WorldWideScience

Sample records for holocene relative sea-level

  1. The Caribbean conundrum of Holocene sea level.

    Science.gov (United States)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  2. Holocene sea level, a semi-empirical contemplation

    Science.gov (United States)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  3. Holocene Sea-Level Database For The Caribbean Region

    Science.gov (United States)

    Khan, N. S.; Horton, B.; Engelhart, S. E.; Peltier, W. R.; Scatena, F. N.; Vane, C. H.; Liu, S.

    2013-12-01

    Holocene relative sea-level (RSL) records from far-field locations are important for understanding the driving mechanisms controlling the nature and timing of the mid-late Holocene reduction in global meltwaters and providing background rates of late Holocene RSL change with which to compare the magnitude of 20th century RSL rise. The Caribbean region has traditionally been considered far-field (i.e., with negligible glacio-isostatic adjustment (GIA) influence), although recent investigations indicate otherwise. Here, we consider the spatial variability in glacio-isostatic, tectonic and local contributions on RSL records from the circum-Caribbean region to infer a Holocene eustatic sea-level signal. We have constructed a database of quality-controlled, spatially comprehensive, Holocene RSL observations for the circum-Caribbean region. The database contains over 500 index points, which locate the position of RSL in time and space. The database incorporates sea-level observations from a latitudinal range of 5°N to 25°N and longitudinal range of 55°W to 90°W. We include sea-level observations from 11 ka BP to present, although the majority of the index points in the database are younger than 8 ka BP. The database is sub-divided into 13 regions based on the distance from the former Laurentide Ice Sheet and regional tectonic setting. The index points were primarily derived from mangrove peat deposits, which in the Caribbean form in the upper half of the tidal range, and corals (predominantly Acropora palmata), the growth of which is constrained to the upper 5 m of water depth. The index points are classified on the basis of their susceptibility to compaction (e.g., intercalated, basal). The influence of temporal changes in tidal range on index points is also considered. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, except at sites in Suriname/Guayana and possibly Trinidad

  4. Holocene sea-level changes in the Falkland Islands

    Science.gov (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  5. Changes in Holocene relative sea-level and coastal morphology

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Sander, Lasse; Clemmensen, Lars B

    2015-01-01

    Changes in relative sea-level (RSL) during the Holocene are reconstructed based on ground-penetrating radar (GPR) data collected across a raised beach ridge system on the island of Samsø, Denmark. The internal architecture of the beach ridge and swale deposits is divided into characteristic radar...... ridge progradation through time. The vertical levels of identified downlap points are combined with an age model based on optically stimulated luminescence-dated samples to reconstruct RSL for the past c. 5000 years. Overall, the reconstruction shows that the period between c. 4800 and 3800 yr BP...

  6. Holocene relative sea-level changes from North America and the Caribbean

    Science.gov (United States)

    Horton, Benjamin; Engelhart, Simon; Vacchi, Matteo; Khan, Nicole; Peltier, Dick; Roy, Keven

    2014-05-01

    Reconstructions of Holocene relative sea level (RSL) are important for identifying the ice equivalent meltwater contribution to sea-level change during deglaciation. Holocene RSL reconstructions from near, intermediate and far field regions enable the assessment of earth and ice parameters of Glacial Isostatic Adjustment (GIA) models. RSL reconstructions provide data for estimating rates of spatially variable and ongoing vertical land motion; a requirement for understanding the variation in modern and late Holocene sea level as recorded by instrumental and proxy records. Here we explain the methodology employed to reconstruct former sea levels, which follows the practice of the International Geoscience Programme (IGCP). We produce sea level index points from the Pacific and Atlantic coasts of North America and the Caribbean. Index points are defined as the most reliable observations of former sea levels. They consist of an estimate of X (age) and Y (the position of former RSL). Where a suite of index points are developed for a locality or region, they describe changes in RSL through time and estimate rates of change. A valid index point must meet the following four criteria; (1) location of the sample is known; (2) the altitude of the sample (and the error associated with measuring that altitude) is known; (3) the indicative meaning (the relationship between the sample and a tide level) is estimated; and (4) the age of the sample, which is commonly radiocarbon dated is calibrated to sidereal years using the latest calibration curves. In total databases have over 2000 sea-level index points from formerly ice covered, uplifting regions of Canada, to the region of forebulge collapse along the subsiding mid-Atlantic and mid-Pacific coastlines of the United States, to the tropical regions of the Caribbean. Recent analyses of these new published databases have led to a further refinement of the most recent of the ICE-NG (VMX) series of global models of GIA. The records

  7. A Mid-Holocene Relative Sea-Level Stack, New Jersey, USA

    Science.gov (United States)

    Horton, B.; Walker, J. S.; Kemp, A.; Shaw, T. J.; Kopp, R. E.

    2017-12-01

    Most high resolution (decimeter- and decadal-scale) relative sea-level (RSL) records using salt-marsh microfossils as a proxy only extend through the Common Era, limiting our understanding of driving mechanisms of RSL change and how sea-level is influenced by changing climate. Records beyond the Common Era are limited by the depth of continuous sequences of salt-marsh peat suitable for high resolution reconstructions, as well as contamination by local processes such as sediment compaction. In contrast, sequences of basal peats have produced compaction-free RSL records through the Holocene, but at a low resolution (meter- and centennial-scale). We devise a new Multi-Proxy Presence/Absence Method (MP2AM) to develop a mid-Holocene RSL stack. We stack a series of 1 m basal peat cores that overlap along a uniform elevational gradient above an incompressible basal sand. We analyzed three sea-level indicators from 14 cores: foraminifera, testate amoebae, and stable carbon isotope geochemistry. To reconstruct RSL, this multi-proxy approach uses the timesaving presence/absence of forams and testates to determine the elevation of the highest occurrence of forams and the lowest occurrence of testates in each basal core. We use stable carbon isotope geochemistry to determine the C3/C4 vegetation boundary in each core. We develop age-depth models for each core using a series of radiocarbon dates. The RSL records from each 1 m basal core are combined to create a stack or, in effect, one long core of salt-marsh material. This method removes the issue of compaction to create a continuous RSL record to address temporal changes and periods of climate and sea-level variability. We reconstruct a southern NJ mid-Holocene RSL record from Edwin B. Forsythe National Wildlife Refuge, where Kemp et al. (2013) completed a 2500 yr RSL record using a foraminifera-based transfer function approach. Preliminary radiocarbon dates suggest the basal sequence is at least 4246-4408 cal yrs BP

  8. Late Holocene higher sea level and its radiocarbon dates in Okierabu-jima, Ryukyus

    International Nuclear Information System (INIS)

    Koba, Motoharu; Omoto, Kunio; Takahashi, Tatsuo.

    1980-01-01

    Okierabu-jima of the Ryukyu Islands, which is a poly-terraced Pleistocene raised coral reef island, doesn't have a Holocene raised coral reef, but coastal erosional features showing higher sea levels in Holocene. The authors obtained some data indicating the period of one of the Holocene higher sea levels. All radiocarbon dates concerning Okierabu-jima's Holocene sea-level changes are plotted on the date-height coordinates. The paleo sea level between 5000 and 2000 y. B. P. lies above the broken line drawn from 6 m below to 2.18 m above the present sea level. The period of the highest sea level in Holocene seems to be about 3000 to 2000 y. B. P. in this island. Its height is presumably 2.4 m a. s. l. derived on an average from heights of stacks and coastal benches in the almost all coasts of the island (Koba, 1974). Beach rocks were already formed at the landward extremity of the reef flat corresponding to the almost present sea level about 1300 y. B. P. (author)

  9. The magnitude of a mid-Holocene sea-level highstand in the Strait of Makassar

    NARCIS (Netherlands)

    Mann, T.; Rovere, A.; Schöne, T.; Klicpera, A.; Stocchi, P.; Lukman, M.; Westphal, H.

    2016-01-01

    Knowledge on the timing andmagnitude of past sea-level changes is essential to understandmodern and futuresea-level variability.Holocene sea-level data fromliterature on thewest coast of Sulawesi, central Indonesia, suggestthat this region experienced two relative sea-level highstands over the last

  10. Late mid-Holocene sea-level oscillation: A possible cause

    Science.gov (United States)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  11. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA

    Science.gov (United States)

    Brock, J.C.; Palaseanu-Lovejoy, M.; Wright, C.W.; Nayegandhi, A.

    2008-01-01

    A portion of the northern Florida Keys reef tract was mapped with the NASA Experimental Advanced Airborne Research Lidar (EAARL) and the morphology of patch reefs was related to variations in Holocene sea level. Following creation of a lidar digital elevation model (DEM), geospatial analyses delineated morphologic attributes of 1,034 patch reefs (reef depth, basal area, height, volume, and topographic complexity). Morphometric analysis revealed two morphologically different populations of patch reefs associated with two distinct depth intervals above and below a water depth of 7.7 m. Compared to shallow reefs, the deep reefs were smaller in area and volume and showed no trend in topographic complexity relative to water depth. Shallow reefs were more variable in area and volume and became flatter and less topographically complex with decreasing water depth. The knoll-like morphology of deep reefs was interpreted as consistent with steady and relatively rapidly rising early Holocene sea level that restricted the lateral growth of reefs. The morphology of shallow 'pancake-shaped' reefs at the highest platform elevations was interpreted as consistent with fluctuating sea level during the late Holocene. Although the ultimate cause for the morphometric depth trends remains open to interpretation, these interpretations are compatible with a recent eustatic sea-level curve that hindcasts fluctuating late Holocene sea level. Thus it is suggested that the morphologic differences represent two stages of reef accretion that occurred during different sea-level conditions. ?? 2008 Springer-Verlag.

  12. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  13. Reconstructing Mid- to Late Holocene Sea-Level Change from Coral Microatolls, French Polynesia

    Science.gov (United States)

    Hallmann, N.; Camoin, G.; Eisenhauer, A.; Vella, C.; Samankassou, E.; Botella, A.; Milne, G. A.; Pothin, V.; Dussouillez, P.; Fleury, J.

    2017-12-01

    Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the Anthropocene. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level changes in French Polynesia encompassing the last 6,000 years were reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to

  14. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  15. Coastal lagoons and beach ridges as complementary sedimentary archives for the reconstruction of Holocene relative sea-level changes

    DEFF Research Database (Denmark)

    Sander, Lasse; Hede, Mikkel Ulfeldt; Fruergaard, Mikkel

    2016-01-01

    Coastal lagoons and beach ridges are genetically independent, though non-continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000-year-long record of Holocene relative sea-level changes on the island of Samsø, southern Kattegat,...

  16. Holocene sea-level changes in King George Island, West Antarctica, by virtue of geomorphological coastal evidences and diatom assemblages of sediment sections.

    Science.gov (United States)

    Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina; Jozhikov, Ilya

    2015-04-01

    A new curve of relative sea-level change is presented for the Fildes peninsula, King George Island, West Antarctic. This work is based on renewed paleogeography data, including coastal geomorphological evidence, diatom assemblages of lakes bottom sediments and radiocarbon datings of organics. The new data were obtained in several sections of quaternary sediments and groups of terraces, and allows us to expand and improve relevant conception about relative sea level changes in the King George Island region. The new radiocarbon datings of organics (mosses and shells) allows reconstructing Holocene conditions that maintain and cause the sea-level changes. Sea diatom assemblages of Dlinnoye lake bottom sediment core (that complies period about 8000 years B.P.) mark altitude of marine water penetrated into the lake. The altitudes of shell remains, which have certain life habits and expect specific salinity and depth conditions, coupled with their absolute datings, indicate the probable elevation of the past sea level. The Mid-Holocene marine transgression reached its maximum level of 18-20 m by 5760 years B.P. The transgression influenced the deglaciation of the Fildes peninsula and environment conditions integrally. The ratio of glacio-isostatic adjustment velocity and Holocene transgression leaded to the decrease of relative sea level during the Late Holocene excluding the short period of rising between 2000 and 1300 years B.P. Comparing this data with the curve for Bunger oasis, East Antarctica, introduced earlier gives an interesting result. Despite the maximum altitudes of relative sea-level rise in King George region were higher and occurred later than in Bunger oasis region, the short-term period of Late Holocene sea-level rising contemporizes. Besides that, this work allow to realize a correlation between regions of Antarctica and adjacent territory. That, in turn, lets answer the question of tectonic and eustatic factors ratio and their contribution to the

  17. Holocene sea-level changes along the Strait of Magellan and Beagle Channel, southernmost South America

    Science.gov (United States)

    Porter, Stephen C.; Stuiver, Minze; Heusser, Calvin J.

    1984-07-01

    Radiocarbon-dated marine sediments from five coastal sites along the Strait of Magellan and Beagle Channel in southernmost Chile permit construction of a curve of relative sea-level fluctuations during the Holocene. Morphologic and stratigraphic data point to coastal submergence during the early Holocene as the sea rose to a maximum level at least 3.5 m higher than present about 5000 yr ago. Progressive emergence then followed during the late Holocene. Data from widely separated localities define a smooth curve, the form of which is explainable in terms of isostatic and hydroisostatic deformation of the crust resulting from changing ice and water loads. Apparently anomalous data from one site located more than 100 km behind the outer limit of the last glaciation may reflect isostatic response to deglaciation. The sea-level curve resembles one derived by Clark and Bloom (1979, In "Proceedings of the 1978 International Symposium on Coastal Evolution in the Quaternary, Sao Paulo, Brasil," pp. 41-60. Sao Paulo) using a spherical Earth model, both in amplitude and in the timing of the maximum submergence.

  18. Coastal Marsh Longevity, Ecological Succession, and Organic Carbon Dynamics During Early Holocene Sea-Level Rise

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Rosenheim, B. E.; Tornqvist, T. E.

    2016-02-01

    Coastal marsh environments perform essential ecosystem services, including nutrient filtering, soil organic matter storage, and storm surge abatement, yet much is still unknown about their formation and fate under periods of sea-level change. During the early Holocene (7-10 ka), rapid sea-level rise in coastal Louisiana was one of the primary controls over marsh development and longevity. Here, we investigate plant community composition and succession and soil organic matter storage in early Holocene coastal marshes in Louisiana using bulk elemental ratios, lignin phenol biomarkers and stable isotopes from peat layers. Sediment cores were collected in southeastern Louisiana and contain a record of an early Holocene transgressive sea-level sequence 16-25 m below present sea-level. The sedimentary record consists of an immature paleosol overlain by basal peat that accumulated in an estuarine marsh, overlain by marine lagoonal muds. A re-established marsh peat is present 1-4 m above the initial transition to marine conditions, indicating a sequence of marsh development, sea-level rise and onset of marine conditions, and then further marsh development as the rate of relative sea-level rise decelerated. Plant community composition in coastal marshes was determined through cupric oxide oxidation and lignin-phenol and non-lignin-phenol biomarker abundances. The degradation state of soil organic matter and the specific source of stabilized organic matter within the sedimentary peats were determined through lignin-phenol biomarker ratios. Organic matter sources ranged from terrestrial to marine over the course of sea-level rise, and different sites showed different amounts of marine organic matter influence and different levels of terrestrial organic matter degradation. These results have important implications for reconstructing the response of coastal marshes and their plant communities to accelerated rates of sea-level rise projected through 2100.

  19. Holocene sea levels of Visakhapatnam shelf, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, K.M.; Rao, T.C.S.

    The Holocene sea level changes in the shelf areas off Visakhapatnam was studied from sediment distribution pattern and shallow seismic profiling. Morphological features on the shelf indicate a Late Pleistocene regression down to about -130 m below...

  20. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    Science.gov (United States)

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  1. Ground-Penetrating Radar Study of Fort Morgan Peninsula Holocene Beach Ridges as Sea-level Indicators

    Science.gov (United States)

    Philbin, A.; Frederick, B.; Blum, M. D.; Tsoflias, G. P.

    2017-12-01

    Holocene sea-level change along the northern Gulf of Mexico (GoM) coast is controversial. One view interprets basal peats from the Mississippi Delta to indicate continual sea-level (SL) rise for the GoM as a whole. An alternate view proposes that data from the subsiding delta is primarily a subsidence signal, and that sandy non-deltaic shorelines indicate that regional SL reached present elevations by the middle Holocene, with minor oscillations since then. In fact, new regional long-term subsidence records from biostratigraphic indicators display significant subsidence in deltaic areas where basal-peat data were collected, and negligible rates along the GoM shoreline to the east. However, the use of sandy progradational shorelines, commonly known as "beach ridge systems", has been criticized for a lack of precise sea-level indicators, and therefore discounted. This research focuses on developing Holocene progradational sandy shorelines along the Alabama coast in the eastern GoM as SL indicators. Sandy shorelines in this area are ideal to examine SL change because they are well preserved, sufficiently distant from the subsiding delta, well mapped, and ages are known from previous work. Two-dimensional ground-penetrating radar imaging of well-dated beach-ridge successions is used here to examine and identify changes through time in the elevation of the shoreface clinoform topset-foreset break, which represents the transition between flat-lying foreshore and seaward-dipping shoreface facies, and forms in the intertidal zone. Beach-ridge successions with optical luminescence ages of ca. 5500-4800 yrs BP display topset-foreset breaks at current mean sea-level elevation, whereas beach-ridge successions from ca. 3500-2400 yrs BP display topset-foreset breaks that are 1 m above present mean SL and the elevation of modern topset-foreset breaks. These data support the view that current sea-level was reached by the middle Holocene, and was higher than present for at least

  2. Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar.

    Science.gov (United States)

    Nielsen, Lars; Bendixen, Mette; Kroon, Aart; Hede, Mikkel Ulfeldt; Clemmensen, Lars B; Weβling, Ronny; Elberling, Bo

    2017-04-19

    Identification of sea-level proxies is important for reconstruction of past sea-level variation. Methods for reconstructing Holocene relative sea-level curves are crucial for quantification of the impact of Greenland ice thickness variation on global sea level and vertical land movement. Arctic beach ridges constitute important potential archives of sea-level variation. However, their surface morphology may have undergone modification since deposition due to freezing/thawing processes and erosion, and their morphology may therefore not be trustworthy for sea-level reconstruction. Therefore, geophysical imaging is used to examine the internal structures of the beach ridges and to define a sea-level proxy unaffected by surface processes. The GPR reflections from study sites in West and South Greenland show deposition of beachface deposits and upper shoreface deposits; the contact between steeply dipping beachface reflections and less-dipping shoreface reflections is used as sea-level proxy. Numerous points are identified along GPR transects facilitating reconstruction of relative sea-level variation of hitherto unprecedented resolution. Erosional events and deformation caused by freezing/thawing processes are clearly delineated. The approach constitutes a solid base for reconstruction of relative sea-level curves affected by a well-defined vertical land movement history since the studied beach ridge systems represent long time intervals and only relatively small spatial extents.

  3. New constraints on late Holocene eustatic sea-level changes from Mahé, Seychelles

    Science.gov (United States)

    Woodroffe, Sarah A.; Long, Antony J.; Milne, Glenn A.; Bryant, Charlotte L.; Thomas, Alexander L.

    2015-05-01

    This study provides new estimates of globally integrated ice sheet melt during the late Holocene (since 4 ka BP) from Seychelles in the western Indian Ocean, a tectonically stable, far field location where the necessary Glacial-Isostatic Adjustment (GIA) correction is small and is relatively insensitive to predictions using different Earth viscosity profiles. We compare sea level data from Seychelles to estimates of eustasy from two GIA models, ICE-5G and EUST3, which represent end-members in the quantity of global melt during the late Holocene. We use data from a range of coastal environments including fringing reef, present day beaches, fossil plateau and mangrove deposits on the largest island of the Seychelles archipelago, Mahé to reconstruct relative sea-level changes. Our data suggest that extensive coastal deposits of carbonate-rich sands that fringe the west coast formed in the last 2 ka and the horizontal nature of their surface topography suggests RSL stability during this period. Mangrove sediments preserved behind these deposits and in river mouths date to c. 2 ka and indicate that RSL was between -2 m and present during this interval. Correcting the reconstructed sea level data using a suite of optimal GIA models based on the two ice models mentioned above and a large number (c. 350) of Earth viscosity models gives a result that is consistent with the sedimentological constraints. When uncertainties in both model results and data are considered, it is possible to rule out eustatic sea levels below c. 2 m and more than a few decimetres above present during the past two millennia. This uncertainty is dominated by error in the reconstructions rather than the model predictions. We note, however, that our estimates of eustasy are more compatible with the EUST3 model compared to the ICE-5G model during the late Holocene (2-1 ka BP). Our evidence from Seychelles shows that the timing of when eustatic sea level first rose close to present is between the

  4. Holocene sea-level change and the emergence of Neolithic seafaring in the Fuzhou Basin (Fujian, China)

    Science.gov (United States)

    Rolett, Barry V.; Zheng, Zhuo; Yue, Yuanfu

    2011-04-01

    Neolithic seafaring across the Taiwan Strait began approximately 5000 years ago and involved open-sea voyages over distances of at least 130 km. Rapid sea-level rise preceded the emergence of open-sea voyaging, but the possible role of environmental change as a stimulus for the development of seafaring is poorly understood. We investigate this problem by presenting a record of Holocene sea-level change and coastal transformation based on sediment cores obtained from the Fuzhou Basin on the coast of Fujian, China. The cores are located in direct proximity to archaeological sites of the Tanshishan Neolithic culture (5000-4300 cal BP), which is significant for its similarity to the earliest Neolithic cultures of Taiwan. Multiple lines of evidence record the early Holocene inundation of the Fuzhou Basin around 9000 cal BP, the mid-Holocene sea-level highstand, and the final Holocene marine transgression. This final transition is precisely documented, with AMS dates showing the change occurred close to 1900 cal BP. Our paleogeographic reconstruction shows that a large estuary filled the Fuzhou Basin during the mid-Holocene. Tanshishan and Zhuangbianshan, two of the major Fuzhou Basin Neolithic sites, are located today on hills nearly 80 km from the modern coastline. However, when the sites were settled around 5500-5000 cal BP, the marine transgression had transformed these hills into islands in the upper estuary. We suggest that the Neolithic era estuary setting, together with the lack of land suitable for rice paddy agriculture, inhibited intensive food production but favored a maritime orientation and the development of seafaring.

  5. Holocene evolution of a drowned melt-water valley in the Danish Wadden Sea

    DEFF Research Database (Denmark)

    Pedersen, Jørn Bjarke Torp; Svinth, Steffen; Bartholdy, Jesper

    2009-01-01

    Cores from the salt marshes along the drowned melt-water valley of river Varde Å in the Danish Wadden Sea have been dated and analysed (litho- and biostratigraphically) to reconstruct the Holocene geomorphologic evolution and relative sea level history of the area. The analysed cores cover...... the total post-glacial transgression, and the reconstructed sea level curve represents the first unbroken curve of this kind from the Danish Wadden Sea, including all phases from the time where sea level first reached the Pleistocene substrate of the area. The sea level has been rising from - 12 m below...... the present level at c. 8400 cal yr BP, interrupted by two minor drops of sea level rise, and the Holocene sequence consists in most places of clay atop...

  6. Holocene relative sea level variations at the spit system Feddet (Denmark) resolved by ground-penetrating radar and geomorphological data

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Bendixen, Mette; Clemmensen, Lars B

    Estimates of Holocene sea-level variations have been presented in a range of studies based on different approaches, including interpretation of internal beach ridge characteristics from ground-penetrating radar (GPR) and geomorphological data. We present GPR data and geomorphological observations...... of independent GPR and geomorphologic data collected across the recent and sub-recent beach ridge deposits. The data analyses include coastal topography, internal dips of beach ridge layers, and sea-level measurements. A clear change in characteristic layer dip is observed between beach face and upper shoreface...

  7. Extended late Holocene relative sea-level histories for North Carolina, USA

    Science.gov (United States)

    Kemp, Andrew C.; Kegel, Jessica J.; Culver, Stephen J.; Barber, Donald C.; Mallinson, David J.; Leorri, Eduardo; Bernhardt, Christopher E.; Cahill, Niamh; Riggs, Stanley R.; Woodson, Anna L.; Mulligan, Ryan P.; Horton, Benjamin P.

    2017-03-01

    We produced ∼3000-year long relative sea-level (RSL) histories for two sites in North Carolina (USA) using foraminifera preserved in new and existing cores of dated salt-marsh sediment. At Cedar Island, RSL rose by ∼2.4 m during the past ∼3000 years compared to ∼3.3 m at Roanoke Island. This spatial difference arises primarily from differential GIA that caused late Holocene RSL rise to be 0.1-0.2 mm/yr faster at Roanoke Island than at Cedar Island. However, a non-linear difference in RSL between the two study regions (particularly from ∼0 CE to ∼1250 CE) indicates that additional local- to regional-scale processes drove centennial-scale RSL change in North Carolina. Therefore, the Cedar Island and Roanoke Island records should be considered as independent of one another. Between-site differences on sub-millennial timescales cannot be adequately explained by non-stationary tides, sediment compaction, or local sediment dynamics. We propose that a period of accelerating RSL rise from ∼600 CE to 1100 CE that is present at Roanoke Island (and other sites north of Cape Hatteras at least as far as Connecticut), but absent at Cedar Island (and other sites south of Cape Hatteras at least as far as northeastern Florida) is a local-to regional-scale effect of dynamic ocean and/or atmospheric circulation.

  8. Early-to-middle Holocene sea-level fluctuations, coastal progradation and the Neolithic occupations in Yaojiang valley of southern Hangzhou bay, eastern China

    Science.gov (United States)

    Liu, Y.; Sun, Q.; Fan, D.; Chen, Z.

    2017-12-01

    The formation of Holocene coast in eastern China provided material base for the development of Neolithic civilizations. The coastal Yaojiang valley of south Hangzhou bay was one of the examples where the well-known Neolithic Hemudu Culture (HC) of Eastern China initiated. Here, we studied the early-to-middle Holocene environment changes in relation to sea-level fluctuations on the basis of a serial of sediment cores based on a set of new Accelerator Mass Spectrometry radiocarbon (AMS 14C) chronology. The result indicated that relative sea-level rose rapidly in the Yaojiang valley at the early Holocene, reaching its maximum at ca. 8000-7800 cal yr BP and then decelerated at ca. 7800-7500 cal yr BP. The alluvial plain in Yaojiang valley began to form at the foothills first and then grew towards the valley center accompanying with the sea-level stabilization after ca. 7500 cal yr BP. This progressive progradation of alluvial plain would attract the early arrivals of foragers to dwell at the foothills to engaging in rice farming after ca.7000 cal yr BP and starting the epic Hemudu Culture. The HC people then move down to the valley center as more land became available thanks to sediment aggregation and progradation. The rise and development of HC were closely associated with the sea-level induced landscape changes in Yaojiang valley at the early-middle Holocene, and the unstable hydraulic condition in the valley after 5000 cal yr BP could be accountable for the cultural termination.

  9. Extended late Holocene relative sea-level histories for North Carolina, USA

    Science.gov (United States)

    Kemp, Andrew C.; Kegel, Jessica J.; Culver, Stephen J.; Barber, Donald C.; Mallinson, David J.; Leorri, Eduardo; Bernhardt, Christopher E.; Cahill, Niamh; Riggs, Stanley R.; Woodson, Anna L.; Mulligan, Ryan P.; Horton, Benjamin P.

    2017-01-01

    We produced ∼3000-year long relative sea-level (RSL) histories for two sites in North Carolina (USA) using foraminifera preserved in new and existing cores of dated salt-marsh sediment. At Cedar Island, RSL rose by ∼2.4 m during the past ∼3000 years compared to ∼3.3 m at Roanoke Island. This spatial difference arises primarily from differential GIA that caused late Holocene RSL rise to be 0.1–0.2 mm/yr faster at Roanoke Island than at Cedar Island. However, a non-linear difference in RSL between the two study regions (particularly from ∼0 CE to ∼1250 CE) indicates that additional local- to regional-scale processes drove centennial-scale RSL change in North Carolina. Therefore, the Cedar Island and Roanoke Island records should be considered as independent of one another. Between-site differences on sub-millennial timescales cannot be adequately explained by non-stationary tides, sediment compaction, or local sediment dynamics. We propose that a period of accelerating RSL rise from ∼600 CE to 1100 CE that is present at Roanoke Island (and other sites north of Cape Hatteras at least as far as Connecticut), but absent at Cedar Island (and other sites south of Cape Hatteras at least as far as northeastern Florida) is a local-to regional-scale effect of dynamic ocean and/or atmospheric circulation.

