important role in African extinctions.

  10. Optimal estimation of atmospheric {sup 14}C production over the Holocene: paleoclimate implications

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, Olivier [Woods Hole Oceanographic Institution, Department of Geology and Geophysics, Woods Hole, MA (United States)


    A tree-ring {delta}{sup 14}C record and a simple box model of the global {sup 14}C cycle are combined using a method of optimal estimation theory (Rauch-Tung-Striebel smoother). The combination is used to infer information about the time evolution of {sup 14}C production in the atmosphere (P) for the period 9400 year BCto AD1900 year. Unlike previous attempts to infer P changes from the tree-ring record, the errors in both the {delta}{sup 14}C data and the model, which are assumed to be purely random (not systematic), are formally considered. The optimal time evolution of P is compared to independent evidence of changes in cosmogenic nuclide production over the Holocene from a variety of records on their original chronology, e.g., a record of the virtual axial dipole moment (VADM) based on a compilation of archeomagnetic data, the record of {sup 10}Be concentration from the GISP2 ice core (Central Greenland), and the record of {sup 10}Be concentration from the PS1 ice core (South Pole). The rank correlations between P - VADM,P - {sup 10}Be(GISP2), and P - {sup 10}Be(PS1) are highly significant (p< 0.01), indicating that geomagnetic field intensity and {sup 10}Be concentration in GISP2 and PS1 changed monotonically with {sup 14}C production. The linear correlation coefficients between P - VADM,P - {sup 10}Be(GISP2), and P - {sup 10}Be(PS1) are also highly significant (p<0.01) but relatively small (-0.76, 0.48, and 0.60, respectively). Thus, an important fraction (42-77%) of the variance in the geomagnetic and {sup 10}Be data is not accounted for by linear regression on the {sup 14}C productions implied by the tree-ring record. The P variance near the 1500 yr period, which previous authors interpreted as solar variability, represents a small fraction of the total variance in the P time series (<15% for the band 1200-1800 yr) and does not correspond to a spectral peak. Hence, the hypothesis of a direct solar forcing mechanism for the postulated millennial climate

  11. Pleistocene and Holocene Iberian flora: a complete picture and review (United States)

    González Sampériz, Penélope


    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic

  12. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA (United States)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.


    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced

  13. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations (United States)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.


    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level

  14. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy) (United States)

    Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy


    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco-Roman land use and fire. Ostracode valve geochemistry (Sr/Ca, δ18O) suggests significant changes in early vs. late Holocene hydrochemistry, either as changes in salinity or in the seasonality of precipitation. Harmonizing the autecological and geochemical data from Gorgo Basso suggests the latter was more likely, with relatively more late Holocene precipitation falling during the spring, summer, and fall, than winter compared to the early Holocene. Our ostracode-inferred paleosalinity data indicate that moisture availability did not decline during the late Holocene in the central Mediterranean region. Instead, moisture availability was lowest during the early Holocene, and most abundant during the late Holocene.

  15. Variability in north tropical atlantic over the last 20 000 years and holocene gulf stream activity; Variabilite au cours des derniers 20 000 ans de l'hydrologie de l'atlantique tropical nord et de l'activite du gulf stream a partir de la composition isotopique de l'oxygene et de la composition en elements trace des foraminferes planctoniques profonds

    Energy Technology Data Exchange (ETDEWEB)

    Cleroux, C


    Modern oceanographical studies shown that most of the ocean heat content in the North Atlantic Western Boundary Current region is stored in the upper 400 meters. To study past heat content and Gulf Stream activity, we performed coupled analyses of oxygen isotopic and trace elemental composition on several foraminifera species to reconstruct upper water column temperature and salinity. Calcification depths of Globorotalia inflata, Globorotalia truncatulinoides and Pulleniatina obliquiloculata have been constrain by correlating modern hydrographic data to oxygen isotopic measurement of North Atlantic core-top samples. We found that the three deep-dwelling foraminifera species have a preferred habitat at the base of the seasonal thermocline (Cleroux et al, 2007). The same set of North Atlantic core-tops has been used to define relationships between trace elemental compositions and temperature. We established calibrations between Mg/Ca ratio or Sr/Ca ratio and temperature for the three deep-dwelling foraminifera (Cleroux et al, submitted). We apply this strategy on the core MD99-2203 located off Cape Hatteras where the Gulf Stream separate from the United States coast. High-resolution surface reconstructions over the Holocene show low amplitude periodic temperature and salinity changes that could be related to NAO type mechanisms. Large hydrological changes in sub-surface reflect variations of Labrador current and Mode Water influences. Using recent studies on Mode Water formation and Gulf Stream heat advection, we interpret our results in term of ocean heat content and Gulf Stream activity. (author)

  16. Contrasting evidence of Holocene ice margin retreat, south-western Greenland

    DEFF Research Database (Denmark)

    Levy, L. B.; Larsen, N. K.; Davidson, T. A.


    Constraining the Greenland Ice Sheet's (GrIS) response to Holocene climate change provides calibrations for ice sheet models that hindcast past ice margin fluctuations. Ice sheet models predict enhanced ice retreat in south-western Greenland during the middle Holocene; however, few geological...... observations corroborating the extensive retreat are available. We present new data from lake sediment cores from the Isua region, south-western Greenland, which provide constraints on Holocene fluctuations of the GrIS margins. Our data indicate that the main GrIS margin was 30 km west of its present...

  17. Reconstructing Holocene (sub)tropical climate and cyclone variability using geochemical proxies

    NARCIS (Netherlands)

    van Soelen, E.E.


    Anthropogenic greenhouse gas emissions are responsible for a warming trend that cannot easily be reversed. This warming trend is expected to have a large impact on global weather patterns and local environmental conditions, for example by changing precipitation patterns, sea level rise and

  18. Reconstructing Holocene (sub)tropical climate and cyclone variability using geochemical proxies


    van Soelen, E.E.


    Anthropogenic greenhouse gas emissions are responsible for a warming trend that cannot easily be reversed. This warming trend is expected to have a large impact on global weather patterns and local environmental conditions, for example by changing precipitation patterns, sea level rise and increasing tropical cyclone activity. Therefore, (sub)tropical coastal regions are expected to be heavily impacted by future climate change. To improve our understanding of the possible consequences of futu...

  19. The Rhine-Meuse delta: a record of intra-Holocene variable sediment delivery

    NARCIS (Netherlands)

    Erkens, G.; Cohen, K.M.


    Human impact is shown to be of impressive scale and magnitude, and has to be regarded a forcing factor that acts drainage-basin wide already millennia ago. The quantified sedimentation rates and reconstructed sediment delivery highlight the importance of variation in received fluvial sediment

  20. Late Holocene climate variability from Lake Pupuke maar, Auckland, New Zealand (United States)

    Striewski, B.; Shulmeister, J.; Augustinus, P. C.; Soderholm, J.


    Spectral analyses of quasi-annual organo-diatomaceous laminae couplets in an Auckland maar lake indicate brief (sub-decadal scale) episodes with strong spectral power and long periods of weak to no spectral power between c. 1700 to c. 550 cal. yr BP. Laminae couplet thickness appears to be a function of changes in wind flow over the basin, with enhanced wind flow deepening the mixing zone and providing additional nutrients for laminae formation. Aeolian dust from Australia amplifies the wind signal. Spectral signals in the high power episodes are focused in Auckland climate whereby strongly negative (positive) ENSO are associated with enhanced (diminished) SW airflow over Auckland. ENSO events interact in the modern climate and the spectral results indicate that this is the case when spectral power is strong in the laminae. These results highlight strong but intermittent ENSO activity between 600 and 1400 cal. yr BP.

  1. Non-linearities in Holocene floodplain sediment storage (United States)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten


    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  2. Holocene evolution of the western Orinoco Delta, Venezuela (United States)

    Aslan, A.; White, W.A.; Warne, A.G.; Guevara, E.H.


    The pristine nature of the Orinoco Delta of eastern Venezuela provides unique opportunities to study the geologic processes and environments of a major tropical delta. Remote-sensing images, shallow cores, and radiocarbon-dating of organic remains form the basis for describing deltaic environments and interpreting the Holocene history of the delta. The Orinoco Delta can be subdivided into two major sectors. The southeast sector is dominated by the Rio Grande-the principal distributary-and complex networks of anastomosing fluvial and tidal channels. The abundance of siliciclastic deposits suggests that fluvial processes such as over-bank flooding strongly influence this part of the delta. In contrast, the northwest sector is represented by few major distributaries, and overbank sedimentation is less widespread relative to the southeast sector. Peat is abundant and occurs in herbaceous and forested swamps that are individually up to 200 km2 in area. Northwest-directed littoral currents transport large volumes of suspended sediment and produce prominent mudcapes along the northwest coast. Mapping of surface sediments, vegetation, and major landforms identified four principal geomorphic systems within the western delta plain: (1) distributary channels, (2) interdistributary flood basins, (3) fluvial-marine transitional environments, and (4) marine-influenced coastal environments. Coring and radiocarbon dating of deltaic deposits show that the northern delta shoreline has prograded 20-30 km during the late Holocene sea-level highstand. Progradation has been accomplished by a combination of distributary avulsion and mudcape progradation. This style of deltaic progradation differs markedly from other deltas such as the Mississippi where distributary avulsion leads to coastal land loss, rather than shoreline progradation. The key difference is that the Orinoco Delta coastal zone receives prodigious amounts of sediment from northwest-moving littoral currents that transport

  3. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia (United States)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang


    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  4. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson


    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  5. ENSO related decadal scale climate variability from the Indo-Pacific Warm Pool

    NARCIS (Netherlands)

    Brijker, J.M.; Jung, S.J.A.; Ganssen, G.M.; Bickert, T.; Kroon, D.


    The El Niño-Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of

  6. Holocene RSL variation on southwestern Disko Island (Greenland)

    DEFF Research Database (Denmark)

    Emerich Souza, Priscila; Nielsen, Lars; Kroon, Aart

    We investigate RSL variations during the Holocene in Lakse Bugt by assessing topography, internal structure, and luminescence ages of fossil beach ridges and the modern beach. Lakse Bugt (Bay) lies on the southwestern coast of Disko Island in a mesotidal regime and a mild wave climate. Beach ridges...... are widespread over the marine terrace, extending from ~40 above sea level (m asl). The most recent ridges terminate either at the beach or at the coastal sandy cliffs ~8 m asl immediately behind the modern beach. These ridges are covered mainly by rounded boulders; the terrain surfaces of the swales have...... clearly been deformed by freezing and thawing processes, in contrast to those of the ridge crests, which are relatively smooth. High-resolution reflection GPR data and high resolution topographical data were collected along cross-shore transects using a shielded 250 MHz antennae system and a DGPS system...

  7. Precision radiocarbon dating of a Late Holocene vegetation history

    International Nuclear Information System (INIS)

    Prior, C.A.; Chester, P.I.


    The purpose of this research is to precisely date vegetation changes associated with early human presence in the Hawkes Bay region. A sequence of AMS radiocarbon ages was obtained using a new technique developed at Rafter Radiocarbon Laboratory. A density separation method was used to concentrate pollen and spores extracted from unconsolidated lake sediments from a small-enclosed lake in coastal foothills of southern Hawkes Bay. Radiocarbon measurements were made on fractions of concentrated pollen, separated from associated organic debris. These ages directly date vegetation communities used to reconstruct the vegetation history of the region. This technique results in more accurate dating of Late Holocene vegetation changes interpreted from palynological analyses than techniques formerly used. Precision dating of palynological studies of New Zealand prehistory and history is necessary for correlation of vegetation changes to cultural changes because of the short time span of human occupation of New Zealand. (author). 35 refs., 3 figs., 1 tab

  8. Geologic records of Pleistocene, Holocene and Anthropocene beach profiles? (United States)

    Dougherty, Amy; Choi, Jeong-Heon; Dosseto, Anthony


    The Anthropocene Working Group recently concluded that we have entered a new Epoch; starting during the last century when carbon dioxide, temperatures, and sea level all exceeding previous Holocene measurements. Climate change models predict a 1m rise in sea-level by 2100 coupled with increased storm intensity. Determining how vulnerable coasts will respond to global warming in the future, requires past records of sea-level and storm impacts to be deciphered. Paying specific attention to any changes prior to, and since, the onset of the Industrial Revolution. Coastal change over centennial time-scales has long fallen within a knowledge gap that exists between our understanding of shoreline behaviour measured over decades and that inferred from the landscape over millennia. Insight on shoreline behaviour across spatial and temporal scales is gained using computers to integrate models of short-term morphodynamics along beaches with longer-term coastal landscape evolution models. However, limitations exist as process-based engineering models depend on wave climate and beach profile data that is restricted to regional/historical records, while large-scale coastal behaviour models are based on general chronostratographic data from topographic profiles, interpolated cores, and isochrons extrapolated from deep radiocarbon ages. Here we demonstrate a unique methodology combining state-of-the-art geophysics, luminescence, and remote sensing techniques on prograded barriers to extract comprehensive chronostratigraphic records. Ground Penetrating Radar (GPR) data document beach and dune stratigraphy at decimetre resolution. Optically Stimulated Luminescence (OSL) directly date the formation of paleo-beachfaces and dunes. Light Detection and Ranging (LiDAR) image the lateral extent of strandplain ridge morphology. The resulting record of paleo-beach profiles spanning from the present-day beach through Holocene and Pleistocene barriers, enables our in-depth understanding of


    Energy Technology Data Exchange (ETDEWEB)

    Lettis, William [William Lettis & Associates, Inc.


    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  10. Preliminary biogeochemical assessment of EPICA LGM and Holocene ice samples (United States)

    Bulat, S.; Alekhina, I.; Marie, D.; Wagenbach, D.; Raynaud, D.; Petit, J. R.


    We are investigating the biological content (biomass and microbial diversity of Aeolian origin) of EPICA ice core within the frame of EPICA Microbiology consortium*. Two ice core sections were selected from EPICA Dome C and Droning Maud Land, both from LGM and Holocene. Preliminary measurements of DOC (dissolved organic content) and microbial cell concentrations have been performed. Both analyses showed the very low biomass and ultra low DOC content. Trace DNA analyses are in a progress. The ice sections were decontaminated in LGGE cold and clean room facilities benefiting the protocol developed for Vostok ice core studies. The melt water was then shared between two party laboratories for a complementary approach in studying microbial content. Prior to biology the melt water was tested for chemical contaminant ions and organic acids, DOC and dust contents. The biological methods included all the spectra of appropriate molecular techniques (gDNA extraction, PCR, clone libraries and sequencing). As preliminary results, both LGM (well identified by dust fallout) and Holocene ice samples (EDC99 and EDML) proved to be extremely clear (i.e. pristine) in terms of biomass (less then 4 cells per ml) and DOC contents (less then 5 ppbC). There was no obvious difference between LGM and Holocene in cell counts, while LGM showed a bit high organic carbon content. The latter in terms of biology means ultra-oligotrophic conditions (i.e., no possibility for heterotrophic life style). In fact no metabolizing microbial cells or propagating populations are expected at these depths at temperature -38oC and lower (limiting life temperature threshold is -20°C). Nevertheless some life seeds brought in Antarctica with precipitation could be well preserved because the age is rather young (21 kyr and less). Trying to identify these aliens and document their distribution during last climate cycle the meltwater was concentrated about 1000 times down. The genomic DNA was extracted and very

  11. Reconstruction of the solar modulation parameter during the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Klaudia; Heber, Bernd [Christian-Albrechts-Universitaet zu Kiel, D-24118 Kiel, Kiel (Germany); Beer, Juerg [Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Duebendorf (Switzerland)


    On their way through the interplanetary space the intensity of galactic cosmic rays is modulated by the solar activity. In the Earth's atmosphere, however, the intensities of these primary cosmic rays but also of secondary particles produced in the atmosphere are anti-correlated to the solar activity. Cosmogenic radionuclides produced by spallation reactions of primary and secondary hadrons with atmospheric nuclei are mixed and transported into natural archives like ice sheets, tree rings or sediments. We compute the local and global production rates of {sup 10}Be, {sup 7}Be, {sup 3}H, {sup 36}Cl, {sup 26}Al and {sup 14}C on shorter time-scales, showing a clear anti-correlation to the solar activity. For {sup 14}C we present, moreover, production rates for the entire Holocene and investigate their correlation to the solar modulation parameter.