  10. Late Glacial to Holocene evolution and sea-level history of Gulf of Gemlik, Sea of Marmara, Turkey

    Science.gov (United States)

    Sabuncu, Asen; Kadir Eriş, K.; Kaslilar, Ayse; Namık Çaǧatay, M.; Gasperini, Luca; Filikçi, Betül

    2016-04-01

    The Gulf of Gemlik is an E-W elongated trans-tensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the south eastern part of the Sea of Marmara (SoM). While during the Holocene the sea level in the Gulf of Gemlik changed in tandem with the water level changes in the SoM, it may have been different in the late glacial when the Sea of Marmara was lacustrine. Beside the tectonic activity related to the NAFZ, eustatic sea level changes would have controlled the basin evolution and consequent sedimentary history during the different paleocanographic phases of the SoM. Considering the limited studies on the late glacial-Holocene stratigraph of the Gulf of Gemlik, this study aims to investigate the depositional units and their environments with respect to different allogenic and autogenic controls. For these purposes, we analyzed over 300 2 - 7 kHz bandwidth high-resolution gridded seismic sub-bottom CHIRP profiles together with 70 kHz high resolution multibeam bathymetry with backscatter data. Four seismic stratigraphic units were defined and correlated with chronstratigraphic units in five piston cores covering the last 15.8 ka BP according to radiocarbon ages (14C). The depth-scale accuracy of chronostratigraphic units in cores is of key importance for the precise calculation of sedimentation rates. Correlation between the seismic profiles and cores were made by matching Multi-Sensor Core-Logger (MSCL) data and seismic reflection coefficients and amplitudes for different stratigraphic units. The impedance data derived from the logger were used to generate a synthetic seismogram. We used an approach to display, estimate, and correct the depth-scale discrepancies due to oversampling affecting the upper part of sedimentary series during piston coring. The method is based on the resynchronization of synthetic seismograms computed from high-quality physical property logs to the corresponding CHIRP profiles. Each

  11. Postglacial relative sea level change at Fildes Peninsula, King George Island (West Antarctic

    Directory of Open Access Journals (Sweden)

    K. V. Polishchuk

    2016-01-01

    Full Text Available Analysis and integration of data obtained in our field and laboratory investigations of 2008–2012 together with results of previous paleogeographic studies were conducted to reveal parameters and factors of the post-glacial changes in the relative sea-level on the Fildes Peninsula and the King George Island. Results of dating of organic material taken from cross-sections of Quaternary deposits, data on morphology of marine landforms as well as on bottom sediments in lakes were used to construct a curve of changes in the relative sea-level.Our research has shown that the rapid rise of relative sea level in the area (since the beginning of the Holocene decelerated about 8000 years BP, achieving its maximum about 7000 years BP. This was followed by the fall of relative sea-level (the land elevation by 18–20  m in total, and it was characterized by relatively high rate of fall during periods of 6000– 5000 years BP, 4000–2500 years BP, and during the last 1500 years; the rate decreased in 5000–4000 years BP and 2500– 1600 years BP. The changes in relative sea level in this region were determined by the following factors: the eustatic component of the global changes in sea-level and, possibly, oscillations in the global sea level of another nature; local parameters of the Last glacial maximum; a course of the Peninsula deglaciation; regional physical characteristics of the Earth's crust and the mantle substances; local tectonic processes, including the isostatic rebound. Since the beginning of the Holocene up to about 7000 years BP, the main contribution to changes of the relative sea-level in this area was made by the global eustatic factor. The subsequent fall of the relative sea-level (elevation of the Peninsula surface proceeded under condition of reduced role of the eustatic factor and predominance of other factors.

  12. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    Science.gov (United States)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  13. Relative sea-level changes and glacio-isostatic adjustment on the Magdalen Islands archipelago (Atlantic Canada) from MIS 5 to the late Holocene

    Science.gov (United States)

    Rémillard, Audrey M.; St-Onge, Guillaume; Bernatchez, Pascal; Hétu, Bernard; Buylaert, Jan-Pieter; Murray, Andrew S.; Lajeunesse, Patrick

    2017-09-01

    The Magdalen Islands (Québec, Canada) in the centre of the Gulf of St. Lawrence are located in a strategic position for providing an overview of the relative sea-level (RSL) history of the Maritime Provinces of eastern Canada. Although data are available for the coastal terrestrial areas of the Maritimes, data from the Gulf are very scarce and both the RSL and glacio-isostatic adjustment (GIA) models extrapolate for this central region. This study provides new stratigraphic and chronological data from four outcrops and two coring sites on the Magdalen Islands. In addition to the five samples used mainly for age control purposes, nine new luminescence ages are presented. With these new data added to the available literature, a new RSL curve is reconstructed for the LGM to the late Holocene period and a partial curve is proposed for the interval between the late MIS 4 to the MIS 3. Data also indicate a few insights for the MIS 5 period. Results reveal that for the LGM to the late Holocene, the curve corresponds to the J-shaped curve scenario recognized in the literature. The RSL changes during this period are the result of glacio-isostatic rebound, migration and collapse of the peripheral forebulge, and eustatic sea-level changes. For the LGM to the early Holocene, glacio-isostatic depression curves displaying a few local differences are also proposed. For the late Holocene, the data constrain the curve between two types of indicators, i.e. marine and terrestrial, and indicate that the RSL has risen at least 3 m during the last two millennia. Sediments dated to the MIS 5 and the interval between the late MIS 4 and the MIS 3 illustrate that the GIA following the LGM also occurred for the MIS 5 interglacial and the MIS 3 interstadial. Finally, recent GIA models are discussed in light of the results of this paper.

  14. Barrier response to Holocene sea-level rise

    DEFF Research Database (Denmark)

    Pejrup, Morten; Andersen, Thorbjørn Joest; Johannessen, Peter N

    Normally it is believed that sea-level rise causes coastal barrier retreat. However, sea-level is only one of the parameters determining the long term coastal development of barrier coasts. Sediment supply is an equally important determinant and may overshadow the effects of sea-level rise....... Conceptually this has been known for a long time but for the first time we can show the relative effect of these two parameters. We have studied three neighboring barrier islands in the Wadden Sea, and described their 3D morphological evolution during the last 8000 years. It appears that the barrier islands...... a much stronger component of sea-level control. The distance between the islands is only 50 km, and therefore our study shows that prediction of barrier development during a period of rising sea level may be more complicated than formerly believed....

  15. Fluvial Responses to Holocene sea Level Variations Along the Macdonald River, New South Wales, Australia

    Science.gov (United States)

    Rustomji, P.; Chappell, J.; Olley, J.

    2003-12-01

    The Macdonald River drains the rugged eastern flanks of Australia's Great Dividing Range. It has a catchment area of 2000km2, restricted alluvial lowlands confined by bedrock interfluves and flows into the Hawkesbury River, a larger estuarine valley. The Macdonald valley is presently tidal for 14km from the Hawkesbury. At about 8000 year before present (BP), rising sea level invaded the Macdonald Valley for at least 35km upstream of the Hawkesbury River. Rapid aggradation occurred between 8000 and 6000 years BP and a sand bed river was established in the Macdonald Valley, its mouth prograding rapidly towards the Hawkesbury. Little is known about the character of the sand bed river during the +2 meter sea level highstand occurring between 5000 and 4000 BP. However, from 3000 to 1500 BP when sea level was consistently at +1 to +1.5m, major floodplain and levee-like structures, now virtually inactive, were established. The bed is inferred to have been elevated above its present day level and consequently intersected mean sea level (MSL) downstream of its present location. This is consistent with reported sea levels at +1 to +2m above present levels for the New South Wales coast at this time. From 1500 years BP, local sea level fell rapidly to its present level. Aggradation of the levee crests ceased and sedimentation along the valley became restricted to aggradation of an inset floodplain, within the pre-1500 BP deposits. The channel contracted and the sandy river bed incised. An equivalent and synchronous change in sedimentation style is observed along the Tuross River 400km south of the Macdonald, lending support to sea level variations being the factor driving this change. By 1850 AD, the bed dipped below MSL about 10km upstream of its inferred position prior to 1500 years BP. A series of large floods between 1949 and 1955 eroded significant volumes of sandy sediment from the Holocene deposits. The channel bed widened from between 25 and 50m width to ˜100m along

  16. Application of /sup 14/C-dating to sedimentary geology and climatology: Sea-level and climate change during the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Nobuyuki; Ohishi, Shyoji; Kuriyama, Toyoko; Nakamura, Toshio

    1987-11-01

    AMS /sup 14/C dating of small sized fossil shells, wood chips and sedimentary humic matter has been applied to the investigation of paleoclimatic and sea-level changes in the Holocene, using three estuarine and brackish lake sediment cores, drilled in Kawasaki city and Lake Hamanako, Japan. Precise and detailed ages at differing depths clarified large transitions of Holocene sedimentation rates, of two orders of magnitude. The vertical variation in delta/sup 13/C and C/N results for sedimentary organic matter, combined with AMS /sup 14/C ages, established continous climatic and sea-level fluctuation patterns through time and indicated the existence of neoglaciation coincident with the marine regression at 7500 to 7000 yr BP.

  17. A marine to freshwater sediment succession from Kowhai Beach wetland, Northland : implications for Holocene sea level

    International Nuclear Information System (INIS)

    Hicks, H.; Nichol, S.L.

    2007-01-01

    An infilled wetland located behind coastal dunes in north-east Northland is used to reconstruct a local history of environmental change spanning early Holocene (c. 7000 yr BP) to modern time. Proxy indicators (sediment texture, diatoms and pollen) provide evidence for a transition from marginal marine- to brackish- to freshwater-conditions in the wetland. Radiocarbon ages constrain the chronology of this succession to 7880-7430 cal. yr BP for the early period of marine conditions, 3570-3210 cal. yr BP for the latter brackish phase and 1060-800 cal. yr BP for the change to freshwater conditions. Within this succession, the diatom record preserves a strong brackish signal at core depths above the limit of the modern tidal range. This is presented as preliminary evidence for a mid-Holocene sea level highstand for northern New Zealand of approximately 1.2 m above present mean sea level. (author). 40 refs., 7 figs., 1 tab

  18. Sea-level change and demography during the last glacial termination and early Holocene across the Australian continent

    Science.gov (United States)

    Williams, Alan N.; Ulm, Sean; Sapienza, Tom; Lewis, Stephen; Turney, Chris S. M.

    2018-02-01

    Future changes in sea-level are projected to have significant environmental and social impacts, but we have limited understanding of comparable rates of change in the past. Using comprehensive palaeoenvironmental and archaeological datasets, we report the first quantitative model of the timing, spatial extent and pace of sea-level change in the Sahul region between 35-8 ka, and explore its effects on hunter-gatherer populations. Results show that the continental landmass (excluding New Guinea) increased to 9.80 million km2 during the Last Glacial Maximum (LGM), before a reduction of 2.12 million km2 (or ∼21.6%) to the early Holocene (8 ka). Almost 90% of this inundation occurs during and immediately following Meltwater Pulse (MWP) 1a between 14.6 and 8 ka. The location of coastlines changed on average by 139 km between the LGM and early Holocene, with some areas >300 km, and at a rate of up to 23.7 m per year (∼0.6 km land lost every 25-year generation). Spatially, inundation was highly variable, with greatest impacts across the northern half of Australia, while large parts of the east, south and west coastal margins were relatively unaffected. Hunter-gatherer populations remained low throughout (hypothesis that late Pleistocene coastal populations were low, with use of coastal resources embedded in broad-ranging foraging strategies, and which would have been severely disrupted in some regions and at some time periods by sea-level change outpacing tolerances of mangals and other near-shore ecological communities.

  19. Holocene paleo-sea level changes along the coast of Rio de Janeiro, southern Brazil: Comment on Castro et al. (2014).

    Science.gov (United States)

    Angulo, Rodolfo J; Giannini, Paulo C F; Souza, Maria Cristina DE; Lessa, Guilherme C

    2016-01-01

    The present work discusses and reinterprets paleo-sea level indicators used to build Holocene sea-level curve for the coast of Rio de Janeiro at former works. We conclude that: (a) the paleo-sea levels inferred by vermetid remains show that sea-level has fallen over the past 4400 years, at least; (b) the paleo-sea level inferred by the beachrock facies and dated shells of Jaconé shows that sea-level was near the present elevation between 8198 and 5786 years before present; and (c) several shells from other beachrocks were deposited probably thousands of years after the specimens died and consequently do not allow precise reconstructions of paleo-sea levels. These conclusions differ from the conclusions of the original paper.

  20. Relative sea level in the Western Mediterranean basin: A regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation

    Science.gov (United States)

    Roy, Keven; Peltier, W. R.

    2018-03-01

    The Mediterranean Basin is a region of special interest in the study of past and present relative sea level evolution, given its location south of the ice sheets that covered large fractions of Northern Europe during the last glaciation, the large number of biological, geological and archaeological sea level indicators that have been retrieved from its coastal regions, as well as its high density of modern coastal infrastructure. Models of the Glacial Isostatic Adjustment (GIA) process provide reconstructions of past relative sea level evolution, and can be tested for validity against past sea level indicators from the region. It is demonstrated herein that the latest ICE-7G_NA (VM7) model of the GIA process, the North American component of which was refined using a full suite of geophysical observables, is able to reconcile the vast majority of uniformly analyzed relative sea level constraints available for the Western part of the Mediterranean basin, a region to which it was not tuned. We also revisit herein the previously published interpretations of relative sea level information obtained from Roman-era coastal Mediterranean "fish tanks", analyze the far-field influence of the rate of late Holocene Antarctic ice sheet melting history on the exceptionally detailed relative sea level history available from southern Tunisia, and extend the analysis to complementary constraints on the history of Antarctic ice-sheet melting available from islands in the equatorial Pacific Ocean. The analyses reported herein provide strong support for the global "exportability" of the ICE-7G_NA (VM7) model, a result that speaks directly to the ability of spherically symmetric models of the internal viscoelastic structure to explain globally distributed observations, while also identifying isolated regions of remaining misfit which will benefit from further study.

  1. Glacial-interglacial changes and Holocene variations in Arabian Sea denitrification

    Science.gov (United States)

    Gaye, Birgit; Böll, Anna; Segschneider, Joachim; Burdanowitz, Nicole; Emeis, Kay-Christian; Ramaswamy, Venkitasubramani; Lahajnar, Niko; Lückge, Andreas; Rixen, Tim

    2018-01-01

    At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ) at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST) and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4-7 ‰ during the last glacial maximum (LGM) and stadials (Younger Dryas and Heinrich events) suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs) had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values > 6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2-8.2 ka BP) compared to the late Holocene ( ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position in the northeast was established during the middle and late Holocene. This was

  2. Glacial–interglacial changes and Holocene variations in Arabian Sea denitrification

    Directory of Open Access Journals (Sweden)

    B. Gaye

    2018-01-01

    Full Text Available At present, the Arabian Sea has a permanent oxygen minimum zone (OMZ at water depths between about 100 and 1200 m. Active denitrification in the upper part of the OMZ is recorded by enhanced δ15N values in the sediments. Sediment cores show a δ15N increase during the middle and late Holocene, which is contrary to the trend in the other two regions of water column denitrification in the eastern tropical North and South Pacific. We calculated composite sea surface temperature (SST and δ15N ratios in time slices of 1000 years of the last 25 kyr to better understand the reasons for the establishment of the Arabian Sea OMZ and its response to changes in the Asian monsoon system. Low δ15N values of 4–7 ‰ during the last glacial maximum (LGM and stadials (Younger Dryas and Heinrich events suggest that denitrification was inactive or weak during Pleistocene cold phases, while warm interstadials (ISs had elevated δ15N. Fast changes in upwelling intensities and OMZ ventilation from the Antarctic were responsible for these strong millennial-scale variations during the glacial. During the entire Holocene δ15N values  >  6 ‰ indicate a relatively stable OMZ with enhanced denitrification. The OMZ develops parallel to the strengthening of the SW monsoon and monsoonal upwelling after the LGM. Despite the relatively stable climatic conditions of the Holocene, the δ15N records show regionally different trends in the Arabian Sea. In the upwelling areas in the western part of the basin, δ15N values are lower during the mid-Holocene (4.2–8.2 ka BP compared to the late Holocene ( <  4.2 ka BP due to stronger ventilation of the OMZ during the period of the most intense southwest monsoonal upwelling. In contrast, δ15N values in the northern and eastern Arabian Sea rose during the last 8 kyr. The displacement of the core of the OMZ from the region of maximum productivity in the western Arabian Sea to its present position

  3. Late Holocene sea-level rise in Tampa Bay: Integrated reconstruction using biomarkers, pollen, organic-walled dinoflagellate cysts, and diatoms

    NARCIS (Netherlands)

    Soelen, E.E. van; Lammertsma, E.I.; Cremer, H.; Donders, T.H.; Sangiorgi, F.; Brooks, G.R.; Larson, R.A.; Sinninghe Damsté, J.S.; Wagner-Cremer, F.; Reichart, G.J.

    2010-01-01

    A suite of organic geochemical, micropaleontological and palynological proxies was applied to sediments from Southwest Florida, to study the Holocene environmental changes associated with sea-level rise. Sediments were recovered from Hillsborough Bay, part of Tampa Bay, and studied using biomarkers,

  4. Discontinuity surfaces and event stratigraphy of Okha Shell Limestone Member: Implications for Holocene sea level changes, western India

    Science.gov (United States)

    Bhonde, Uday; Desai, Bhawanisingh G.

    2011-08-01

    The Okha Shell Limestone Member of Chaya Formation is the coarse grained, shell rich deposit commonly recognized as the beach rocks. It has been age bracketed between Late Pleistocene and Holocene. Late Quaternary sea level changes have been studied with beach rocks along the Saurashtra coastal region. The present study has been carried out in the Okhamandal area of the Saurashtra peninsula especially on the Okha Shell Limestone Member as exposed at various locations along the coast from north to south. Temporal and spatial correlations of the observations have revealed three events in the Okha Shell Limestone Member of Chaya Formation that are correlated laterally. The events show depositional breaks represented by discontinuity surfaces, the taphofacies varieties and ichnological variations. The present study in the context of available geochrnological data of the region suggests a prominent depositional break representing low sea level stand (regression) during an Early Holocene during the deposition of Okha Shell Limestone Member.

  5. Evolution of the Rømø barrier island in the Wadden Sea: Impacts of sea-level change on coastal morphodynamics

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Andersen, Thorbjørn Joest; Johannessen, Peter

    , and falling sea-level, whereas wash-over sedimentation was promoted during periods of rapid sea-level rise when shoreface, beach and coastal dune deposits were reworked. In contrast, lagoonal sedimentation has been relatively continuous and kept pace with the long-term Holocene sea-level rise. Our findings...

  6. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu culture in the lower Yangtze River, China

    Science.gov (United States)

    He, Keyang; Lu, Houyuan; Zheng, Yunfei; Zhang, Jianping; Xu, Deke; Huan, Xiujia; Wang, Jiehua; Lei, Shao

    2018-05-01

    The eastern coastal zone of China is densely populated and widely recognized as a center of rice domestication, which has undergone dramatic sea-level fluctuation during the Holocene epoch. Hemudu culture is distributed mainly in the eastern coastal area and was once presumed as a mature agricultural economy based on rice, making it an ideal case for examining the remarkable human-environment interaction in the Lower Yangtze River. Though numerous studies have been conducted on the cultural evolution, ecological environment, and rice domestication of Hemudu culture, the impact of sea-level fluctuation on human settlement and food production remains controversial. In this study, we report high-resolution pollen, phytolith, and diatom records, and accurately measured elevation from the Yushan site, which is the closest site of Hemudu culture to the modern coastline. Based on the data gathered, we suggest that the Hemudu culture and subsequent Liangzhu culture developed in the context of regression and were interrupted by two transgressions that occurred during 6300-5600 BP and 5000-4500 BP. The regional ecological environment of the Yushan site alternated between intertidal mudflat and freshwater wetlands induced by sea-level fluctuations in the mid-late Holocene. Though rice was cultivated in the wetland as early as 6700 BP, this cultivation was subsequently discontinued due to the transgression; thus, full domestication of rice did not occur until 5600 BP in this region. Comprehensive analysis of multiple proxies in this study promote the understanding of the relationship between environmental evolution, cultural interruption, and rice domestication.

  7. Early to Middle Holocene sea level fluctuation, coastal progradation and the Neolithic occupation in the Yaojiang Valley of southern Hangzhou Bay, Eastern China

    Science.gov (United States)

    Liu, Yan; Sun, Qianli; Fan, Daidu; Dai, Bin; Ma, Fuwei; Xu, Lichen; Chen, Jing; Chen, Zhongyuan

    2018-06-01

    The Yaojiang Valley (YJV) of southern Hangzhou Bay was the birthplace of the well-known Hemudu Culture (HC), one of the representatives of Neolithic civilization in eastern China. To explore the magnitude of natural environmental effects on the HC trajectory, the palaeo-embayment setting of the YJV was studied in detail for the first time in terms of 3D Holocene strata supported by a series of new radiocarbon-dated cores. The results indicated that the local relative sea level rose rapidly during the Early Holocene in the YJV, reached its maximum flooding surface ca. 7900 cal yr BP, and then remained stable ca. 7900-7600 cal yr BP. Thereupon, an estuary stretching inland was first formed by marine transgression, and then, it was transformed to an alluvial-coastal plain by regressive progradation. The alluvial plain was initiated in the foothills and then spread towards the valley centre after sea level stabilization ca. 7600 cal yr BP. Accompanying these natural environmental changes, the earliest arrivals of foragers in the valley occurred no later than ca. 7000 cal yr BP. They engaged in rice farming and fostered the HC for approximately two millennia from ca. 7000-5000 cal yr BP as more lands developed from coastal progradation. The rise and development of the HC are closely associated with the sea level-induced landscape changes in the YJV in the Early-Middle Holocene, but the enigmatic exodus of the HC people after ca. 5000 cal yr BP is still contentious and possibly linked with the rapid waterlogging and deterioration of this setting in such a low-lying coastal plain as well as with associated social reasons.

  8. Bayesian Statistical Analysis of Historical and Late Holocene Rates of Sea-Level Change

    Science.gov (United States)

    Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin

    2014-05-01

    A fundamental concern associated with climate change is the rate at which sea levels are rising. Studies of past sea level (particularly beyond the instrumental data range) allow modern sea-level rise to be placed in a more complete context. Considering this, we perform a Bayesian statistical analysis on historical and late Holocene rates of sea-level change. The data that form the input to the statistical model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. The aims are to estimate rates of sea-level rise, to determine when modern rates of sea-level rise began and to observe how these rates have been changing over time. Many of the current methods for doing this use simple linear regression to estimate rates. This is often inappropriate as it is too rigid and it can ignore uncertainties that arise as part of the data collection exercise. This can lead to over confidence in the sea-level trends being characterized. The proposed Bayesian model places a Gaussian process prior on the rate process (i.e. the process that determines how rates of sea-level are changing over time). The likelihood of the observed data is the integral of this process. When dealing with proxy reconstructions, this is set in an errors-in-variables framework so as to take account of age uncertainty. It is also necessary, in this case, for the model to account for glacio-isostatic adjustment, which introduces a covariance between individual age and sea-level observations. This method provides a flexible fit and it allows for the direct estimation of the rate process with full consideration of all sources of uncertainty. Analysis of tide-gauge datasets and proxy reconstructions in this way means that changing rates of sea level can be estimated more comprehensively and accurately than previously possible. The model captures the continuous and dynamic evolution of sea-level change and results show that not only are modern sea levels rising but that the rates

  9. Holocene reef development where wave energy reduces accommodation

    Science.gov (United States)

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  10. Paleohydrology reconstruction and Holocene climate variability in the South Adriatic Sea

    Directory of Open Access Journals (Sweden)

    G. Siani

    2013-02-01

    Full Text Available Holocene paleohydrology reconstruction is derived combining planktonic and benthic stable oxygen and carbon isotopes, sea surface temperatures (SSTs and oxygen isotope composition of seawater (δ18Ow from a high sedimentation core collected in the South Adriatic Sea (SAS. Core chronology is based on 10 AMS 14C measures on planktonic foraminifera and tephra layers. Results reveal two contrasted paleohydrological periods that reflect (i a marked lowering of δ18Ow/salinity during the early to mid-Holocene (11.5 ka to 6.3 ka, including the two-step sapropel S1 deposition, followed during the mid- to upper Holocene by (ii a prevailing period of increased salinity and enhanced arid conditions in the South Adriatic Basin. Superimposed on these trends, short-term centennial-scale hydrological events punctuated the Holocene period in the SAS. During the early to mid-Holocene, two main SST coolings together with prominent δ18Ow/salinity lowering delineate the sapropel S1 interruption and the post-sapropel phase between 7.3 to 6.3 ka. After 6 ka, centennial-scale δ18Ow and G. bulloides δ13C lowering, mostly centered between 3 to 0.6 ka, reflect short-term hydrological changes related to more intensive runoff of the Po and/or Apennine rivers. These short-term events, even of lesser amplitude compared to the early to mid-Holocene period, may have induced a lowering of sea surface density and consequently reduced and/or inhibited the formation of deep bottom waters in the SAS. Comparison of the emerging centennial- to millennial-scale hydrological record with previous climatic records from the central Mediterranean area and north of the Alps reveal possible synchronicities (within the radiocarbon-dating uncertainty between phases of lower salinity in the SAS and periods of wetter climatic conditions around the north-central Adriatic Sea. Finally, wavelet analyses provide new clues about the potential origin of climate variability in the SAS, confirming

  11. ICE-6G models of postglacial relative sea-level history applied to Holocene coral reef and mangrove records of the western Caribbean

    Science.gov (United States)

    Toscano, M. A.; Peltier, W. R.; Drummond, R.; Gonzalez, J.

    2012-12-01

    Fossil coral reefs and mangrove peat accumulations at western Caribbean sites along a latitudinal gradient from the Florida Keys through Belize and Panama provide dated and interpreted 8,000 year Holocene sea-level records for comparison with RSL predictions of the ICE-6G (VM5A, VM5B; L90) models of glacio-hydro-isostatic adjustment, with and without rotational feedback. These presumably passive continental margin sites provide the means to establish a N-S spatial trend in the varying influences of GIA, eustatic components of Holocene sea level, extent of forebulge collapse and influence of rotational feedback over a 20° latitudinal range. Previous ICE6G (VM5A) model-coral data comparisons for St Croix, USVI, Antigua, Martinique and Barbados (Toscano, Peltier and Drummond, 2011, QSR) along the eastern Caribbean plate and island arc illustrated the close model-data compatibility, the influence of rotational feedback acting as a significant factor in reducing misfits, and the need for high quality in situ data to confirm the extension of the proglacial forebulge into tropical latitudes. The gradient of western Caribbean continental shelf sites comprises a much more varied range of model-data relationships based on extensive combined Acropora palmata (reef crest coral) and Rhizophora mangle (microtidal mangrove) peat datasets in all cases. Starting at the northernmost region with the Florida Keys, there exist negative model misfits to the data, suggesting the possibility of a positive tectonic overprint upon expectations related to the glacial isostatic adjustment process acting alone, even though this region is normally believed to be tectonically stable. The largest multi-proxy database from Belize supports the likelihood of increasing rates of subsidence from north to south in the Belize Lagoon, which may account for numerous positive GIA model-data misfits. The southernmost site at Panama is most similar to Belize in the possible nature of tectonic influences on

  12. Palaeoenvironmental Evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its Response to Holocene Sea-Level Rise

    Science.gov (United States)

    Gabriel, J. J.; Reinhardt, E. G.; Peros, M. C.; Davidson, D. E.; van Hengstum, P. J.; Beddows, P. A.

    2008-12-01

    A 61-cm core was obtained from 4 metres below the water table in Cenote Aktun Ha, on the Yucatan Peninsula, Mexico. The cenote is 8.6 km from the Caribbean coast and its formation and evolution have been largely affected by sea-level change. The base of the core dates to 6940 - 6740 cal yr BP and overlying sediments were deposited rapidly over the subsequent ~200 years. The pollen record shows that the cenote evolved from a marsh dominated by red mangrove (Rhizophora mangle) and fern (Polypodiaceae) to an open-water system. These vegetation changes were controlled by water level and salinity and are thus useful indicators of past sea level. At the base, the d13C isotopic ratios reveal the influence of terrestrial vegetation (-29‰), but shift to more negative values up-core (-33‰), indicating an influence from particulate matter in the flooded cenote pool. Although microfossil populations were nearly absent through most of the core, the microfossil assemblage in the upper 6 cm of the core is dominated by juvenile Ammonia tepida and the thecamoebian genus Centropyxis. These populations indicate open-water conditions in the cenote and a major environmental shift around 6600 cal yr BP, which is related to sea-level rise in the Caribbean basin. These data fit well with previously established sea-level curves for the Caribbean Sea. Our reconstruction of the environmental history of Cenote Aktun Ha helps elucidate the floral and hydrological history of the region, and highlights the utility of cenote sediments for studying the Holocene sea-level history of the Caribbean Sea.

  13. On the interpretation of millennium-scale level variations of the Black Sea during the first quarter of the Holocene

    Science.gov (United States)

    Kislov, Alexander

    2016-04-01

    Introduction. During the first quarter of the Holocene, the Black Sea (BS) experienced large changes: amid the gradually rising water surface, Black Sea level (BSL) fluctuations occurred. We calculated based on records (e.g., Balabanov, 2007) that the standard deviation is ˜3.5 ÷ 5 m. Their typical duration was ˜1000 years. Time of occurrence of positive and negative anomalies of the BS is different in different reconstructions. The source of these discrepancies could be tectonically induced vertical motions. Before ˜7 ka BP the BSL was higher than the level of the World Ocean. The rising BS spilled over a rocky sill at the Bosphorus (Chepalyga, 2007). It is clear that if the water discharge were quite large, the long-term BSL anomalies could not be. This study focuses on the quantification of this concept. Methodology. I use the equation of the water balance of the BS in term of the annual averaged level anomalies. Time scales of the BSL fluctuations were determined based on the BS basin morphology and averaged volumes of rivers runoff and water discharge via the Bosphorus Sill. The short-term (1-2 year) contribution (like random white noise) to level changes are due to variations of river runoff and precipitation mines evaporation. From this perspective, the water balance equation is represented as a stochastic Langevin equation (Kislov, 2015). In another case, the BSL anomaly could be destructed due to relation "BSL anomaly - value of water discharge via the Bosphorus Sill" which acts as a negative feedback. Results. To quantify the parameters, I use the present day information about hydrological regime of the BS. It should not lead to serious errors, because the first and last quarters of the Holocene exhibit similarity in their hydroclimatic regimes (Panin, Matlakhova, 2014). As well, the paleohydrological data about dynamics of the Dnieper River runoff was used (Swetc, 1978). It was found that the time scale of the BSL fluctuations due to water discharge

  14. Biomarker Evidence of Relatively Stable Community Structure in the Northern South China Sea during the Last Glacial and Holocene

    Directory of Open Access Journals (Sweden)

    Juan He

    2008-01-01

    Full Text Available High-resolution molecular abundance records for several marine biomarkers during the last glacial and Holocene have been generated for core MD05-2904 (19 _ 116 _ 2066 mwater depth from the northern South China Sea. The UK' 37 SST record indicates a 4.4 C cooling during the Last Glacial Maximum for this site, consistent with previous reconstructions. The contents of C37 alkenones, dinosterol, brassicasterol, and C30 alkyl diols are used as productivity proxies for haptophytes, dinoflagellates, diatoms, and eustigmatophytes, respectively. These records reveal that both individual phytoplankton group and total productivity increased by several factors during the LGM compared with those for the Holocene, in response to increased nutrient supply. However, the community structure based on biomarker percentages remained relatively stable during the last glacial-Holocene transition, although there were short-term oscillations.

  15. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    Science.gov (United States)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  16. A High-Resolution Reconstruction of Late-Holocene Relative Sea Level in Rhode Island, USA

    Science.gov (United States)

    Stearns, R. B.; Engelhart, S. E.; Kemp, A.; Cahill, N.; Halavik, B. T.; Corbett, D. R.; Brain, M.; Hill, T. D.

    2017-12-01

    Studies on the US Atlantic and Gulf coasts have utilized salt-marsh peats and the macro- and microfossils preserved within them to reconstruct high-resolution records of relative sea level (RSL). We followed this approach to investigate spatial and temporal RSL variability in southern New England, USA, by reconstructing 3,300 years of RSL change in lower Narragansett Bay, Rhode Island. After reconnaisance of lower Narragansett Bay salt marshes, we recovered a 3.4m core at Fox Hill Marsh on Conanicut Island. We enumerated foraminiferal assemblages at 3cm intervals throughout the length of the core and we assessed trends in δ13C at 5 cm resolution. We developed a composite chronology (average resolution of ±50 years for a 1 cm slice) using 30 AMS radiocarbon dates and historical chronological markers of known age (137Cs, heavy metals, Pb isotopes, pollen). We assessed core compaction (mechanical compression) by collecting compaction-free basal-peat samples and using a published decompaction model. We employed fossil foraminifera and bulk sediment δ13C to estimate paleomarsh elevation using a Bayesian transfer function trained by a previously-published regional modern foraminiferal dataset. We combined the proxy RSL reconstruction and local tide-gauge measurements from Newport, Rhode Island (1931 CE to present) and estimated past rates of RSL change using an Errors-in-Variables Integrated Gaussian Process (EIV-IGP) model. Both basal peats and the decompaction model suggest that our RSL record is not significantly compacted. RSL rose from -3.9 m at 1250 BCE reaching -0.4 m at 1850 CE (1 mm/yr). We removed a Glacial Isostatic Adjustment (GIA) contribution of 0.9 mm/yr based on a local GPS site to facilitate comparison to regional records. The detrended sea-level reconstruction shows multiple departures from stable sea level (0 mm/yr) over the last 3,300 years and agrees with prior reconstructions from the US Atlantic coast showing evidence for sea-level changes that

  17. Millennial, centennial and decadal sea- level change in Florida, USA

    Science.gov (United States)

    Kemp, A.; Hawkes, A. D.; Donnelly, J. P.; Horton, B. P.

    2012-12-01

    Reconstructions of relative sea-level changes on millennial timescales provide data against which to test and calibrate Earth-Ice models. On the U.S. mid-Atlantic coast they constrain the geometry of the Laurentide Ice Sheet's collapsing forebulge. Sea -level data from southeastern Atlantic coast additionally constrain ice-equivalent meltwater input. Here we produce the first Holocene sea-level curve for Florida and Georgia from the St. Mary's River using agglutinated foraminifera preserved in radiocarbon-dated brackish and salt-marsh sediment. The use of foraminfera as sea-level indicators was underpinned by local and regional datasets describing the modern distribution of assemblages that are analogues for those preserved in buried sediment. This approach produced 25 index points that record 5.2 m of relative sea level rise over the last 8000 years with no evidence of a mid Holocene high stand. These reconstructions indicate that existing GIA models do not replicate proxy reconstructions and that northern Florida is subsiding in response to ongoing forebulge collapse at an estimated rate of approximately 0.3 mm/yr. Over multi decadal time scales, detailed sea level reconstructions provide an appropriate geological context for modern rates of sea-level rise. Reconstructions spanning the last 2000 years of known climate variability are important for developing models with predictive capacity that link climate and sea level changes. A reconstruction of sea-level changes since 2000 years BP was developed using a core of brackish marsh sediment from the Nassau River in Florida. Foraminifera estimated the elevation of former sea level with an uncertainty of ± 10 cm. Consistent downcore assemblages indicate that the marsh maintained its tidal elevation for 2000 years. An age depth model was developed for the core results from radiocarbon dating, 210Pb and 137Cs. The resulting relative sea level record was adjusted for the contribution made by glacio

  18. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget

    Science.gov (United States)

    Cuzzone, Joshua K.; Clark, Peter U.; Carlson, Anders E.; Ullman, David J.; Rinterknecht, Vincent R.; Milne, Glenn A.; Lunkka, Juha-Pekka; Wohlfarth, Barbara; Marcott, Shaun A.; Caffee, Marc

    2016-08-01

    The last deglaciation of the Scandinavian Ice Sheet (SIS) from ∼ 21, 000 to 13,000 yr ago is well-constrained by several hundred 10Be and 14C ages. The subsequent retreat history, however, is established primarily from minimum-limiting 14C ages and incomplete Baltic-Sea varve records, leaving a substantial fraction of final SIS retreat history poorly constrained. Here we develop a high-resolution chronology for the final deglaciation of the SIS based on 79 10Be cosmogenic exposure dates sampled along three transects spanning southern to northern Sweden and Finland. Combining this new chronology with existing 10Be ages on deglaciation since the Last Glacial Maximum shows that rates of SIS margin retreat were strongly influenced by deglacial millennial-scale climate variability and its effect on surface mass balance, with regional modulation of retreat associated with dynamical controls. Ice-volume estimates constrained by our new chronology suggest that the SIS contributed ∼ 8 m sea-level equivalent to global sea-level rise between ∼14.5 ka and 10 ka. Final deglaciation was largely complete by ∼10.5 ka, with highest rates of sea-level rise occurring during the Bølling-Allerød, a 50% decrease during the Younger Dryas, and a rapid increase during the early Holocene. Combining our SIS volume estimates with estimated contributions from other remaining Northern Hemisphere ice sheets suggests that the Antarctic Ice Sheet (AIS) contributed 14.4 ± 5.9 m to global sea-level rise since ∼13 ka. This new constraint supports those studies that indicate that an ice volume of 15 m or more of equivalent sea-level rise was lost from the AIS during the last deglaciation.

  19. Holocene glacier variations and sea level change in Wahlenbergfjorden, Nordaustlandet, Svalbard

    Science.gov (United States)

    Schomacker, A.; Farnsworth, W. R.; Ingolfsson, O.; Allaart, L.; Håkansson, L.; Retelle, M.

    2017-12-01

    Here we present preliminary results on the Holocene glacier variations in Wahlenbergfjorden on Nordaustlandet, Svalbard. The reconstructions are based on lake sediment records from Lake Kl\\overbladvatna covering the last 9500 years. This lake captures meltwater from the Etonbreen glacier, a main outlet of the Austfonna ice cap, when the glacier extends further than present. Additionally, Kl\\overbladvatna is an isolation basin capturing the postglacial isolation from the marine to lacustrine environment due to glacioisostatic rebound. The chronology is based on radiocarbon dating of terrestrial and marine macrofossils. The lake sediment record also reveals that glacial meltwater exceeded the threshold into Lake Kl\\overbladvatna during the Little Ice Age as witnessed by glacial meltwater clay in the upper part of the sediment cores. In periods of less advanced glaciers, the lake sediment record is dominated by laminated clayey gyttja. Based on radiocarbon datings of driftwood, whalebone, and marine mollusc shells in raised beaches and marine deposits in Pallanderbukta, south Wahlenbergfjorden, we also present a new postglacial sea level curve from this region.

  20. Postglacial relative sea-level history of the Prince Rupert area, British Columbia, Canada

    Science.gov (United States)

    Letham, Bryn; Martindale, Andrew; Macdonald, Rebecca; Guiry, Eric; Jones, Jacob; Ames, Kenneth M.

    2016-12-01

    This paper presents a history of relative sea level (RSL) change for the last 15,000 years in the Prince Rupert region on the northern coast of British Columbia, Canada. One hundred twenty-three radiocarbon ages of organic material from isolation basin cores, sediment sequence exposures, and archaeological sites having a recognized relation to past sea levels constrain postglacial RSL. The large number of new measurements relating to past sea-level provides a well constrained RSL curve that differs in significant ways from previously published results. After deglaciation following the Last Glacial Maximum, the region experienced an isostatically-induced rapid RSL drop from as much 50 m asl to as low as -6.3 m asl in as little as a few centuries between 14,500 BP and 13,500 BP. After a lowstand below current sea level for about 2000 years during the terminal Pleistocene, RSL rose again to a highstand at least 6 m asl after the end of the Younger Dryas. RSL slowly dropped through the Holocene to close to its current position by 2000-1500 BP, with some potential fluctuations between 3500 and 1500 BP. This study highlights variation in RSL histories across relatively short distances, which must be accounted for by local RSL reconstructions such as this one. This RSL curve aided in the identification of an 8000-9000 year old archaeological site on a 10-12 m asl terrace, which is currently the earliest dated archaeological site in the area, and it provides guidance for searching for even older archaeological remains. We highlight the utility and potential of this refined RSL history for developing surveys for other archaeological sites associated with paleoshorelines.

  1. Sedimentary alkenone distributions reflect salinity changes in the Baltic Sea over the Holocene

    NARCIS (Netherlands)

    Warden, L.A.; van der Meer, M.T.J.; Moros, Matthias; Sinninghe Damsté, J.S.

    2016-01-01

    The Baltic Sea has had a complex salinity history since the last deglaciation. Here we show how distributions of alkenones and their δD values varied with past fluctuations in salinity in the Baltic Sea over the Holocene by examining a Holocene record (11.2–0.1 cal kyr BP) from the Arkona Basin.

  2. Timing and magnitude of the Caribbean mid-Holocene highstand

    Science.gov (United States)

    Ashe, E.; Khan, N.; Horton, B.; Brocard, G. Y.; Dutton, A.; Engelhart, S. E.; Kopp, R. E.; Hill, D. F.; Peltier, W. R.; Scatena, F. N.

    2015-12-01

    We present a database of published and new relative sea-level (RSL) data for the past 13 ka, which constrains the Holocene sea-level histories of the Caribbean coast of Central and South America (Florida Keys, USA to Guyana) and the Bahamas and Greater and Lesser Antilles islands. Our evaluation of mangrove peat and Acropora palmata sea-level indicators from geological investigations provides 503 sea-level index points and 242 limiting dates. We subdivide the database into 21 regions based on the availability of data, tectonic setting, and distance from the former Laurentide ice sheet. Most index points (75%) and limiting dates (90%) are <8 ka, although there is an unusual temporal distribution with the greatest amount of the data (~28%) occurring between 6-8 ka. We reassess and screen radiocarbon and U/Th ages of mangrove peat and coral data. We use the stratigraphic position (overburden thickness) of index points account for sediment compaction, and use the paleotidal model of Hill et al. (2011) to account for Holocene changes in paleotidal range. A noisy-input Gaussian process regression model calculates that the rates of RSL change were highest during the early Holocene (3-8 mm/yr) and have decreased over time (< 2 mm/yr), which is related to the reduction of ice equivalent meltwater input and collapse of the proglacial forebulge during the Holocene. The sea-level reconstructions demonstrate that RSL did not exceed the present height (0 m) during the Holocene in the majority of locations, with the exception of a small highstand (<2 m) on the northern coast of South America along the Orinoco Delta and Suriname/Guyana located furthest away from the former Laurentide Ice Sheet. The different sea-level histories are an ongoing isostatic response to deglaciation of the Laurentide Ice Sheet and suggest subsidence resulting from collapse of the proglacial forebulge reaches further south than previously considered.

  3. Influences of Holocene sea level, regional tectonics, and fluvial, gravity and slope currents induced sedimentation on the regional geomorphology of the continental slope off northwestern India

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Almeida, F.

    the Holocene sea level. The Bombay high area has slope breaks between 400 and 600 m, whereas off Saurashtra steep breaks in the slope occur between 560 and 960 m depth. Further southwards, at the slope, elevations and depressions are present. Variations...

  4. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    , Journal of Geophysical Research: Solid Earth, 118(6), 3126-3141. Peltier, W. R. (2004), Global glacial isostasy and the surface of the ice-age earth: The ice-5G (VM2) model and grace, Annu Rev Earth Pl Sc, 32, 111-149. Schoof, C. (2007), Ice sheet grounding line dynamics: Steady states, stability, and hysteresis, Journal of Geophysical Research: Earth Surface, 112(F3). Siegert, M., N. Ross, H. Corr, J. Kingslake, and R. Hindmarsh (2013), Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica, Quaternary Sci Rev, 78(0), 98-107. Whitehouse, P. L., M. J. Bentley, G. A. Milne, M. A. King, and I. D. Thomas (2012), A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates, Geophys J Int, 190(3), 1464-1482.

  5. Land-Sea Correlation of Holocene Records in NW Iberian Peninsula

    Science.gov (United States)

    Gonzalez-Alvare, R.; Costas, S.; Bernardez, P.; Frances, G.; Alejo, I.

    2005-12-01

    Holocene climate fluctuations in the temperate region of the Northeast Atlantic have been established by comparing marine and terrestrial proxies. This work is based on suction-cores collected in the Cies Islands lagoon (NW Spain) and vibro-cores from the adjacent continental shelf. The lower Holocene marine record (9400-7000 yr BP) consists on sandy transgressive facies overlying fluvial Pleistocene deposits. During this time the continental shelf was dominated by high energy processes linked to the progressive and fast sea level rise. The rate of sea level rise sharply decelerated at 7000 yr BP and a high productive marine environment was fully established, as revealed by planktonic foraminifera assemblages and biogeochemical markers. In the terrestrial areas, peat deposits were formed beginning around 6000 yr BP in the deeper parts of the paleo-relief that was developed above the granitic basement. The peat was deposited in a fresh-water shallow coastal lake under warm and humid conditions that are brought about by prevailing SW winds. From 4800 yr BP, a progressive rainfall decrease provoked the lowering of the lake level and a weaker fluvial influence on the adjacent shelf. The prevailing eastern winds caused significantly drier conditions between 4000 and 3200 yr BP. During this period the coastal lake dried and the peat layer was covered by aeolian deposits. At the continental shelf a strong stratification of the water column induced a fall in the productivity. The end of this period is marked by the increase of storm regimes caused by a shift to prevailing SW winds. The last 3000 years are characterized by humid and warm conditions, and the enhancement of upwelling regime and terrestrial sediment supply. In Cies Islands, a sand barrier-lagoon complex was developed as a consequence of both the sea level rise and the inundation of the lower areas in the island.

  6. Late Holocene sea ice conditions in Herald Canyon, Chukchi Sea

    Science.gov (United States)

    Pearce, C.; O'Regan, M.; Rattray, J. E.; Hutchinson, D. K.; Cronin, T. M.; Gemery, L.; Barrientos, N.; Coxall, H.; Smittenberg, R.; Semiletov, I. P.; Jakobsson, M.

    2017-12-01

    Sea ice in the Arctic Ocean has been in steady decline in recent decades and, based on satellite data, the retreat is most pronounced in the Chukchi and Beaufort seas. Historical observations suggest that the recent changes were unprecedented during the last 150 years, but for a longer time perspective, we rely on the geological record. For this study, we analyzed sediment samples from two piston cores from Herald Canyon in the Chukchi Sea, collected during the 2014 SWERUS-C3 Arctic Ocean Expedition. The Herald Canyon is a local depression across the Chukchi Shelf, and acts as one of the main pathways for Pacific Water to the Arctic Ocean after entering through the narrow and shallow Bering Strait. The study site lies at the modern-day seasonal sea ice minimum edge, and is thus an ideal location for the reconstruction of past sea ice variability. Both sediment cores contain late Holocene deposits characterized by high sediment accumulation rates (100-300 cm/kyr). Core 2-PC1 from the shallow canyon flank (57 m water depth) is 8 meter long and extends back to 4200 cal yrs BP, while the upper 3 meters of Core 4-PC1 from the central canyon (120 mwd) cover the last 3000 years. The chronologies of the cores are based on radiocarbon dates and the 3.6 ka Aniakchak CFE II tephra, which is used as an absolute age marker to calculate the marine radiocarbon reservoir age. Analysis of biomarkers for sea ice and surface water productivity indicate stable sea ice conditions throughout the entire late Holocene, ending with an abrupt increase of phytoplankton sterols in the very top of both sediment sequences. The shift is accompanied by a sudden increase in coarse sediments (> 125 µm) and a minor change in δ13Corg. We interpret this transition in the top sediments as a community turnover in primary producers from sea ice to open water biota. Most importantly, our results indicate that the ongoing rapid ice retreat in the Chukchi Sea of recent decades was unprecedented during the

  7. New high-resolution record of Holocene climate change in the Weddell Sea from combined biomarker analysis of the Patriot Hills blue ice area

    Science.gov (United States)

    Fogwill, Christopher; Turney, Chris; Baker, Andy; Ellis, Bethany; Cooper, Alan; Etheridge, David; Rubino, Mauro; Thornton, David; Fernando, Francisco; Bird, Michale; Munksgaard, Niels

    2017-04-01

    We report preliminary analysis of biomarkers (including dissolved organic matter (DOM) and DNA) from the Patriot Hills blue ice area (BIA), from the Ellsworth Mountains in the Weddell Sea Embayment. Preliminary isotopic and multiple gas analysis (CO2, CH4, N2O and CO) demonstrate that the Holocene comprises more than 50% of the 800m long BIA record, and in combination isotopic and biomarker analysis reveals a remarkable record of centennial variability through the Holocene in this sector of the Weddell Sea. Analysis using a Horiba Aqualog - which measures the fluorescence of DOM by producing a map of the fluorescence through an excitation-emission matrix (EEM) - identifies the presence of two marine protein-like components in both modern snow pit samples and within the Holocene part of Patriot Hills BIA transect. Intriguingly, the modern seasonal trends in DOM, recorded in contemporary snow pits, have relatively low signals compared to those recorded in the mid-Holocene record, suggesting a reduction in DOM signal in contemporary times. Given that the δD excess data suggests the source of precipitation has remained constant through the Holocene, the biomarker signal must relate to multi-year marine productivity signals from the Weddell Sea. The marked variability in DOM between the mid-Holocene and contemporary times can only relate to periods of sustained, enhanced biological productivity in the Weddell Sea associated with shifts in Southern Annular Mode, sea ice variability, changes in ventilation or polynya activity. Here we discuss the possible drivers of these changes and describe how this approach at this BIA could benefit conventional ice core records regionally.

  8. History of Aral Sea level variability and current scientific debates

    Science.gov (United States)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel

    2013-11-01

    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  9. An approach to palaeoseismicity in the Olkiluoto (sea) area during the early holocene

    International Nuclear Information System (INIS)

    Hutri, K.L.

    2007-06-01

    Olkiluoto Island is situated in the northern Baltic Sea, near the southwestern coast of Finland, and is the proposed location of a spent nuclear fuel repository. This study examined Holocene palaeoseismicity in the Olkiluoto area and in the surrounding sea areas by computer simulations together with acoustic-seismic, sedimentological and dating methods. The most abundant rock type on the island is migmatic mica gneiss, intruded by tonalites, granodiorites and granites. The surrounding Baltic Sea seabed consists of Palaeoproterozoic crystalline bedrock, which is to a great extent covered by younger Mesoproterozoic sedimentary rocks. The area contains several ancient deep-seated fracture zones that divide it into bedrock blocks. The response of bedrock at the Olkiluoto site was modelled considering four future ice-age scenarios. Each scenario produced shear displacements of fractures with different times of occurrence and varying recovery rates. Generally, the larger the maximum ice load, the larger were the permanent shear displacements. For a basic case, the maximum shear displacements were a few centimetres at the proposed nuclear waste repository level, at proximately 500 m b.s.l. high-resolution, low-frequency echo-sounding was used to examine the Holocene submarine sedimentary structures and possible direct and indirect indicators of palaeoseismic activity in the northern Baltic Sea. Echo-sounding profiles of Holocene submarine sediments revealed slides and slumps, normal faults, debris flows and turbidite-type structures. The profiles also showed pockmarks and other structures related to gas or groundwater seepages, which might be related to fracture zone activation. Evidence of postglacial reactivation in the study area was derived from the spatial occurrence of some of the structures, especial the faults and the seepages, in the vicinity of some old bedrock fracture zones. Palaeoseismic event(s) (a single or several events) in the Olkiluoto area were dated

  10. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    Science.gov (United States)

    Yi, Liang; Chen, Yanping

    2013-04-01

    and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.

  11. Sea-level related resedimentation processes on the northern slope of Little Bahama Bank (Middle Pleistocene to Holocene)

    DEFF Research Database (Denmark)

    Lantzsch, H.; Roth, S.; Reijmer, J.J.G.

    2007-01-01

    -slope depositional environment. The sediment composition indicates sea-level related deposition processes for the past 375000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine-grained particles of shallow-water and pelagic origin) with moderate variations in carbonate...

  12. Deglacial and Holocene sea-ice variability north of Iceland and response to ocean circulation changes

    Science.gov (United States)

    Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang

    2017-08-01

    Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.

  13. Geochemical record of Holocene to Recent sedimentation on the Western Indus continental shelf, Arabian Sea

    Science.gov (United States)

    Limmer, David R.; BöNing, Philipp; Giosan, Liviu; Ponton, Camilo; KöHler, Cornelia M.; Cooper, Matthew J.; Tabrez, Ali R.; Clift, Peter D.

    2012-01-01

    We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (<14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ˜100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higherɛNdvalues compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. HigherɛNdvalues seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4-6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.

  14. Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine

    Science.gov (United States)

    Knebel, H.J.

    1986-01-01

    Data from seismic-reflection profiles, sidescan sonar images, and sediment samples reveal the Holocene depositional history of the large (1100 km2) glaciated Penobscot Bay estuary of coastal Maine. Previous work has shown that the late Wisconsinan ice sheet retreated from the three main passages of the bay between 12,700 and 13,500 years ago and was accompanied by a marine transgression during which ice and sea were in contact. Isostatic recovery of the crust caused the bay to emerge during the immediate postglacial period, and relative sea level fell to at least -40 m sometime between 9000 and 11,500 years ago. During lowered sea level, the ancestral Penobscot River flowed across the subaerially exposed head of the bay and debouched into Middle Passage. Organic-matter-rich mud from the river was deposited rapidly in remnant, glacially scoured depressions in the lower reaches of Middle and West Passages behind a shallow (???20 m water depth) bedrock sill across the bay mouth. East Passage was isolated from the rest of the bay system and received only small amounts of locally derived fine-grained sediments. During the Holocene transgression that accompanied the eustatic rise of sea level, the locus of sedimentation shifted to the head of the bay. Here, heterogeneous fluvial deposits filled the ancestral valley of the Penobscot River as base level rose, and the migrating surf zone created a gently dipping erosional unconformity, marked by a thin (energy conditions and the waning influence of the Penobscot River at the head of the bay. In contrast, relatively thick (up to 25 m) silty clays accumulated within a subbottom trough in the western half of the bay head. This deposit apparently developed late in the transgression after sea level had reached -20 m and after the westward transport of fine-grained sediments from the Penobscot River had been established. During and since the late Holocene transgression of sea level, waves and currents have eroded, reworked, and

  15. Last Glacial Maximum to Holocene climate evolution controlled by sea-level change, Leeuwin Current, and Australian Monsoon in the Northwestern Australia

    Science.gov (United States)

    Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.

    2017-12-01

    The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.

  16. Holocene transgression of the Rhine river-mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy

    NARCIS (Netherlands)

    Hijma, M.P.; Cohen, K.M.

    2011-01-01

    We present a detailed reconstruction of the palaeogeography of the Rhine valley (western Netherlands) during the Holocene transgression with systems tracts placed in a precise sea-level context. A high level of detail could be reached because of 1) favourable antecedent topography and subsidence

  17. Past sea level changes along the western continental margins of India: Evidences from morphology of the sea bed

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    -wide have been affected to a considerable extent by Pleistocene glaciations (Emery, 1968). The rate of sea-level rise has varied frequently and the sea-level still stands produced wave-cut terraces and platforms. In other words, the surface of a terrace... Merh (1992) while reviewing Quaternary sea level changes along India’s coasts observed that the Last Glacial Stage was a period of regression when the sea level went down to almost -150 m. With the advent of the Holocene, the sea started rising...

  18. Origin and dynamics of the northern South American coastal savanna belt during the Holocene - the role of climate, sea-level, fire and humans

    Science.gov (United States)

    Alizadeh, Kamaleddin; Cohen, Marcelo; Behling, Hermann

    2015-08-01

    Presence of a coastal savanna belt expanding from British Guiana to northeastern Brazil cannot be explained by present-day climate. Using pollen and charcoal analyses on an 11.6 k old sediment core from a coastal depression in the savanna belt near the mouth of the Amazon River we investigated the paleoenvironmental history to shed light on this question. Results indicate that small areas of savanna accompanied by a forest type composed primarily by the genus Micropholis (Sapotaceae) that has no modern analog existed at the beginning of the Holocene. After 11,200 cal yr BP, savanna accompanied by few trees replaced the forest. In depressions swamp forest developed and by ca 10,000 cal yr BP replaced by Mauritia swamps. Between 8500 and 5600 cal yr BP gallery forest (composed mainly of Euphorbiaceae) and swamp forest succeeded the treeless savanna. The modern vegetation with alternating gallery forest and savanna developed after 5600 cal yr BP. We suggest that the early Holocene no-analog forest is a relict of previously more extensive forest under cooler and moister Lateglacial conditions. The early Holocene savanna expansion indicates a drier phase probably related to the shift of the Intertropical Convergence Zone (ITCZ) towards its northernmost position. The mid-Holocene forest expansion is probably a result of the combined influence of equatorwards shift of ITCZ joining the South Atlantic Convergence Zone (SACZ). The ecosystem variability during the last 5600 cal yr BP, formed perhaps under influence of intensified ENSO condition. High charcoal concentrations, especially during the early Holocene, indicate that natural and/or anthropogenic fires may have maintained the savanna. However, our results propose that climate change is the main driving factor for the formation of the coastal savanna in this region. Our results also show that the early Holocene sea level rise established mangroves near the study site until 7500 cal yr BP and promoted swamp formation in

  19. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    Science.gov (United States)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea

  20. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C

  1. Sea-Level Change in the Russian Arctic Since the Last Glacial Maximum

    Science.gov (United States)

    Horton, B.; Baranskaya, A.; Khan, N.; Romanenko, F. A.