  12. Holocene Lake and Shallow Water Sediments at Mograt Island, Sudan

    Directory of Open Access Journals (Sweden)

    Dittrich Annett


    Full Text Available This paper presents the results of stratigraphic excavation and soil studies carried out at Mograt Island, the largest of the Nilotic islands in Sudan. Due to its restricted insular environments, Holocene alluvial deposits were observed to be interlocked with archaeological remains of different periods, allowing for a combined chronostratigraphic approach to study both cultural and climatic events. To better understand the environmental context through soil components and pedological features at a microscopic scale, soil block samples were accordingly collected and studied by the application of soil micromorphology. This approach provides insights into the history of Nile terrace aggradation through the suspension of Nile sediment loads under stillwater conditions as well as of the periodical establishment of shallow water pools at the islands′ plateaus by the surface run-off from local rains. Since these patterns vary significantly from the present situation, they offer a key to the scenario in which specific early agricultural and animal herding practices evolved.

  13. Late Holocene volcanism at Medicine Lake Volcano, northern California Cascades (United States)

    Donnelly-Nolan, Julie M.; Champion, Duane E.; Grove, Timothy L.


    Late Holocene volcanism at Medicine Lake volcano in the southern Cascades arc exhibited widespread and compositionally diverse magmatism ranging from basalt to rhyolite. Nine well-characterized eruptions have taken place at this very large rear-arc volcano since 5,200 years ago, an eruptive frequency greater than nearly all other Cascade volcanoes. The lavas are widely distributed, scattered over an area of ~300 km2 across the >2,000-km2 volcano. The eruptions are radiocarbon dated and the ages are also constrained by paleomagnetic data that provide strong evidence that the volcanic activity occurred in three distinct episodes at ~1 ka, ~3 ka, and ~5 ka. The ~1-ka final episode produced a variety of compositions including west- and north-flank mafic flows interspersed in time with fissure rhyolites erupted tangential to the volcano’s central caldera, including the youngest and most spectacular lava flow at the volcano, the ~950-yr-old compositionally zoned Glass Mountain flow. At ~3 ka, a north-flank basalt eruption was followed by an andesite eruption 27 km farther south that contains quenched basalt inclusions. The ~5-ka episode produced two caldera-focused dacitic eruptions. Quenched magmatic inclusions record evidence of intrusions that did not independently reach the surface. The inclusions are present in five andesitic, dacitic, and rhyolitic host lavas, and were erupted in each of the three episodes. Compositional and mineralogic evidence from mafic lavas and inclusions indicate that both tholeiitic (dry) and calcalkaline (wet) parental magmas were present. Petrologic evidence records the operation of complex, multi-stage processes including fractional crystallization, crustal assimilation, and magma mixing. Experimental evidence suggests that magmas were stored at 3 to 6 km depth prior to eruption, and that both wet and dry parental magmas were involved in generating the more silicic magmas. The broad distribution of eruptive events and the relative

  14. The Holocene Great Belt connection to the southern Kattegat, Scandinavia

    DEFF Research Database (Denmark)

    Bendixen, Carina; Jensen, Jørn Bo; Boldreel, Lars Ole


    Late- and postglacial geological evolution of the southern Kattegat connection to the Great Belt was investigated from high-resolution seismic data and radiocarbon-dated sediment cores in order to elucidate the Ancylus Lake drainage/Littorina Sea transgression. It was found that glacial deposits...... form the acoustic basement and are covered by Lateglacial (LG) marine sediments and postglacial (PG; Holocene) material. The LG deposits form a highstand systems tract, whereas the PG deposits cover a full depositional sequence, consisting of a lowstand systems tract (PG I), transgressive systems tract...... (PG II; subdivided into three parasequences) and finally a highstand systems tract (PG III). PG I sand deposits (11.7–10.8 cal. ka BP) are found in a major western channel and in a secondary eastern channel. PG II (10.8–9.8 cal. ka BP) consists of estuarine and coastal deposits linked to an estuary...

  15. The Holocene history of the North American Monsoon: 'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity (United States)

    Metcalfe, Sarah E.; Barron, John A.; Davies, Sarah J.


    Evidence for climatic change across the North American Monsoon (NAM) and adjacent areas is reviewed, drawing on continental and marine records and the application of climate models. Patterns of change at 12,000, 9000, 6000 and 4000 cal yr BP are presented to capture the nature of change from the Younger Dryas (YD) and through the mid-Holocene. At the YD, conditions were cooler overall, wetter in the north and drier in the south, while moving into the Holocene wetter conditions became established in the south and then spread north as the NAM strengthened. Until c. 8000 cal yr BP, the Laurentide Ice Sheet influenced precipitation in the north by pushing the Bermuda High further south. The peak extent of the NAM seems to have occurred around 6000 cal yr BP. 4000 cal yr BP marks the start of important changes across the NAM region, with drying in the north and the establishment of the clear differences between the summer-rain dominated south and central areas and the north, where winter rain is more important. This differentiation between south and north is crucial to understanding many climate responses across the NAM. This increasing variability is coincident with the declining influence of orbital forcing. 4000 cal yr BP also marks the onset of significant anthropogenic activity in many areas. For the last 2000 years, the focus is on higher temporal resolution change, with strong variations across the region. The Medieval Climate Anomaly (MCA) is characterised by centennial scale ‘megadrought’ across the southwest USA, associated with cooler tropical Pacific SSTs and persistent La Niña type conditions. Proxy data from southern Mexico, Central America and the Caribbean reveal generally wetter conditions, whereas records from the highlands of central Mexico and much of the Yucatan are typified by long -term drought. The Little Ice Age (LIA), in the north, was characterised by cooler, wetter winter conditions that have been linked with increased

  16. Revisiting Caveiro Lake sediment record: the Holocene NAO and AMO impact on Pico Island (Azores archipelago) (United States)

    Hernandez, A.; Giralt, S.; Raposeiro, P. M.; Gonçalves, V. M.; Pueyo, J. J.; Trigo, R. M.; Bao, R.; Sáez, A.


    Northern Hemisphere climate is partly conditioned by a number of atmospheric and oceanic patterns which occur in the North Atlantic sector. The favourable location of the Azores Archipelago (37°-40° N, 25°-31° W) results in a privileged place to generate high-resolution Holocene climatic proxy data that can contribute to deep our understanding on the evolution of these atmospheric and oceanic patterns. In the frame of three research projects, namely PALEONAO (CGL2010-15767), RAPIDNAO (CGL2013-40608-R) and PALEOMODES (CGL2016-75281-C2), high-resolution proxy-based reconstructions from Azores Archipelago have recently shown a combined impact of atmospheric and oceanic patterns at multiannual and decadal time-scales (Rubio-Inglés et al. 2016; Hernández et al. 2017). However, the long-term evolution coupling/uncoupling of these patterns is not well-determined yet. Here, we present a new high-resolution climate reconstruction based on the Caveiro Lake sedimentary sequence in order to fill this gap. Previously, Björck et al. (2006) studied a section of this sequence (the uppermost 4.6 m covering last 6 Ka cal BP) concluding that changes in the thermohaline circulation and the SST were the main drivers in the long-term precipitation variability, whereas the NAO impact was the main atmospheric driver of short-term precipitation changes. However, they only distinguished the NAO impact for the last 600 years owing to the low resolution of the study for the lower portion of the core. The new studied sequence (8.40 m long, 8.2 Ka cal BP) has been analysed at decadal-to centennial time-scale resolution for X-ray diffraction (XRD), X-ray fluorescence (XRF) core scanning and elemental and isotope geochemistry on bulk organic matter. The statistical multivariate analysis of the data highlights the main drivers triggering the sedimentary infill of the lake would be the NAO and AMO by controlling the lacustrine productivity via nutrients input. This new high

  17. Some regularities of spatial and time distribution of organogenous material in Upper-Pleistocene and Holocene sediments of Central Asia (from the data of Carbon-isotope dating)

    International Nuclear Information System (INIS)

    Pshenin, G.N.; Steklenkov, A.P.; Varushchenko, A.N.


    The analysis of space time distribution of ancient organogenous material is carried out through generalization of practically all available at the present time data on radiocarbon dating of Upper-Pleistocene and Holocene sediments in the Middle Asia. The investigations were performed to study the variability of humidification over the specific territory of the Middle Asia within a determined period of time. Three rather clearly limited vertical height intervals are determined by the results of the isotope dating of wood, coal, peat and mollus samples

  18. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.


    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  19. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.


    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  20. Sediment Buffering and Transport in the Holocene Indus River System (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.


    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  1. Mid- to late-Holocene coastal environmental changes in southwest Florida, USA

    NARCIS (Netherlands)

    Soelen, E.E. van; Brooks, G.R.; Larson, R.A.; Sinninghe Damsté, J.S.; Reichart, G.-J.


    During the Holocene, Florida experienced major changes in precipitation and runoff. To better understand these processes, shallow marine sediment cores from Charlotte Harbor (southwest Florida) were studied, covering approximately the past 9000 years. Whole core XRF scanning was applied to

  2. Oleistocene mammals in the late-early Holocene in Santa Lucia river basin (Uruguay southern)

    International Nuclear Information System (INIS)

    Ubilla, M.; Perea, D.; Corona, A.; Rinderknecht, A.; Sanchez, A.


    This work is about the fossileferous outcrops belongs to the late Pleistocene - early Holocene in Santa Lucia River. It enable to analyse the last records of megafauna vertebrate extinctions (olistecene mammals) with the climate conditions / environment

  3. Holocene sea level fluctuations on western Indian continental margin: An update

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nigam, R.; Nair, R.R.; Rajagopalan, G.

    A new Holocene curve is generated for the western Indian continental margin. While constructing this curve careful selection of the dates were made by giving due considerations to the genetic characteristics of the dated material. This new curve...

  4. Holocene evolution of the Tabasco delta – Mexico : impact of climate, volcanism and humans

    NARCIS (Netherlands)

    Nooren, C.A.M.


    This research revealed the impact of climate, volcanism and humans on the late Holocene evolution of a tropical delta in southern Mexico. Palynological, tephrochronological, limnological, geomorphological and sedimentological techniques have been applied to reconstruct the evolution of the

  5. Holocene relative sea-level changes from North America and the Caribbean (United States)

    Horton, Benjamin; Engelhart, Simon; Vacchi, Matteo; Khan, Nicole; Peltier, Dick; Roy, Keven


    Reconstructions of Holocene relative sea level (RSL) are important for identifying the ice equivalent meltwater contribution to sea-level change during deglaciation. Holocene RSL reconstructions from near, intermediate and far field regions enable the assessment of earth and ice parameters of Glacial Isostatic Adjustment (GIA) models. RSL reconstructions provide data for estimating rates of spatially variable and ongoing vertical land motion; a requirement for understanding the variation in modern and late Holocene sea level as recorded by instrumental and proxy records. Here we explain the methodology employed to reconstruct former sea levels, which follows the practice of the International Geoscience Programme (IGCP). We produce sea level index points from the Pacific and Atlantic coasts of North America and the Caribbean. Index points are defined as the most reliable observations of former sea levels. They consist of an estimate of X (age) and Y (the position of former RSL). Where a suite of index points are developed for a locality or region, they describe changes in RSL through time and estimate rates of change. A valid index point must meet the following four criteria; (1) location of the sample is known; (2) the altitude of the sample (and the error associated with measuring that altitude) is known; (3) the indicative meaning (the relationship between the sample and a tide level) is estimated; and (4) the age of the sample, which is commonly radiocarbon dated is calibrated to sidereal years using the latest calibration curves. In total databases have over 2000 sea-level index points from formerly ice covered, uplifting regions of Canada, to the region of forebulge collapse along the subsiding mid-Atlantic and mid-Pacific coastlines of the United States, to the tropical regions of the Caribbean. Recent analyses of these new published databases have led to a further refinement of the most recent of the ICE-NG (VMX) series of global models of GIA. The records

  6. The Effect of Solar Forcing on the Greenland Ice Sheet during the Holocene - A Model Study (United States)

    Bügelmayer, Marianne; Roche, Didier; Renssen, Hans


    . (2001): Persistent solar influence on North Atlantic climate during the Holocene. Science (New York, N.Y.), 294(5549), 2130-6. doi:10.1126/science.1065680 Bügelmayer, M., Roche, D.M., Renssen, H. (2014): How do icebergs affect the Greenland ice sheet under pre-industrial conditions? - A model study with a fully coupled ice sheet-climate model. The Cryosphere Discussions 8, 187-228. Haigh, J. D. (1996): The Impact of Solar Variability on Climate. Science, 272, 981-984. Jongma, J.I., Driesschaert, E., Fichefet, T., Goosse, H., Renssen, H., (2009): The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Modelling 26, 104-113. Renssen, H., Goosse, H., Muscheler, R., & Branch, R. (2006): Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2, 79-90. Ritz, C., Rommelaere, V. and Dumas, C.(2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, Journal of Geophysical Research, 106, 31943-31964, doi:10.1029/2001JD900232. Roche, D.M., Dumas, C., Bügelmayer, M., Charbit, S., Ritz, C. (2013): Adding a dynamical cryosphere into iLOVECLIM (version 1.0) - Part 1: Coupling with the GRISLI ice-sheet model, Geoscientific Model Development Discussion, 6, 5215-5249.

  7. Testing the Millennial-Scale Holocene Solar-Climate Connection in the Indo-Pacific Warm Pool (United States)

    Khider, D.; Emile-Geay, J.; McKay, N.; Jackson, C. S.; Routson, C.


    The existence of 1000 and 2500-year periodicities found in reconstructions of total solar irradiance (TSI) and a number of Holocene climate records has led to the hypothesis of a causal relationship. However, attributing Holocene millennial-scale variability to solar forcing requires a mechanism by which small changes in total irradiance can influence a global climate response. One possible amplifier within the climate system is the ocean. If this is the case, then we need to know more about where and how this may be occurring. On the other hand, the similarity in spectral peaks could be merely coincidental, and this should be made apparent by a lack of coherence in how that power and phasing are distributed in time and space. The plausibility of the solar forcing hypothesis is assessed through a Bayesian model of the age uncertainties affecting marine sedimentary records that is propagated through spectral analysis of the climate and forcing signals at key frequencies. Preliminary work on Mg/Ca and alkenone records from the Indo-Pacific Warm Pool suggests that despite large uncertainties in the location of the spectral peaks within each individual record arising from age model uncertainty, sea surface variability on timescales of 1025±36 years and 2427±133 years (±standard error of the mean of the median periodicity in each record) are present in at least 95% and 70% of the ensemble spectra, respectively. However, we find a long phase delay between the peak in forcing and the maximum response in at least one of the records, challenging the solar forcing hypothesis and requiring further investigation between low- and high-latitude signals. Remarkably, all records suggest a periodicity near 1470±85 years, reminiscent of the cycles characteristic of Marine Isotope Stage 3; these cycles are absent from existing records of TSI, further questioning the millennial solar-climate connection.