    2017-12-01

    Relative sea-level (RSL) databases that span the Last Glacial Maximum (LGM) to present have been used to infer changes in climate, regional ice sheet variations, the rate and geographic source of meltwater influx, and the rheological structure of the solid Earth. Here, we have produced a quality-controlled RSL database for the Russian Arctic since the LGM. The database contains 394 index points, which locate the position of RSL in time and space, and 244 limiting points, which constrain the minimum or maximum limit of former sea level. In the western part of the Russian Arctic (Barents and White seas,) RSL was driven by glacial isostatic adjustment (GIA) due to deglaciation of the Scandinavian ice sheet, which covered the Baltic crystalline shield at the LGM. RSL data from isolation basins show rapid RSL from 80-100 m at 11-12 ka BP to 15-25 m at 4-5 ka BP. In the Arctic Islands of Franz-Joseph Land and Novaya Zemlya, RSL data from dated driftwood in raised beaches show a gradual fall from 25-35 m at 9-10 ka BP to 5-10 m at 3 ka BP. In the Russian plain, situated at the margins of the formerly glaciated Baltic crystalline shield, RSL data from raised beaches and isolation basins show an early Holocene rise from less than -20 m at 9-11 ka BP before falling in the late Holocene, illustrating the complex interplay between ice-equivalent meltwater input and GIA. The Western Siberian Arctic (Yamal and Gydan Peninsulas, Beliy Island and islands of the Kara Sea) was not glaciated at the LGM. Sea-level data from marine and salt-marsh deposits show RSL rise at the beginning of the Holocene to a mid-Holocene highstand of 1-5 m at 5-1 ka BP. A similar, but more complex RSL pattern is shown for Eastern Siberia. RSL data from the Laptev Sea shelf show RSL at -40- -45 m and 11-14 ka BP. RSL data from the Lena Delta and Tiksi region have a highstand from 5 to 1 ka BP. The research is supported by RSF project 17-77-10130

  2. Holocene transgression of the Rhine river mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy

    NARCIS (Netherlands)

    Cohen, K.M.; Hijma, M.P.

    2011-01-01

    This study presents a detailed reconstruction of the palaeogeography of the Rhine valley (western Netherlands) during the Holocene transgression with systems tracts placed in a precise sea-level context. This approach permits comparison of actual versus conceptual boundaries of the lowstand,

  3. Regional, holocene records of the human dimension of global change: sea-level and land-use change in prehistoric Mexico

    Science.gov (United States)

    Sluyter, Andrew

    1997-02-01

    Regional, Holocene records hold particular relevance for understanding the reciprocal nature of global environmental change and one of its major human dimensions: "sustainable agriculture", i.e., food production strategies which entail fewer causes of and are less susceptible to environmental change. In an epoch of accelerating anthropogenic transformation, those records reveal the protracted regional causes and consequences of change (often agricultural) in the global system as well as informing models of prehistoric, intensive agriculture which, because of long tenures and high productivities, suggest strategies for sustainable agricultural in the present. This study employs physiographic analysis and the palynological, geochemical record from cores of basin fill to understand the reciprocal relation between environmental and land-use change in the Gulf of Mexico tropical lowland, focusing on a coastal basin sensitive to sea-level change and containing vestiges of prehistoric settlement and wetland agriculture. Fossil pollen reveals that the debut of maize cultivation in the Laguna Catarina watershed dates to ca. 4100 BC, predating the earliest evidence for that cultivar anywhere else in the lowlands of Middle America. Such an early date for a cultivar so central to Neotropical agroecology and environmental change, suggests the urgency of further research in the study region. Moreover, the longest period of continuous agriculture in the basin lasted nearly three millennia (ca. 2400 BC-AD 550) despite eustatic sea-level rise. Geochemical fluxes reveal the reciprocity between land-use and environmental change: slope destabilization, basin aggradation, and eutrophication. The consequent theoretical implications pertain to both applied and basic research. Redeploying ancient agroecologies in dynamic environments necessitates reconstructing the changing operational contexts of putative high productivity and sustainability. Adjusting land use in the face of global

  4. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    Science.gov (United States)

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  5. Can molluscan assemblages give insights into Holocene environmental changes other than sea level rise? A case study from a macrotidal bay (Marennes-Oleron, France)

    OpenAIRE

    Poirier, Clement; Sauriau, Pierre-guy; Chaumillon, Eric; Allard, Jonathan

    2009-01-01

    During the Late Holocene, the rate of sea level rise decreased and climate changes, hydrodynamic processes or anthropogenic impacts became predominant parameters governing the sedimentary infill of estuarine environments. The aim of this study is to describe the response of past benthic mollusc communities to these forcing factors. Mollusc skeletal remains were sampled from three 8000, 5500 and 2600 year-long sedimentary records in the Marennes-Oleron Bay (Atlantic Coast, France), where envir...

  6. Impacts of Sea-Level Rise and Human Activity on a Tropical Continental Shelf, RN State, NE Brazil

    Science.gov (United States)

    Vital, H.; Barros Pereira, T. R.; Lira, H. F.; Tabosa, W. F.; Eichler, P.; Stattegger, K.; Sen Gupta, B. K.; Gomes, M. P.; Nogueira, M. L. D. S.; Pierri, G. C. S.

    2014-12-01

    The northeastern Brazilian, tropical coast-shelf system along the Atlantic Ocean is a sediment-starved zone, because of low relief, small drainage basins, and a semiarid climate. This work presents the major results of a study of environmental changes, particularly those related to Holocene sea-level rise, affecting the coast and shallow waters of Rio Grande do Norte (RN) State, NE Brazil. The methods included bottom-sediment characterization, bioindicator tracking, and integrated shallow-water geophysical investigation. This coastline is marked by active sea cliffs carved into tablelands alternating with reef- or dune-barrier sections, beach rocks and lagoons, whereas the shelf is a narrow, very shallow, and highly energetic system. Overall, the area is under the natural influence of tides (with a semidiurnal mesotidal regime) and the anthropogenic influence of salt exploration, oil industry, shrimp farms, tourism, and wind-farms. Sedimentation during the Holocene has been controlled mainly by sea-level variation, longshore currents, and the advance and westward propagation of active dunes along the coast. As in other areas around the world, growing numbers of permanent and seasonal residents choose to live at or near the ocean. Coastal erosion is a cause for concern along many Brazilian beaches, and several erosion hot spots are already recognized in RN State. Curves of Holocene relative sea-level variation were established for RN State, but the absence of long-term oceanographic observations in the last centuries or that of detailed altimetry maps hinders the evaluation of different risk scenarios at the local level. Nevertheless, impacts of the current sea-level rise and human activity can be observed along the RN coastal-shelf system. Particular aspects of the study, such as oil-spill monitoring, coastal-water sewage contamination, and coastal erosion, will be highlighted.

  7. Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years

    International Nuclear Information System (INIS)

    Miettinen, A.; Eronen, M.; Hyvaerinen, H.

    1999-09-01

    Southeastern Finland belongs to the area covered by the Weichselian ice sheet, where the release of the ice load caused a rapid isostatic rebound during the postglacial time. While the mean overall apparent uplift is of the order of 2 mm/yr today, in the early Holocene time it was several times higher. A marked decrease in the rebound rate occurred around 8500 BP, however, since then the uplift rate has remained high until today, with a slightly decreasing trend towards the present time. According to current understanding there have neither been temporary increases nor decreases in the rate of uplift during the postglacial time. Even so, it is not known for sure whether there are regional irregularities on the rebound in Finland. Concurrently with land uplift, relative sea-level changes in the Baltic basin were also strongly affected by the global eustatic rise of sea-level. During the early Litorina Sea stage on the southern coast of Finland around 7000 BP, the rise in sea-level exceeded the rate of land uplift, and resulted in a short-lived transgression. The most accurate information on relative sea-level changes in an uplifting area may be obtained from radiocarbon dated events of isolation in small lake basins, as they were cut off from larger bodies of water. The isolations of such basins from the sea may be reliably determined by the recorded changes in the diatom flora in the sediment sequences, at horizons which may be radiometrically dated. In the present study, the isolation-horizons of 13 basins were dated by 26 conventional and 2 AMS radiocarbon dates. According to the available sets of dates, the time span of emergence extends from 8300 BP to the past few hundred years, for lakes from c. 30 m to 1.1 m above the present sea-level. Due to the global rise in sea-level, during the period of 7500-6500 BP, the sea-level rise clearly exceeded the rate of uplift, and resulted in the Litorina transgression, which had an amplitude of around one metre. The

  8. Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, A.; Eronen, M.; Hyvaerinen, H. [Helsinki Univ. (Finland). Dept. of Geology

    1999-09-01

    Southeastern Finland belongs to the area covered by the Weichselian ice sheet, where the release of the ice load caused a rapid isostatic rebound during the postglacial time. While the mean overall apparent uplift is of the order of 2 mm/yr today, in the early Holocene time it was several times higher. A marked decrease in the rebound rate occurred around 8500 BP, however, since then the uplift rate has remained high until today, with a slightly decreasing trend towards the present time. According to current understanding there have neither been temporary increases nor decreases in the rate of uplift during the postglacial time. Even so, it is not known for sure whether there are regional irregularities on the rebound in Finland. Concurrently with land uplift, relative sea-level changes in the Baltic basin were also strongly affected by the global eustatic rise of sea-level. During the early Litorina Sea stage on the southern coast of Finland around 7000 BP, the rise in sea-level exceeded the rate of land uplift, and resulted in a short-lived transgression. The most accurate information on relative sea-level changes in an uplifting area may be obtained from radiocarbon dated events of isolation in small lake basins, as they were cut off from larger bodies of water. The isolations of such basins from the sea may be reliably determined by the recorded changes in the diatom flora in the sediment sequences, at horizons which may be radiometrically dated. In the present study, the isolation-horizons of 13 basins were dated by 26 conventional and 2 AMS radiocarbon dates. According to the available sets of dates, the time span of emergence extends from 8300 BP to the past few hundred years, for lakes from c. 30 m to 1.1 m above the present sea-level. Due to the global rise in sea-level, during the period of 7500-6500 BP, the sea-level rise clearly exceeded the rate of uplift, and resulted in the Litorina transgression, which had an amplitude of around one metre. The

  9. Holocene Evolution of Qing'ao Embayment, Southern China

    Science.gov (United States)

    Switzer, A. D.; Yu, F.; Chen, B.; Zheng, Z.; Wang, D.

    2012-12-01

    The Holocene evolution of the Qing'ao embayment, Nan'ao Island, southern China, is primarily the result of the interaction of tectonic activity, climate variation and changes in relative sea level. Characterizing the evolutionary history of the relatively small Qing'ao embayment during the Holocene will help improve our understanding of the driving mechanisms of coastal evolution in the area. To reconstruct the Holocene evolution history we analyzed the grain size, loss on ignition (LOI) and carbonate content of modern and core samples. Modern environmental analogs were examined in surface samples ranging from the coastal sand dunes through to offshore. The results of these modern samples suggest that dune sand (mean size of ~2.33Phi) are slightly finer than beach sand (mean size of 2.13Phi), and nearshore sediment is much coarser than offshore sediment (mean size of 5.90Phi). This modern analogs were then applied to 8 percussion cores from the Qing'ao embayment. A chronological framework obtained from 11 radiocarbon samples suggests that the embayment started to accept deposition since early Holocene, ~8500 cal. yr. BP. Three main phases of Holocene evolution were identified. A basin wide shell-rich sand sheet forms the basal Holocene facies and overlies clay rich presumably Pleistocene sediments or bedrock. This facies records an initial sedimentation phase associated with the early Holocene transgression into the embayment (~8500-6000 cal. yr. BP). The basal facies grades upward to a mixed sandy-mud facies which includes lagoonal clayey-silts, flood tide delta sands and records an estuarine phase lasting from ~6000-1000 cal. yr. BP that appears coincident with falling regional sea levels. Coincident with the estuarine phase is a period of coastal dune building recorded as yet undated massive sands that are found in the upper fill. Toward the end of the estuarine phase it is apparent that dune migration has restricted the lagoon entrance and that this was

  10. Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa

    Science.gov (United States)

    Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.

    2011-12-01

    The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The

  11. Reconstruction of Redox Conditions and Productivity in Coastal Waters of the Bothnian Sea during the Holocene

    Science.gov (United States)

    Dijkstra, N.; Quintana Krupinski, N. B.; Slomp, C. P.

    2014-12-01

    Hypoxia is a growing problem in coastal waters worldwide, and is a well-known cause of benthic mortality. The semi-enclosed Baltic Sea is currently the world's largest human-induced dead zone. During the early Holocene, it experienced several periods of natural hypoxia following the intrusion of seawater into the previous freshwater lake. Recent studies suggest that at that time, the hypoxia expanded north to include the deep basin of the Bothnian Sea. In this study, we assess whether the coastal zone of the Bothnian Sea was also hypoxic during the early Holocene. We analysed a unique sediment record (0 - 30 mbsf) from the Ångermanälven estuary, which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Using geochemical proxies and foraminifera abundances, we reconstruct the changes in redox conditions, salinity and productivity in the estuary. Our preliminary results suggest that bottom waters in this coastal basin became anoxic upon the intrusion of brackish seawater in the early Holocene and that the productivity was elevated. The presence of benthic foraminifera in this estuary during the mid-Holocene suggests more saline conditions in the Bothnian Sea than today. Due to isostatic uplift, the estuary likely gradually became more isolated from the Bothnian Sea, which itself became more isolated from the Baltic Sea. Both factors likely explain the subsequent re-oxygenation of bottom waters and gradual refreshening of the estuary as recorded in the sediments. Interestingly, the upper meters of sediment are enriched in minerals that contain iron, phosphorus and manganese. We postulate that the refreshening of the estuary triggered the formation of these minerals, thereby increasing the phosphorus retention in these sediments and further reducing primary productivity. This enhanced retention linked to refreshening may contribute to the current oligotrophic conditions in the Bothnian Sea.

  12. Hydrologic Control on Bacterial Nitrogen Fixation in the Holocene Black Sea

    Science.gov (United States)

    Fulton, J. M.; Arthur, M. A.; Freeman, K. H.

    2008-12-01

    Stratified oceans of the Phanerozoic Oceanic Anoxic Events apparently were dominated by bacterial nitrogen fixation. Decreased marine N:P nutrient ratios resulting from increased denitrification and decreased phosphate burial efficiency under anoxic waters drove this nutrient regime. This model is upheld by the presence of cyanobacterial hopanoid biomarkers in sedimentary records and δ15N values indicative of nitrogen fixation. However, in the largest modern redox-stratified marine basin, the Black Sea, bacterial nitrogen fixation seems to be only a minor contributor to the nitrogen cycle. In this study, we use geochemical proxies to evaluate the role of bacterial nitrogen fixation during the deposition of the Holocene Black Sea sapropel, starting 7.8 ka. We report compound-specific nitrogen and carbon stable isotope values of pyropheophytin a, a chlorophyll degradation product, and bacteriochlorophyll e produced by green sulfur bacteria. We also present the surprising finding of scytonemin, a pigment produced only by filamentous cyanobacteria exposed to ultraviolet radiation, in certain intervals in these sediments. In the Holocene, nitrogen fixation in the Black Sea is most prominent during times of reduced river water influx. This directly decreases the external flux of nitrate into the surface waters. Reduced freshwater influx also decreases the volume of low salinity water dispersed around the sea by the Rim Current, allowing the chemocline to shoal along the margins. Previous geochemical studies have described this changing chemocline geometry. The exposure of shallow water sediments to anoxic waters further stimulates nitrogen fixation by releasing more phosphorus to the system. Nitrogen fixation is recorded in the sediments as bulk and compound-specific pyropheophytin a δ15N values near 0 ‰ and -5 ‰, respectively. We have also detected scytonemin in two intervals characterized by especially low δ15N values. This compound suggests abundant filamentous

  13. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor; Jakobsson, Martin

    2017-09-01

    Deglacial (12.8-10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM; ˜ 24 kiloannum or ka) minimum sea level of ˜ 125-130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ˜ 400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42-47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  14. Stratigraphic response of salt marshes to slow rates of sea-level change

    Science.gov (United States)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  15. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply ...

  16. Ice volume and climate changes from a 6000 year sea-level record in French Polynesia.

    Science.gov (United States)

    Hallmann, N; Camoin, G; Eisenhauer, A; Botella, A; Milne, G A; Vella, C; Samankassou, E; Pothin, V; Dussouillez, P; Fleury, J; Fietzke, J

    2018-01-18

    Mid- to late-Holocene sea-level records from low-latitude regions serve as an important baseline of natural variability in sea level and global ice volume prior to the Anthropocene. Here, we reconstruct a high-resolution sea-level curve encompassing the last 6000 years based on a comprehensive study of coral microatolls, which are sensitive low-tide recorders. Our curve is based on microatolls from several islands in a single region and comprises a total of 82 sea-level index points. Assuming thermosteric contributions are negligible on millennial time scales, our results constrain global ice melting to be 1.5-2.5 m (sea-level equivalent) since ~5500 years before present. The reconstructed curve includes isolated rapid events of several decimetres within a few centuries, one of which is most likely related to loss from the Antarctic ice sheet mass around 5000 years before present. In contrast, the occurrence of large and flat microatolls indicates periods of significant sea-level stability lasting up to ~300 years.

  17. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    International Nuclear Information System (INIS)

    Nakata, Takashi; Omoto, Kunio; Koba, Motoharu

    1978-01-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes. (Mori, K.)

  18. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T; Omoto, K; Koba, M [Tohoku Univ., Sendai (Japan). Faculty of Science

    1978-06-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes.

  19. Holocene coastal dune development and environmental changes in Helis area (NW Peloponnese, Greece

    Directory of Open Access Journals (Sweden)

    L. STAMATOPOULOS

    2017-12-01

    Full Text Available The coastal area of western Peloponnese is characterized by Pleistocene and Holocene marine deposits. The study area shows the effects of different phases of coastal morphology evolution and is located along a wave-dominated and microtidal coast in the northwestern Peloponnese, 40 km southwest of Patras city. Three significant morphogenetic phases occurred during the Holocene. The first was radiometrically aged from 7000 to 3810 years BP, marking the end of the rapid postglacial transgression. The second, between 3810 and 1400 years BP, was characterized by high rates of sedimentation, possibly because of the proximity of the mouth of the Peneus River, and resulted in the accumulation of predominantly fluvial sediments. During the third and younger phase, from 1400 years BP to the present, landward migration of the coast and deposition of aeolian sands occurred. Archaeological and morphological evidences suggest that this last phase should be related to a low sea-level stand followed by a slow sea-level rise, up to the present-day position and by humid-temperate climate. The collected data concerning the Holocene coastal dune belts, suggest that main phases of dune development could be related to the effects of sea-level changes, climatic conditions, and in a subordinate way, to human activity.

  20. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    NARCIS (Netherlands)

    Jung, S.J.A.; Ganssen, G.M.; Davies, G.R.

    2001-01-01

    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ~6.5 kyr B.P. superimposed upon short-term δ18O variations

  1. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    Science.gov (United States)

    Morrissey, Sheila K.; Clark, Jordan F.; Bennett, Michael; Richardson, Emily; Stute, Martin

    2010-10-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida is best explained by a reorganization of groundwater flow following the sea-level rise at the end of the Last Glacial Maximum approximately 18,000 years ago. We find that the geochemistry of the fresh water found in the upper aquifers at present is consistent with recharge from meteoric water during the last glacial period. The lower aquifer, however, consists of post-sea-level-rise salt water that is most similar to that of the Straits of Florida, though with some dilution from the residual fresh water from the last glacial period circulation. We therefore suggest that during the last glacial period, the entire Floridan Aquifer System was recharged with meteoric waters. After sea level rose, the increased hydraulic head reduced the velocity of the groundwater flow. This velocity reduction trapped the fresh water in the upper aquifers and initiated saltwater circulation in the lower aquifer.

  2. On the evolution of a holocene barrier coast

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel

    in a distinct stratal stacking pattern of each of the investigated coastal barrier systems. We conclude that the overall infilling of the barrier systems over the Holocene was mainly controlled by sea-level rise and sediment supply. However, major storms and tidal channel migration have greatly affected......This thesis investigates the sedimentary evolution of a Holocene barrier coast with special focus on how barrier system stratigraphy is affected by changes in sea-level and sediment supply. Coastal barrier systems comprise about 13% of the world’s coastlines and they are mportant components...... of the stratigraphic record of the Earth. Sea-level rise and sediment supply are the two most important factors controlling barrier system evolution. Detailed depositional reconstructions of a number of barrier systems from the Danish Wadden Sea area have been carried out in order to evaluate the sedimentary effects...

  3. The impact of early Holocene Arctic Shelf flooding on climate in an atmosphere–ocean–sea–ice model

    NARCIS (Netherlands)

    Blaschek, M.; Renssen, H.

    2013-01-01

    Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. During the early Holocene the Siberian

  4. Contributions of a Strengthened Early Holocene Monsoon and Sediment Loading to Present-Day Subsidence of the Ganges-Brahmaputra Delta

    Science.gov (United States)

    Karpytchev, M.; Ballu, V.; Krien, Y.; Becker, M.; Goodbred, S.; Spada, G.; Calmant, S.; Shum, C. K.; Khan, Z.

    2018-02-01

    The contribution of subsidence to relative sea level rise in the Ganges-Brahmaputra delta (GBD) is largely unknown and may considerably enhance exposure of the Bengal Basin populations to sea level rise and storm surges. This paper focuses on estimating the present-day subsidence induced by Holocene sediment in the Bengal Basin and by oceanic loading due to eustatic sea level rise over the past 18 kyr. Using a viscoelastic Earth model and sediment deposition history based on in situ measurements, results suggest that massive sediment influx initiated in the early Holocene under a strengthened South Asian monsoon may have contributed significantly to the present-day subsidence of the GBD. We estimate that the Holocene loading generates up to 1.6 mm/yr of the present-day subsidence along the GBD coast, depending on the rheological model of the Earth. This rate is close to the twentieth century global mean sea level rise (1.1-1.7 mm/yr). Thus, past climate change, by way of enhanced sedimentation, is impacting vulnerability of the GBD populations.

  5. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor

    2017-01-01

    Deglacial (12.8–10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka) minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  6. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Directory of Open Access Journals (Sweden)

    T. M. Cronin

    2017-09-01

    Full Text Available Deglacial (12.8–10.7 ka sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1 and multicore SWERUS-L2-4-MC1 (4-MC1, and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1. Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.. Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1 followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  7. Eustatic and Relative Sea Level Changes

    NARCIS (Netherlands)

    Rovere, A.; Stocchi, P.; Vacchi, M.

    2016-01-01

    Sea level changes can be driven by either variationsin the masses or volume of the oceans, or bychanges of the land with respect to the sea surface. Inthe first case, a sea level change is defined ‘eustatic’;otherwise, it is defined ‘relative’. Several techniques canbe used to observe changes in sea

  8. Acropora palmata reef framework: A reliable indicator of sea level in the western atlantic for the past 10,000 years

    Science.gov (United States)

    Lighty, R. G.; MacIntyre, I. G.; Stuckenrath, R.

    1982-10-01

    A minimum sea-level curve for the past 10,000 years has been constructed on the basis of radiocarbon dates of Acropora palmata (Lamarck) samples from the shallow-water framework of both relict and modern reefs of the tropical western Atlantic. A. palmata framework is a reliable reference for reconstructing the history of late Quaternary sea levels owing to its restricted depth range (palmata framework, the ease of obtaining uncontaminated samples, and the minimal compaction of A. palmata reef facies. The minimum sea-level curve constructed in this study is useful not only in evaluating the reliability of present and future Holocene sea-level curves for the western Atlantic, but also in estimating paleo-water depths in the study of Holocene reef history of this area.

  9. People, lakes and seashores: Studies from the Baltic Sea basin and adjacent areas in the early and Mid-Holocene

    Science.gov (United States)

    Groß, Daniel; Zander, Annabell; Boethius, Adam; Dreibrodt, Stefan; Grøn, Ole; Hansson, Anton; Jessen, Catherine; Koivisto, Satu; Larsson, Lars; Lübke, Harald; Nilsson, Björn

    2018-04-01

    During the Early and Mid-Holocene significant changes in the ecology and socio-cultural spheres occurred around the Baltic Sea. Because of the underlying climatic changes and thus environmental alterations, the area was the scene for various cultural developments during the period under investigation. In the course of the melting of the glaciers at the end of the last Ice Age, isostatic and eustatic movements caused continual changes to the Baltic Sea basin. Changes in water level, however, affected not only the Early and Mid-Holocene coastlines, but also the whole Baltic Sea drainage system, including large lakes, rivers and watersheds in the hinterland were also dramatically impacted by these ecological changes. Prehistoric people were thus affected by changes in resource availability and reduction or enlargement of their territories, respectively. In order to evaluate the impact of changes in the water and land networks on the environment, resource availability, and human behaviour, and to reconstruct human responses to these changes, we pursue an interdisciplinary approach connecting environmental and archaeological research highlighted through different case studies.

  10. Late holocene primary productivity and sea surface temperature variations in the northeastern Arabian Sea: Implications for winter monsoon variability.

    Digital Repository Service at National Institute of Oceanography (India)

    Boll, A.; Luckge, A.; Munz, P.; Forke, S.; Schulz, H.; Ramaswamy, V.; Rixen, T.; Gaye, B.; Emeis, K.-C.

    changes in winter monsoon strength with winds from the northeast that drive convective mixing and high surface ocean productivity in the northeastern Arabian Sea. To establish a high-resolution record of winter monsoon variability for the late Holocene, we...

  11. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  12. Development of small carbonate banks on the south Florida platform margin: Response to sea level and climate change

    Science.gov (United States)

    Mallinson, David J.; Hine, Albert C.; Hallock, Pamela; Locker, Stanley D.; Shinn, Eugene; Naar, David; Donahue, Brian; Weaver, Douglas C.

    2003-01-01

    Geophysical and coring data from the Dry Tortugas, Tortugas Bank, and Riley’s Hump on the southwest Florida margin reveal the stratigraphic framework and growth history of these carbonate banks. The Holocene reefs of the Dry Tortugas and Tortugas Bank are approximately 14 and 10 m thick, respectively, and are situated upon Pleistocene reefal edifices. Tortugas Bank consists of the oldest Holocene corals in the Florida Keys with earliest coral recruitment occurring at ∼9.6 cal ka. Growth curves for the Tortugas Bank reveal slow growth (demise at ∼4.2 cal ka. Coral reef development at the Dry Tortugas began at ∼6.4 cal ka. Aggradation at the Dry Tortugas was linear, and rapid (∼3.7 mm/yr) and kept pace with sea-level change. The increase in aggradation rate of Tortugas Bank at 6.2 cal ka is attributed to the growth of the Dry Tortugas reefs, which formed a barrier to inimical shelf water. Termination of shallow (<15 m below sea level) reef growth at Tortugas Bank at ∼4.2 cal ka is attributed to paleoclimate change in the North American interior that increased precipitation and fluvial discharge. Reef growth rates and characteristics are related to the rate of sea-level rise relative to the position of the reef on the shelf margin, and are additionally modified by hydrographic conditions related to climate change.

  13. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: Evidence from groundwater isotopes, and environmental significance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Stephen [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Currell, Matthew, E-mail: Matthew.currell@rmit.edu.au [School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne (Australia); Cendón, Dioni I. [Australian Nuclear Science and Technology Organisation, Kirrawee (Australia); Connected Water Initiative, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney (Australia)

    2016-02-15

    A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC > 15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC = 45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ{sup 18}O = − 2.4 to − 1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4 pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ{sup 18}O = − 5.5 to − 4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2–8 kyr BP), when sea level was 1–2 m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ{sup 13}C ratios in saline water (− 17.6 to − 18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low

  14. Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise

    OpenAIRE

    Morrissey, SK; Clark, JF; Bennett, M; Richardson, E; Stute, M

    2010-01-01

    Sea-level fluctuations, particularly those associated with glacial-interglacial cycles, can have profound impacts on the flow and circulation of coastal groundwater: the water found at present in many coastal aquifers may have been recharged during the last glacial period, when sea level was over 100 m lower than present, and thus is not in equilibrium with present recharge conditions. Here we show that the geochemistry of the groundwater found in the Floridan Aquifer System in south Florida ...

  15. Middle Holocene Organic Carbon and Biomarker Records from the South Yellow Sea: Relationship to the East Asian Monsoon

    Science.gov (United States)

    Zou, Liang; Hu, Bangqi; Li, Jun; Dou, Yanguang; Xie, Luhua; Dong, Liang

    2018-03-01

    The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon (OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen (TN) in core YSC-1 from the central South Yellow Sea (SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration (OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration (OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon (EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.

  16. Climate Sensitivity, Sea Level, and Atmospheric Carbon Dioxide

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Russell, Gary; Kharecha, Pushker

    2013-01-01

    Cenozoic temperature, sea level and CO2 covariations provide insights into climate sensitivity to external forcings and sea-level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurately inferred from precise palaeoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity of 3+/-1deg C for a 4 W/sq m CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e. 3-4deg C for a 4 W/sq m CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify the total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapour elevates the tropopause. Burning all fossil fuels, we conclude, would make most of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.

  17. The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations

    Directory of Open Access Journals (Sweden)

    M. Berger

    2013-04-01

    Full Text Available In the present work the Arctic sea ice in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2 and phase 3 (PMIP3. The PMIP3 models generally simulate smaller and thinner sea-ice extents than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-ice cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea ice than the PMIP2 models. The winter sea-ice extent response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a decrease in winter sea-ice extent and one half simulates an increase. The model-mean summer sea-ice extent is 11 % (21 % smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3. In accordance with the simple model of Thorndike (1992, the sea-ice thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker ice in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-ice responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-ice responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch

  18. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea

    NARCIS (Netherlands)

    Coolen, M.J.L.; Boere, A.; Abbas, M.; Wakeham, S.G.; Sinninghe Damsté, J.S.

    2006-01-01

    Holocene sea surface temperatures (SST) of the Black Sea have been reconstructed using sedimentary C37 unsaturated alkenones assumed to be derived from the coccolithophorid haptophyte Emiliania huxleyi, whose fossil coccoliths are an important constituent of the unit I sediments. However,

  19. Sea-level standstill and dominant hermatypic coral from the holocene raised reef terraces at the Kikai Island, Ryukyu Islands

    International Nuclear Information System (INIS)

    Hongo, Chuki

    2010-01-01

    Coral reef terraces are one of the best recorders of biological response to environmental change events (e.g., sea-level changes). Kikai Island provides a rare opportunity to show biological and ecological frameworks (e.g., competition, coexistence, and succession) during a recent geological period. The island is fringed by raised Holocene raised reef terraces, which formed as a result of periodic tectonic uplifts. This study aims to characterize the spatial and temporal changes of corals at this island during the Holocene. The analysis is based on topographical and biological data obtained for the three sites (Shidooke, Kadon, and Nakugama reefs). Three raised reef terraces (Terrace II, III, and IV) grew from 7300 to 4500 years ago (during 2800 years), from 4500 to 2900 years ago (during 1600 years), and from 2900 to 1800 years ago (during 1100 years), respectively. Terrace II and III were uplifted 1-2 m around 4500 years ago and around 2900 years ago. Terrace IV was uplifted 1-2 m around 1800 years ago. The modern reef has been composed of corals for 1800 years. Sixteen coral genera and 53 species were recorded from the reef terraces. Terrace III and IV were dominated by four coral species (A. digitifera, A. robusta, G. retiformis, and F. stelligera), but Terrace II was predominantly composed of A. digitifera and A. robusta. These biological and ecological variations between the terraces represent a growth strategy responding to differences of reef growth time and/or insolation. (author)

  20. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  1. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  2. Mangrove sedimentation and response to relative sea-level rise

    Science.gov (United States)

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  3. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    Science.gov (United States)

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  4. Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited

    Science.gov (United States)

    Toscano, Marguerite A.

    2016-06-01

    Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.

  5. Modelling and simulation of Holocene marine terrace development in Boso Peninsula, central Japan

    Science.gov (United States)

    Noda, Akemi; Miyauchi, Takahiro; Sato, Toshinori; Matsu'ura, Mitsuhiro

    2018-04-01

    In the southern part of Boso Peninsula, central Japan, we can observe a series of well-developed Holocene marine terraces. We modeled the development of these marine terraces by considering sea-level fluctuation and steady land uplift. The evolution of coastal landform is generally described as follows: altitude change = - erosion + deposition - sea-level rise + land uplift. In this study, the erosion rate is supposed to be proportional to the dissipation rate of wave energy, and the deposition rate of eroded materials to decay exponentially as they are transported seaward. The rate of sea-level rise is given by the time derivative of a sea-level curve obtained from the sediment core records of oxygen isotope ratios. Steady plate subduction generally brings about steady crustal uplift/subsidence independently of earthquake occurrence, and so the land-uplift rate is regarded as time independent on a long-term average. Our simulation results show that a pair of sea cliff and abrasion platform is efficiently formed about a stationary point of the sea-level curve. The Holocene sea-level curve has four peaks and three troughs, and so basically seven terraces are formed one by one during the past 10,000 yr. However, when the land-uplift rate is low, most of the terraces formed at older times sink in the sea. When the land-uplift rate is high, the overlap and/or reverse of older and younger terraces occur frequently, and so the correspondence between the age and present altitude of terraces is not necessarily one-to-one. Taking the land-uplift rate to be 3-4 mm/yr, we can reproduce a series of well-developed Holocene marine terraces in Boso Peninsula independently of coseismic uplifts. From these simulation results, we may conclude that the Holocene marine terraces in Boso Peninsula were developed as a result of the composite process of sea-level fluctuation and steady coastal uplift.

  6. Holocene sea level fluctuations on western Indian continental margin: An update

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nigam, R.; Nair, R.R.; Rajagopalan, G.

    A new Holocene curve is generated for the western Indian continental margin. While constructing this curve careful selection of the dates were made by giving due considerations to the genetic characteristics of the dated material. This new curve...

  7. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    Science.gov (United States)

    Jung, S. J. A.; Ganssen, G. M.; Davies, G. R.

    2001-12-01

    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ˜6.5 kyr B.P. superimposed upon short-term δ18O variations at a decadal-centennial timescale. The amplitude of the decadal variations is 0.3‰ prior, and up to 0.6‰ subsequent, to ˜8.1 kyr B.P. We conclude from modeling experiments that the short-term δ18O variations between 10 and ˜6.5 kyr B.P. most likely document changes in the evaporation-precipitation balance in the central Red Sea. Changes in water temperature and salinity cause the outflowing Red Sea Water to settle roughly 800 m deeper than today.

  8. Mediterranean moisture source for an Early-Holocene humid period in the Northern Red Sea

    NARCIS (Netherlands)

    Arz, H.W.; Lamy, F.; Paetzold, J.; Mueller, P.J.; Prins, M.A.

    2003-01-01

    Paleosalinity and terrigenous sediment input changes reconstructed on two sediment cores from the northernmost Red Sea were used to infer hydrological changes at the southern margin of the Mediterranean climate zone during the Holocene. Between approximately 9.25 and 7.25 thousand years ago, about

  9. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  10. Relative Sea-Level Stability in Natuna Island, Indonesia, since 6400 yr BP

    Science.gov (United States)

    Wan, J. X. W.; Meltzner, A. J.; Switzer, A.; Horton, B.; Ke, L.; Wang, X.; Bradley, S.; Natawidjaja, D.; Suwargadi, B. W.

    2017-12-01

    In order to understand the regional variability of relative sea level (RSL) due to glacio-isostatic adjustment (GIA) and other natural influences, high-precision records of Holocene RSL on the Sunda Shelf are required. Accurate estimates of past RSL at a variety of locations allow us to validate geophysical and climate models, and provide context for understanding modern RSL change in the face of global climate change. For the aforementioned purposes, we surveyed and dated coral microatoll colonies, which are precise RSL proxy archives, from Natuna Island in Indonesia. Our analysis of 11 coral microatoll elevations from a total of four sites on Natuna Island is constrained in time by a minimum of one radiocarbon date and one U-Th age on each microatoll. The distribution of ages and elevations indicates that RSL was relatively stable from 6400 to 1400 yr BP at 0.3-0.6 m higher than present, before a more recent fall to current levels. The radiocarbon and U-Th ages are consistent with one another, with preliminary estimates of ΔR ≈ 0 for our entire data set. Our data are roughly compatible with predictions of a recently developed GIA model for the Southeast Asia region (Bradley et al., 2016, Quat. Sci. Rev.). This new dataset is part of larger project with more than 25 sites in Malaysia and Indonesia. Our new constraints on past RSL on the Sunda Shelf will allow for validation and calibration of GIA models in the tropics, where RSL data are presently insufficient.

  11. Last glacial-Holocene temperatures and hydrology of the Sea of Galilee and Hula Valley from clumped isotopes in Melanopsis shells

    Science.gov (United States)

    Zaarur, Shikma; Affek, Hagit P.; Stein, Mordechai

    2016-04-01

    The carbonate clumped isotope (Δ47) thermometer was applied to fresh water snails (Melanopsis spp.) grown in the waters of the Sea of Galilee and Hula Valley, in the north of Israel. Modern shells, grown at known temperatures agree with the Δ47-T calibration of Zaarur et al. (2013). Fossil Melanopsis shells from 2 locations, Gesher Bnot Ya'aqov (at the southern tip of the Hula Valley) and the Sea of Galilee provide a temperature record for the region during the time interval of the past 20 kyrs. Glacial temperatures are ∼5 °C cooler than mid-Holocene and ∼3 °C cooler than modern, similar to other records in the region. These Δ47-derived temperatures are combined with δ18O of the shell carbonate to calculate the oxygen isotopic composition of the habitat waters. Contrary to global trends and other regional records, reconstructed δ18Owater values increase from the late glacial through the Holocene. This reversed signal reflects a decrease in the relative contribution of snowmelt to the watershed post-LGM and a transition to a more rain dominated inflow. A fairly constant difference in δ18Owater values between the Hula Valley and Sea of Galilee waters, suggests that the hydrological relationship of the two water bodies had remained constant, with the temperature changes playing only a minor role in the extent of evaporation of the Sea of Galilee relative to the Hula.

  12. Holocene and latest Pleistocene climate and glacier fluctuations in Iceland

    Science.gov (United States)

    Geirsdóttir, Áslaug; Miller, Gifford H.; Axford, Yarrow; Ólafsdóttir, Sædís

    2009-10-01

    Multiproxy climate records from Iceland document complex changes in terrestrial climate and glacier fluctuations through the Holocene, revealing some coherent patterns of change as well as significant spatial variability. Most studies on the Last Glacial Maximum and subsequent deglaciation reveal a dynamic Iceland Ice Sheet (IIS) that responded abruptly to changes in ocean currents and sea level. The IIS broke up catastrophically around 15 ka as the Polar Front migrated northward and sea level rose. Indications of regional advance or halt of the glaciers are seen in late Alleröd/early Younger Dryas time and again in PreBoreal time. Due to the apparent rise of relative sea level in Iceland during this time, most sites contain evidence for fluctuating, tidewater glacier termini occupying paleo fjords and bays. The time between the end of the Younger Dryas and the Preboreal was characterized by repeated jökulhlaups that eroded glacial deposits. By 10.3 ka, the main ice sheet was in rapid retreat across the highlands of Iceland. The Holocene thermal maximum (HTM) was reached after 8 ka with land temperatures estimated to be 3 °C higher than the 1961-1990 reference, and net precipitation similar to modern. Such temperatures imply largely ice-free conditions across Iceland in the early to mid-Holocene. Several marine and lacustrine sediment climate proxies record substantial summer temperature depression between 8.5 and 8 ka, but no moraines have been detected from that time. Termination of the HTM and onset of Neoglacial cooling took place sometime after 6 ka with increased glacier activity between 4.5 and 4.0 ka, intensifying between 3.0 and 2.5 ka. Although a distinct warming during the Medieval Warm Period is not dramatically apparent in Icelandic records, the interval from ca AD 0 to 1200 is commonly characterized by relative stability with slow rates of change. The literature most commonly describes Little Ice Age moraines (ca AD 1250-1900) as representing the

  13. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmosphere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    MENGXianwei; LIUYanguang; LlUZhenxia; DUDewen; HUANGQiyu; Y.Saito

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index U37k of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed.Consequently, three cooling events (E1-E3) were identified,each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  14. A review on the Holocene evolution of an inner-shelf mud deposit in the southeastern Yellow Sea: the Huksan Mud Belt

    Science.gov (United States)

    Lee, Hee Jun

    2015-12-01

    The Huksan Mud Belt (HMB) has been extensively investigated with respect to its source and evolution since the 1980s. Studies on sediment budget or accumulation rates suggested two different origins, Korean and combined Korean and Chinese. However, neither of the suggested origins appears reliable because they were based on insufficient or inaccurate datasets on the basic sedimentological characteristics of the HMB. Although a major mud transport was inferred to be closely associated with either the Korean Coastal Current or the Yellow Sea Warm Current, their physical characters during the Holocene transgression have been rarely hind-casted thus far. The majority of studies on high-resolution seismic stratigraphy along with core log have suggested that the HMB stratigraphy consists of two units divided by an erosional boundary. The lower unit is further divided into two subunits by a subtle discontinuity that is laterally correlated with the erosional boundary. In line with the stratigraphy, the studies theorized that the erosion of the HMB had produced a re-deposited distal lobe, the younger lower subunit. In addition, this lobe was inferred to have prograded rapidly during the relatively short period of 6,500-5,500 yr B.P. Although the time interval of the erosion coincides with the decelerating rise in sea level, the hydrodynamic cause and effect of the erosion remain inexplicable. Therefore, the source and evolution of the HMB continue to be controversial, due largely to poor understanding of the paleo-physical oceanography of the Yellow Sea during the Holocene.

  15. Coralgal reef morphology records punctuated sea-level rise during the last deglaciation.

    Science.gov (United States)

    Khanna, Pankaj; Droxler, André W; Nittrouer, Jeffrey A; Tunnell, John W; Shirley, Thomas C

    2017-10-19

    Coralgal reefs preserve the signatures of sea-level fluctuations over Earth's history, in particular since the Last Glacial Maximum 20,000 years ago, and are used in this study to indicate that punctuated sea-level rise events are more common than previously observed during the last deglaciation. Recognizing the nature of past sea-level rises (i.e., gradual or stepwise) during deglaciation is critical for informing models that predict future vertical behavior of global oceans. Here we present high-resolution bathymetric and seismic sonar data sets of 10 morphologically similar drowned reefs that grew during the last deglaciation and spread 120 km apart along the south Texas shelf edge. Herein, six commonly observed terrace levels are interpreted to be generated by several punctuated sea-level rise events forcing the reefs to shrink and backstep through time. These systematic and common terraces are interpreted to record punctuated sea-level rise events over timescales of decades to centuries during the last deglaciation, previously recognized only during the late Holocene.

  16. Holocene vegetational and coastal environmental changes from the Lago Crispim record in northeastern Pará State, eastern Amazonia.

    Science.gov (United States)

    Behling, H; Lima da Costa, M

    2001-04-01

    Vegetational and coastal environmental changes have been interpreted from a 600cm long and 764014C yr B.P. old sediment core from Lago Crispim located in the northeastern Pará State in northern Brazil. The radiocarbon dated sediment core was studied by multi-element geochemistry, pollen and charcoal analysis.Holocene Atlantic sea-level rise caused an elevation of local water table, which allowed the formation of organic deposits in a probably former inter-dune valley. Dense, diverse and tall Amazon rain forest, and some restinga (coastal vegetation) covered the study area at the beginning of the record at 764014C yr B.P. Mangrove vegetation developed along rivers close to the core site at that time. Subsequent decrease in less mangrove vegetation near the study site indicates a sea-level regression, beginning since around 700014C yr B.P. Lower sea-levels probably favoured the formation of a local Mauritia/Mauritiella palm swamp at 662014C yr B.P. Oscillations of higher and lower sea-level stands probably changed the size of the local palm swamp area several times between 6620 and 363014C yr B.P. Sea-level transgression at around 363014C yr B.P., caused marked coastal environmental changes: the development of mangroves near the site, the replacement of the local palm swamp by a Cyperaceae swamp, the substitution of the surrounding former Amazon rain forest and some restinga vegetation mainly by salt marshes. High amount carbonised particles suggest a strong human impact by burning on the coastal ecosystems during this late Holocene period.Highest concentrations of NaCl and also Ca, Mg and K in the upper sediment core indicate that the Atlantic was close during the late Holocene period. The core site, which is today 500m from the coastline and only 1-2m above modern sea-level, was apparently never reached by marine excursions during the Holocene.Less representation of mangrove since ca. 184014C yr B.P., may be related due to a slightly lower sea-level or to human

  17. Holocene sedimentary processes in the Gemlik Gulf: a transtensional basin on the middle Strand of the North Anatolian Fault, Sea of Marmara

    Science.gov (United States)

    Özmaral, A.; Çagatay, M. N.; Imren, C.; Gasperini, L.; Henry, P.

    2012-04-01

    Gemlik Gulf is an oval-shaped transtensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the eastern part of the Sea of Marmara (SOM). During the last glacial period until the Holocene marine transgression about 12 ka BP, the sea level was below the Çanakkale (Dardanelles) Strait's bedrock sill depth of -85 m, and the Gemlik Basin became a lake isolated lake from the rest of the Sea of Marmara "Lake" and the global ocean. The high resolution seismic profiles and the multi- beam bathymetric map of the basin show that the basin is characterized by NW-SE trending transtensional oblique faults, delta lobes of the Büyükdere (Kocadere) to the east and an erosional surface below an up to 15 m-thick Holocene mud drape. The Holocene mud drape was studied in up to 9.5 m-long gravity-piston and 0.84 m-long sediment/water interface cores located at -105 to -113 m in the basin's depocentre. The Holocene mud consists mainly of plastic gray green marine clayey mud that includes thick-red brown clay layers and a laminated organic-rich, dark olive green sapropel in the lower part, which was previously dated at 11.6-6.4 14Ckyr (uncalib) BP. Multi-proxy analyses of the Holocene mud drape in the sediment cores were carried out using Multisensor Core Logger, XRF Core Scanner equipped with digital X-Ray radiography, and laser particle size analyzer. Seismic-core correlation was made using seismic data of the chirp profiles at the core locations and the synthetic seismograms generated using the MSCL P-wave velocity and gamma density measurements. The long piston-gravity cores include five 20 to 100 mm-thick "red brown mud layers" in the top 2.5 m of the core. These layers have a sharp basal boundary and gradational upper boundary. The red brown layers consist of 55-75% clay-size material with an average grain size of 3-4 µm, and have relatively a high magnetic susceptibility. They are enriched in K, Fe, Ti and Zr that are

  18. Reconstructing sea surface temperature, sea surface salinity and partial pressure of carbon dioxide in atmos- phere in the Okinawa Trough during the Holocene and their paleoclimatic implications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The sediment core DGKS9603 collected from the Okinawa Trough was used as research target. By use of unsaturated index of long-chain alkenone, δ13C of POC and of planktonic foraminifera (G. Sacculifer), the evolutions of sea surface temperature and partial pressure of carbon dioxide in the atmosphere during the Holocene were reconstructed in the Okinawa Trough. And in combination of δ18O of planktonic foraminifera, the relative difference of sea surface salinity during the Holocene was also reconstructed. Consequently, three cooling events (E1-E3) were identified, each of which occurred at 1.7-1.6, 5.1-4.8 and 8.1-7.4 kaBP (cal), respectively. Of the three events, E2 and E3 are globally comparable, their occurrence mechanism would be that the main stream of the Kuroshio Current shifted eastward due to the enhanced circulation of the northeastern Pacific Ocean, which was driven in turn by amplified intensity of sunshine and subsequent enhancement of subtropical high pressure; E1 corresponds to the Small Ice-Age Event occurring between 1550 and 1850AD in China. In the Okinawa Trough, E1 might be also related to the eastward shift of main stream of the Kuroshio current driven by powerful Asia winter monsoon.

  19. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Science.gov (United States)

    Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo

    2018-03-01

    Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the

  20. Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales

    Directory of Open Access Journals (Sweden)

    S. Esselborn

    2018-03-01

    Full Text Available Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year, and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ, the Groupe de Recherche de Géodésie Spatiale (GRGS, and the Goddard Space Flight Center (GSFC. The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr−1 (27 % of the corresponding sea level variability and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr−1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test

  1. Estimation of past sea-level variations based on ground-penetrating radar mapping of beach-ridges - preliminary results from Feddet, Faxe Bay, eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B

    2011-01-01

    Estimates of past sea-level variations based on different methods and techniques have been presented in a range of studies, including interpretation of beach ridge characteristics. In Denmark, Holocene beach ridge plains have been formed during the last c. 7700 years, a period characterised by both...... isostatic uplift and changes in eustatic sea-level, and therefore represent an archive of past relative sea-level variations. Here, we present preliminary results from investigation of beach ridges from Feddet, a small peninsula located in Faxe Bay (Baltic Sea) in the eastern part of Denmark. Feddet has...... been chosen as a key-locality in this project, as it is located relatively close to the current 0-isobase of isostatic rebound. GPR reflection data have been acquired with shielded 250 MHz Sensors & software antennae along a number of profile lines across beach ridge and swale structures of the Feddet...

  2. Multidecadal variations in the early Holocene outflow of Red Sea Water into the Arabian Sea

    OpenAIRE

    Jung, S.J.A.; Ganssen, G.M.; Davies, G.R.

    2001-01-01

    We present Holocene stable oxygen isotope data from the deep Arabian Sea off Somalia at a decadal time resolution as a proxy for the history of intermediate/upper deep water. These data show an overall δ18O reduction by 0.5‰ between 10 and ~6.5 kyr B.P. superimposed upon short-term δ18O variations at a decadal-centennial timescale. The amplitude of the decadal variations is 0.3‰ prior, and up to 0.6‰ subsequent, to ~8.1 kyr B.P. We conclude from modeling experiments that the short-term δ18O v...

  3. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  4. Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

    Science.gov (United States)

    Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig

    2004-01-01

    extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.

  5. Sea level trends in Southeast Asian seas

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2015-05-01

    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.

  6. Diatom-inferred hydrological changes and Holocene geomorphic transitioning of Africa's largest estuarine system, Lake St Lucia

    Science.gov (United States)

    Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.

    2017-06-01

    The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological

  7. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    Science.gov (United States)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  8. Living with sea-level rise and climate change: a case study of the Netherlands

    NARCIS (Netherlands)

    van Koningsveld, M.; Mulder, J.P.M. P.M.; Stive, M.J.F.; van der Valk, L.; van der Weck, A.W.

    2008-01-01

    Based on historical hindsight, this paper shows that sea-level rise has played a fundamental role in the development of the low-lying environment of the Netherlands. It was beneficial in morphological terms during the mid-Holocene, but from Roman times, it has been a threat to the coastal zone

  9. Holocene North Atlantic Overturning in an atmosphere-ocean-sea-ice model compared to proxy-based reconstructions

    NARCIS (Netherlands)

    Blaschek, M.; Renssen, H.; Kissel, C.; Thornalley, D.

    2015-01-01

    Climate and ocean circulation in the North Atlantic region changed over the course of the Holocene, partly because of disintegrating ice sheets and partly because of an orbital-induced insolation trend. In the Nordic Seas, this impact was accompanied by a rather small, but significant, amount of

  10. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals

    Science.gov (United States)

    Liu, Yajing; Liu, W.; Peng, Z.; Xiao, Y.; Wei, G.; Sun, W.; He, J.; Liu, Gaisheng; Chou, C.-L.

    2009-01-01

    We used positive thermal ionization mass spectrometry (PTIMS) to generate high precision ??11B records in Porites corals of the mid-late Holocene from the South China Sea (SCS). The ??11B values of the Holocene corals vary significantly, ranging from 22.2??? to 25.5???. The paleo-pH records of the SCS, reconstructed from the ??11B data, were not stable as previously thought but show a gradual increase from the Holocene thermal optimal and a sharp decrease to modern values. The latter is likely caused by the large amount of anthropogenic CO2 emissions since the Industrial Revolution but variations of atmospheric pCO2 cannot explain the pH change of the SCS before the Industrial Revolution. We suggest that variations of monsoon intensity during the mid-late Holocene may have driven the sea surface pH increase from the mid to late Holocene. Results of this study indicate that the impact of anthropogenic atmospheric CO2 emissions may have reversed the natural pH trend in the SCS since the mid-Holocene. Such ocean pH records in the current interglacial period can help us better understand the physical and biological controls on ocean pH and possibly predict the long-term impact of climate change on future ocean acidification. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Microfaunal analysis of late Quaternary deposits of the northern Bering Sea.

    Science.gov (United States)

    McDougall, K.

    1982-01-01

    Holocene microfaunal associations and distribution patterns define three inner-shelf (1-20m) biofacies in Norton Sound, northern Bering Sea. The Holocene facies relations are the basis for interpreting early Holocene and late Pleistocene environmental conditions in the NE Bering Sea area. Norton Sound cores provide evidence of two marine transgressions and a varying river input.-from Author

  12. Integrated analysis of beach ridge and lagoon systems as indicator of sea-level changes

    Science.gov (United States)

    Sander, Lasse; Hede, Mikkel U.; Fruergaard, Mikkel; Morigi, Caterina; Johannessen, Peter N.; Nielsen, Lars; Clemmensen, Lars B.; Nielsen, Lars H.; Pejrup, Morten

    2015-04-01

    Beach ridges and lagoons are common features of the modern coastal landscape in much of Denmark and represent an important part of the Holocene raised marine deposits. We here present our results from investigations into the possibilities of retrieving continuous relative sea-level (RSL) information from these sedimentary archives, as facilitated by the analysis of surface morphology, coring, subsurface imaging, absolute chronology, and modern analogues. The island of Samsø (55˚51'N, 10˚36'E) was chosen as a case study example. While each of the used archives merely covers a part of the mid to late Holocene developments, their joint analysis allows identifying and separating periods of rapid RSL rise, stability and fall over most of the island's marine stage. We present possible correlations of the data from the lagoons with data from a wide beach-ridge system and suggest causal relations of the RSL reconstruction with the spatial arrangements of marine and glacial landforms on Samsø. The integrated use of a geographical perspective combined with geological precision and methodology has proven to be of great value for understanding temporal, spatial, and process relations in the investigated coastal environment. The study stresses the value of analyzing genetically independent though complementary sedimentary archives to retrieve more complete and potentially more robust results. The presented approach may be useful in microtidal, sediment-surplus environments with a transgressive-regressive Holocene RSL history.

  13. Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea

    Directory of Open Access Journals (Sweden)

    N. Combourieu-Nebout

    2013-09-01

    Full Text Available The high-resolution multiproxy study of the Adriatic marine core MD 90-917 provides new insights to reconstruct vegetation and regional climate changes over the southcentral Mediterranean during the Younger Dryas (YD and Holocene. Pollen records show the rapid forest colonization of the Italian and Balkan borderlands and the gradual installation of the Mediterranean association during the Holocene. Quantitative estimates based on pollen data provide Holocene precipitations and temperatures in the Adriatic Sea using a multi-method approach. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite and eolian (kaolinite contributions to the site, and thus act as an additional proxy with which to evaluate precipitation changes in the Holocene. Vegetation climate reconstructions show the response to the Preboreal oscillation (PBO, most likely driven by changes in temperature and seasonal precipitation, which is linked to increasing river inputs from Adriatic rivers recorded by increase in clay mineral contribution to marine sediments. Pollen-inferred temperature declines during the early–mid Holocene, then increases during the mid–late Holocene, similar to southwestern Mediterranean climatic patterns during the Holocene. Several short vegetation and climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum (170–200 mm between 8000 and 7000 similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 cal yr BP (calendar years before present and between 7500 and 7000 cal yr BP and are correlated with increased river inputs around the Adriatic Basin respectively from the northern (7700 event and from the central Adriatic borderlands (7500–7000 event. During the mid-Holocene, the wet summers lead to permanent moisture all year

  14. Seismic Facies of Pleistocene–Holocene Channel-fill Deposits in Bawean Island and Adjacent Waters, Southeast Java Sea

    Directory of Open Access Journals (Sweden)

    Ali Albab

    2017-08-01

    Full Text Available The late Pleistocene-Holocene stratigraphic architecture of the Bawean Island and surrounding waters, southeast Java Sea has been analyzed by using sparker seismic profiles. Geological interpretation of these seismic profiles revealed the widespread distribution of paleochannels with different shape and size in the present-day Java Sea. Two channel types can be distinguished based on its morphology: U-shaped channels in the western part and V-shaped channels in the eastern part. The stratigraphic successions were grouped into two major seismic units separated by different seismic boundaries. Characters of marine and fluvial deposits were determined based on seismic boundaries and internal reflectors. Three seismic facies can be identified within late Pleistocene – Holocene incised channel fills associated with SB2. The internal structure of incised-channels consist of chaotic reflector at the bottom, covered by parallel–sub parallel and almost reflection-free indicating the homogenous sediment deposited during the succession.

  15. Depositional Architecture of Late Pleistocene-Holocene Coastal Alluvial-fan System in the Coastal Range, Taiwan

    Science.gov (United States)

    Chen, S. T.; Chen, W. S.

    2016-12-01

    Holocene marine deposits rest above the fluvial deposits. The crustal high uplift rates of relative sea-level changes led to form a well-developed multiple Holocene marine terraces.

  16. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene.

    Science.gov (United States)

    Lambeck, Kurt; Rouby, Hélène; Purcell, Anthony; Sun, Yiying; Sambridge, Malcolm

    2014-10-28

    The major cause of sea-level change during ice ages is the exchange of water between ice and ocean and the planet's dynamic response to the changing surface load. Inversion of ∼1,000 observations for the past 35,000 y from localities far from former ice margins has provided new constraints on the fluctuation of ice volume in this interval. Key results are: (i) a rapid final fall in global sea level of ∼40 m in sea level, the main phase of deglaciation occurred from ∼16.5 ka BP to ∼8.2 ka BP at an average rate of rise of 12 m⋅ka(-1) punctuated by periods of greater, particularly at 14.5-14.0 ka BP at ≥40 mm⋅y(-1) (MWP-1A), and lesser, from 12.5 to 11.5 ka BP (Younger Dryas), rates; (iv) no evidence for a global MWP-1B event at ∼11.3 ka BP; and (v) a progressive decrease in the rate of rise from 8.2 ka to ∼2.5 ka BP, after which ocean volumes remained nearly constant until the renewed sea-level rise at 100-150 y ago, with no evidence of oscillations exceeding ∼15-20 cm in time intervals ≥200 y from 6 to 0.15 ka BP.

  17. Holocene coral patch reef ecology and sedimentary architecture, Northern Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.; Bischoff, W.D. (Wichita State Univ., KS (United States))

    1992-12-01

    Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coral zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.