  8. Isotopic chemical weathering behaviour of Pb derived from a high-Alpine Holocene lake-sediment record (United States)

    Gutjahr, Marcus; Süfke, Finn; Gilli, Adrian; Anselmetti, Flavio; Glur, Lukas; Eisenhauer, Anton


    Several studies assessing the chemical weathering systematics of Pb isotopes provided evidence for the incongruent release of Pb from source rocks during early stages of chemical weathering, resulting in runoff compositions more radiogenic (higher) than the bulk source-rock composition [e.g. 1]. Deep NW Atlantic seawater Pb isotope records covering the last glacial-interglacial transition further support these findings. Clear excursions towards highly radiogenic Pb isotopic input in the deep NW Atlantic seen during the early Holocene, hence after the large-scale retreat of the Laurentide Ice Sheet in North America, are interpreted to be controlled by preferential release of radiogenic Pb from U- and Th-rich mineral phases during early stages of chemical weathering that are less resistant to chemical dissolution than other rock-forming mineral phases [2-4]. To date, however, no terrestrial Pb isotope record exists that could corroborate the evidence from deep marine sites for efficient late deglacial weathering and washout of radiogenic Pb. We present a high-resolution adsorbed Pb isotope record from a sediment core retrieved from Alpine Lake Grimsel (1908 m.a.s.l.) in Switzerland, consisting of 117 Pb compositions over the past 10 kyr. This high-Alpine study area is ideally located for incipient and prolonged chemical weathering studies. The method used to extract the adsorbed lake Pb isotope signal is identical to previous marine approaches targeting the authigenic Fe-Mn oxyhydroxides fraction within the lake sediments [5, 6]. The Pb isotope compositions are further accompanied by various elemental ratios derived from the same samples that equally trace climatic boundary conditions in the Grimsel Lake area. The Pb isotopic composition recorded in Lake Grimsel is remarkably constant throughout the majority of the Holocene until ˜2.5 ka BP, despite variable sediment composition and -age, and isotopically relatively close to the signature of the granitic source rock

  9. Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present (United States)

    Zinke, J.; Pfeiffer, M.; Park, W.; Schneider, B.; Reuning, L.; Dullo, W.-Chr.; Camoin, G. F.; Mangini, A.; Schroeder-Ritzrau, A.; Garbe-Schönberg, D.; Davies, G. R.


    We report fossil coral records from the Seychelles comprising individual time slices of 14-20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990-2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2-5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere-ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean-atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only

  10. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years (United States)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.


    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile ( 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  11. Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru) (United States)

    Hanselman, Jennifer A.; Gosling, William D.; Paduano, Gina M.; Bush, Mark B.


    Two long sediment records (cores LTO1-2B and LT01-3B) from Lake Titicaca, Bolivia/Peru, are compared with a previously analysed Holocene record from this lake (core NE98-1PC). The Holocene records of LT01-2B and NE98-1PC are similar. There are striking differences, however, between the MIS 5e sections of the long cores and the Holocene records. In these records, temperature is probably the dominant parameter that determines the total fossil pollen concentration and is used to time the onset and termination of deglaciation. In contrast, the relative and absolute abundance of specific taxa (e.g. Polylepis/Acaena, Chenopodiaceae) are indicators of relative moisture availability. Although the Holocene contains a period of aridity between ca. 8000 cal. yr BP and 4300 cal. yr BP, it is a minor event compared with the more extreme aridity of MIS 5e. Core LT01-3B showed similar trends during MIS 5e when compared to LT01-2B, as did NE98-1PC when comparing Holocene records. MIS 5e and the Holocene are markedly different interglacials, depicted by shifts in pollen concentration and taxa representation over time.

  12. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution. (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S


    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  13. Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Funabiki, Ayako; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Takizawa, Satoshi


    Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25-40 m depth, 9.6-4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25-94 μg/L) than in the HUA (5.2-42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.

  14. Extreme Mississippi River Floods in the Late Holocene: Reconstructions and Simulations (United States)

    Munoz, S. E.; Giosan, L.; Donnelly, J. P.; Dee, S.


    Extreme flooding of the Mississippi River is costly in both economic and social terms. Despite ambitious engineering projects conceived in the early 20th century to mitigate damage from extreme floods, economic losses due to flooding have increased over recent years. Forecasting extreme flood occurrence over seasonal or longer time-scales remains a major challenge - especially in light of shifts in hydroclimatic conditions expected in response to continued greenhouse forcing. Here, we present findings from a series of paleoflood records that span the late Holocene derived from laminated sediments deposited in abandoned channels of the Mississippi River. These sedimentary archives record individual overbank floods as unique events beds with upward fining that we identify using grain-size analysis, bulk geochemistry, and radiography. We use sedimentological characteristics to reconstruct flood magnitude by calibrating our records against instrumental streamflow data from nearby gauging stations. We also use the Last Millennium Experiments of the Community Earth System Model (CESM-LME) and historical reanalysis data to examine the state of climate system around river discharge extremes. Our paleo-flood records exhibit strong non-stationarities in flood frequency and magnitude that are associated with fluctuations in the frequency of the El Niño-Southern Oscillation (ENSO), because the warm ENSO phase is associated with increased surface water storage of the lower Mississippi basin that leads to enhanced runoff delivery to the main channel. We also show that the early 20th century was a period of anomalously high flood frequency and magnitude due to the combined effects of river engineering and natural climate variability. Our findings imply that flood risk along the lower Mississippi River is tightly coupled to the frequency of ENSO, highlighting the need for robust projections of ENSO variability under greenhouse warming.

  15. Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China (United States)

    Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.


    Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period

  16. Long-term forest dynamics at Gribskov, eastern Denmark with early-Holocene evidence for thermophilous broadleaved tree species

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Nielsen, Anne Birgitte; Hannon, Gina E.


    two periods of the early Holocene and from c. 3000 cal. BP to present. The early-Holocene part of the record indicates a highly disturbed forest ecosystem with frequent fires and abundant macrofossils of particularly Betula sp. and Populus sp. The sediment stratigraphy and age–depth relationships give......We report on a full-Holocene pollen, charcoal and macrofossil record from a small forest hollow in Gribskov, eastern Denmark. The Fagus sylvatica pollen record suggests the establishment of a small Fagus population at Gribskov in the early Holocene together with early establishment of other...

  17. Variability Bugs:

    DEFF Research Database (Denmark)

    Melo, Jean

    . Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular......)? How much harder is it to debug a program as variability increases? How do developers debug programs with variability? In what ways does variability affect bugs? In this Ph.D. thesis, I set off to address such issues through different perspectives using empirical research (based on controlled...... experiments) in order to understand quantitatively and qualitatively the impact of variability on programmers at bug finding and on buggy programs. From the program (and bug) perspective, the results show that variability is ubiquitous. There appears to be no specific nature of variability bugs that could...

  18. Quantitative Holocene climatic reconstructions for the lower Yangtze region of China (United States)

    Li, Jianyong; Dodson, John; Yan, Hong; Wang, Weiming; Innes, James B.; Zong, Yongqiang; Zhang, Xiaojian; Xu, Qinghai; Ni, Jian; Lu, Fengyan


    Quantitative proxy-based and high-resolution palaeoclimatic datasets are scarce for the lower reaches of the Yangtze River (LYR) basin. This region is in a transitional vegetation zone which is climatologically sensitive; and as a birthplace for prehistorical civilization in China, it is important to understand how palaeoclimatic dynamics played a role in affecting cultural development in the region. We present a pollen-based and regionally-averaged Holocene climatic twin-dataset for mean total annual precipitation (PANN) and mean annual temperature (TANN) covering the last 10,000 years for the LYR region. This is based on the technique of weighted averaging-partial least squares regression to establish robust calibration models for obtaining reliable climatic inferences. The pollen-based reconstructions generally show an early Holocene climatic optimum with both abundant monsoonal rainfall and warm thermal conditions, and a declining pattern of both PANN and TANN values in the middle to late Holocene. The main driving forces behind the Holocene climatic changes in the LYR area are likely summer solar insolation associated with tropical or subtropical macro-scale climatic circulations such as the Intertropical Convergence Zone (ITCZ), Western Pacific Subtropical High (WPSH), and El Niño/Southern Oscillation (ENSO). Regional multi-proxy comparisons indicate that the Holocene variations in precipitation and temperature for the LYR region display an in-phase relationship with other related proxy records from southern monsoonal China and the Indian monsoon-influenced regions, but are inconsistent with the Holocene moisture or temperature records from northern monsoonal China and the westerly-dominated region in northwestern China. Overall, our comprehensive palaeoclimatic dataset and models may be significant tools for understanding the Holocene Asian monsoonal evolution and for anticipating its future dynamics in eastern Asia.

  19. Rapid Late Holocene glacier fluctuations reconstructed from South Georgia lake sediments using novel analytical and numerical techniques (United States)

    van der Bilt, Willem; Bakke, Jostein; Werner, Johannes; Paasche, Øyvind; Rosqvist, Gunhild


    The collapse of ice shelves, rapidly retreating glaciers and a dramatic recent temperature increase show that Southern Ocean climate is rapidly shifting. Also, instrumental and modelling data demonstrate transient interactions between oceanic and atmospheric forcings as well as climatic teleconnections with lower-latitude regions. Yet beyond the instrumental period, a lack of proxy climate timeseries impedes our understanding of Southern Ocean climate. Also, available records often lack the resolution and chronological control required to resolve rapid climate shifts like those observed at present. Alpine glaciers are found on most Southern Ocean islands and quickly respond to shifts in climate through changes in mass balance. Attendant changes in glacier size drive variations in the production of rock flour, the suspended product of glacial erosion. This climate response may be captured by downstream distal glacier-fed lakes, continuously recording glacier history. Sediment records from such lakes are considered prime sources for paleoclimate reconstructions. Here, we present the first reconstruction of Late Holocene glacier variability from the island of South Georgia. Using a toolbox of advanced physical, geochemical (XRF) and magnetic proxies, in combination with state-of-the-art numerical techniques, we fingerprinted a glacier signal from glacier-fed lake sediments. This lacustrine sediment signal was subsequently calibrated against mapped glacier extent with the help of geomorphological moraine evidence and remote sensing techniques. The outlined approach enabled us to robustly resolve variations of a complex glacier at sub-centennial timescales, while constraining the sedimentological imprint of other geomorphic catchment processes. From a paleoclimate perspective, our reconstruction reveals a dynamic Late Holocene climate, modulated by long-term shifts in regional circulation patterns. We also find evidence for rapid medieval glacier retreat as well as a

  20. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin (United States)

    Fulton, J. M.; Van Mooy, B. A. S.


    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  1. Sea-level change and demography during the last glacial termination and early Holocene across the Australian continent (United States)

    Williams, Alan N.; Ulm, Sean; Sapienza, Tom; Lewis, Stephen; Turney, Chris S. M.


    Future changes in sea-level are projected to have significant environmental and social impacts, but we have limited understanding of comparable rates of change in the past. Using comprehensive palaeoenvironmental and archaeological datasets, we report the first quantitative model of the timing, spatial extent and pace of sea-level change in the Sahul region between 35-8 ka, and explore its effects on hunter-gatherer populations. Results show that the continental landmass (excluding New Guinea) increased to 9.80 million km2 during the Last Glacial Maximum (LGM), before a reduction of 2.12 million km2 (or ∼21.6%) to the early Holocene (8 ka). Almost 90% of this inundation occurs during and immediately following Meltwater Pulse (MWP) 1a between 14.6 and 8 ka. The location of coastlines changed on average by 139 km between the LGM and early Holocene, with some areas >300 km, and at a rate of up to 23.7 m per year (∼0.6 km land lost every 25-year generation). Spatially, inundation was highly variable, with greatest impacts across the northern half of Australia, while large parts of the east, south and west coastal margins were relatively unaffected. Hunter-gatherer populations remained low throughout (hypothesis that late Pleistocene coastal populations were low, with use of coastal resources embedded in broad-ranging foraging strategies, and which would have been severely disrupted in some regions and at some time periods by sea-level change outpacing tolerances of mangals and other near-shore ecological communities.

  2. Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard (United States)

    de Wet, Gregory A.; Balascio, Nicholas L.; D'Andrea, William J.; Bakke, Jostein; Bradley, Raymond S.; Perren, Bianca


    Well-dated and highly resolved paleoclimate records from high latitudes allow for a better understanding of past climate change. Lake sediments are excellent archives of environmental change, and can record processes occurring within the catchment, such as the growth or demise of an upstream glacier. Here we present a Holocene-length, multi-proxy lake sediment record from proglacial lake Gjøavatnet on the island of Amsterdamøya, northwest Svalbard. Today, Gjøavatnet receives meltwater from the Annabreen glacier and contains a record of changes in glacier activity linked to regional climate conditions. We measured changes in organic matter content, dry bulk density, bulk carbon isotopes, elemental concentrations via Itrax core-scanning, and diatom community composition to reconstruct variability in glacier extent back through time. Our reconstruction indicates that glacially derived sedimentation in the lake decreased markedly at ∼11.1 cal kyr BP, although a glacier likely persisted in the catchment until ∼8.4 cal kyr BP. During the mid-Holocene (∼8.4-1.0 cal kyr BP) there was significantly limited glacial influence in the catchment and enhanced deposition of organic-rich sediment in the lake. The deposition of organic rich sediments during this time was interrupted by at least three multi-centennial intervals of reduced organic matter accumulation (∼5.9-5.0, 2.7-2.0, and 1.7-1.5 cal kyr BP). Considering our chronological information and a sedimentological comparison with intervals of enhanced glacier input, we interpret these intervals not as glacial advances, but rather as cold/dry episodes that inhibited organic matter production in the lake and surrounding catchment. At ∼1.0 cal kyr BP, input of glacially derived sediment to Gjøavatnet abruptly increased, representing the rapid expansion of the Annabreen glacier.

  3. Holocene geologic and climatic history around the Gulf of Alaska (United States)

    Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.


    Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.

  4. Radiation dates of holocene shorelines in Peninsula Malaysia

    International Nuclear Information System (INIS)

    Tjia, H.D.; Kigoshi, K.


    Fifteen newly determined radiocarbon dates indicate the presence of former shorelines up to 3 meters above present high tide level in the tectonically stable Peninsula of Malaysia. The sea level indicators consist of oysters in growth position (9 samples), molluscs in beach deposits (2), corals in growth position (3), and beachrock (1). In the Peninsula living oysters occur up to or slightly above high tide, modern beach deposits may occur as high as 1.5 meters above high tide, and corals live up to low tide level. The literature shows that high tide, and corals live up to low tide level. The literature shows that beachrock marks intertidal zones. Combined with seven previously published ages of raised shorelines in the region, strong evidence is presented for one or more high Holocene, eustatic sea level stands in the continental part of Southeast Asia. Periods of high sea levels occur between 2500 and 2900 yr BP, and between 4200 and 5700 yr BP. There is also some indication of high sea level between 8300 and 9500 yr BP. (author)

  5. Holocene emergence in the Cook Islands, South Pacific (United States)

    Woodroffe, C. D.; Stoddart, D. R.; Spencer, T.; Scoffin, T. P.; Tudhope, A. W.


    There is evidence of Holocene emergence on several of the Cook Islands. On Suwarrow Atoll there are extensive outcrops of emergent, but truncated, reef on the northern atoll rim, radiocarbon-dated 4680 4310 years B. P., overlain by younger cemented boulder conglomerates. On the northeast of the atoll there are fossil algal ridges indicating up to 1 m of emergence; the landwardmost has been dated 4220 years B. P., the intermediate one 3420 years B. P. and the present one 1250 years B. P. On Mitiaro, a makatea island in the Southern Cooks, there are emergent reefal deposits in the centre of the reef flat dated 5140 3620 years B. P. Similar thought poorly preserved deposits occur on Mauke, and an erosional bench and notch occurs on Atiu. Emergence on all islands appears synchronous with that reported on Mangaia, where a relative fall of sea level of at least 1.7 m in the last 3400 years has been reported. The evidence for emergence is broadly similar to that described from French Polynesia, though timing of emergence appears to differ.

  6. Colonizing Dynamic Alluvial and Coastal Landscapes in the Holocene (United States)

    Kidder, T.; Liu, X.; Ervin, K.