  18. Climate related sea-level variations over the past two millennia.

    Science.gov (United States)

    Kemp, Andrew C; Horton, Benjamin P; Donnelly, Jeffrey P; Mann, Michael E; Vermeer, Martin; Rahmstorf, Stefan

    2011-07-05

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

  19. Remote coral reefs can sustain high growth potential and may match future sea-level trends.

    Science.gov (United States)

    Perry, Chris T; Murphy, Gary N; Graham, Nicholas A J; Wilson, Shaun K; Januchowski-Hartley, Fraser A; East, Holly K

    2015-12-16

    Climate-induced disturbances are contributing to rapid, global-scale changes in coral reef ecology. As a consequence, reef carbonate budgets are declining, threatening reef growth potential and thus capacity to track rising sea-levels. Whether disturbed reefs can recover their growth potential and how rapidly, are thus critical research questions. Here we address these questions by measuring the carbonate budgets of 28 reefs across the Chagos Archipelago (Indian Ocean) which, while geographically remote and largely isolated from compounding human impacts, experienced severe (>90%) coral mortality during the 1998 warming event. Coral communities on most reefs recovered rapidly and we show that carbonate budgets in 2015 average +3.7 G (G = kg CaCO3 m(-2) yr(-1)). Most significantly the production rates on Acropora-dominated reefs, the corals most severely impacted in 1998, averaged +8.4 G by 2015, comparable with estimates under pre-human (Holocene) disturbance conditions. These positive budgets are reflected in high reef growth rates (4.2 mm yr(-1)) on Acropora-dominated reefs, demonstrating that carbonate budgets on these remote reefs have recovered rapidly from major climate-driven disturbances. Critically, these reefs retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100.

  20. PLEISTOCENE-HOLOCENE PALAEOENVIRONMENTAL RECORDS FROM PERMAFROST SEQUENCES AT THE KARA SEA COAST (NW SIBERIA, RUSSIA

    Directory of Open Access Journals (Sweden)

    Irina Streletskaya

    2013-01-01

    Full Text Available The Kara Sea coasts were studied using comprehensive stratigraphic and geocryological methods. The paper presents the new analytical studies of ground ice and Quaternary deposits of Western Taymyr and presents the results of spore and pollen, foraminifera, grain-size, mineralogical, geochemical, oxygen isotopic, and other analyses. Several stratigraphic-geocryological transects from Yenisey and Gydan Bays enable us to refine the stratigraphy and palaeogeographical reconstruction of the environments and freezing of Late Pleistocene-Holocene sediments. Marine sedimentation conditions during the late Kargino time (MIS3 changed to continental conditions in MIS2 and MIS1. Marine sediments were frozen syn- and epigenetically with cryotexture and ground ice formation. Ice wedges formation corresponds to the end of the Pleistocene (MIS2 and during cooler periods of the Holocene.

  1. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    Science.gov (United States)

    Ouyang, Tingping; Li, Mingkun; Zhao, Xiang; Zhu, Zhaoyu; Tian, Chengjing; Qiu, Yan; Peng, Xuechao; Hu, Qiao

    2016-05-01

    Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1) Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2) XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3) the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4) The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5) During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  2. Sensitivity of sediment magnetic records to climate change during Holocene for the northern South China Sea

    Directory of Open Access Journals (Sweden)

    Tingping eOuyang

    2016-05-01

    Full Text Available Magnetic property has been proved to be a sensitive proxy to climate change for both terrestrial and marine sediments. Based on the schedule frame established by AMS 14C dating of foraminifera, detail magnetic analyses were performed for core PC24 sediments at sampling intervals of 2 cm to discuss magnetic sensitivity of marine sediment to climate during Holocene for the northern South China Sea. The results indicated that: 1 Concentration dependent magnetic parameters are positive corresponding to variation of temperature. The frequency dependent susceptibility coefficient basically reflected the variation in humidity; 2 XARM/SIRM was more sensitive to detrital magnetite particles and SIRM/X was more effective to biogenic magnetite particles. Variations of XARM/SIRM and SIRM/X are corresponding to precipitation and temperature, respectively; 3 the Holocene Megathermal in the study area was identified as 7.5-3.4 cal. ka BP. The warmest stage of Holocene for the study area should be during 6.1 to 3.9 cal. ka BP; 4 The 8 ka cold event was characterized as cold and dry during 8.55 to 8.25 cal. ka BP; 5 During early and middle Holocene, the climate combinations were warm dry and cold wet. It turned to warm and wet after 2.7 cal. ka BP.

  3. Sedimentary Evidence for a Rapid Sea Level Rise at 7,600 cal yr BP from North-Central Cuba

    Science.gov (United States)

    Peros, M. C.; Agosta G'meiner, A. M.; Collins, S.

    2016-12-01

    A lack of high-resolution relative sea level (RSL) proxy data has meant that the pattern of early Holocene RSL change in the Caribbean is poorly understood. A RSL curve published by Toscano and Macintyre (2003) using inter-tidal mangrove peats and submerged corals suggests RSL underwent a relatively fast and `smooth' curvilinear increase during the Holocene. However, others, such as Blanchon and Shaw (1995), suggest that RSL increased rapidly at around 7600 cal yr BP, in response to the final stages of the melting of the Laurentide Ice Sheet (melt water pulse 1C or catastrophic rise event 3). We investigated this question using multi-proxy data from a flooded sinkhole (Cenote Jennifer) on the north coast of central Cuba. Cenote Jennifer is located 7 m above mean sea level and 2 km from the Bahamas Channel and appears to have a high degree of connectivity with the ocean through a network of underground caverns. The water depth is 13 m and the bottommost 5 m is anoxic. A sediment core collected from Cenote Jennifer was studied using loss-on-ignition, pollen analysis, high-resolution XRF core-scanning, and grain size analysis. An age-depth model was generated for the core by AMS dating. The results show that the bottommost stratigraphic unit ( 9000 to 7600 cal yr BP) is a fine-grained carbonate-rich mud (i.e., marl). This unit abruptly transitions into finely laminated organic-rich sediment from 7600 cal yr BP to the present. The pollen analysis shows that the sinkhole supported a cattail (Typha) community until 7600 cal yr BP, indicating low water levels ( 1 m). At 7600 cal yr BP, the cattail community disappeared and the vegetation of the surrounding bedrock became dominated by a thorny coastal scrubland. In addition, a 3 cm thick fining-upward siliciclastic unit is present immediately above the marl-organic contact, suggesting: 1) a marine sediment source given the limestone-dominated nature of the region, and 2) the presence of a short-duration, high

  4. Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Jones, Benjamin M.; Wiles, Gregory C.; Groves, Pamela; Kunz, Michael L.; Baughman, Carson A.; Reanier, Richard E.

    2017-08-01

    Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (δ18Owc) (Salix spp.) that have been radiocarbon-dated (14C) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500-7500 calibrated 14C years before present; 13.5-7.5 ka). We first analyzed the spatial and temporal patterns of δ18Owc in living willows growing at upland sites and found that over the last 30 years δ18Owc values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial δ18Owc values from 145 samples of subfossil willows clearly record the Allerød warm period (∼13.2 ka), the Younger Dryas cold period (12.9-11.7 ka), and the Holocene Thermal Maximum (11.7-9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were ∼4.5‰, which is about 60% of the differences in δ18Owc between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in δ18Owc values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by sea ice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are similar

  5. Relative sea-level change in the central Cyclades (Greece) since the Early Bronze Age

    Science.gov (United States)

    Draganits, E.

    2012-04-01

    The Aegean is a focus of important cultural achievements in Europe since the Neolithic period. The resulting abundance of archaeological remains, many of them below sea-level represent an advantageous area for the study of local relative sea-level change. We have carried out detailed mapping of Despotiko Island (SW of Antiparos) and its surrounding. Despotiko is situated almost exactly in the center of the Cyclades (as defined nowadays), more so than Delos, and therefore is very well suited for sea-level studies of the Cyclades. This beneficial location, combined with a spacious and protected bay, additionally may explain its former importance as stepping-stone in the Aegean Sea. The island is uninhabited at present, but Early Bronze Age settlement sites and graveyards as well as a large Archaic sanctuary proof its former importance. The sanctuary is situated on a gently northeast dipping slope in the northeast part of Despotiko, in range of sight of the Órmos Despotiko. Since 1997 large parts of this important sanctuary have been excavated during several excavation campaigns. Tectonically, Despotiko, Antiparos and Paros, belong to the Attic-Cycladic Crystalline of the Central Hellenides, a stack of metamorphic tectonic nappes, mainly comprising variable types of gneiss, schist, marble and amphibolite, and tectonic slices of unmetamorphosed sediments on top, separated by low-angle normal faults from the metamorphic units below. Submerged archaeological structures at the sea bottom of the Órmos Despotiko, a Classical marble inscription from the sanctuary and partly submerged agriculture trenches at the east coast Despotiko, indicate that the relative sea-level in this area was some 3 m lower during the Early Bronze Age and still more than 1 m lower during Classical time. These values of relative sea-level rise indicate a subsidence component additional to the global sea-level rise in the investigated time period. Neglecting possible vertical tectonic movements and

  6. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, H.D.; Dunbar, R.B. [Stanford University, Geological and Environmental Sciences, Stanford, CA (United States)

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease ({proportional_to}85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano. (orig.)

  7. Hydrologic-energy balance constraints on the Holocene lake-level history of lake Titicaca, South America

    Science.gov (United States)

    Rowe, H. D.; Dunbar, R. B.

    2004-09-01

    A basin-scale hydrologic-energy balance model that integrates modern climatological, hydrological, and hypsographic observations was developed for the modern Lake Titicaca watershed (northern Altiplano, South America) and operated under variable conditions to understand controls on post-glacial changes in lake level. The model simulates changes in five environmental variables (air temperature, cloud fraction, precipitation, relative humidity, and land surface albedo). Relatively small changes in three meteorological variables (mean annual precipitation, temperature, and/or cloud fraction) explain the large mid-Holocene lake-level decrease (˜85 m) inferred from seismic reflection profiling and supported by sediment-based paleoproxies from lake sediments. Climatic controls that shape the present-day Altiplano and the sediment-based record of Holocene lake-level change are combined to interpret model-derived lake-level simulations in terms of changes in the mean state of ENSO and its impact on moisture transport to the Altiplano.

  8. 1300 km long late Pleistocene-Holocene shelf edge barrier reef system along the western continental shelf of India: Occurrence and significance

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.; Wagle, B.G.; Veerayya, M.; Almeida, F.; Karisiddaiah, S.M.

    . It is surmised that coral/algal reef growth commenced with the advent of the Holocene trangression and favorable antecedent topography, and continued until early Holocene. Subsequently, rapid sea level rise drowned the reefs. The shelf edge reefs, therefore...

  9. Coastal lagoon systems as indicator of Holocene sea-level development in a periglacial soft-sediment setting: Samsø, Denmark

    DEFF Research Database (Denmark)

    Sander, Lasse; Fruergaard, Mikkel; Johannessen, Peter N.

    2014-01-01

    . Stratigraphy, grain-size distribution, fossil and organic matter content of cores retrieved from the lagoons were analyzed and compared. Age control was established using radiocarbon and optically stimulated luminescence dating. Our data produced a surprisingly consistent pattern for the sedimentary......Confined shallow-water environments are encountered many places along the coast of the inner Danish waters. Despite their common occurrence, these environments have rarely been studied as sedimentary archives. In this study we set out to trace back changes in relative sea-level and associated...... geomorphological responses in sediment cores retrieved from coastal lagoon systems on the island of Samsø, central Denmark. In the mid-Atlantic period, the post-glacial sea-level rise reached what is today the southern Kattegat Sea. Waves, currents and tides began to erode the unconsolidated moraine material...

  10. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  11. Sea ice and wind variability during the Holocene in East Antarctica: Insight on middle high latitude coupling

    NARCIS (Netherlands)

    Denis, D.; Crosta, X.; Barbera, L.; Masse, G.; Renssen, H.; Ther, O.; Giraudeau, J.

    2010-01-01

    Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at ∼140°E and eastern Prydz Bay at ∼77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale.

  12. Evidence for coral island formation during rising sea level in the central Pacific Ocean

    Science.gov (United States)

    Kench, Paul S.; Owen, Susan D.; Ford, Murray R.

    2014-02-01

    The timing and evolution of Jabat Island, Marshall Islands, was investigated using morphostratigraphic analysis and radiometric dating. Results show the first evidence of island building in the Pacific during latter stages of Holocene sea level rise. A three-phase model of development of Jabat is presented. Initially, rapid accumulation of coarse sediments on Jabat occurred 4800-4000 years B.P. across a reef flat higher than present level, as sea level continued to rise. During the highstand, island margins and particularly the western margin accreted vertically to 2.5-3.0 m above contemporary ridge elevations. This accumulation phase was dominated by sand-size sediments. Phase three involved deposition of gravel ridges on the northern reef, as sea level fell to present position. Jabat has remained geomorphically stable for the past 2000 years. Findings suggest reef platforms may accommodate the oldest reef islands in atoll systems, which may have profound implications for questions of prehistoric migration through Pacific archipelagos.

  13. Sedimentary facies and Holocene depositional processes of Laura Island, Majuro Atoll

    Science.gov (United States)

    Yasukochi, Toru; Kayanne, Hajime; Yamaguchi, Toru; Yamano, Hiroya

    2014-10-01

    The depositional processes that formed Laura Island, Majuro Atoll, Marshall Islands, were reconstructed based on a facies analysis of island sediments and spine ratios, and radiocarbon ages of foraminifera. Sedimentary facies were analyzed from trenches and drill cores excavated on the island and its adjacent reef flat. Depositional ages were obtained using benthic foraminifera (Calcarina) whose spines had not been abraded. The facies were classified into two types: gravelly and sandy. The initial sediments of these sites consisted of gravelly facies in the lower horizon and sandy facies in the upper horizon. Their ages were approximately 2000 cal BP and coincident with the onset of a 1.1-m decline in regional relative sea level, which enabled deposition of the gravelly facies. Half of the sand fraction of the sediment was composed of larger benthic foraminifera. The spine ratio showed that their supply source on the reef flat was located oceanside of the island. The supply source appears to have been caused by the relative sea-level fall. This indicates that the studied island was formed by a relative reduction in wave energy and enhanced foraminiferal supply, both of which were triggered by the late Holocene relative sea-level fall.

  14. Holocene Activity of the Enriquillo-Plantain Garden Fault in Lake Enriquillo Derived from Seismic Stratigraphy

    Science.gov (United States)

    Rios, J. K.; McHugh, C. M.; Hornbach, M. J.; Mann, P.; Wright, V. D.; Gurung, D.

    2013-12-01

    The Enriquillo-Plantain-Garden fault zone (EPGF) crosses Lake Enriquillo (LE) in the Dominican Republic and extends E-W across the southern peninsula of Haiti, south of the Baie de Port au Prince (BPP). Seismic stratigraphic studies of CHIRP high-resolution subbottom profiles calibrated to ages obtained from sediment cores and previous coral reef studies provide a Holocene record of relative sea level rise into the BPB and LE and a time frame for understanding tectonics of the EPGF. The BPP is 20 km wide, 20 km long, 150 m deep, and surrounded by coral reefs at water depths of 30 m. Three seismic units were identified: Unit 1: stepped terraces 5-10 m high. Laminated strata onlaps the terraces. This unit possibly represents Marine Isotope Stages 6 and 5, but has not been dated. Unit 2: laminated strata, thicker than 10 m and dated near its top at 22 ka BP. The microfossil assemblages reveal that during the latest Pleistocene sea level lowstand the BPP had a restricted connection with the global ocean. Few well-preserved marine microfossils are present and mostly are reworked. Geochemical analyses reveal that the laminated sediments were deposited during wet periods (>Si, Al wt %, Cu ppm) and dry periods (>Ca wt %). Unit 3: acoustically transparent, ~10 m thick, dated near its base and top at 14 ka BP and 2 ka BP, respectively. This unit represents the Holocene initiation of sea level rise and high stand containing well-preserved marine fossils. At ~9.5 ka BP planktonic foraminifers become abundant implying deepening of marine waters. Lake Enriquillo is 127 km east of the BPP. It is 15 km wide, 40 km long and 45 m deep. CHIRP subbottom profiles penetrated ~30 m below the lake floor. Four main acoustic units were identified: Unit 1: deformed basement with steeply dipping and folded beds. Based on land studies this unit is likely Plio-Pleistocene in age. Unit 2: laminated strata. Ages from coral reefs and deformed strata on land indicate this unit is likely pre-20 ka

  15. Postglacial floodings of the Marmara Sea: molluscs and sediments tell the story

    Science.gov (United States)

    Büyükmeriç, Yeşim

    2016-08-01

    The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the "Noah's Flood" hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene-Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline-lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a Turritella- Corbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline-polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and

  16. Radiation dates of holocene shorelines in Peninsula Malaysia

    International Nuclear Information System (INIS)

    Tjia, H.D.; Kigoshi, K.

    1977-01-01

    Fifteen newly determined radiocarbon dates indicate the presence of former shorelines up to 3 meters above present high tide level in the tectonically stable Peninsula of Malaysia. The sea level indicators consist of oysters in growth position (9 samples), molluscs in beach deposits (2), corals in growth position (3), and beachrock (1). In the Peninsula living oysters occur up to or slightly above high tide, modern beach deposits may occur as high as 1.5 meters above high tide, and corals live up to low tide level. The literature shows that high tide, and corals live up to low tide level. The literature shows that beachrock marks intertidal zones. Combined with seven previously published ages of raised shorelines in the region, strong evidence is presented for one or more high Holocene, eustatic sea level stands in the continental part of Southeast Asia. Periods of high sea levels occur between 2500 and 2900 yr BP, and between 4200 and 5700 yr BP. There is also some indication of high sea level between 8300 and 9500 yr BP. (author)

  17. Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Wooller, Matthew J.; Jones, Benjamin M.; Wiles, Gregory C.; Groves, Pamela; Kunz, Michael L.; Baughman, Carson; Reanier, Richard E.

    2017-01-01

    Declining sea-ice extent is currently amplifying climate warming in the Arctic. Instrumental records at high latitudes are too short-term to provide sufficient historical context for these trends, so paleoclimate archives are needed to better understand the functioning of the sea ice-albedo feedback. Here we use the oxygen isotope values of wood cellulose in living and sub-fossil willow shrubs (δ18Owc) (Salix spp.) that have been radiocarbon-dated (14C) to produce a multi-millennial record of climatic change on Alaska's North Slope during the Pleistocene-Holocene transition (13,500–7500 calibrated 14C years before present; 13.5–7.5 ka). We first analyzed the spatial and temporal patterns of δ18Owc in living willows growing at upland sites and found that over the last 30 years δ18Owc values in individual growth rings correlate with local summer temperature and inter-annual variations in summer sea-ice extent. Deglacial δ18Owcvalues from 145 samples of subfossil willows clearly record the Allerød warm period (∼13.2 ka), the Younger Dryas cold period (12.9–11.7 ka), and the Holocene Thermal Maximum (11.7–9.0 ka). The magnitudes of isotopic changes over these rapid climate oscillations were ∼4.5‰, which is about 60% of the differences in δ18Owc between those willows growing during the last glacial period and today. Modeling of isotope-precipitation relationships based on Rayleigh distillation processes suggests that during the Younger Dryas these large shifts in δ18Owc values were caused by interactions between local temperature and changes in evaporative moisture sources, the latter controlled by seaice extent in the Arctic Ocean and Bering Sea. Based on these results and on the effects that sea-ice have on climate today, we infer that ocean-derived feedbacks amplified temperature changes and enhanced precipitation in coastal regions of Arctic Alaska during warm times in the past. Today, isotope values in willows on the North Slope of Alaska are

  18. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  19. Reconciling late Quaternary transgressions in the Bohai Sea, China to the global sea level changes, and new linkage of sedimentary records to three astronomical rhythms

    Science.gov (United States)

    Yi, Liang

    2013-04-01

    well with OSL ages. (2) For pre-Holocene samples, radiocarbon dates cluster at 40-50 14C ka BP, whereas OSL ages are in stratigraphic order from 11 to 176 ka. Because the self-consistency of the quartz OSL ages and the stratigraphic agreement in the three cores, we suggested that the quartz OSL ages are more reliable with respect to date the samples from the south Bohai Sea. (3) The three marine stratums identified in the south Bohai Sea are likely to be formed during the Holocene, MIS 3-5, and MIS 6-7, respectively. 2. Sea-level change. Because of uncertainties in regionally tectonic activities and insufficient fossils deposited in the sediment, the methods develop for sea-level studies, i.e. the exploitation of dated geomorphologic features and the biologically based sea-level transfer functions, can not be applied in this area. Thus, we first develop a proxy from sediment grain-size analysis with clear indicative meaning, and then quantitatively reconstruct sea-level variation for the south Bohai Sea. The reconstruction indicates that relative sea-level changes in the study area track global sea-level variation, and also indicate substantial regression from 70 to 30 ka, and potentially subarial exposure from 38 to 20 ka. Our results document the feasibility of reconstructing relative sea-level change by numerical partitioning of sediment grain size data, demonstrating the potential for future applications. 3. Paleoclimatology. Three proxy indices were employed, i.e. grain size, magnetic susceptibility and tree-pollen abundance, to infer paleoenviromental changes. When placed on the calibrated radiocarbon and OSL based age model, bulk sediment variations in grain size demonstrated potential modulation in response to the Asian monsoon intensity (Wang et al., 2001, 2008; Cheng et al., 2009), and thus we refined the chronology through astronomically tuning it to the July insolation at 65°N synchronously, in accordance with the method of Ding et al. (1994). The most

  20. Holocene hydrologic variation at Lake Titicaca, Bolivia/Peru, and its relationship to North Atlantic climate variation

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Garland, J.; Ekdahl, E.

    2005-10-01

    A growing number of sites in the Northern Hemisphere show centennial- to millennial-scale climate variation that has been correlated with change in solar variability or with change in North Atlantic circulation. However, it is unclear how (or whether) these oscillations in the climate system are manifest in the Southern Hemisphere because of a lack of sites with suitably high sampling resolution. In this paper, we reconstruct the lake-level history of Lake Titicaca, using the carbon isotopic content of sedimentary organic matter, to evaluate centennial- to millennial-scale precipitation variation and its phasing relative to sites in the Northern Hemisphere. The pattern and timing of lake-level change in Lake Titicaca is similar to the ice-rafted debris record of Holocene Bond events, demonstrating a possible coupling between precipitation variation on the Altiplano and North Atlantic sea-surface temperatures (SSTs). The cold periods of the Holocene Bond events correspond with periods of increased precipitation on the Altiplano. Holocene precipitation variability on the Altiplano is anti-phased with respect to precipitation in the Northern Hemisphere monsoon region. More generally, the tropical Andes underwent large changes in precipitation on centennial-to-millennial timescales during the Holocene.

  1. Sediment biomarkers elucidate the Holocene ontogeny of a shallow lake.

    Directory of Open Access Journals (Sweden)

    T E Arnold

    Full Text Available We carried out geochemical analyses on a sediment core from Lake Harris, Florida (USA to identify sources of organic matter to the sediment throughout the Holocene, and relate changes in those sources to shifts in past climate and environmental conditions. We hypothesized that the sources of organic matter changed in response to regional hydrologic shifts following de-glaciation, and to human population expansion in the state during the 20th century. Hydroclimate shifts in Florida were related to: 1 a steady rise in relative sea level and the fresh water table that began in the early Holocene, 2 wetland formation and expansion ca. 5,000 cal yrs BP, and 3 the onset of the modern El Niño (ENSO cycle ~3,000 cal yrs BP. Stratigraphic changes in sediment variables from Lake Harris reflect each of these hydroclimate periods. Early in the Holocene, Lake Harris was a marsh-like system in a relatively dry, open-prairie environment. Organic sediments deposited at that time were derived largely from terrestrial sources, as inferred from high TOC/TN ratios, a dominance of longer-chain of n-alkanes (n-C29-31, relatively negative organic carbon isotope values (δ13CTOC, and low biogenic silica concentrations. In the middle Holocene, a positive shift in δ13CTOC coincided with the onset of wetter conditions in Florida. Submerged macrophyte biomarkers (n-C21-23 dominated, and during that period bulk organic carbon isotope values were most similar to δ13C values of mid-chain-length n-alkanes. In the late Holocene, δ13CTOC values declined, CaCO3 levels decreased to trace amounts, organic carbon concentrations increased and diatom biogenic silica concentrations increased from 10 to 120 mg g-1. Around 2,900 cal yrs BP, the effects of ENSO intensified and many Florida lakes deepened to their current limnetic state. Concentrations of algal and cyanobacterial biomarkers in the Lake Harris core increased by orders of magnitude after about AD 1940, in response to

  2. Recently studied sedimentary records from the eastern Arabian Sea: Implications to Holocene monsoonal variability

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Kurian, S.

    stream_size 72460 stream_content_type text/plain stream_name Earth_Sci_India_1_258.pdf.txt stream_source_info Earth_Sci_India_1_258.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Agnihotri http://www....earthscienceindia.info/Agnihotri.htm 1 of 14 10/15/2008 9:41 AM Earth Science India Vol.1 (IV), October, 2008, pp. 258-287 http://www.earthscienceindia.info/ Recently studied sedimentary records from the eastern Arabian Sea: Implications to Holocene monsoonal variability Rajesh...

  3. Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral δ18O records from the South China Sea

    Science.gov (United States)

    Sun, Donghuai; Gagan, Michael K.; Cheng, Hai; Scott-Gagan, Heather; Dykoski, Carolyn A.; Edwards, R. Lawrence; Su, Ruixia

    2005-08-01

    Understanding the full range of past monsoon variability, with reference to specific monsoon seasons, is essential to test coupled climate models and improve their predictive capabilities. We present a 54-year long, high-resolution skeletal oxygen isotope (δ18O) record extracted from a well-preserved, massive Porites sp. coral at Hainan Island, South China Sea, to investigate East Asian monsoon variability during summer and winter ∼4400 calendar yr ago. Analysis of modern coral δ18O confirms that Porites from Hainan Island are well positioned to record winter monsoon forcing of sea surface temperature (SST), as well as the influence of summer monsoon rainfall on sea surface salinity (SSS). The coral record for ∼4400 yr ago shows ∼9% amplification of the annual cycle of δ18O, in good agreement with coupled ocean-atmosphere models showing higher summer rainfall (lower coral δ18O) and cooler winter SSTs (higher coral δ18O) in response to greater Northern Hemisphere insolation seasonality during the Middle Holocene. Mean SSTs in the South China Sea during the Mid-Holocene were within 0.5 °C of modern values, yet the mean δ18O for the fossil coral is ∼0.6‰ higher than that for the modern coral, suggesting that the δ18O of surface seawater was higher by at least ∼0.5‰, relative to modern values. The 18O-enrichment is likely to be driven by greater advection of moisture towards the Asian landmass, enhanced monsoon wind-induced evaporation and vertical mixing, and/or invigorated advection of saltier 18O-enriched Pacific water into the relatively fresh South China Sea. The 18O-enrichment of the northern South China Sea ∼4400 yr ago contributes to mounting evidence for recent freshening of the tropical Western Pacific. Today, winter SST and summer SSS variability in the South China Sea reflect the interannual influence of ENSO and the biennial variability inherent to monsoon precipitation. Spectral analysis of winter SSTs ∼4400 yr ago reveals a

  4. Projecting future sea level

    Science.gov (United States)

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  5. How a barrier island may react on a sea-level rise: The Holocene to Recent Rømø barrier island, Danish Wadden Sea

    DEFF Research Database (Denmark)

    Johannessen, Peter N.; Nielsen, Lars H.; Møller, Ingelise

    set up the water level increases considerably and the highest measured water level is 4.9 m above mean sea level. The barrier island is c. 14 km long and c. 4 km wide and is separated from the mainland by a c. 8 km wide lagoon. At the northern and southern parts of the island, tidal inlets occur...... of c. 15 m and a resolution of c. 20–30 cm (Nielsen et al., 2009), and dating of 70 core samples using optically stimulated luminescence (OSL). The area has experienced a relative sea-level rise of c. 15 m during the last c. 8000 years. The Recent tidal amplitude reaches c. 1.8 m. During strong wind...... with a width of 400–1000 m and depths of 7–30 m. Salt marsh areas, up to 2 km wide, are fringing the lagoonal coast of the island. Active eastward migrating aeolian dunes cover large parts of the island. The Rømø barrier island system is a very sand rich system as it receives coast parallel transported sand...

  6. Causes of early Holocene desertification in arid central Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Liya [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); University of Kiel, Institute of Geosciences, Kiel (Germany); Chen, Fahu [Lanzhou University, Key Laboratory of Western China' s Environmental System, Lanzhou, Gansu (China); Morrill, Carrie [University of Colorado, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); NOAA' s National Climatic Data Center, Paleoclimatology Branch, Boulder, CO (United States); Otto-Bliesner, Bette L.; Rosenbloom, Nan [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States)

    2012-04-15

    Paleoclimate records of effective moisture (precipitation minus evaporation, or P-E) show a dry (low effective moisture) period in mid-latitude arid/semi-arid central Asia during the early Holocene (11,000-8,000 years ago) relative to the middle and late Holocene, in contrast to evidence for greater-than-present precipitation at the same time in the south and east Asian monsoonal areas. To investigate the spatial differences in climate response over mid-latitude central Asia and monsoonal Asia we conducted a series of simulations with the Community Climate System Model version 3 coupled climate model for the early, middle and late Holocene. The simulations test the climatic impact of all important forcings for the early Holocene, including changes in orbital parameters, the presence of the remnant Laurentide ice sheet and deglacial freshening of the North Atlantic. Model results clearly show the early Holocene patterns indicated by proxy records, including both the decreased effective moisture in arid central Asia, which occurs in the model primarily during the winter months, and the increase in summer monsoon precipitation in south and east Asia. The model results suggest that dry conditions in the early Holocene in central Asia are closely related to decreased water vapor advection due to reduced westerly wind speed and less evaporation upstream from the Mediterranean, Black, and Caspian Seas in boreal winter. As an extra forcing to the early Holocene climate system, the Laurentide ice sheet and meltwater fluxes have a substantial cooling effect over high latitudes, especially just over and downstream of the ice sheets, but contribute only to a small degree to the early Holocene aridity in central Asia. Instead, most of the effective moisture signal can be explained by orbital forcing decreasing the early Holocene latitudinal temperature gradient and wintertime surface temperature. We find little evidence for regional subsidence related to a stronger summer Asian

  7. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions

    Science.gov (United States)

    Brain, Matthew J.; Kemp, Andrew C.; Hawkes, Andrea D.; Engelhart, Simon E.; Vane, Christopher H.; Cahill, Niamh; Hill, Troy D.; Donnelly, Jeffrey P.; Horton, Benjamin P.

    2017-07-01

    Salt-marsh sediments provide precise and near-continuous reconstructions of Common Era relative sea level (RSL). However, organic and low-density salt-marsh sediments are prone to compaction processes that cause post-depositional distortion of the stratigraphic column used to reconstruct RSL. We compared two RSL reconstructions from East River Marsh (Connecticut, USA) to assess the contribution of mechanical compression and biodegradation to compaction of salt-marsh sediments and their subsequent influence on RSL reconstructions. The first, existing reconstruction ('trench') was produced from a continuous sequence of basal salt-marsh sediment and is unaffected by compaction. The second, new reconstruction is from a compaction-susceptible core taken at the same location. We highlight that sediment compaction is the only feasible mechanism for explaining the observed differences in RSL reconstructed from the trench and core. Both reconstructions display long-term RSL rise of ∼1 mm/yr, followed by a ∼19th Century acceleration to ∼3 mm/yr. A statistically-significant difference between the records at ∼1100 to 1800 CE could not be explained by a compression-only geotechnical model. We suggest that the warmer and drier conditions of the Medieval Climate Anomaly (MCA) resulted in an increase in sediment compressibility during this time period. We adapted the geotechnical model by reducing the compressive strength of MCA sediments to simulate this softening of sediments. 'Decompaction' of the core reconstruction with this modified model accounted for the difference between the two RSL reconstructions. Our results demonstrate that compression-only geotechnical models may be inadequate for estimating compaction and post-depositional lowering of susceptible organic salt-marsh sediments in some settings. This has important implications for our understanding of the drivers of sea-level change. Further, our results suggest that future climate changes may make salt

  8. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories

    Science.gov (United States)

    Argus, Donald F.; Peltier, W. R.; Drummond, R.; Moore, Angelyn W.

    2014-07-01

    A new model of the deglaciation history of Antarctica over the past 25 kyr has been developed, which we refer to herein as ICE-6G_C (VM5a). This revision of its predecessor ICE-5G (VM2) has been constrained to fit all available geological and geodetic observations, consisting of: (1) the present day uplift rates at 42 sites estimated from GPS measurements, (2) ice thickness change at 62 locations estimated from exposure-age dating, (3) Holocene relative sea level histories from 12 locations estimated on the basis of radiocarbon dating and (4) age of the onset of marine sedimentation at nine locations along the Antarctic shelf also estimated on the basis of 14C dating. Our new model fits the totality of these data well. An additional nine GPS-determined site velocities are also estimated for locations known to be influenced by modern ice loss from the Pine Island Bay and Northern Antarctic Peninsula regions. At the 42 locations not influenced by modern ice loss, the quality of the fit of postglacial rebound model ICE-6G_C (VM5A) is characterized by a weighted root mean square residual of 0.9 mm yr-1. The Southern Antarctic Peninsula is inferred to be rising at 2 mm yr-1, requiring there to be less Holocene ice loss there than in the prior model ICE-5G (VM2). The East Antarctica coast is rising at approximately 1 mm yr-1, requiring ice loss from this region to have been small since Last Glacial Maximum. The Ellsworth Mountains, at the base of the Antarctic Peninsula, are inferred to be rising at 5-8 mm yr-1, indicating large ice loss from this area during deglaciation that is poorly sampled by geological data. Horizontal deformation of the Antarctic Plate is minor with two exceptions. First, O'Higgins, at the tip of the Antarctic Peninsula, is moving southeast at a significant 2 mm yr-1 relative to the Antarctic Plate. Secondly, the margins of the Ronne and Ross Ice Shelves are moving horizontally away from the shelf centres at an approximate rate of 0.8 mm yr-1, in

  9. SEA LEVEL AND PALAEOCLIMATIC CHANGES IN THE SOUTH AND MIDDLE CASPIAN SEA REGION SINCE THE LATEGLACIAL FROM PALYNOLOGICAL ANALYSES OF MARINE SEDIMENT CORES

    Directory of Open Access Journals (Sweden)

    Suzanne Leroy

    2010-01-01

    Full Text Available A review of pollen, spores, non-pollen palynomorphs and dinocyst analyses made in the last two decades is proposed here. Building on spare palynological analyses before 1990, a series of new projects have allowed taking cores in the deeper parts of the Caspian Sea, hence providing access to low-stand sediment. However, still nowadays no complete record exists for the Holocene. The first steps towards quantification of the palynological spectra have been taken. Some of the most urgent problems to solve are the uncertainties related to radiocarbon dating, which are especially acute in the Caspian Sea.

  10. Relative Sea Level Trends Along the Coast of the Bay of Bengal

    Science.gov (United States)

    Becker, M.; Calmant, S.; Papa, F.; Delebecque, C.; Islam, A. S.; Shum, C. K.

    2016-12-01

    In the coastal belt of the Bay of Bengal, the sea level rise is one of a major threat, linked to climate change, which drastically affects the livelihoods of millions of people. A comprehensive understanding of sea level trends and its variability in this region is therefore crucial and should help to anticipate the impacts of climate change and implement adaptation strategies. This region is bordered mostly by Bangladesh, India, Malaysia, Myanmar, and Thailand. Here, we revisit the sea level changes in the Bay of Bengal region from tide gauges and satellite altimetry over the period 1993-2014. The 23 monthly mean tide gauge records, used in this study, are retrieved from PSMSL (15 records) and supplemented with Bangladeshi observations (8 records). We show that, over the satellite altimetry era, the sea level interannual/decadal variability is mainly due to ocean thermal expansion variability driven by IOD/ENSO events and their low frequency modulation. We focus on relative sea level rise at major coastal cities and try to separate the climatic signal (long term trend plus interannual/decadal variability) from local effects, in particular vertical land movements. Results from GPS are analysed where available. When no such data exist, vertical land movements are deduced from the combined use of tide gauge and altimetry data. While the analysis is performed over the whole region, a particular attention is given to the low-lyingBangladesh's coastal area.

  11. Examining the evidence for a recent acceleration in the rate of sea-level rise using combined instrumental and proxy data, North Carolina, USA

    Science.gov (United States)

    Kemp, A.; Horton, B. P.

    2007-12-01

    Whilst accelerated rates of relative sea-level (RSL) rise are potentially one of the most devastating impacts of future climate change, our understanding of decadal scale changes in sea-level is poor. This paper seeks to address this knowledge gap by combining tide gauge and high-precision geological reconstructions of relative sea-level of sufficient resolution and duration to detect any recent acceleration in the rate of sea-level rise. We offer a high resolution relative sea-level history for the last ~2000 years from the Albemarle - Pamlico Estuarine System in North Carolina. Contemporary foraminifera were collected from five back barrier marshes to create a regional scale modern training set. The use of multiple marshes from a region increases the ecological and environmental diversity included within the training set and reduces the probability of a no modern analogue outcome. To merge the five spatially distinct sites and to relate each to local tide levels we used the VDatum transformation tool. This method relates all samples to a common orthometric datum (NAVD88) and reduces error. We developed an accurate and precise transfer function to reconstruct former sea levels based upon the modern observable relationship between foraminifera and elevation with respect to the tidal frame. We applied the transfer function to salt-marsh core(s) from Sand Point (Roanoke Island), North Carolina to produce a late Holocene RSL record. An age-depth model was produced from composite chronologies of 210Pb, 14C and pollen chrono-horizons. We validated our approach by comparing geological based reconstructions and instrumental tide gauge records. Our records show that in the last ~2000 years sea level has risen at a background rate of ~1.1mm/yr. There is evidence for two recent accelerations in the rate of sea-level rise during the late 19th and 20th centuries to a current rate of ~4mm/yr.

  12. Sea level trends in South East Asian Seas (SEAS)

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2014-10-01

    Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.

  13. Sedimentary architecture of the Holocene mud deposit off the southern Shandong Peninsula in the Yellow Sea

    Science.gov (United States)

    Qiu, Jiandong; Liu, Jian; Xu, Hong; Zhou, Liangyong

    2018-01-01

    Newly acquired high-resolution seismic profiles reveal a nearshore and an offshore mud depocenter offthe southern Shandong Peninsula in the Yellow Sea. The nearshore depocenter is distributed in bands along the south coast of Shandong Peninsula. The offshore depocenter is part of the distal subaqueous deltaic lobe, which deposited around the southeastern tip of the Shandong Peninsula. Between the two depocenters is a linear depression. The mud deposits directly overlie the postglacial transgressive surface and can be divided into lower and upper units by the Holocene maximum flooding surface. The nearshore and offshore units display different seismic structures. The lower unit of the nearshore deposit exhibits basal onlap, whereas the upper unit is characterized by progradation. The lower and upper units of the offshore deposit display distinct acoustic features. The lower unit has low-angle aggradation with internal reflectors generally dipping seaward and truncated by the Holocene maximum flooding surface, whereas the upper unit is characterized by aggradation and progradation landward rather than seaward. Results of geochemistry analysis of QDZ03 sediments and mineral analysis of WHZK01 sediments suggest that the nearshore deposit and the lower unit of the offshore deposit are derived from the proximal coastal sediments of the Shandong Peninsula and the Huanghe (Yellow) River sediments. The upper unit of the offshore deposit is mainly Huanghe River-derived. The lower unit of the mud deposit represents a post-glacial transgressive system tract according to dates of core QDZ03, and the upper unit represents a highstand system tract from middle Holocene to the present. These results will be of great significance to further understanding of the transportation of the Huanghe River sediments into the Yellow Sea and the spatial distribution of the subaqueous delta.

  14. Sea level report

    International Nuclear Information System (INIS)

    Schwartz, M.L.

    1979-01-01

    Study of Cenozoic Era sea levels shows a continual lowering of sea level through the Tertiary Period. This overall drop in sea level accompanied the Pleistocene Epoch glacio-eustatic fluctuations. The considerable change of Pleistocene Epoch sea level is most directly attributable to the glacio-eustatic factor, with a time span of 10 5 years and an amplitude or range of approximately 200 m. The lowering of sea level since the end of the Cretaceous Period is attributed to subsidence and mid-ocean ridges. The maximum rate for sea level change is 4 cm/y. At present, mean sea level is rising at about 3 to 4 mm/y. Glacio-eustacy and tectono-eustacy are the parameters for predicting sea level changes in the next 1 my. Glacio-eustatic sea level changes may be projected on the basis of the Milankovitch Theory. Predictions about tectono-eustatic sea level changes, however, involve predictions about future tectonic activity and are therefore somewhat difficult to make. Coastal erosion and sedimentation are affected by changes in sea level. Erosion rates for soft sediments may be as much as 50 m/y. The maximum sedimentation accumulation rate is 20 m/100 y

  15. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  16. Holocene palaeoenvironmental history of the Amazonian mangrove belt

    Science.gov (United States)

    Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão

    2012-11-01

    Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.

  17. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance.

    OpenAIRE

    Bradley, S.L.; Hindmarsh, R.C.A.; Whitehouse, P.L.; Bentley, M.J.; King, M.A.

    2015-01-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial...

  18. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  19. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  20. Carbon sequestration in Southeast Asian tropical peatlands over the Holocene period: large-scale hydrological controls

    Science.gov (United States)

    Dommain, R.; Couwenberg, J.; Cobb, A.; Gandois, L.; Kai, F.; Su'ut, N.; Abu Salim, K.; Harvey, C. F.; Glaser, P. H.; Joosten, H.

    2012-12-01

    Tropical peatlands are recognized as a significant sink of carbon dioxide and an important source of methane. Low latitude peatlands contain an estimated pool of 90 Pg C, of which ca. 70 Pg C is stored in Southeast Asian peatlands. However, the Holocene development of this carbon reservoir is poorly established. Here we provide a synthesis of carbon uptake rates by tropical peatlands in Southeast Asia across millennial timescales for the past 11,000 years. Our reconstruction of the carbon accumulation history for Borneo, Sumatra and Peninsular Malaysia is based on a synthesis of radiocarbon dated peat profiles, modeling of peatland extent, and a new carbon accumulation record from Brunei (NW-Borneo). During the early Holocene the first peatlands formed in southern Borneo under the influence of a strong monsoon and rapid rise in sea-level. The carbon accumulation rate (CAR) in these peatlands was on average 60 g C m-2 yr-1 at this time. Peatlands started to spread across the coastal lowlands of Borneo, Sumatra and Peninsular Malaysia after 8000 cal BP only when the rate of rising sea-level decreased. The major phase of coastal peatland initiation lasted from 7000 to 4000 cal BP. This period was marked by a Holocene precipitation maximum, suppressed El Niño activity, and the Holocene maximum in sea-level on the Sunda Shelf. The mean CAR of coastal peatlands at this time was 80 g C m-2 yr-1, with a Holocene peak of ~100 g C m-2 yr-1 from 4900 to 4500 cal BP. Significantly, atmospheric CO2 concentrations measured in the Taylor Dome Antarctic ice core indicate a plateau during this period of otherwise rising CO2 concentrations. During the Late Holocene CAR declined both in coastal peatlands (ca. 70 g C m-2 yr-1) and in southern Borneo (ca. 20 g C m-2 yr-1) in response to falling sea-levels and increased El Niño frequency and intensity. In fact, several peatlands in southern Borneo have stopped accumulating peat-carbon under higher El Niño activity. These results

  1. Sea level change

    Digital Repository Service at National Institute of Oceanography (India)

    Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; Pfeffer, W.T.; Stammer, D.; Unnikrishnan, A.S.

    This chapter considers changes in global mean sea level, regional sea level, sea level extremes, and waves. Confidence in projections of global mean sea level rise has increased since the Fourth Assessment Report (AR4) because of the improved...

  2. Modeling Anthropogenic Impact on Sediment Balance and Relative Sea-Level Rise in Contemporary and Future Deltas

    Science.gov (United States)

    Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.

    2017-12-01

    Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.

  3. Holocene millennial to centennial scale carbonate cycles (leeward margin, Great Bahama Bank)

    Science.gov (United States)

    Roth, S.; Reijmer, J. J. G.

    2003-04-01

    The main research topic of this project is the evaluation of Holocene to Recent climatic variability and the impact on shallow-water sediment production of carbonate platforms. A 38m long sediment core (MD992201) was analyzed, obtained from 290m water depth on the leeward margin of Great Bahama Bank. Fourteen Accelerator Mass Spectrometry (AMS) dates determined a core bottom age of 7,230 years BP and permitted the construction of a precise time frame. With a sampling interval of 5cm, a decadal time resolution could be achieved. Sedimentation rates varied between 3 to 14m/kyr. Carbonate content ranges from 96 to almost 100wt%, most of which is aragonite (83-92wt%). High Magnesium Calcite (HMC) makes up the second major fraction with 2-9wt%, while Low Magnesium Calcite occurs with minor percentages (0.5-4wt%). Singular Spectrum Analysis (SSA) of the aragonitic carbonate phase showed two different trends and two primary oscillatory signals. Aragonite production on Great Bahama Bank started at 7,230yr BP when the Holocene sea-level rise flooded the shallow platform top. The first eigenvector captures this long-term trend extending over the entire Mid to Late Holocene succession displaying the Holocene sea-level fluctuations. The second trend indicates millennial scale variations, which can be attributed to a combination of geomagnetic shielding and solar parameters. The two quasi-periodic signals show wavelengths of 400-600 years and approx. 210 years. These oscillations are interpreted in terms of instabilities of the thermohaline circulation and solar parameters, respectively. The oscillatory aragonite signals and oxygen isotope derived temperatures (planktonic foraminifers) agree with northern hemisphere temperature changes (e.g. Medieval Warm Period and Little Ice Age) and the delta-14C record of tree rings (e.g. Oort to Dalton solar minima). This study shows that carbonate platform systems not only respond to sea-level variations but also are precise recorders of

  4. Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century.

    Science.gov (United States)

    van Woesik, R; Golbuu, Y; Roff, G

    2015-07-01

    Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are 'keeping up' with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6-8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially 'keep up' with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low-mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m(-2)), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century.

  5. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    Science.gov (United States)

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  6. Holocene megathermal abrupt environmental changes derived from {sup 14}C dating of a coral reef at Leizhou Peninsula, South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chengde; Yi Weixi E-mail: cdshen@gig.ac.cn; Yu Kefu; Sun Yanmin; Liu Tungsheng; Beer, J.; Hajdas, I.; Bonani, G

    2004-08-01

    A depth profile of a Goniopora coral reef at Leizhou Peninsula, South China Sea, was radiocarbon dated using liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS). The time of formation, during 6600-7400 cal BP, can be divided into nine stages, each terminated by abrupt growth cessation of Goniopora and appearance of Ostrea shells. The results show that, during the Holocene megathermal (8.2-3.3 ka BP), large climatic changes have occurred in the South China Sea area.

  7. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world

    NARCIS (Netherlands)

    Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T; Stocchi, P.; Gómez-Pujolf, L.; Harris, D.L.; Casella, E.; O'Leary, M.J.; Hearty, P.J.

    2016-01-01

    The Last Interglacial (MIS 5e, 128–116 ka) is among the most studied past periods in Earth's history. The climate at that time was warmer than today, primarily due to different orbital conditions, with smaller ice sheets and higher sea-level. Field evidence for MIS 5e sea-level was reported from

  8. Holocene climate changes in eastern Beringia (NW North America) – A systematic review of multi-proxy evidence

    Science.gov (United States)

    Kaufman, Darrell S.; Axford, Yarrow L.; Henderson, Andrew C.G.; McKay, Nicolas P.; Oswald, W. Wyatt; Saenger, Casey; Anderson, R. Scott; Bailey, Hannah L.; Clegg, Benjamin; Gajewski, Konrad; Hu, Feng Sheng; Jones, Miriam C.; Massa, Charly; Routson, Cody C.; Werner, Al; Wooller, Matthew J.; Yu, Zicheng

    2016-01-01

    Reconstructing climates of the past relies on a variety of evidence from a large number of sites to capture the varied features of climate and the spatial heterogeneity of climate change. This review summarizes available information from diverse Holocene paleoenvironmental records across eastern Beringia (Alaska, westernmost Canada and adjacent seas), and it quantifies the primary trends of temperature- and moisture-sensitive records based in part on midges, pollen, and biogeochemical indicators (compiled in the recently published Arctic Holocene database, and updated here to v2.1). The composite time series from these proxy records are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies to clarify multi-centennial- to millennial-scale trends in Holocene climate change. To focus the synthesis, the paleo data are used to frame specific questions that can be addressed with simulations by Earth system models to investigate the causes and dynamics of past and future climate change. This systematic review shows that, during the early Holocene (11.7–8.2 ka; 1 ka = 1000 cal yr BP), rather than a prominent thermal maximum as suggested previously, temperatures were highly variable, at times both higher and lower than present (approximate mid-20th-century average), with no clear spatial pattern. Composited pollen, midge and other proxy records average out the variability and show the overall lowest summer and mean-annual temperatures across the study region during the earliest Holocene, followed by warming over the early Holocene. The sparse data available on early Holocene glaciation show that glaciers in southern Alaska were as extensive then as they were during the late Holocene. Early Holocene lake levels were low in interior Alaska, but moisture indicators show pronounced differences across the region. The highest

  9. Peat in the 'Niayes' of Senegal: depositional environment and Holocene evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lezine, A.-M.; Chateauneuf, J.-J. (Laboratoire de Geologie du Quaternaire, Marseille (France). Faculte des Sciences de Luminy)

    1991-01-01

    The 'Niayes' peat deposits north of Dakar, in Senegal, provide an unusual opportunity to study the continental and littoral detrital environment of the Holocene in West Africa. These organic deposits, that may attain a thickness of 10 m, accumulated in Late Pleistocene interdune basins whose extent and morphology depend closely upon the palaeohydrologic evolution of and the continental model for this zone during the Holocene. The present sub-Canarian climate of this region allows the preservation of an azonal vegetation of Guinean chorological affinity that is evidence of the wider development of now more southerly vegetation during the older Holocene. The nature of the sedimentary facies of these peatfields is closely related to the altitude of the basins of accumulation and the position of the fresh/salt water interface which conditions the recharge of the shallow aquifer. Thus, fresh-water and mangrove-swamp peats exist more or less closely associated according to the site. {sup 14}C age determination gives ages for these deposits between 12000 B.P. and the present, and detailed palynological studies have shown that there were two periods of climatic optimum, one between 9000 and 7000 B.P. and one between 4000 and 2000 B.P. The highly variable rates of sedimentation (0.2-12,5 mm/y for the continental zones and 2 mm/y for the mangrove swamps) are related to the paleotopography of the water-table or to very local fluctuations of sea level. The evolution of the vegetal biomass, evaluated both qualitatively (relative representation of the various vegetation levels) and quantitatively (concentration of pollen per gram of dry sediment) during the course of the Holocene enables reconstruction of the complete climatic and hydrologic history of the region up to dawn of the Present. 38 refs., 5 figs., 1 tab.

  10. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  11. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  12. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland

    DEFF Research Database (Denmark)

    Storms, Joep E.A.; de Winter, Ilja L.; Overeem, Irina

    2012-01-01

    valleys. Based on published and new land- and sea-based geophysical data, radiocarbon dates and geological observations we have characterized the infill and reconstructed the sedimentation history during the Holocene. Based on a revised sea level curve and data presented in this paper we defined three...... depocenters by a flood plain which transferred sediment from the GIS to the Keglen delta. Ongoing sea level fall due to glacio-isostastic uplift combined with a gradually cooler and dryer climate resulted in terrace formation along the Watson River flood plain. Around 4000 yr BP, the GIS margin reached its...... most landward location and began to advance to its present location. The final phase (Phase III; channels...

  13. Beach- ridge internal architecture and use for Holocene sea-level reconstruction: A case study from the Miquelon-Langlade Isthmus (NW Atlantic)

    Science.gov (United States)

    Hein, C. J.; Billy, J.; Robin, N.; FitzGerald, D.; Certain, R.

    2017-12-01

    The internal architecture of beach-ridge systems can provide insight into processes ongoing during its period of formation, such as changing relative sea-level (RSL). The paraglacial beach-ridge plain at Miquelon-Langlade (south of Newfoundland - NW Atlantic) is an example of a well-preserved regressive barrier. Initiation of this plain correlates with a decrease in the rate of RSL rise (from +4.4 mm/yr to 1.3 mm/yr) at around 3000 years ago. The combination of stratigraphic (ground-penetrating radar and sediment cores), topographic (RTK-GPS) and chronologic (optically stimulated luminescence, OSL) data provide a detailed understanding of the constructional history of the plain. The internal architecture of individual beach ridges are characterized by sigmoidal configurations with seaward-dipping (2.3-4.7°) beds. Field mapping data reveal the processes associated with development of individual ridges in relation to sea level elevation. First, wave-built facies (sand-and-gravel) are deposited as beach berms, likely by fair-weather waves, with their elevations controlled by sea level and the swash height of constructive waves. This is followed by the accretion of aeolian sand deposits (foredunes) on the previous relict ridge, and then colonization by pioneer grasses. The well-defined contact between coarse-grained, wave-built facies and overlying aeolian deposits is used to demonstrate the dominant influence of RSL change in the development of the barrier system and, with chronology provided by OSL dating, produce a RSL curve for the 2500-year period of its formation. A net increase of 2.4 m in the surface elevation of wave-built facies is observed across the plain, corresponding to an overall increase in mean sea level through time. Three distinct periods can be distinguished: (1) an increase from 2.4 to 1 m below modern MSL between 2400 and 1500 years (rate: +1.3 mm/yr); (2) relatively stable or slowly rising RSL (<+0.2 mm/yr) from 1400 to 700 years; and (3) a

  14. Paleo sea-level changes and relative sea-level indicators: Precise measurements, indicative meaning and glacial isostatic adjustment perspectives from Mallorca (Western Mediterranean)

    NARCIS (Netherlands)

    Lorscheid, T; Stocchi, P.; Casella, E.; Gómez-Pujolf, L.; Vacchi, M.; Mann, T.; Rovere, A.

    2017-01-01

    Paleo relative sea-level (RSL) indicators formed during the Marine Isotope Stage (MIS) 5e have been reported bya large number of studies worldwide. Despite this, three main aspects are seldom reported: (1) use of high-precisionsurvey techniques applied to MIS 5e RSL indicators; (2) application of

  15. Global change and the measurement of absolute sea-level

    Science.gov (United States)

    Diamante, John M.; Pyle, Thomas E.; Carter, William E.; Scherer, Wolfgang

    To quantify properly the long-term response of sea-level to climate change, land motions must be separated from the apparent or relative sea-level change recorded by conventional tide/sea-level gauges. Here we present a concept for global measurement of the true or “absolute” sea-level change, which combines recent advances in space-based geodetic techniques with plans for a global sea-level network under the World Climate Research Programme (WCRP). Data from initial feasibility tests show that land motion, due to global (plate tectonic), regional (glacial rebound), or local (fluid withdrawal) effects, can probably be measured to ±1cm (on a single measurement basis) by an innovative combination of Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) tevhniques. By making repeated observations of position at a number of tide gauges using portable, economical GPS receivers in a differential mode relative to the fewer, more stable, but more expensive VLBI observatories, it will be possible to subtract land motion from the relative sea-level signal. Decadal to century scale trends at the 1-2mm y -1 level will be resolvable in the sea-level and vertical land motion time series within about a decade. Detection of subsidence or uplift at specific gauges will allow correction for land motion or deletion of bad data when computing regional or global, i.e. eustatic, sea-level changes. In addition to their applications in oceanography and climate studies, such data will test models by Peltier and other that relate mantle viscosity and deglaciation history to present rates of crustal subsidence or uplift. If the predicted crustal motions are confirmed, we can also have more confidence in the use of historical tide/sea-level gauge records in retrospective studies of sea-level change related to climate variability on decadal or longer time scales. It is concluded that as few as one-third (about 100) of the total number of tide/sea-level gauges (250

  16. The Influence of Sediment Isostatic Adjustment on Sea Level Change and Land Motion Along the U.S. Gulf Coast

    Science.gov (United States)

    Kuchar, Joseph; Milne, Glenn; Wolstencroft, Martin; Love, Ryan; Tarasov, Lev; Hijma, Marc

    2018-01-01

    Sea level rise presents a hazard for coastal populations, and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high-quality compaction-free sea level indicator database. Using the optimal model parameters, we show that SIA can lower predicted RSL in the MD area by several meters over the Holocene and so should be taken into account when modeling these data. We compare modeled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7°N, where subsidence rates average about 1 mm/yr; however, subsidence south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of nonisostatic processes. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm/yr. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast Permanent Service for Mean Sea Level tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the MD.

  17. Vulnerability of marginal seas to sea level rise

    Science.gov (United States)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  18. A model of water and sediment balance as determinants of relative sea level rise in contemporary and future deltas

    Science.gov (United States)

    Tessler, Zachary D.; Vörösmarty, Charles J.; Overeem, Irina; Syvitski, James P. M.

    2018-03-01

    Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning and affect the long-term sustainability of these landscapes for human and for natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea level rise across 46 global deltas. We model scenarios of contemporary and future water resource management schemes and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea level rise in delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea level rise result in delta relative sea level rise rates that average 6.8 mm/y. Assessment of impacts of planned and under-construction dams on relative sea level rise rates suggests increases on the order of 1 mm/y in deltas with new upstream construction. Sediment fluxes are estimated to decrease by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Meghna if all currently planned dams are constructed. Reduced sediment retention on deltas caused by increased river channelization and management has a larger impact, increasing relative sea level rise on average by nearly 2 mm/y. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Local and regional strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea level rise.

  19. 3D characterization of Holocene peat in the Netherlands : Implications for coastal-deltaic subsidence

    NARCIS (Netherlands)

    Koster, K.