    Throughout the Holocene humans have had to adapt to dynamic, rapidly changing alluvial and coastal landscapes. Understanding when people inhabit a given environment is an important starting point for exploring human adaptations, but increasingly we need to consider how, and especially why certain environments are used—or not used— so we can understand the consequences of these human actions. Using four case studies—one from the Yellow River Valley, China, one from coastal Jiangsu, China, one from the Mississippi River Valley (Mississippi, USA) and one from the Mississippi River delta (Louisiana , USA)—we develop a model of how humans at various stages of cultural development colonize new environments. Using archaeological data and ecological modeling we investigate the relationship between the timing of landscape colonization and the ecological richness and predictability of any given environment. As new landscapes emerge and mature humans adopt different strategies for exploiting these novel environments that begins with episodic use and increasingly shifts to stable, long-term habitation. The early phase of landscape colonization appears to be the most significant period because it shapes human environmental practices and sets each culture on a trajectory of socio-cultural development. Thus, human-environment interaction is a critical part of the emergence of cultural patterns that shapes the past, present, and even the future.

  7. Lake Baikal isotope records of Holocene Central Asian precipitation (United States)

    Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael


    Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.

  8. Middle Holocene rapid environmental changes and human adaptation in Greece (United States)

    Lespez, Laurent; Glais, Arthur; Lopez-Saez, José-Antonio; Le Drezen, Yann; Tsirtsoni, Zoï; Davidson, Robert; Biree, Laetitia; Malamidou, Dimitra


    Numerous researchers discuss of the collapse of civilizations in response to abrupt climate change in the Mediterranean region. The period between 6500 and 5000 cal yr BP is one of the least studied episodes of rapid climate change at the end of the Late Neolithic. This period is characterized by a dramatic decline in settlement and a cultural break in the Balkans. High-resolution paleoenvironmental proxy data obtained in the Lower Angitis Valley enables an examination of the societal responses to rapid climatic change in Greece. Development of a lasting fluvio-lacustrine environment followed by enhanced fluvial activity is evident from 6000 cal yr BP. Paleoecological data show a succession of dry events at 5800-5700, 5450 and 5000-4900 cal yr BP. These events correspond to incursion of cold air masses to the eastern Mediterranean, confirming the climatic instability of the middle Holocene climate transition. Two periods with farming and pastural activities (6300-5600 and 5100-4700 cal BP) are evident. The intervening period is marked by environmental changes, but the continuous occurrence of anthropogenic taxa suggests the persistence of human activities despite the absence of archaeological evidence. The environmental factors alone were not sufficient to trigger the observed societal changes.

  9. Holocene Paleohydrology of the tropical andes from lake records

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, M. B., LLNL


    Two century-scale time series in northern Bolivia constrain the ages of abrupt changes in the physical, geochemical, and biological characteristics of sediments obtained from lakes that formed during deglaciation from the late Pleistocene glacial maximum. The watersheds of Laguna Viscachani (16{degrees}12`S, 68{degrees}07`W, 3780m) and Lago Taypi Chaka Kkota (16{degrees}13`S, 68{degrees}21`W, 4300m), located on the eastern and western slopes of the Cordillera Real, respectively, contain small cirque glaciers. A high-resolution chronology of the lake sediments is provided by 23 AMS {sup 14}C dates of discrete macro-fossils. Late Pleistocene glaciers retreated rapidly, exposing the lake basins between 10,700 and 9700 {sup 14}C yr B.P. The sedimentary facies suggest that after 8900 {sup 14}C B.P. glaciers were absent from the watersheds and remained so during the middle Holocene. An increase in the precipitation-evaporation balance is indicated above unconformities dated to about 2300 {sup 14}C yr B.P. in both Lago Taypi Chaka Kkota and Laguna Viscachani. An abrupt increase in sediment accumulation rated after 1400 {sup 14}C yr B.P. signals the onset of Neoglaciation. A possible link exists between the observed millennial-scale shifts in the regional precipitation- evaporation balance and seasonal shifts in tropical insolation.

  10. Late Holocene environmental reconstruction using cave sediments from Belize (United States)

    Polk, Jason S.; van Beynen, Philip E.; Reeder, Philip P.


    Cave sediments collected from Reflection Cave on the Vaca Plateau, Belize show variations in the δ13C values of their fulvic acids (FAs), which indicate periods of vegetation change caused by climatic and Maya influences during the late Holocene. The δ13C values range from - 27.11‰ to - 21.52‰, a shift of ˜ 5.59‰, which suggests fluctuating contributions of C 3 and C 4 plants throughout the last 2.5 ka, with C 4 plant input reflecting periods of Maya agriculture. Maya activity in the study area occurred at different intensities from ˜ 2600 cal yr BP until ˜ 1500 cal yr BP, after which agricultural practices waned as the Maya depopulated the area. These changes in plant assemblages were in response to changes in available water resources, with increased aridity leading to the eventual abandonment of agricultural areas. The Ix Chel archaeological site, located in the study area, is a highland site that would have been among the first agricultural settlements to be affected during periods of aridity. During these periods, minimal water resources would have been available in this highly karstified, well-drained area, and supplemental groundwater extraction would have been difficult due to the extreme depth of the water table.

  11. The pace of Holocene vegetation change - testing for synchronous developments (United States)

    Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen


    Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.

  12. European domestic horses originated in two holocene refugia.

    Directory of Open Access Journals (Sweden)

    Vera Warmuth


    Full Text Available The role of European wild horses in horse domestication is poorly understood. While the fossil record for wild horses in Europe prior to horse domestication is scarce, there have been suggestions that wild populations from various European regions might have contributed to the gene pool of domestic horses. To distinguish between regions where domestic populations are mainly descended from local wild stock and those where horses were largely imported, we investigated patterns of genetic diversity in 24 European horse breeds typed at 12 microsatellite loci. The distribution of high levels of genetic diversity in Europe coincides with the distribution of predominantly open landscapes prior to domestication, as suggested by simulation-based vegetation reconstructions, with breeds from Iberia and the Caspian Sea region having significantly higher genetic diversity than breeds from central Europe and the UK, which were largely forested at the time the first domestic horses appear there. Our results suggest that not only the Eastern steppes, but also the Iberian Peninsula provided refugia for wild horses in the Holocene, and that the genetic contribution of these wild populations to local domestic stock may have been considerable. In contrast, the consistently low levels of diversity in central Europe and the UK suggest that domestic horses in these regions largely derive from horses that were imported from the Eastern refugium, the Iberian refugium, or both.

  13. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: Occurrence and significance

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Wagle, B.G.; Veerayya, M.; Almeida, F.; Karisiddaiah, S.M.

    . It is surmised that coral/algal reef growth commenced with the advent of the Holocene trangression and favorable antecedent topography, and continued until early Holocene. Subsequently, rapid sea level rise drowned the reefs. The shelf edge reefs, therefore...

  14. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu


    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  15. Late Holocene higher sea level and its radiocarbon dates in Okierabu-jima, Ryukyus

    International Nuclear Information System (INIS)

    Koba, Motoharu; Omoto, Kunio; Takahashi, Tatsuo.


    Okierabu-jima of the Ryukyu Islands, which is a poly-terraced Pleistocene raised coral reef island, doesn't have a Holocene raised coral reef, but coastal erosional features showing higher sea levels in Holocene. The authors obtained some data indicating the period of one of the Holocene higher sea levels. All radiocarbon dates concerning Okierabu-jima's Holocene sea-level changes are plotted on the date-height coordinates. The paleo sea level between 5000 and 2000 y. B. P. lies above the broken line drawn from 6 m below to 2.18 m above the present sea level. The period of the highest sea level in Holocene seems to be about 3000 to 2000 y. B. P. in this island. Its height is presumably 2.4 m a. s. l. derived on an average from heights of stacks and coastal benches in the almost all coasts of the island (Koba, 1974). Beach rocks were already formed at the landward extremity of the reef flat corresponding to the almost present sea level about 1300 y. B. P. (author)

  16. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska (United States)

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott


    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  17. Holocene deposition and megathrust splay fault geometries within Prince William Sound, Alaska (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Pratt, T. L.


    New high resolution sparker seismic reflection data, in conjunction with reprocessed legacy seismic data, provide the basis for a new fault, fold, and Holocene sediment thickness database for Prince William Sound, Alaska. Additionally, legacy airgun seismic data in Prince William Sound and the Gulf of Alaska tie features on these new sparker data to deeper portions of megathrust splay faults. We correlate regionally extensive bathymetric lineaments within Prince William Sound to megathrust splay faults, such as the ones that ruptured in the 1964 M9.2 earthquake. Lastly, we estimate Holocene sediment thickness within Prince William Sound to better constrain the Holocene fault history throughout the region. We identify three seismic facies related to Holocene, Quaternary, and Tertiary strata that are crosscut by numerous high angle normal faults in the hanging wall of the megathrust splay faults. The crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A change in exhumation rates, slip rates, and fault orientation appears near Hinchinbrook that we attribute to differences in subducted slab geometry. Based on our slip rate analysis, we calculate average Holocene displacements of 20 m and 100 m in eastern and western Prince William Sound, respectively. Landward of two splay faults exposed on Montague Island, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes.

  18. The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations (United States)

    Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong


    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external

  19. The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations

    Directory of Open Access Journals (Sweden)

    B. L. Otto-Bliesner


    Full Text Available Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4 simulations in the Coupled Model Intercomparison Project (CMIP6. The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present and the Last Interglacial (lig127k, 127 000 years before present are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land–sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the

  20. Tree ring variability and climate response of Abies spectabilis along an elevation gradient in Mustang, Nepal

    DEFF Research Database (Denmark)

    Kharal, D.K.; Meilby, Henrik; Rayamajhi, S.


    In mountainous areas including the Himalayas, tree lines are expected to advance to higher altitudes due to global climate change affecting the distribution and growth of plant species. This study aimed at identifying the tree ring variability of Abies spectabilis (D. Don) and its response...... to the climate along an elevation gradient in the high Himalayas of central Nepal. Tree core samples were collected from four sites in Mustang district. All sites were located in the same valley and exposed to similar weather conditions. Out of 232 samples collected from the sites, Titi lower (2700 m), Titi......-elevation sites the correlation between pre-monsoon precipitation and tree growth was positive, and for the month of May this was statistically significant (ptree growth at all sites, and at the upper elevation...

  1. Timing of Late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Zachariasen, J.; Berryman, K.R.; Langridge, R.M.; Prentice, C.; Rymer, M.; Stirling, M.W.; Villamor, P.


    Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ± 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. (author). 44 refs., 10 figs., 1 tab

  2. Proglacial lake sediments – a basis for uninterrupted chronicles of the Holocene glacier variations

    Directory of Open Access Journals (Sweden)

    M. Y. Alexandrin


    Full Text Available The article covers the origin of paleolimnological method in glaciology, concerns the theoretical background of the approach, and focuses on the principal methods of analysis of the lake sediments and creating the sedimentary age-depth models. Lake sediments can provide a basis for creating uninterrupted reconstructions of the Holocene glacier variations with high resolution. The fundament of paleolimnological method is based on the differences between glacial and non-glacial components of the bottom sediments of proglacial lakes. The glacial signal in the lake sediments was originally distinguished by measuring the organic content of the sediment (normally with loss-on-ignition and the magnetic properties of the sediment. Subsequent methods of analysis could yield more precision and normally include geochemical composition (with the use of high-resolution scanning x-ray fluorescence analysis, use of biogenic indicators (such as pollen and diatoms contained in the sediment and more. Obtaining the most accurate age of the sediment is a crucial question in subsequent application of the sediment parameters for reconstruction of glacier variability. The article covers various methods of dating the lake sediment – radiocarbon, Cs- and Pb-isotope dating, varve counting. Techniques of creating age-depth models are taken into account. A state-of-the-art application of sedimentary properties in paleoglaciology yields a reconstruction of a former equilibrium line altitude – ELA. The article focuses on the basis of the ELA reconstruction approach. Successful examples of reconstructions of glacier variations based on the lake sediments can be found throughout the majority of the glaciated regions of the planet. The article states the most prominent of them and gives an update on the current progress in paleolimnological research in the Caucasus Mountains.

  3. Late Neoproterozoic to holocene thermal history of the precambrian Georgetown inlier, northeast Australia

    International Nuclear Information System (INIS)

    Spikings, R.A.; Foster, D.A.; University of Melbourne, VIC; Kohn, B.P.; O'Sullivan, P.B.


    Carboniferous-Permian volcanic complexes and isolated patches of Upper Jurassic - Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40 Ar/ 39 Ar and apatite fission track data from the inlier record a protracted and non-linear cooling history since ca 750 Ma. 40 Ar/ 39 Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 mm. These results record up to four periods of localised accelerated cooling within the temperature range of ∼ 320-60 deg C and up to ∼ 14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19-0.05 km/10 6 years) are observed to have occurred during the Devonian, late Carboniferous - Permian and mid-Cretaceous - Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian-age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid-Cretaceous exhumation may be a far-field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present-day erosion surface suggests small-scale fault-bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ∼2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid-Cretaceous times. Copyright (2001) Geological Society of Australia

  4. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa

    NARCIS (Netherlands)

    Berke, M.A.; Johnson, T.C.; Werne, J.P.; Grice, K.; Schouten, S.; Sinninghe Damsté, J.S.


    New molecular proxies of temperature and hydrology are helping to constrain tropical climate change and elucidate possible forcing mechanisms during the Holocene. Here, we examine a similar to 14,000 year record of climate variability from Lake Victoria, East Africa, the world's second largest

  5. Insights into hydroclimatic variability of Southern California since 125 ka, from multi-proxy analyses of alpine lakes (United States)

    Glover, K. C.; MacDonald, G. M.; Kirby, M.


    Hydroclimatic variability is especially important in California, a water-stressed and increasingly populous region. We assess the range of past hydroclimatic sensitivity and variability in the San Bernardino Mountains of Southern California based on 125 ka of lacustrine sediment records. Geochemistry, charcoal and pollen highlight periods of sustained moisture, aridity and sudden variability driven by orbital and oceanic variations. Marine Isotope Stage 3 (MIS 3) is one such period of greater moisture availability that lasted c. 30 kyr, with smaller-scale perturbations likely reflect North Atlantic Dansgaard-Oeschgar events. Past glacial periods, MIS 4 and MIS 2, display high-amplitude changes. These include periods of reduced forest cover that span millennia, indicating long-lasting aridity. Rapid forest expansion also occurs, marking sudden shifts towards wet conditions. Fire regimes have also changed in tandem with hydroclimate and vegetation. Higher-resolution analysis of the past 10 ka shows that Southern California hydroclimate was broadly similar to other regions of the Southwest and Great Basin, including an orbital and oceanic-driven wet Early Holocene, dry Mid-Holocene, and highly variable Late Holocene. Shorter-term pluvial conditions occur throughout the Holocene, with episodic moisture likely derived from a Pacific source.

  6. Recording of the Holocene sediment infilling in a confined tide-dominated estuary: the bay of Brest (Britanny, France) (United States)

    Gregoire, Gwendoline; Le Roy, Pascal; Ehrhold, Axel; Jouet, Gwenael; Garlan, Thierry


    Modern estuaries constitute key areas for the preservation of sedimentary deposits related to the Holocene period. Several previous studies using stratigraphic reconstructions in such environments allowed to characterise the major parameters controlling the Holocene transgressive sequence and to decipher their respective role in the sedimentary infill: (1) the evolution of main hydrologic factors (wave or tide-dominated environment), (2) the sea level fluctuation and (3) the morphologies of the bedrock and the coastline. Nevertheless, the timing of the transgressive deposits and the detailed facies need to be precise in regard to the stratigraphic schemes. The Bay of Brest (Western Brittany, France) offers the opportunity to examine these points and to compare with previous studies. It constitutes an original tide-dominated estuary that communicates to the open sea (Iroise Sea) by a narrow strait. Two main rivers (Aulne and Elorn) are connected to a submerged paleovalleys network that was incised in the Paleozoic basement during lowstands and still preserved in the present morphology. It delineates the central basin surrounded by tidal flat located in sheltered area. The analysis of high and very-high resolution seismic lines recorded through the whole bay combined with sediment cores (up to 4.5 m long) and radiocarbon dating allow to precise the architecture and the timing of the thick Holocene coastal wedge. It is preserved from the valley network to the shore and presents a longitudinal variability (downstream-upstream evolution). The infill is divided into two successive stages (corresponding to the transgressive and highstand system tracts) which laterally evolve from the paleo-valley to the coast. Two units constitute the transgressive system tract. The oldest, dated from 8200 to 7000 cal B.P. is composed of fine-grained, organic-rich tidal flat deposits located in the sheltered area and organised in levees on the terrace bordering the paleo-valley. A tidal

  7. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations (United States)

    Menviel, L.; Joos, F.


    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  8. Biomization and quantitative climate reconstruction techniques in northwestern Mexico—With an application to four Holocene pollen sequences (United States)

    Ortega-Rosas, C. I.; Guiot, J.; Peñalba, M. C.; Ortiz-Acosta, M. E.


    6 ka. Climate Dynamics 12, 185-194), we modified the pollen-PFT and PFT-biomes assignation of Thompson and Anderson (Thompson, R.S., Anderson, K.H., 2000. Biomes of western North America at 18,000; 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data. Journal of Biogeography 27, 555-584) for a better representation of the modern vegetation of NW Mexico. The biome reconstruction method was validated with the modern pollen sites and applied to the fossil sites. Our results show that, during the early Holocene, a cool conifer forest extended at least down to 1700 m, while today this biome is present above 2000 m in the Chihuahua state. The Younger Dryas event was recorded in one site with cold and dry conditions. The reconstructed annual temperature for this period was 3°-6 °C colder than today, and annual precipitation was 250 mm lower than at present (900 mm/yr). The middle Holocene after 9200 cal yr BP was marked by a warming trend, reaching temperatures 2 °C warmer than today at 7000 cal yr BP, and by the installation of a warm mixed forest, the present day biome, at 1700 m elevation, while at higher elevations (1900 m) the cool conifer forest was still present. Summer precipitation was 200 mm/yr above the early Holocene values, suggesting that monsoon-like conditions strengthened since 9200 cal yr BP at this region. During the last 4000 yr, the same warm mixed forest was reconstructed below 1700 m and a conifer forest above 1700 m. A great variability of vegetation and climate patterns was recorded for the last 3000 yr particularly at high elevation sites, where warming and cooling trends would be coeval of the Medieval warm period and Little Ice Age, likely related to ENSO variability.

  9. Inferring late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model (United States)

    Matthews-Bird, Frazer; Brooks, Stephen J.; Holden, Philip B.; Montoya, Encarni; Gosling, William D.


    Presented here is the first chironomid calibration data set for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes), and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17° S and 64-78° W. The study sites cover a mean annual temperature (MAT) gradient of 25 °C. In total, 55 chironomid taxa were identified in the 59 calibration data set lakes. When used as a single explanatory variable, MAT explains 12.9 % of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging (WA) and Bayesian methods. The best-performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890; RMSEPjack = 2.404 °C, RMSEP - root mean squared error of prediction; mean biasjack = -0.017 °C; max biasjack = 4.665 °C). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373 °C, mean biasjack = 0.598 °C, and max biasjack = 3.158 °C. Both models were used to infer past temperatures from a ca. 3000-year record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern-day conditions but showed significant departures at certain intervals (ca. 1600 cal yr BP; ca. 3000-2500 cal yr BP). Both methods (WA and Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable and often underestimated Holocene temperatures (by ca. -7 ± 2.5 °C relative to the modern period). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (ca. -3 ± 3.4 °C). The error associated with both reconstructions is consistent with a constant temperature of 20 °C for the past 3000 years. We would caution, however, against an over-interpretation at this stage. The reconstruction can only

  10. Holocene climate and fjord glaciations in Northeast Greenland: implications for IRD deposition in the North Atlantic

    DEFF Research Database (Denmark)

    Reeh, Niels


    been released by intensive sub-glacial melting during the long stay of the ice-islands in coastal waters. The Holocene glacial geological record from Northeast Greenland is compared to the record of ice rafted debris (IRD) from North Atlantic deep-sea sediment cores. The comparison shows that transport...... by icebergs in the form of basal debris is unlikely to be the dominant transport mechanism of IRD to deposition sites in the North Atlantic during the Holocene. The ice rafted debris is more likely to be carried at the surface of sea- (or glacier) ice. This supports the result of previous studies by other...... workers that changes of atmospheric and ocean-surface circulation and temperature are the likely causes of Holocene cycles in IRD concentration in North Atlantic deep-sea sediments....

  11. Drainage system inversion in the Guadalentin Depression during the Late Pleistocene-Holocene (Murcia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Calmel-Avila, M.; Silva, P. G.; Bardaji, T.; Goy, J. L.; Zazo, C.


    This article presents the results of studies conducted in the central sector of Guadalentin depression (Murcia) for the abnormal accumulation (more than 17 m) of Pleistocene and Holocene deposits upstream of Romeral tectonic threshold (Librilla). {sup 1}4C dating. ruins and archaeological sites, together with its stratigraphic analysis show that the three sequences that constitute the Holocene detrital filling of the Depression, prograded are superimposed on the upper Pleistocene travertine upstream from the confluence of the River Guadalentin the Rambla de Librilla. Between Librilla and threshold Romeral Holocene deposits only appear along the left bank (15-17m). By contrast the right side shows significant lifting of the Pleistocene travertine up area Romeral threshold, where the substrate allora Neogene. (Author) 11 refs.

  12. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    International Nuclear Information System (INIS)

    Nakata, Takashi; Omoto, Kunio; Koba, Motoharu


    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes. (Mori, K.)

  13. Holocene fluctuations in human population demonstrate repeated links to food production and climate. (United States)

    Bevan, Andrew; Colledge, Sue; Fuller, Dorian; Fyfe, Ralph; Shennan, Stephen; Stevens, Chris


    We consider the long-term relationship between human demography, food production, and Holocene climate via an archaeological radiocarbon date series of unprecedented sampling density and detail. There is striking consistency in the inferred human population dynamics across different regions of Britain and Ireland during the middle and later Holocene. Major cross-regional population downturns in population coincide with episodes of more abrupt change in North Atlantic climate and witness societal responses in food procurement as visible in directly dated plants and animals, often with moves toward hardier cereals, increased pastoralism, and/or gathered resources. For the Neolithic, this evidence questions existing models of wholly endogenous demographic boom-bust. For the wider Holocene, it demonstrates that climate-related disruptions have been quasi-periodic drivers of societal and subsistence change. Copyright © 2017 the Author(s). Published by PNAS.

  14. A humid early Holocene in Yemen interpreted from palaeoecology and taxonomy of freshwater ostracods (United States)

    Mohammed, Munef; Frenzel, Peter; Keyser, Dietmar; Hussain, Fadhl; Abood, Abdulkareem; Sha'af, Abdulmajed; Alzara'e, Sadham; Alammari, Sakher


    Lake or marsh sediments in the Qa'a Jahran-Dhamār area indicate a period of higher moisture availability in the early Holocene of the highlands of Yemen. Forty-two marl-peat sediment samples from eight stratigraphic sections of that area have been collected and are examined for the first time for their ostracod associations. Eight species belonging to seven genera and four families are reported. Their ecological tolerances and preferences are used to investigate the climatic and environmental changes in the early to mid-Holocene. Our data are compared and correlated with previous archaeological results, particularly from the region of Qa'a Jahran (Dhamār) in the vicinity of the village of Beyt Nahmi. We conclude that the wettest period of the Holocene was from about 7900 to 7400 cal yr BP, when northwards incursion of the Indian Ocean Monsoon caused intensified monsoon precipitation over southern Arabia.


    Directory of Open Access Journals (Sweden)

    E. Brugiapaglia


    Full Text Available The pollen record from Trifoglietti lake (Calabria region provides new information about the paleoenvironmental and palaeoclimatic changes occurred during the LateGlacial and Holocene period. The LateGlacial part of the record, for which only preliminary data is available, is a new and original sequence from southern Italy. The Holocene sequence, with 11 AMS radiocarbon dates shows a stable Fagus forest for the entire period. Apart from sporadic pastoralism activities and the selective exploitation of Abies, only a weak human impact is recognized in the pollen records. Lake level oscillations have been reconstructed and annual precipitations quantified using the Modern Analogue Technique. The reconstruction was effectuated both at millennial and centennial scale: the first shows an increasing of moisture from 11000 to 9400 cal BP and a maximum of humidity from 9400 to 6200 cal BP. Moreover, several climatic oscillations punctuated the Holocene and therefore superimposed the millennial trend.

  16. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T; Omoto, K; Koba, M [Tohoku Univ., Sendai (Japan). Faculty of Science


    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes.

  17. A late Holocene tephrochronology for the Maya Lowlands, Central America (United States)

    Nooren, K.; Huizinga, A.; Hoek, W.; Bergen, M. V.; Middelkoop, H.


    The Maya Lowlands in southern Mexico, Guatemala and Belize were densely populated for thousands of years, and have been the subject of intensive studies on the interaction between humans and their environment. Accurate radiocarbon dating of proxy records and disrupting events has proved to be difficult due to the lack of organic material in many deposits and the 'old carbon effect' related to the calcareous geology of the Yucatan Peninsula. So far, tephrostratigraphy has hardly been used to define time markers for palynological, limnological and archaeological studies in this region, despite the frequent occurrence of tephra fall. With the objective to fill this gap, we developed a tephrochronology for the Maya Lowlands using sediment cores from a flood basin of the Usumacinta-Grijalva delta in southern Mexico. Tephrostratigraphy and radiocarbon dating were used to estimate the timing of past volcanic eruptions, and chemical compositions of glass shards were used to identify potential sources. At least six tephralayers were deposited since 2000 BC, the most notable representing eruptions of El Chichón volcano in the 5th and 15th century AD. The high sulphur emissions accompanying El Chichón's eruptions allowed testing of our age-depth model through a correlation with volcanic sulphate peaks in ice cores from Greenland and Antarctica. We demonstrate the applicability of the established tephrochronological framework in a detailed chronological reconstruction of the formation of the world's largest late Holocene beach ridge plain in southern Mexico. This plain with over 500 beach ridges is a highly sensitive recorder of combined sea level rise, subsidence, storm activity and changes in climate and upstream land use since the dawn of Olmec and Maya cultures circa 5000 years ago.

  18. Pulsating variables

    International Nuclear Information System (INIS)


    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  19. Onset and Multiple Fluctuations of Holocene Glaciation in the Sierra Nevada, California (United States)

    Bowerman, N. D.; Clark, D. H.


    Multiple sediment cores from two paternoster tarns (First and Second lakes) in North Fork Big Pine Creek, Sierra Nevada, preserve the most detailed and complete record of Holocene glaciation yet recovered in the range; they indicate that the glacier was absent during the early Holocene, reformed in the late Holocene, and experienced several expansions and contractions, culminating with the Matthes maximum during the last ˜200 years. The lakes are fed by outwash from the Palisade Glacier, the largest ( ˜1.3 km2) and presumably longest-lived glacier in the Sierra Nevada, and capture essentially all of the rock flour produced by the glacier. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. Thus, the lakes have received continuous sedimentation since the retreat of the Tioga glacier ( ˜15,000 yr B.P.), and therefore capture rock flour related to all subsequent advances. First and Second lakes occupy relatively deep bedrock basins at 3036 m and 3066 m asl., respectively. Third Lake, a shallow (rock flour (outwash) from the upstream Palisade Glacier, most likely related to formation and expansions of the glacier in the late Holocene. The maximum peak at the top of the cores confirms the moraine record, which indicates that the maximum Holocene advance of Sierran glaciers occurred during the late Little Ice Age (last ˜200 yr) At least one tephra layer, possibly related to the Mono/Inyo dome complexes, occurs in the middle depths of the First Lake cores. Other narrow peaks in MS may also be associated with tephra deposits. Ongoing detailed analyses of the sediments, including AMS radiocarbon dating, visual and x-ray imaging, particle size analysis, organic content, tephrochronology, diatom assemblages, and palynology will constrain the timing and character of the environmental fluctuations related to the rock-flour flux. We will present results of these analyses at the meeting.

  20. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.


    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  1. Anthropogenic Origin of Siliceous Scoria Droplets from Pleistocene and Holocene Archeaological Sites in Northern Syria

    DEFF Research Database (Denmark)

    Thy, Peter; Willcox, George; Barfod, Gry


    Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event. The !ndi......Siliceous scoria droplets, measuring from 1 to 10 mm, from one late Pleistocene and four early Holocene archaeological sites in northern Syria are compared to similar droplets previously suggested to be the result of a cosmic impact at the onset of the Younger Dryas global cooling event...

  2. Mid-Holocene to Present Climate Transition in Tropical South America (United States)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.


    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  3. Pacific southwest United States Holocene summer paleoclimate inferred from sediment calcite oxygen isotopes (Lake Elsinore, CA) (United States)

    Kirby, M.; Patterson, W. P.; Lachniet, M. S.; Anderson, M.; Noblet, J. A.


    Records of past climate inform on the natural range and mechanisms of climate change. In the arid Pacific southwest United States (pswUS), there exist a variety of Holocene records that infer past winter conditions (moisture and/or temperature). Holocene records of summer climate, however, are rare excepting short-lived (zone (Kirby et al. 2004) shows similar changes providing confidence in our longer record. Various forcing mechanisms are examined to explain the Elsinore summer record including insolation, Pacific SSTs, and trace gas radiative forcing.

  4. The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea (United States)

    Pearce, Christof; Varhelyi, Aron; Wastegård, Stefan; Muschitiello, Francesco; Barrientos, Natalia; O'Regan, Matt; Cronin, Thomas M.; Gemery, Laura; Semiletov, Igor; Backman, Jan; Jakobsson, Martin


    indicating stable oceanographic conditions during the second half of the Holocene. Our use of a volcanic absolute age marker to obtain the marine reservoir age offset is the first of its kind in the Arctic Ocean and provides an important framework for improving chronologies and correlating marine sediment archives in this region. Core 2PC has a high sediment accumulation rate averaging 200 cm kyr-1 throughout the last 4000 years, and the chronology presented here provides a solid base for high-resolution reconstructions of late Holocene climate and ocean variability in the Chukchi Sea.

  5. A Holocene Record of Monsoon Intensity From Speleothems in Flores, Indonesia (United States)

    Griffiths, M. L.; Drysdale, R.; Gagan, M.; Ayliffe, L.; Zhao, J.; St. Pierre, E.; Hantoro, W.; Suwargadi, B.


    The Australasian monsoon is among the largest monsoon systems on Earth. The affected region experiences a marked seasonal cycle in winds and precipitation, similar to its Northern Hemisphere counterparts (e.g., Asian monsoons). The Australasian monsoon is the life blood of the millions of people of the Indonesian archipelago. Since the climate is the dominating factor controlling food production, it is of great significance and urgency that we gain a firmer grasp on the parameters that control variations in monsoon intensity. Precise uranium series dating of two actively growing speleothems measuring ~1.25 (LR06-B1) and ~1.61 (LR06-B3) meters in length from Liang Luar cave (Flores, eastern Indonesia), reveal basal ages of ~12,846±103 and 23,605±171 years respectively. In previous studies, stable isotope ratios (δ18O and δ13C) and trace element concentrations in speleothems have revealed past environmental change (e.g., Burns et al., 2001; Wang et al., 2001; Fleitmann et al., 2004; Drysdale et al., 2004).In monsoon-affected regions, the δ18O signal recorded in stalagmites seems to be dominated by the amount of precipitation (so-called `amount effect'), whereby more negative (positive) δ18O values indicate enhanced (diminished) precipitation. Preliminary results from LR06-B1 indicate that δ18O values show a general increase in monsoon intensity from the beginning of the record to ~2000 years BP: this more or less follows insolation changes over the Australian continent.Comparison of our record with D4 from Dongge Cave reveals an anticorrelation during the Holocene, further supporting the hypothesis that tropical monsoon intensity is largely controlled by changes in insolation in both the Northern and Southern Hemisphere. Examination of our δ13C record demonstrates a high-frequency signal superimposed on low- frequency variability which correlates with the reconstructed sunspot cycle: higher (lower) sunspot numbers, and hence increased solar activity

  6. Cognitive Variability (United States)

    Siegler, Robert S.


    Children's thinking is highly variable at every level of analysis, from neural and associative levels to the level of strategies, theories, and other aspects of high-level cognition. This variability exists within people as well as between them; individual children often rely on different strategies or representations on closely related problems…

  7. Episodic Late Holocene dune movements on the sand-sheet area, Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado, USA (United States)

    Forman, S. L.; Spaeth, M.; Marín, L.; Pierson, J.; Gómez, J.; Bunch, F.; Valdez, A.


    The Great Sand Dunes National Park and Preserve (GSDNPP) in the San Luis Valley, Colorado, contains a variety of eolian landforms that reflect Holocene drought variability. The most spectacular is a dune mass banked against the Sangre de Cristo Mountains, which is fronted by an extensive sand sheet with stabilized parabolic dunes. Stratigraphic exposures of parabolic dunes and associated luminescence dating of quartz grains by single-aliquot regeneration (SAR) protocols indicate eolian deposition of unknown magnitude occurred ca. 1290-940, 715 ± 80, 320 ± 30, and 200-120 yr ago and in the 20th century. There are 11 drought intervals inferred from the tree-ring record in the past 1300 yr at GSDNPP potentially associated with dune movement, though only five eolian depositional events are currently recognized in the stratigraphic record. There is evidence for eolian transport associated with dune movement in the 13th century, which may coincide with the "Great Drought", a 26-yr-long dry interval identified in the tree ring record, and associated with migration of Anasazi people from the Four Corners areas to wetter areas in southern New Mexico. This nascent chronology indicates that the transport of eolian sand across San Luis Valley was episodic in the late Holocene with appreciable dune migration in the 8th, 10-13th, and 19th centuries, which ultimately nourished the dune mass against the Sangre de Cristo Mountains.

  8. Lake sediment-based Late Holocene glacier reconstruction reveals medieval retreat and two-phase Little Ice Age on subantarctic South Georgia (United States)

    van der Bilt, W. G. M.; Bakke, J.; Werner, J.; Paasche, O.; Rosqvist, G. N.; Vatle, S. S.


    Southern Ocean climate is rapidly changing. Yet beyond the instrumental period (± 100 years), our comprehension of climate variability in the region is restricted by a lack of high-resolution paleoclimate records. Alpine glaciers, ubiquitous on Southern Ocean islands, may provide such data as they rapidly respond to climate shifts, recording attendant changes in extent by variations in glacial erosion. Rock flour, the fine-grained fraction of this process, is suspended in meltwater streams and transfers this signal to the sediments of downstream lakes, continuously recording glacier history. Here, we use this relationship and present the first reconstruction of the Late Holocene (1250 cal. yr BP - present) glacier history of the Southern Ocean island of South Georgia, using sediments from the glacier-fed Middle Hamberg lake. Variations are resolved on multi-centennial scales due to robust chronological control. To fingerprint a glacial erosion signal, we employed a set of routinely used physical, geochemical and magnetic parameters. Using Titanium counts, validated against changes in sediment density and grain size distribution, we continuously reconstruct glacier variations over the past millennium. Refining local moraine evidence and supporting evidence from other Southern Hemisphere sites, this study shows a progressive diminishing of consecutive Late Holocene advances. These include a two-stage Little Ice Age, in agreement with other Southern Hemisphere glacier evidence. The presented record furthermore captures an unreported retreat phase behind present limits around 500 cal. yr BP.

  9. Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica: implications for atmospheric variations from regional to hemispheric scales

    Directory of Open Access Journals (Sweden)

    S. Albani


    Full Text Available Central East Antarctic ice cores preserve stratigraphic records of mineral dust originating from remote sources in the Southern Hemisphere, and represent useful indicators of climatic variations on glacial-interglacial time scales. The peripheries of the East Antarctic Ice Sheet, where ice-free areas with the potential to emit dust exist, have been less explored from this point of view. Here, we present a new profile of dust deposition flux and grain size distributions from an ice core drilled at Talos Dome (TALDICE, Northern Victoria Land, East Antarctica, where there is a significant input of dust from proximal Antarctic ice-free areas. We analyze dust and stable water isotopes variations from the Last Glacial Maximum to the Late Holocene, and compare them to the EPICA Dome C profiles from central East Antarctica. The smaller glacial-interglacial variations at Talos Dome compared to Dome C and a distinctive decreasing trend during the Holocene characterize the TALDICE dust profile. By deciphering the composite dust signal from both remote and local sources, we show the potential of this combined proxy of source activity and atmospheric transport to give information on both regional and larger spatial scales. In particular, we show how a regional signal, which we relate to the deglaciation history of the Ross Sea embayment, can be superimposed to the broader scale glacial-interglacial variability that characterizes other Antarctic sites.

  10. Late Glacial and Holocene sedimentary evolution of Czechowskie Lake (Eastern Pomerania, North Central Poland) (United States)

    Kordowski, Jarosław; Błaszkiewicz, Mirosław; Kramkowski, Mateusz; Noryśkiewicz, Agnieszka M.; Słowiński, Michał; Tyszkowski, Sebastian; Brauer, Achim; Ott, Florian


    Czechowskie Lake is located in north-central Poland in Tuchola Forest, about 100 kilometers SW away from Gdańsk. In the deepest parts of the lake there are preserved laminated sediments with an excellent Holocene climatic record. The lake has the area of 76,6 ha. Actual water level is at 109,9 m a.s.l. The average depth is 9,59 m, maximal 32 m. It occupies a large subglacial channel, reproduced within the glacifluvial sediments of the last glaciation. The lake has a history reaching back to Pommeranian phase which is proved by analysis of sedimentary succesions in the vicinity of present-day waterbody. Primarily it come to existence as an very variable ice dammed lake but after dead ice and permafrost desintegration it changed into a stable lake. In the terrestrialised part oft the lake and in its litoral zone there were curried out numerous boreholes within limnic and slope sediments. They have been analysed in respect to lithology and structure. Some of them were also investigated palynologically which along with radiocarbon datings allowed to reconstruct major phases of the water level fluctuations. The maximum infilling with the limnic and telmatic sediments reaches over 12 m. In the bottom of the lake there is a marked presence of many overdeepenings with the diameter of dozen or several dozen meters and the depth of up to 10 m with numerous, distinct throughs between them. They favoured the preservation of the lamination in the deepest parts of the lake due to waves hampering and stopping of the density circulation in the lake waterbody. The analysis of limnic sediments revealed considerable spatial and temporal variability mainly in dependance of the area of the water body and water level in time of deposition. In the lake are recorded three distinct phases of lake level decrease. The sedimentary evolution in the isolated minor lake basins showed gradual decrease of mineral and organic deposition in favour for carbonate one although in places separated by

  11. Lithostratigraphy and microfacies analyses of the Lateglacial and early Holocene sediment record from Lake Haemelsee (Germany) (United States)

    Haliuc, Aritina; Brauer, Achim; Dulski, Peter; Engels, Stefan; Lane, Christine


    Annually laminated sediments are unique continental archives holding essential paleoenvironmental and paleoclimatic information providing the opportunity (i) to evaluate the climate variability at inter-annual to decadal scale and (ii) to construct independent and reliable chronologies. Lake Haemelsee in northern Germany (19.5 m a.s.l) is a key site for tracing high-resolution climatic and environmental evolution in W Europe because of its partly varved sediments. Here, we apply lithostratigraphical, geochemical and micro-facies analyses for the bottom sediments (~1700 to 1300 cm sediment depth) in order to investigate the driving mechanisms, timing and amplitude of Lateglacial abrupt climate changes to the onset of the Holocene warming. Detailed investigation includes micro-facies analyses on petrographic thin sections combined with high-resolution µ-XRF element scanning on both fresh sediment core halves (200 µm resolution) and impregnated sediment blocks (50µm resolution). Based on these analyses, the sediment composite profile (378 cm) has been divided in ten lithozones, each exhibiting different sedimentation modes in response to regional and local climatic and environmental changes. Micro-facies analyses revealed that sediments consist of organic matter, siderite, calcite, clay/silt and sand. The basal sediments consist of glacio-fluvial material. Fine laminations are best preserved in lithozone 5 (1522-1573 cm), where minima in element proxies for detrital sediments (Ti, K, Si) and maxima in Fe and Mn indicate the prevalence of anoxic meromictic conditions. Three different varve facies types were distinguished: i) the clastic-organic varves are specific for the intervals 1571-1573 cm and 1536-1541 cm; ii) calcite/siderite-organic varves appear between 1568-1571 and 1541-1545 cm; iii) the siderite-organic varves are characteristic for the middle of the lithozone 5 spanning from 1545-1568 cm. These changes in varve facies reflect the complex answer of

  12. Last nine-thousand years of temperature variability in Northern Europe

    Directory of Open Access Journals (Sweden)

    H. Seppä


    Full Text Available The threat of future global warming has generated a major interest in quantifying past climate variability on centennial and millennial time-scales. However, palaeoclimatological records are often noisy and arguments about past variability are only possible if they are based on reproducible features in several reliably dated datasets. Here we focus on the last 9000 years, explore the results of 36 Holocene pollen-based July mean and annual mean temperature reconstructions from Northern Europe by stacking them to create summary curves, and compare them with a high-resolution, summary chironomid-based temperature record and other independent palaeoclimate records. The stacked records show that the "Holocene Thermal Maximum" in the region dates to 8000 to 4800 cal yr BP and that the "8.2 event" and the "Little Ice Age" at 500–100 cal yr BP are the clearest cold episodes during the Holocene. In addition, a more detailed analysis of the last 5000 years pinpoints centennial-scale climate variability with cold anomalies at 3800–3000 and 500–100 cal yr BP, a long, warmer period around 2000 cal yr BP, and a marked warming since the mid 19th century. The colder (warmer anomalies are associated with increased (decreased humidity over the northern European mainland, consistent with the modern high correlation between cold (warm and humid (dry modes of summer weather in the region. A comparison with the key proxy records reflecting the main forcing factors does not support the hypothesis that solar variability is the cause of the late-Holocene centennial-scale temperature changes. We suggest that the reconstructed anomalies are typical of Northern Europe and their occurrence may be related to the oceanic and atmospheric circulation variability in the North Atlantic – North-European region.

  13. Relationships between holocene vegetation and the spreading out of civilizations and languages in Southwestern-Asia

    International Nuclear Information System (INIS)

    David, F.


    A pluridisciplinary approach is proposed, which deals with the reconstitution of holocene environments and estimation of the human impact. This effects varies in time and space, as in the case of South Eastern Mediterranean countries (Turkey, Syria, Iraq, Iran), where advanced civilization appeared very early. Special attention is paid to palynology, archaeology and linguistic

  14. Results of radiocarbon dating of Holocene fluvial sediments from Northeastern Bohemia

    International Nuclear Information System (INIS)

    Silar, J.; Zeman, A.


    Samples of wood and charcoal from the latest Holocene fluvial sediments under the lowest surface of alluvial plains were dated by radiocarbon in order to check paleomagnetic data at four sites in northeastern Bohemia. The results are presented as funcorrected 14 C ages and dendrochronologically corrected ages. Two samples were recent. 4 figs., 1 tab., 3 refs

  15. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter


    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  16. Surface water dynamics in the Reykjanes Ridge area during the Holocene as revealed by coccolith assemblages

    NARCIS (Netherlands)

    Balestra, B.; Ziveri, P.; Baumann, K. H.; Troelstra, S.R.; Monechi, S.


    The calcareous nannofossil assemblages from sediment core DS97-2P from the Reykjanes Ridge have been investigated to document oceanographic changes in surface water during the Holocene. The recorded variations in coccolithophore species assemblages and accumulation rates indicate that the region was

  17. Valley evolution of the Lower Rhine in LGM, Lateglacial and Early Holocene.

    NARCIS (Netherlands)

    Cohen, K.M.; Hoek, W.Z.; Stouthamer, E.; Geurts, A.H.; Janssens, M.; Kasse, C.; Busschers, F.S.; Hijma, M.P.; Erkens, G.


    The impact of transient climate change, for example at glacial-interglacial transitions, on the alluvial valley of the lower reaches of larger river systems has become a classic topic of fluvial geomorphology and quaternary geological study. The process of contraction of Holocene river activity into

  18. Mapping buried holocene landscapes. Past lowland environments, palaeoDEMs and preservation in GIS

    NARCIS (Netherlands)

    Cohen, K.M.; Dambrink, R.M.; Bruijn, R. de; Marges, V.C.; Erkens, G.; Pierik, H.J.; Koster, K.; Stafleu, J.; Schokker, J.; Hijma, M.P.


    In a geological GIS-data recombination project, a digital map was produced that contains information on the Netherlands’ former coastal and delta plain landscapes over the last 14,000 years: the Holocene and the very end of the Pleistocene. The polygon map product is accompanied by a set of

  19. Large floods and climatic change during the Holocene on the Ara River, Central Japan (United States)

    Grossman, Michael J.


    A reconstruction of part of the Holocene large flood record for the Ara River in central Japan is presented. Maximum intermediate gravel-size dimensions of terrace and modern floodplain gravels were measured along an 18-km reach of the river and were used in tractive force equations to estimate minimum competent flood depths. Results suggest that the magnitudes of large floods on the Ara River have varied in a non-random fashion since the end of the last glacial period. Large floods with greater magnitudes occurred during the warming period of the post-glacial and the warmer early to middle Holocene (to ˜5500 years BP). A shift in the magnitudes of large floods occurred ˜5500-5000 years BP. From this time, during the cooler middle to late Holocene, large floods generally had lower magnitudes. In the modern period, large flood magnitudes are the largest in the data set. As typhoons are the main cause of large floods on the Ara River in the modern record, the variation in large flood magnitudes suggests that the incidence of typhoon visits to the central Japan changed as the climate changed during the Holocene. Further, significant dates in the large flood record on the Ara River correspond to significant dates in Europe and the USA.

  20. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    NARCIS (Netherlands)

    Jung, S.J.A.; Ganssen, G.M.; Davies, G.R.


    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ~6.5 kyr B.P. superimposed upon short-term δ18O variations

  1. Holocene productivity changes off Adélie Land (East Antarctica) on decadal to millennial timescales

    NARCIS (Netherlands)

    Denis, D.; Crosta, X.; Schmidt, S.; Carson, D.; Ganeshram, R.; Renssen, H.; Crespin, J.; Ther, O.; Billy, I.; Giraudeau, J.


    This study presents the first high-resolution multiproxy investigation of primary productivity (PP) during the Holocene from the Antarctic continental margins. Micropaleontological and geochemical data from the sediment core MD03-2601,associated to sea ice model outputs, give unprecedented insights

  2. Late Holocene vegetation changes in relation with climate fluctuations and human activities in Languedoc (Southern France)


    J. Azuara; N. Combourieu-Nebout; V. Lebreton; F. Mazier; S. D. Müller; L. Dezileau


    Holocene climate fluctuations and human activities since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to reconstruct Mediterranean paleoenvironments over the last millennia remains a challenging issue. High resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics ove...

  3. Alluvial architecture of fluvio-deltaic successions: a review with special reference to Holocene settings

    NARCIS (Netherlands)

    Gouw, M.J.P.


    Alluvial architecture has been subject of many studies because of the occurrence of natural resources in ancient fluvial successions. This paperprovides an overview of the current state of research on alluvial architecture with special reference to Holocene fluvio-deltaic settings. Severalexamples

  4. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.


    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  5. Cyclicity in the Late Holocene monsoonal changes from the western Bay of Bengal: Foraminiferal approach.

    Digital Repository Service at National Institute of Oceanography (India)

    Rana, S.S.; Nigam, R.

    .; Imbrie, J.; Hays, J.; Kukla, G.; Saltzman, B.. NATO ASI Ser. C: Math. Phys. Sci.; 126: 349-366. Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., Burr, G.S. 2000. High resolution Holocene monsoon record from the eastern Arabian Sea...

  6. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea (United States)

    Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao


    Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  7. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    Directory of Open Access Journals (Sweden)

    Tingping eOuyang


    Full Text Available Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1 Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2 XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3 the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4 The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5 During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  8. Holocene vegetation and climate history of the northern Bighorn Basin, southern Montana (United States)

    Lyford, M.E.; Betancourt, J.L.; Jackson, S.T.


    Records of Holocene vegetation and climate change at low elevations (treeline indicates wetter conditions between 4400 and 2700 14C yr B.P. Increased aridity after 2700 14C yr B.P. initiated expansion of J. osteosperma from the east to west side of the Pryor Mountains. ?? 2002 University of Washington.

  9. 3D characterization of Holocene peat in the Netherlands : Implications for coastal-deltaic subsidence

    NARCIS (Netherlands)

    Koster, K.


    Human-induced subsidence threatens many coastal-deltaic plains, due to the amplifying effects it has on sea-level rise and flood risk. In the coastal-deltaic plain of the Netherlands, subsidence is primarily caused by the compression and oxidation of Holocene peat. The understanding of subsidence in

  10. History of geological mapping of the Holocene Rhine-Meuse delta, the Netherlands

    NARCIS (Netherlands)

    Berendsen, H.J.A.


    A brief overview is given of the history of geological mapping of the Holocene Rhine-Meuse delta. The first accurate map of the delta, based on field observations, was made by Vink (1926). The geological map of the Netherlands, scale 1 : 50,000, made by the ‘Geologische Stichting’ (1927 - 1938)

  11. The response of the southern Greenland ice sheet to the Holocene thermal maximum

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, Kurt H.; Lecavalier, Benoit


    contribution of 0.16 m sea-level equivalent from the entire Greenland ice sheet, with a centennial ice loss rate of as much as 100 Gt/yr for several millennia during the Holocene thermal maximum. Our results provide an estimate of the long-term rates of volume loss that can be expected in the future...

  12. Simulation of the Holocene climate evolution in Nothern Africa: the termination of the African Humid Period.

    NARCIS (Netherlands)

    Renssen, H.; Brovkin, V.; Fichefet, T.; Goosse, H.


    The Holocene climate evolution in Northern Africa is studied in a 9000-yr-long transient simulation with a coupled atmosphere-ocean-vegetation model forced by changes in insolation and atmospheric greenhouse gas concentrations. The model simulates in the monsoonal domains a significant decrease in

  13. Holocene limestones of part of the western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.; Guptha, M.V.S.

    , while those on te upper continental slope (130-180 m) are algal bryozoan limestones. The limestones have a radiocarbon age ranging between 9,000 and 11,000 years. Depositional environmental on the continental shelf during the Holocene appears...

  14. Late Pleistocene and Holocene activity of the Atacazo-Ninahuilca Volcanic Complex (Ecuador)

    NARCIS (Netherlands)

    Hidalgo, Silvana; Monzier, Michel; Almeida, Eduardo; Chazot, Gilles; Eissen, Jean-Philippe; van der Plicht, Johannes; Hall, Minard L.


    The Atacazo-Ninahuilca Volcanic Complex (ANVC) is located in the Western Cordillera of Ecuador, 10 km southwest of Quito. At least six periods of Pleistocene to Holocene activity (N1 to N6) have been preserved in the geologic record as tephra fallouts and pyroclastic flow deposits. New field data,

  15. Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby


    The Holocene stratigraphy in Scoresby Sund is based on climatic change as reflected by fluctuations in fjord and valley glaciers, immigration and extinction of marine molluscs, and the vegetation history recorded in pollen diagrams from five lakes. The histories are dated by C-14, and indirectly...

  16. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish


    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  17. Asynchronous Changes in Vegetation, Runoff and Erosion in the Nile River Watershed during the Holocene

    NARCIS (Netherlands)

    Blanchet, C.; Frank, M.; Schouten, S.


    The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North

  18. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito


    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  19. Holocene vegetation, environment, and tephra recorded from Lake Pupuke, Auckland, New Zealand

    International Nuclear Information System (INIS)

    Horrocks, M.; Augustinus, P.; Deng, Y.; Shane, P.; Andersson, S.


    Lake Pupuke provides a near-complete, high-resolution environmental record of the Holocene from northern New Zealand. Tephra beds constrain the timing of a range of proxy indicators of environmental change, and demonstrate errors in a radiocarbon chronology. Agathis australis forest progressively increases from c. 7000 yr BP and, in conjunction with indicators of reduced biomass productivity, support a model of long-term climate change to drier conditions over the Holocene. However, except for Agathis, conifer-hardwood forest dominated mainly by Dacrydium cupressinum shows little change throughout the pre-human Holocene, suggesting environmental stability. Dramatic vegetation change occurred only within the last millennium as a result of large-scale Polynesian deforestation by fire. This happened a short time before the local eruption of c. 638 cal. yr BP Rangitoto Tephra. The identification of two eruptions of tephra from Rangitoto volcano has implications for future hazard planning in the Auckland region, because the volcanoes were previously considered single event centres. Changes in atmospheric circulation since the Late Glacial, possibly causing lower frequency of distal ashfall in Auckland during the Holocene, complicates the use of long-term records in hazard frequency assessment. (author). 39 refs., 7 figs., 2 tabs

  20. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. (United States)

    Turvey, Samuel T; Fritz, Susanne A


    Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.

  1. Upper Holocene dry land vegetation in the Moravian-Slovakian borderland (Czech and Slovak Republics)

    Czech Academy of Sciences Publication Activity Database

    Rybníček, Kamil; Rybníčková, E.


    Roč. 17, č. 6 (2008), s. 701-711 ISSN 0939-6314 R&D Projects: GA ČR GA206/02/0568 Institutional research plan: CEZ:AV0Z60050516 Keywords : upper holocene forest vegetation * paleoecology * Moravian-Slovakoian borderland Subject RIV: EF - Botanics Impact factor: 1.845, year: 2008

  2. Mediterranean moisture source for an Early-Holocene humid period in the Northern Red Sea

    NARCIS (Netherlands)

    Arz, H.W.; Lamy, F.; Paetzold, J.; Mueller, P.J.; Prins, M.A.


    Paleosalinity and terrigenous sediment input changes reconstructed on two sediment cores from the northernmost Red Sea were used to infer hydrological changes at the southern margin of the Mediterranean climate zone during the Holocene. Between approximately 9.25 and 7.25 thousand years ago, about

  3. Fluvial response to Holocene volcanic damming and breaching in the Gediz and Geren rivers, western Turkey

    NARCIS (Netherlands)

    van Gorp, W.; Veldkamp, A.; Temme, A.J.A.M.; Maddy, D; Demir, T.; Schriek van der, T.; Reimann, T.; Wallinga, J.; Wijbrans, J.R.; Schoorl, J.M.


    This study discusses the complex late Holocene evolution of the Gediz River north of Kula, western Turkey, when a basaltic lava flow dammed and filled this river valley. Age control was obtained using established and novel feldspar luminescence techniques on fluvial sands below and on top of the

  4. Ichnotaxonomy and Interpretation of "Incipient" Insect Trace Fossils in the Archaeological Context of Abusir (Holocene, Egypt)

    Czech Academy of Sciences Publication Activity Database

    Mikuláš, Radek


    Roč. 21, č. 3 (2013), s. 85-100 ISSN 0869-5938 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : Holocene * insect burrows * ichnotaxonomy * egyptology * Abusir Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.714, year: 2013

  5. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans


    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  6. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska (United States)

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.


    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  7. Holocene precipitation changes in the deep tropics recorded by Speleothems (Invited) (United States)

    Wang, X.; Auler, A. S.; Edwards, R.; Kong, X.; Cheng, H.; Cruz, F. W.; Wang, Y.; Broecker, W. S.


    We have obtained a high-resolution oxygen isotope (δ18O) record of cave calcite from Paraiso Cave, eastern Amazon, which covers most of the Holocene. Its chronology was determined by U-Th ages from three column-shaped stalagmites. Their δ18O profiles replicate among their contemporaneous growth periods. Therefore, the samples were likely precipitated under equilibrium conditions and their oxygen isotopic variations are primarily caused by climate change. We find that the δ18O decreases steadily from ~11.0 to 5.0 thousand years ago, with a growth gap between ~8.4 to 6.3 thousand years ago, and then gradually increases until the present. The large amplitude of the δ18O change (up to 4 per mil) suggests that the variation in δ18O value is dominated by meteoric precipitation change at this equatorial site. In order to investigate the interactions between the Intertropical Convergence Zone (ITCZ), monsoons and El Niño-Southern Oscillation (ENSO) activity during the Holocene, we compare the Paraiso record to speleothem records from other locations in the deep tropics, namely, cave sites from Flores, Borneo and Peru. We find that all these speleothem records are consistent, with a progressive δ18O decrease (rainfall increase) during the early Holocene, probably in response to the southward retreat of the ITCZ from its northernmost location in the early Holocene. This is evident from the strong anti-correlation between the speleothem monsoonal records from China and southern Brazil. However, our record is distinct from the others during the last 4 thousand years, when it switches to a continuous δ18O increase (rainfall decrease) trend, while the others flatten out. We propose that, during the late Holocene, the strengthened South American Summer Monsoon may override the ENSO influence and cause the discrepancy in precipitation between eastern Amazon and other deep tropical cave sites.

  8. Organic carbon accumulation and reactivity in central Swedish lakes during the Holocene (United States)

    Chmiel, H.; Kokic, J.; Niggemann, J.; Dittmar, T.; Sobek, S.


    Sedimentation and burial of particulate organic carbon (POC), received from terrestrial sources and from lake internal primary production, are responsible for the progressive accumulation and long-term storage of organic matter in lake basins. For lakes in the boreal zone of central Sweden it can be presumed, that the onset of POC accumulation occurred during the early Holocene (˜8000 BP.) after the retreat of the Scandinavian ice sheet. In this study we investigated carbon mass accumulation rates (CMARs), as well as sources and reactivity of deposited organic material, for seven lakes in central Sweden (60°N, 15°E), in order to obtain a detailed temporal resolution of carbon burial and preservation in boreal lakes. Sediment long-cores were sampled in March 2011 from the ice, and CMARs were calculated from water contents, dry bulk densities, carbon contents and radiocarbon (14C) ages of the depth profiles. To indicate the sources of the organic material and characterize its diagenetic state, we determined carbon-nitrogen ratios (C/N) as well as amounts and compositions of lignin phenols. The transitions from organic rich sediment layers to glacial till deposits were found to be in sediment depths of ˜3 m in each lake. POC contents were on average highest (25-34 wt. % C), in small lakes (≤ 0.07 km2) and lowest (10-18 wt. % C) in the larger lakes (≥ 165 km2). The CMARs over the Holocene showed significant variations and were on average lower in the early Holocene, compared to recent accumulation rates. C/N values and the composition of lignin phenols further provided indications of important changes in organic matter source and reactivity over the Holocene. In summary, our data suggest that boreal lake sediments were a significantly stronger sink for organic carbon during the last ~150 years than during earlier periods of the Holocene.

  9. Synthesizing late Holocene paleoclimate reconstructions: Lessons learned, common challenges, and implications for future research (United States)

    Rodysill, J. R.


    Proxy-based reconstructions provide vital information for developing histories of environmental and climate changes. Networks of spatiotemporal paleoclimate information are powerful tools for understanding dynamical processes within the global climate system and improving model-based predictions of the patterns and magnitudes of climate changes at local- to global-scales. Compiling individual paleoclimate records and integrating reconstructed climate information in the context of an ensemble of multi-proxy records, which are fundamental for developing a spatiotemporal climate data network, are hindered by challenges related to data and information accessibility, chronological uncertainty, sampling resolution, climate proxy type, and differences between depositional environments. The U.S. Geological Survey (USGS) North American Holocene Climate Synthesis Working Group has been compiling and integrating multi-proxy paleoclimate data as part of an ongoing effort to synthesize Holocene climate records from North America. The USGS North American Holocene Climate Synthesis Working Group recently completed a late Holocene hydroclimate synthesis for the North American continent using several proxy types from a range of depositional environments, including lakes, wetlands, coastal marine, and cave speleothems. Using new age-depth relationships derived from the Bacon software package, we identified century-scale patterns of wetness and dryness for the past 2000 years with an age uncertainty-based confidence rating for each proxy record. Additionally, for highly-resolved North American lake sediment records, we computed average late Holocene sediment deposition rates and identified temporal trends in age uncertainty that are common to multiple lakes. This presentation addresses strengths and challenges of compiling and integrating data from different paleoclimate archives, with a particular focus on lake sediments, which may inform and guide future paleolimnological studies.

  10. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea (United States)

    Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.


    We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.

  11. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch (United States)

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.


    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  12. Aeolian processes during the Holocene in Gannan Region, Eastern Tibetan Plateau (United States)

    Yang, S.; Cheng, T.; Li, S.; Liang, M.


    Aeolian desertification occurring in the Tibetan Plateau has received attention recently for it has become a severe environmental problem by accelerating the grassland degradation and eco-environment damage. The Gannan Region is located in the northeastern Tibetan Plateau with a mean altitude of 3500m. It is highly sensitive to global environmental change and human disturbance. Serious soil erosion and desertification and extensive land degradation have caused heavy eco-environmental impacts. To investigate the evolution of the desertification in Holocene in the Plateau is of great importance for understanding the desertification trend under the global changes in the Tibetan Plateau. Loess and aeolian sands is a key geological archive related to desertification processes and the past environment changes. In this study a typical 8.5m-thick loess-sands profile named MQQ, was selected at the Maqu city. It is situated on the first terrace (T1) of the Yellow River. Detailed accelerator mass spectrometry (AMS) 14C dating of bulk organic matter content has shown the Aeolian sediments of the MQQ section occurring since the early Holocene. the mass-specific frequency-dependent magnetic susceptibility (χfd) and grainsize records show a clear upward increase in the contents of superparamagnetic grains and fine fractions in grain size, which indicates a gradual wetting trend during the Holocene.The sediment rates change from very high in the early Holocene to low values after 8.2 ka. The wetting process can be divided into three steps: 10.0-8.2 ka, 8.2-3.0 ka and 3.0-present. It indicates that the climate in the eastern Tibetan Plateau was dry during the early Holocene. After that the climate was getting wet gradually. The variations of the westerlies and the Asian monsoon may cause the environmental change in this region.

  13. History of Aral Sea level variability and current scientific debates (United States)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel


    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  14. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate (United States)

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo


    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  15. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate. (United States)

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo


    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  16. Complex variables

    CERN Document Server

    Fisher, Stephen D


    The most important topics in the theory and application of complex variables receive a thorough, coherent treatment in this introductory text. Intended for undergraduates or graduate students in science, mathematics, and engineering, this volume features hundreds of solved examples, exercises, and applications designed to foster a complete understanding of complex variables as well as an appreciation of their mathematical beauty and elegance. Prerequisites are minimal; a three-semester course in calculus will suffice to prepare students for discussions of these topics: the complex plane, basic

  17. Holocene climate on the Modoc Plateau, northern California, USA: The view from Medicine Lake (United States)

    Starratt, Scott W.


    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), intermediate elevation (2,036 m) lake located within the summit caldera of Medicine Lake volcano, Siskiyou County, California, USA. Sediment cores and high-resolution bathymetric and seismic reflection data were collected from the lake during the fall of 1999 and 2000. Sediments were analyzed for diatoms, pollen, density, grain size (sand/mud ratio), total organic carbon (TOC), and micro-scale fabric analysis. Using both 14C (AMS) dating and tephrochronology, the basal sediments were estimated to have been deposited about 11,400 cal year BP, thus yielding an estimated average sedimentation rate of about 20.66 cm/1,000 year. The lowermost part of the core (11,400–10,300 cal year BP) contains the transition from glacial to interglacial conditions. From about 11,000–5,500 cal year BP, Medicine Lake consisted of two small, steep-sided lakes or one lake with two steep-sided basins connected by a shallow shelf. During this time, both the pollen (Abies/Artemisia ratio) and the diatom (Cyclotella/Navicula ratio) evidences indicate that the effective moisture increased, leading to a deeper lake. Over the past 5,500 years, the pollen record shows that effective moisture continued to increase, and the diatom record indicates fluctuations in the lake level. The change in the lake level pattern from one of the increasing depths prior to about 6,000 cal year BP to one of the variable depths may be related to changes in the morphology of the Medicine Lake caldera associated with the movement of magma and the eruption of the Medicine Lake Glass Flow about 5,120 cal year BP. These changes in basin morphology caused Medicine Lake to flood the shallow shelf which surrounds the deeper part of the lake. During this period, the Cyclotella/Navicula ratio and the percent abundance of Isoetes vary, suggesting that the level of the lake fluctuated, resulting in changes in the shelf area

  18. A complete Holocene record of trematode-bivalve infection and implications for the response of parasitism to climate change. (United States)

    Huntley, John Warren; Fürsich, Franz T; Alberti, Matthias; Hethke, Manja; Liu, Chunlian


    Increasing global temperature and sea-level rise have led to concern about expansions in the distribution and prevalence of complex-lifecycle parasites (CLPs). Indeed, numerous environmental variables can influence the infectivity and reproductive output of many pathogens. Digenean trematodes are CLPs with intermediate invertebrate and definitive vertebrate hosts. Global warming and sea level rise may affect these hosts to varying degrees, and the effect of increasing temperature on parasite prevalence has proven to be nonlinear and difficult to predict. Projecting the response of parasites to anthropogenic climate change is vital for human health, and a longer term perspective (10(4) y) offered by the subfossil record is necessary to complement the experimental and historical approaches of shorter temporal duration (10(-1) to 10(3) y). We demonstrate, using a high-resolution 9,600-y record of trematode parasite traces in bivalve hosts from the Holocene Pearl River Delta, that prevalence was significantly higher during the earliest stages of sea level rise, significantly lower during the maximum transgression, and statistically indistinguishable in the other stages of sea-level rise and delta progradation. This stratigraphic paleobiological pattern represents the only long-term high-resolution record of pathogen response to global change, is consistent with fossil and recent data from other marine basins, and is instructive regarding the future of disease. We predict an increase in trematode prevalence concurrent with anthropogenic warming and marine transgression, with negative implications for estuarine macrobenthos, marine fisheries, and human health.

  19. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China (United States)

    Chen, Fahu; Jia, Jia; Chen, Jianhui; Li, Guoqiang; Zhang, Xiaojian; Xie, Haichao; Xia, Dunsheng; Huang, Wei; An, Chengbang


    There are significant differences in the interpretation of the moisture (precipitation) history of arid central Asia (ACA) during the Holocene, as inferred on one hand from speleothem oxygen isotope records, and on the other from lake sediments. Here we present the results of measurements of climatically-sensitive magnetic properties and soil color from four well-dated loess-paleosol sequences from the northern slopes of the Tienshan Mountains and the Yili River valley, Xinjiang, China, in the core area of ACA. Our results demonstrate that the characteristic Holocene paleosol, indicating relatively moist conditions, generally formed after ∼6 ka (1 ka = 1000 cal yr BP) in the study region, and that the accumulation of unweathered loess prevailed during the early Holocene, indicating a dry climate at that time. The magnetic proxies further reveal a trend of generally increasing moisture since the Last Glacial Maximum, with the wettest climate occurring during the late Holocene. This trend of increasing moisture during the Holocene is representative of the Xinjiang region and possibly of the whole of the core area of ACA, and is in marked contrast both to the mid-Holocene moisture maximum observed in the East Asian summer monsoon region and to the general decrease in the strength of the Indian summer monsoon since the early Holocene. Our findings are supported by the results of a climate simulation which indicate a trend of increasing summer and winter precipitation during the Holocene in the core area of ACA, caused mainly by an increase in the strength of the westerlies effected by an increasing latitudinal insolation gradient and by a negative trend of the Arctic Oscillation (AO) or North Atlantic Oscillation (NAO).

  20. Late Holocene climate and environmental change from Asiul cave speleothems: interpretations in light of modern cave monitoring. (United States)

    Smith, Andrew; Wynn, Peter; Barker, Philip; Leng, Melanie; Noble, Steve; Tych, Wlodek


    Northern Iberia offers an excellent location to study fluctuations in North Atlantic Ocean (NA) conditions and the impact that changes in the NA have on atmospheric systems, which dominate Europe's climate. Two speleothems from Cueva de Asiul (Matienzo, N. Spain) have been used to reconstruct rainfall variability in N. Spain throughout the Holocene (Smith et al., 2016a). The carbonate δ18O records from these speleothems are interpreted in the light of a rigorous modern cave monitoring program undertaken at Cueva de Asiul (Smith et al., 2016b). Drip water δ18O reflects a modern rainfall amount effect whilst δ13C appears influenced by Prior Calcite Precipitation (PCP) in the short term and changes in vegetation at long timescales. The speleothem δ18O shows that long duration ( 1500 year) cycles in wetting and drying are prevalent in N. Spain during the Holocene and that dry climate phases are related to the timing of cold events (Bond et al., 2001) in the NA. Here we look in more detail at one of these speleothems, assessing both δ18O and δ13C during the last two thousand years. We show that Cueva de Asiul speleothems not only preserve long duration climate cycles in δ18O, but that they also appear influenced by shorter duration changes in the North Atlantic Oscillation (NAO), in-sync with other NAO archives (Olsen et al., 2012). However, the Cueva de Asiul record does not appear to preserve a predominately positive NAO signal during the Medieval Climate Anomaly (MCA) as is common within many European archives (Trouet et al., 2009), possibly due to the sites' close proximity to the NA and localised oceanic weather systems (Moreno et al., 2012). Alongside climatic changes, the speleothem δ13C shows a clear transition toward higher isotope values around 360 years BP (BP=1950), signalling a major environmental change in the region possibly due to anthropogenic removal of vast swathes of natural forest to support ship building and industry related to the Spanish

  1. Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina) (United States)

    Oehlerich, M.; Mayr, C.; Gussone, N.; Hahn, A.; Hölzl, S.; Lücke, A.; Ohlendorf, C.; Rummel, S.; Teichert, B. M. A.; Zolitschka, B.


    First results of strontium, calcium, carbon and oxygen isotope analyses of bulk carbonates from a 106 m long sediment record of Laguna Potrok Aike, located in southern Patagonia are presented. Morphological and isotopic investigations of μm-sized carbonate crystals in the sediment reveal an endogenic origin for the entire Holocene. During this time period the calcium carbonate record of Laguna Potrok Aike turned out to be most likely ikaite-derived. As ikaite precipitation in nature has only been observed in a narrow temperature window between 0 and 7 °C, the respective carbonate oxygen isotope ratios serve as a proxy of hydrological variations rather than of palaeotemperatures. We suggest that oxygen isotope ratios are sensitive to changes of the lake water balance induced by intensity variations of the Southern Hemisphere Westerlies and discuss the role of this wind belt as a driver for climate change in southern South America. In combination with other proxy records the evolution of westerly wind intensities is reconstructed. Our data suggest that weak SHW prevailed during the Lateglacial and the early Holocene, interrupted by an interval with strengthened Westerlies between 13.4 and 11.3 ka cal BP. Wind strength increased at 9.2 ka cal BP and significantly intensified until 7.0 ka cal BP. Subsequently, the wind intensity diminished and stabilised to conditions similar to present day after a period of reduced evaporation during the "Little Ice Age". Strontium isotopes (87Sr/86Sr ratio) were identified as a potential lake-level indicator and point to a lowering from overflow conditions during the Glacial (∼17 ka cal BP) to lowest lake levels around 8 ka cal BP. Thereafter the strontium isotope curve resembles the lake-level curve which is stepwise rising until the "Little Ice Age". The variability of the Ca isotope composition of the sediment reflects changes in the Ca budget of the lake, indicating higher degrees of Ca utilisation during the period with

  2. Variable stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Wenzel, W.; Fernie, J.D.; Percy, J.R.; Smak, J.; Gascoigne, S.C.B.; Grindley, J.E.; Lovell, B.; Sawyer Hogg, H.B.; Baker, N.; Fitch, W.S.; Rosino, L.; Gursky, H.


    A critical review of variable stars is presented. A fairly complete summary of major developments and discoveries during the period 1973-1975 is given. The broad developments and new trends are outlined. Essential problems for future research are identified. (B.R.H. )

  3. Mid-Holocene bottleneck for central European dry grasslands: Did steppe survive the forest optimum in northern Bohemia, Czech Republic?

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Chytrý, M.; Juřičková, L.; Sádlo, Jiří; Novák, J.; Ložek, V.


    Roč. 25, č. 4 (2015), s. 716-726 ISSN 0959-6836 Institutional support: RVO:67985939 Keywords : MId-Holocene * forest-steppe * pollen analysis Subject RIV: EF - Botanics Impact factor: 2.135, year: 2015

  4. Evidence of climatic change during Holocene in the nearshore regions of Konkan (central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gujar, A.R.; Guptha, M.V.S.

    grains, variation in the stability index and significantly poor diversity and scarcity of benthic foraminifera. In contrast, during the mid Holocene humid phase, the number of benthic foraminifera was very high. It is also remarked that Ammonia beccarii...

  5. Mid-Holocene paleoclimatic changes and solar activity in San'in District, mid-latitude North Pacific Region (United States)

    Okazaki, Y.; Seto, K.; Sakai, T.; Ooki, A.; yamada, K.; Dettman, D. L.


    Evidence shows that solar activity influences climate on a global scale. In the mid-latitude region, climate change is expected to change precipitation patterns. Concurrently, variation in solar activity may influence phytoplankton productivity. It seems that these changes should be recorded in sediment and organic matter deposits in coastal lagoons. In this study, we discuss the relationship between climate change and solar activity in the mid-Holocene in the northern hemisphere mid-latitude region based on grain size analysis, total organic carbon (TOC) content and organic carbon accumulation rates (Corg A.R.) in coastal lagoon sediment core samples. The INB core was drilled to produce a high resolution record of Holocene paleoenvironmental change in the San'in District, western Japan. The core is 19.17m in total length and is divided into Unit I~VII by lithofacies. Holocene sediment, primarily organic silt, forms Unit III and above in this core. Unit III was deposited from 8.4 to 5.4 ka, when sea level rose during the Jomon transgression; its depositional environment is a coastal lagoon. Progradation of the river mouth during the sea level rise lead to an increase in the C/N ratio of organic matter. Unit IV contains the volcanic Shigaku pyroclastic flow (the sixth stage of volcanic activity of the Sanbe volcano), and Unit V reflects deposition in a freshwater lake or swamp. Above this aggredational sediments were deposited by small rivers. This study focused on the coastal lagoon sediments of Unit III (8.4 to 5.4 ka); we carried out CNS elemental analysis and grain size analysis with a resolution of approximately five years. TOC content is variable and increases from 0.5 to 5%. Variation in TOC content is relatively well correlated with atmospheric radiocarbon 14C (Delta 14C) and therefore with solar activity, although the relationship is unclear in the upper portion of Unit III. The trend in Corg A.R. is different than TOC contents, about 40g/m/yr at ~8ka and

  6. Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification (United States)

    Gaye, Birgit; Böll, Anna; Segschneider, Joachim; Burdanowitz, Nicole; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani; Lahajnar, Niko; Lückge, Andreas; Rixen, Tim


    At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4-7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2-8.2 ka BP) compared to the late Holocene ( ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was

  7. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn


    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  8. A model for the Holocene extinction of the mammal megafauna in Ecuador (United States)

    Ficcarelli, G.; Coltorti, M.; Moreno-Espinosa, M.; Pieruccini, P. L.; Rook, L.; Torre, D.


    This paper presents the results of multidisciplinary research in the Ecuadorian coastal regions, with particular emphasis on the Santa Elena Peninsula. The new evidence, together with previous data gathered on the Ecuadorian cordillera during the last 12 years, allows us to formulate a model that accounts for most of the mammal megafauna extinction at the Pleistocene/Holocene transition. After the illustration of geomorphological and paleontological evidences of the area of the Santa Elena Peninsula (and other sites), and of a summary of the paleoclimatic data, the main results and conclusions of this work are: (1) Late Pleistocene mammal assemblages survived in the Ecuadorian coast until the Early Holocene sea level rise; (2) Prior to the extinction of most of the megafauna elements (mastodons, ground sloths, equids, sabre-tooth felids), the mammal communities at Santa Elena Peninsula comprise elements with differing habitat requirements, attesting conditions of high biological pressure; (3) At the El Cautivo site (Santa Elena Peninsula), we have discovered Holocene sediments containing the first known occurrences in Ecuador of lithic artifacts that are associated with mammal megafauna remains; (4) During the last 10,000 years, the coastal region of Ecuador underwent significant changes in vegetation cover. At the Pleistocene/Holocene transition the climate changed from very arid conditions to humid conditions. Our data indicates that the megafauna definitively abandoned the Cordillera areas around 12,000 yr BP due to t he increasing aridity, and subsequently migrated to coastal areas where ecological conditions still were suitable, Santa Elena Peninsula and mainly Amazonian areas being typical. We conclude that the unusual high faunal concentrations and the change to dense vegetation cover (due to a rapid increase in precipitation in the lower Holocene) at 8000-6000 yr BP, caused the final collapse and extinction of most elements of the mammal megafauna

  9. Fluvial landscape development in the southwestern Kalahari during the Holocene - Chronology and provenance of fluvial deposits in the Molopo Canyon

    DEFF Research Database (Denmark)

    Ramisch, Arne; Bens, Oliver; Buylaert, Jan-Pieter


    are sparse and often discontinuous. Hence, little is known about Holocene environmental change in this region. This study focuses on reconstructing paleoenvironmental change from the timing and provenance of fluvial deposits located within the Molopo Canyon, which connects the southern Kalahari drainage...... to the deposition of alluvial fills. These results suggest that the southern Kalahari Drainage remained endorheic and therefore disconnected from the Orange River throughout the Holocene....

  10. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.


    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  11. Investigating extreme flood response to Holocene palaeoclimate in the Chinese monsoonal zone: A palaeoflood case study from the Hanjiang River (United States)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zha, Xiaochun; Zhou, Yali; Wang, Longsheng; Zhang, Yuzhu; Hu, Guiming


    Palaeoflood events recorded by slackwater deposits (SWDs) were investigated extensively by sedimentological criteria of palaeohydrology along the upper Hanjiang River valley. Modern flood SWDs were collected for comparison with palaeoflood SWD in the same reaches. Three typical palaeoflood SWDs were observed within Holocene loess-soil blanket on the first river terrace land. The grain size distributions of palaeoflood SWDs are similar to modern flood SWDs, whereas they are different from eolian loess and soil. Palaeoflood SWD lies in three major pedo-stratigraphic boundaries (TS/L0, L0/S0, and S0/Lt) in the Holocene loess-soil profiles. The chronology of three palaeoflood episodes was established by OSL dating and pedo-stratigraphic correlation with the well-dated Holocene loess-soil profiles in the upper Hanjiang River basin. Holocene palaeoflood events were dated to 9500-8500, 3200-2800, and 1800-1700 a B.P., respectively. Palaeoflood discharges were estimated by the palaeoflood model (i.e., slope-area method and step-backwater method). The highest discharges are 51,680-53,950 m3 s- 1 at the 11,500-time scale in the Xunyang reach of the upper Hanjiang River valley. Holocene extraordinary hydroclimatic events in the Hanjiang River often result from abnormal atmospheric circulations from Southwest monsoons in the Chinese monsoonal zone. These results provide a regional expression of extreme flood response to Holocene palaeoclimate to understand the effects of global climatic variations on the river system dynamics.

  12. Glacial to Holocene swings of the Australian-Indonesian monsoon (United States)

    Mohtadi, Mahyar; Oppo, Delia W.; Steinke, Stephan; Stuut, Jan-Berend W.; de Pol-Holz, Ricardo; Hebbeln, Dierk; Lückge, Andreas


    The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high-latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotopes and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.

  13. Mid- to Late Holocene climate d