    2017-01-01

    Human-induced subsidence threatens many coastal-deltaic plains, due to the amplifying effects it has on sea-level rise and flood risk. In the coastal-deltaic plain of the Netherlands, subsidence is primarily caused by the compression and oxidation of Holocene peat. The understanding of subsidence in

  20. Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea)

    International Nuclear Information System (INIS)

    Evelpidou, N.; Karkani, A.; Pirazzoli, P.

    2017-01-01

    In this paper the tectonic behavior of Leukas and Meganisi islands (Ionian Sea) is examined through underwater research carried out in both islands. A possible Late Holocene correlation between coseismic subsidences is attempted and evidenced by submerged tidal notches in both islands. These subsidence events probably occurred after the uplift that affected the northernmost part of Leukas around 4 to 5ka BP. In conclusion, although the whole area was affected by a similar tectonic strain, certain coseismic events were only recorded in one of the two islands and in some cases they affected only part of the study area.

  1. Late Holocene tectonic implications deduced from tidal notches in Leukas and Meganisi islands (Ionian Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Evelpidou, N.; Karkani, A.; Pirazzoli, P.

    2017-11-01

    In this paper the tectonic behavior of Leukas and Meganisi islands (Ionian Sea) is examined through underwater research carried out in both islands. A possible Late Holocene correlation between coseismic subsidences is attempted and evidenced by submerged tidal notches in both islands. These subsidence events probably occurred after the uplift that affected the northernmost part of Leukas around 4 to 5ka BP. In conclusion, although the whole area was affected by a similar tectonic strain, certain coseismic events were only recorded in one of the two islands and in some cases they affected only part of the study area.

  2. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan

    NARCIS (Netherlands)

    Blanchet, C.; Tjallingii, R.; Frank, M.; Lorenzen, J.; Reitz, A.; Brown, K.; Feseker, T.; Brückmann, W.

    2013-01-01

    Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic

  3. Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea

    Science.gov (United States)

    Wolstencroft, Martin; King, Matt A.; Whitehouse, Pippa L.; Bentley, Michael J.; Nield, Grace A.; King, Edward C.; McMillan, Malcolm; Shepherd, Andrew; Barletta, Valentina; Bordoni, Andrea; Riva, Riccardo E. M.; Didova, Olga; Gunter, Brian C.

    2015-10-01

    The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have been accounted for. Comparisons between the GPS data and glacial isostatic adjustment model predictions reveal a substantial misfit. The misfit is localized on the southwestern Weddell Sea, where current ice models under-predict uplift rates by approximately 2 mm yr-1. This under-prediction suggests that either the retreat of the ice sheet grounding line in this region occurred significantly later in the Holocene than currently assumed, or that the region previously hosted more ice than currently assumed. This finding demonstrates the need for further fieldwork to obtain direct constraints on the timing of Holocene grounding line retreat in the southwestern Weddell Sea and that GRACE estimates of ice sheet mass balance will be unreliable in this region until this is resolved.

  4. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  5. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  6. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter

    1991-01-01

    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  7. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    Directory of Open Access Journals (Sweden)

    L. Giosan

    2017-12-01

    Full Text Available Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  8. Short communication: Massive erosion in monsoonal central India linked to late Holocene land cover degradation

    Science.gov (United States)

    Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.

    2017-12-01

    Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.

  9. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  10. High-resolution reconstruction of extreme storm events over the North Sea during the Late Holocene: inferences from aeolian sand influx in coastal mires, Western Denmark.

    Science.gov (United States)

    Goslin, Jerome; Clemmensen, Lars B.

    2017-04-01

    the source of the sand were evaluated by XRF measurements, microscopy observations and grain-size analyses. Precise dating on the events will yield a high-resolution history of the aeolian activity for the region thus providing solid new data that will eventually allow to better understand (i) the links between past aeolian activity, wind climate and relative sea-level and (ii) the patterns of atmospheric circulation over the north-eastern Atlantic region during the Late Holocene. keywords: storminess, aeolian, Holocene

  11. Late-Holocene environment and climatic changes in Ameralik Fjord, southwest Greenland: evidence from the sedimentary record

    DEFF Research Database (Denmark)

    Møller, Henrik S.; Jensen, Karin G.; Kuijpers, Antoon

    2006-01-01

      Sedimentological and geochemical (XRF) data together with information from diatom and benthic foraminifera records of a 3.5 m long gravity core from Ameralik fjord, southern West Greenland, is used for reconstructing late Holocene environmental changes in this area. The changes are linked...... to large-scale North Atlantic ocean and climate variability. AMS 14C-dating of benthic foraminifera indicates that the sediment core covers the last 4400 years and may include the termination of the Holocene Thermal Maximum (HTM). The late HTM (4.4-3.2 ka BP) is characterized by high accumulation rates...... conditions were further characterised by limited sea ice probably related to a mild and relatively windy winter climate. After 3.2 ka BP lower fine-grained sedimentation rates, but a larger input from sea-ice rafted or aeolian coarse material prevailed. This can be related to colder atmospheric conditions...

  12. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Ocean proxy records and numerous other marine and terrestrial paleorecords. Comparison of diatom productivity against a sea-ice inferred reconstruction of the Arctic Oscillation (AO) from the Beaufort Sea (Darby et al., 2012) shows that periods of reduced productivity at Burial Lake coincide with inferred positive phases of the AO (AO+). Combined with modern observations of sea ice extent and meteorological data, we hypothesize that AO + conditions and a strengthened polar jet correspond with a shortened ice-free growing season, a decrease in the availability of limiting nutrients, and lower levels of diatom production at Burial Lake. Comparison of the spectral properties between opal and the AO reconstruction reveal similar millennial scale variations with ∼1500-yr variability during the middle Holocene that transition to ∼1000-yr variability during the late Holocene. In light of these findings, we suggest the possibility that millennial variations in diatom productivity observed in the Burial Lake record are related to millennial variability in high-latitude atmospheric circulation similar to the AO. These results shed light on the sensitivity of aquatic ecosystems in northern Alaska to changes in the duration of the ice-free growing season, the availability of limiting nutrients for phytoplankton growth, and Arctic-wide atmospheric circulation dynamics over the Holocene on millennial timescales.

  13. Continuous record of Holocene sea-level changes and coastal development of the Kattegat island Laeso (4900 years BP to present)

    DEFF Research Database (Denmark)

    Hansen, Jens Morten; Aagaard, Troels; Stockmarr, Jens

    2016-01-01

    in order to transform the ridge elevations to a detailed curve of the RSL/age relation. The curve reveals eight centennial sea-level oscillations of 0.5–1.1 m superimposed on the general trend of the RSL curve, including a Little Ice Age lowstand of 0.6 m at 1300 AD. The island grew from now eroded...

  14. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  15. Holocene Paleoceanographic Environments at the Chukchi-Alaskan Margin: Implications for Future Changes

    Science.gov (United States)

    Polyak, L.; Nam, S. I.; Dipre, G.; Kim, S. Y.; Ortiz, J. D.; Darby, D. A.

    2017-12-01

    The impacts of the North Pacific oceanic and atmospheric system on the Arctic Ocean result in accelerated sea-ice retreat and related changes in hydrography and biota in the western Arctic. Paleoclimatic records from the Pacific sector of the Arctic are key for understanding the long-term history of these interactions. As opposed to stratigraphically long but strongly compressed sediment cores recovered from the deep Arctic Ocean, sediment depocenters on the Chukchi-Alaskan margin yield continuous, medium to high resolution records formed since the last deglaciation. While early Holocene conditions were non-analogous to modern environments due to the effects of prolonged deglaciation and insufficiently high sea levels, mid to late Holocene sediments are more relevant for recent and modern climate variability. Notably, a large depocenter at the Alaskan margin has sedimentation rates estimated as high as a few millimeters per year, thus providing a decadal to near-annual resolution. This high accumulation can be explained by sediment delivery via the Alaskan Coastal Current originating from the Bering Sea and supposedly controlled by the Aleutian Low pressure center. Preliminary results from sediment cores recovering the last several centuries, along with a comparison with other paleoclimatic proxy records from the Arctic-North Pacific region, indicate a persistent role of the Aleutian Low in the Bering Strait inflow and attendant deposition. More proxy studies are underway to reconstruct the history of this circulation system and its relationship with sea ice extent. The expected results will improve our understanding of natural variability in oceanic and atmospheric conditions at the Chukchi-Alaskan margin, a critical area for modulating the Arctic climate change.

  16. Age accuracy and resolution of Quaternary corals used as proxies for sea level

    Science.gov (United States)

    Edinger, E. N.; Burr, G. S.; Pandolfi, J. M.; Ortiz, J. C.

    2007-01-01

    The accuracy of global eustatic sea level curves measured from raised Quaternary reefs, using radiometric ages of corals at known heights, may be limited by time-averaging, which affects the variation in coral age at a given height. Time-averaging was assessed in uplifted Holocene reef sequences from the Huon Peninsula, Papua New Guinea, using radiocarbon dating of coral skeletons in both horizontal transects and vertical sequences. Calibrated 2σ age ranges varied from 800 to 1060 years along horizontal transects, but weighted mean ages calculated from 15-18 dates per horizon were accurate to a resolution within 154-214 yr. Approximately 40% of the variability in age estimate resulted from internal variability inherent to 14C estimates, and 60% was due to time-averaging. The accuracy of age estimates of sea level change in studies using single dated corals as proxies for sea level is probably within 1000 yr of actual age, but can be resolved to ≤ 250 yr if supported by dates from analysis of a statistical population of corals at each stratigraphic interval. The range of time-averaging among reef corals was much less than that for shelly benthos. Ecological time-averaging dominated over sedimentological time averaging for reef corals, opposite to patterns reported from shelly benthos in siliciclastic environments.

  17. The response of the southern Greenland ice sheet to the Holocene thermal maximum

    DEFF Research Database (Denmark)

    Larsen, Nicolaj Krog; Kjaer, Kurt H.; Lecavalier, Benoit

    2015-01-01

    contribution of 0.16 m sea-level equivalent from the entire Greenland ice sheet, with a centennial ice loss rate of as much as 100 Gt/yr for several millennia during the Holocene thermal maximum. Our results provide an estimate of the long-term rates of volume loss that can be expected in the future...

  18. Coastal lagoon sediments as a recorder of Holocene landscape evolution and sea-level development: Samsø, southern Kattegat Sea, Denmark

    DEFF Research Database (Denmark)

    Sander, Lasse; Fruergaard, Mikkel; Johannessen, Peter N.

    on the fine-grained (lagoonal) sections of the cores. Age control was facilitated using radiocarbon and optically stimulated luminescence dating. Our data produced a surprisingly consistent pattern for the sedimentary successions found in the lagoons. The initial transgression can be identified along...... with the onset of deposition of fine-grained, organic-rich lagoonal sediments. The subsequent truncation and partial erosion of the lagoon sediments can be related to a decreasing sea-level. Based on these findings, we suggest a conceptual model that allows inferring age and elevation of transgressive...... and regressive stages from the lagoon sediments. Indication of geomorphological developments occurring in proximity to the lagoons (barrier formation, overwashing, dune formation) is further recorded in the deposits. These data can be used to support the proposed reconstruction of Samsø’s landscape evolution...

  19. Accretion history and stratigraphy of mid-Holocene coral reefs from Southeast Florida, USA

    Science.gov (United States)

    Stathakopoulos, A.; Riegl, B. M.; Swart, P. K.

    2013-05-01

    The southeast Florida shelf is a well-studied coral reef region previously used in studies of late Quaternary sea-level, reef geomorphology, and paleoecology in the sub-tropical Atlantic. Situated on the shelf is the southeast Florida continental reef tract; a ~125 km long Holocene fringing/barrier coral reef complex, composed of three shore-parallel linear reefs ('outer', 'middle', and 'inner' reefs) of varying age. Since few detailed stratigraphic descriptions exist, drill cores were extracted to further understand the composition, character, and radiometric ages of reef material in order to reconstruct the accretion history. Sixteen reef cores from the shallow inner reef were collected along and across the reef axes and were combined with lidar bathymetric data for stratigraphic and geomorphologic analyses. Macroscopic and microscopic (petrographic thin sections) examinations of reef clasts were performed to identify coral and reef infauna species compositions, diagenetic facies, and taphonomic features for interpretation of former reef environments/zonation. The southeast Florida continental reef tract was characterized by dynamic reef terminations, backstepping, and re-initiation in response to post-glacial sea-level rise and flooding of topography suitable for reef initiation and growth. Results suggest that the outer reef accreted from ~10.6-8.0 ka cal BP, the middle reef from at least ~5.8-3.7 ka cal BP, and the inner reef from ~7.8-5.5 ka cal BP. The outer reef is the best-developed reef, followed by the inner reef, while the middle reef apparently has relatively little framework buildup. New data from this study and a lack of significant age overlaps confirm that reef backstepping from the outer to the inner reef occurred within a few hundred years after outer reef termination. This is consistent with temporal and spatial scales reported from backstepped reefs in St. Croix and Puerto Rico. The cause of the backstep is still unknown however some studies

  20. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Science.gov (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G

    2016-01-01

    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land

  1. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available Holocene sequences in the humid tropical region of Kerala, South-western (SW India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The

  2. The interaction of prehistoric human settlement, sea level change and tectonic uplift of the Coastal Range, eastern Taiwan

    Science.gov (United States)

    Yang, H.; Chen, W. S.

    2017-12-01

    The late Cenozoic mountain belt of Taiwan, resulting from the collision between the Eurasian and Philippine Sea plates, is known for its rapid tectonic uplift. As postglacial sea level rose ca. 15,000 yr ago, the eastern coast of Taiwan, due to the rapid tectonic uplift rate, displayed a totally different scenario comparing with most of the coastal plains around the world. At the beginning of postglacial era, the sea level rising rate was greater than the tectonic uplift rate which induced the original piedmont alluvial fan or coastal plain to be overwhelmed by sea water rapidly. Around 13.5 ka, the tectonic uplift rate caught up with the sea level rising and broad wave-cut platform formed. The approximation of tectonic uplift and sea level rising rates was lasting from 13.5 to 5ka, but shoreline progradation may have been enhanced by increased slope erosion which resulted in the alluvial fan forming at the later time of this period. As soon as the eustasy stabilized, the landmass continued to uplift which might have enhanced the river incising and wave erosion rapidly. Therefore the topographic expression along the eastern fringing of Coastal Range forms extended alluvial-fan, stream, and marine terraces and are covered by late Holocene colluvium and marine deposits. 88 archaeological sites were chosen in this study based on surface survey where the archaeological chronology of cultural stage is established primarily through examining pottery series and associated manual excavation. It is interesting that most of the archaeological sites were located on the alluvial fan although the Holocene marine terraces have formed after 5ka. There are no clear evidences to support a shore-oriented settlement, but the abundant alluvial depositional structures observed from the overlaying formation reveals the stream depositional system was still active at this time. If the Neolithic people wanted to come to the "new born" coastal region for the abundant ocean resources, they

  3. The 3.6 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea

    Science.gov (United States)

    Pearce, Christof; Varhelyi, Aron; Wastegård, Stefan; Muschitiello, Francesco; Barrientos, Natalia; O'Regan, Matt; Cronin, Thomas M.; Gemery, Laura; Semiletov, Igor; Backman, Jan; Jakobsson, Martin

    2017-04-01

    The caldera-forming eruption of the Aniakchak volcano in the Aleutian Range on the Alaskan Peninsula at 3.6 cal kyr BP was one of the largest Holocene eruptions worldwide. The resulting ash is found as a visible sediment layer in several Alaskan sites and as a cryptotephra on Newfoundland and Greenland. This large geographic distribution, combined with the fact that the eruption is relatively well constrained in time using radiocarbon dating of lake sediments and annual layer counts in ice cores, makes it an excellent stratigraphic marker for dating and correlating mid-late Holocene sediment and paleoclimate records. This study presents the outcome of a targeted search for the Aniakchak tephra in a marine sediment core from the Arctic Ocean, namely Core SWERUS-L2-2-PC1 (2PC), raised from 57 m water depth in Herald Canyon, western Chukchi Sea. High concentrations of tephra shards, with a geochemical signature matching that of Aniakchak ash, were observed across a more than 1.5 m long sediment sequence. Since the primary input of volcanic ash is through atmospheric transport, and assuming that bioturbation can account for mixing up to ca. 10 cm of the marine sediment deposited at the coring site, the broad signal is interpreted as sustained reworking at the sediment source input. The isochron is therefore placed at the base of the sudden increase in tephra concentrations rather than at the maximum concentration. This interpretation of major reworking is strengthened by analysis of grain size distribution which points to ice rafting as an important secondary transport mechanism of volcanic ash. Combined with radiocarbon dates on mollusks in the same sediment core, the volcanic marker is used to calculate a marine radiocarbon reservoir age offset ΔR = 477 ± 60 years. This relatively high value may be explained by the major influence of typically carbon-old Pacific waters, and it agrees well with recent estimates of ΔR along the northwest Alaskan coast, possibly

  4. Causes for contemporary regional sea level changes.

    Science.gov (United States)

    Stammer, Detlef; Cazenave, Anny; Ponte, Rui M; Tamisiea, Mark E

    2013-01-01

    Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.

  5. Reconstructing Common Era relative sea-level change on the Gulf Coast of Florida

    Science.gov (United States)

    Gerlach, Matthew J.; Engelhart, Simon E.; Kemp, Andrew C.; Moyer, Ryan P.; Smoak, Joseph M.; Bernhardt, Christopher E.; Cahill, Niamh

    2017-01-01

    To address a paucity of Common Era data in the Gulf of Mexico, we reconstructed ~ 1.1 m of relative sea-level (RSL) rise over the past ~ 2000 years at Little Manatee River (Gulf Coast of Florida, USA). We applied a regional-scale foraminiferal transfer function to fossil assemblages preserved in a core of salt-marsh peat and organic silt that was dated using radiocarbon and recognition of pollution, 137Cs and pollen chronohorizons. Our proxy reconstruction was combined with tide-gauge data from four nearby sites spanning 1913–2014 CE. Application of an Errors-in-Variables Integrated Gaussian Process (EIV-IGP) model to the combined proxy and instrumental dataset demonstrates that RSL fell from ~ 350 to 100 BCE, before rising continuously to present. This initial RSL fall was likely the result of local-scale processes (e.g., silting up of a tidal flat or shallow sub-tidal shoal) as salt-marsh development at the site began. Since ~ 0 CE, we consider the reconstruction to be representative of regional-scale RSL trends. We removed a linear rate of 0.3 mm/yr from the RSL record using the EIV-IGP model to estimate climate-driven sea-level trends and to facilitate comparison among sites. This analysis demonstrates that since ~ 0 CE sea level did not deviate significantly from zero until accelerating continuously from ~ 1500 CE to present. Sea level was rising at 1.33 mm/yr in 1900 CE and accelerated until 2014 CE when a rate of 2.02 mm/yr was attained, which is the fastest, century-scale trend in the ~ 2000-year record. Comparison to existing reconstructions from the Gulf coast of Louisiana and the Atlantic coast of northern Florida reveal similar sea-level histories at all three sites. We explored the influence of compaction and fluvial processes on our reconstruction and concluded that compaction was likely insignificant. Fluvial processes were also likely insignificant, but further proxy evidence is needed to fully test this hypothesis. Our results

  6. Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change

    Directory of Open Access Journals (Sweden)

    Maribeth S. Murray

    2015-02-01

    Full Text Available Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg and 13C/15N ratios in the bone collagen of archaeologically recovered Pacific Cod (Gadus macrocephalus bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers.

  7. Sea level rise and the geoid: factor analysis approach

    OpenAIRE

    Song, Hongzhi; Sadovski, Alexey; Jeffress, Gary

    2013-01-01

    Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical...

  8. Looking Back to the Future: Insight on Anthropocene beaches from Holocene and Pleistocene barriers

    Science.gov (United States)

    Dougherty, A. J.; Choi, J. H.; Turney, C. S.; Dosseto, A.

    2017-12-01

    `Super' storms and accelerated rates of sea-level rise are forecast in the Anthropocene, but how coasts will respond (or even if they have started to be impacted) remain uncertain. The onset of this new anthropogenic age is considered mid-1900s when multiple indices including sea level exceed previous Holocene measurements. Centuries of sea surface elevation data, used to project an increase of up to 2m by 2100, show that the current rise started 200 years ago. Similar records of storms or shoreline evolution over these centennial time-scales do not exist. With empirical studies of coastal morphodynamics concentrated during decades of accelerated sea-level rise, present-day beaches can be considered Anthropocene features. To determine the future of vulnerable sandy shorelines, climate change scenarios of increased sea level and storm intensity have been combined with computer models integrating short-term process data with large-scale coastal evolution. The uncertainty in these models can be reduced with longer sea level and storm records as well as filling the gap between detailed beach profile/wave buoy data and generalized barrier stratigraphy. High-resolution chronostratigraphic models necessary to achieve this can be constructed using Light Detection And Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL). Combined GPR, OSL and LiDAR (GOaL) on prograded barriers enables analysis of shorelines back through time, by comparing behaviour since the onset of anthropogenic global warming to that in the preceding millennia. Extracting a record of coastal evolution prior to and since seas began to rise two centuries ago offers the opportunity to detect any difference indicating if/how shorelines have responded. In double barrier systems with composite Holocene and Pleistocene components GOaL can extend the Anthropocene record back to when seas were known to have been higher than today. To demonstrate the potential of GOaL, data

  9. Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes, North Carolina, USA

    Science.gov (United States)

    Mallinson, D.; Burdette, K.; Mahan, S.; Brook, G.

    2008-01-01

    Luminescence ages from a variety of coastal features on the North Carolina Coastal Plain provide age control for shoreline formation and relative sea-level position during the late Pleistocene. A series of paleoshoreline ridges, dating to Marine Isotope Stage (MIS) 5a and MIS 3 have been defined. The Kitty Hawk beach ridges, on the modern Outer Banks, yield ages of 3 to 2??ka. Oxygen-isotope data are used to place these deposits in the context of global climate and sea-level change. The occurrence of MIS 5a and MIS 3 shorelines suggests that glacio-isostatic adjustment (GIA) of the study area is large (ca. 22 to 26??m), as suggested and modeled by other workers, and/or MIS 3 sea level was briefly higher than suggested by some coral reef studies. Correcting the shoreline elevations for GIA brings their elevation in line with other sea-level indicators. The age of the Kitty Hawk beach ridges places the Holocene shoreline well west of its present location at ca. 3 to 2??ka. The age of shoreline progradation is consistent with the ages of other beach ridge complexes in the southeast USA, suggesting some regionally contemporaneous forcing mechanism. ?? 2007 University of Washington.

  10. Geologic records of Pleistocene, Holocene and Anthropocene beach profiles?

    Science.gov (United States)

    Dougherty, Amy; Choi, Jeong-Heon; Dosseto, Anthony

    2017-04-01

    The Anthropocene Working Group recently concluded that we have entered a new Epoch; starting during the last century when carbon dioxide, temperatures, and sea level all exceeding previous Holocene measurements. Climate change models predict a 1m rise in sea-level by 2100 coupled with increased storm intensity. Determining how vulnerable coasts will respond to global warming in the future, requires past records of sea-level and storm impacts to be deciphered. Paying specific attention to any changes prior to, and since, the onset of the Industrial Revolution. Coastal change over centennial time-scales has long fallen within a knowledge gap that exists between our understanding of shoreline behaviour measured over decades and that inferred from the landscape over millennia. Insight on shoreline behaviour across spatial and temporal scales is gained using computers to integrate models of short-term morphodynamics along beaches with longer-term coastal landscape evolution models. However, limitations exist as process-based engineering models depend on wave climate and beach profile data that is restricted to regional/historical records, while large-scale coastal behaviour models are based on general chronostratographic data from topographic profiles, interpolated cores, and isochrons extrapolated from deep radiocarbon ages. Here we demonstrate a unique methodology combining state-of-the-art geophysics, luminescence, and remote sensing techniques on prograded barriers to extract comprehensive chronostratigraphic records. Ground Penetrating Radar (GPR) data document beach and dune stratigraphy at decimetre resolution. Optically Stimulated Luminescence (OSL) directly date the formation of paleo-beachfaces and dunes. Light Detection and Ranging (LiDAR) image the lateral extent of strandplain ridge morphology. The resulting record of paleo-beach profiles spanning from the present-day beach through Holocene and Pleistocene barriers, enables our in-depth understanding of

  11. Calcite raft geochemistry as a hydrological proxy for Holocene aquifer conditions in Hoyo Negro and Ich Balam (Sac Actun Cave System), Quintana Roo, Mexico

    Science.gov (United States)

    Kovacs, Shawn E.; Reinhardt, Eduard G.; Chatters, James C.; Rissolo, Dominique; Schwarcz, Henry P.; Collins, Shawn V.; Kim, Sang-Tae; Nava Blank, Alberto; Luna Erreguerena, Pilar

    2017-11-01

    Two cores from calcite rafts deposits located in Cenote Ich Balam and Hoyo Negro were dated and analyzed for 87Sr/86Sr, δ18O, δ13C, Sr/Ca and Cl/Ca. The geochemical records show changing aquifer salinity spanning the last ∼ 8.5 cal kyrs BP and interrelationships with Holocene climate trends (wet and dry periods). During the wet mid-Holocene, the salinity of the meteoric Water Mass (WM; at 7.8-8.3 cal kyrs BP) was relatively high at 1.5-2.7 ppt and then became less saline (1.0-1.5 ppt) during the last ∼ 7000 yrs as climate became progressively drier. High salinity of the meteoric WM during the wet mid-Holocene is attributed to increased turbulent mixing between the meteoric and underlying marine WM. Increased precipitation, in terms of amount, frequency, and intensity (e.g. hurricanes) causes higher flow of meteoric water towards the coast and mixing at the halocline, a phenomenon recorded with recent instrumental monitoring of the aquifer. Conversely, during dry periods reduced precipitation and flow in the meteoric WM would result in lower salinity. Karst properties and Holocene sea-level rise also seem to have an effect on the aquifer. When the regionally extensive network of shallow cave passages (∼ 10-12 m water depth) are flooded at ∼ 8000 cal yrs BP, there is a rapid shift in salinity. This study demonstrates that calcite raft deposits can be used as paleo-environmental recorders documenting the effects of sea level and climate change on aquifer condition.

  12. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  13. Reconstructing Holocene shore displacement and Stone Age palaeogeography from a foredune sequence on Ruhnu Island, Gulf of Riga, Baltic Sea

    Science.gov (United States)

    Muru, Merle; Rosentau, Alar; Preusser, Frank; Plado, Jüri; Sibul, Ivo; Jõeleht, Argo; Bjursäter, Stefan; Aunap, Raivo; Kriiska, Aivar

    2018-02-01

    Holocene shore displacement and the palaeogeography of Late Mesolithic and Late Neolithic settlements on Ruhnu Island, Gulf of Riga, were reconstructed using foredune sequence luminescence dating, sedimentological data supported by ground-penetrating radar analysis, and GIS-based landscape modelling. The foredune ridges consist of very well to well sorted fine- to medium-grained aeolian sand and are underlain by seaward dipping foreshore sediments. The studied sequence of 38 ridges was formed between 6.91 ± 0.58 ka and 2.54 ± 0.19 ka ago, and represents a period of falling relative sea level. Foredune plain progradation, with average rates of 0.3-0.6 m per year, was controlled by isostatic land uplift, which caused a continuous withdrawal of shorelines to lower elevations. The dated foredune succession was used to reconstruct the coastal palaeogeography of the island. Palaeogeographical reconstructions show that during two phases of Late Mesolithic habitation, at ca. 7.2 cal. ka BP and 6.2 cal. ka BP, seal hunters settled the coastal zone of Ruhnu Island. Based on tool material and pottery type they could have originated from Saaremaa Island, which according to palaeoreconstruction of the Gulf of Riga, was located approximately 70 km northwest of Ruhnu Island during the Late Mesolithic. Later signs of human occupation, radiocarbon dated to ca. 4.7 cal. ka BP, were from the centre of the island, hundreds of metres away from the shore at about 8 m above its contemporary sea level. This Late Neolithic habitation shows a clearly different pattern than earlier coastal settlement, and suggests a shift in subsistence strategy towards agriculture and animal husbandry.

  14. Response of the Apodi-Mossoró estuary-incised valley system (NE Brazil to sea-level fluctuations

    Directory of Open Access Journals (Sweden)

    Helenice Vital

    2010-01-01

    Full Text Available This study focuses on the Quaternary sea level changes in the Apodi-Mossoró Estuary and adjacent shelf, Northeastern Brazil, based on the analysis of high-resolution seismic profiles, integrated with echosounder, SRTM and satellite image data. We use these data to develop a relative stratigraphy. An incised-valley extending from the Apodi-Mossoró Estuary onto the shelf dominates the investigated area. In very shallow waters (down to 10 m depth the channel lies mainly in a NW-SE direction, changing to NE-SW in waters below10 m, in the form of a J-shaped valley. The southern flank of the shallow channel presents an abrupt morphology, probably determined by a residual scarp due to neotectonic reactivation of a pre-existing fault. This incised-valley can be correlated with a former river valley formed during the late Pleistocene fall in sea-level. The base-level change related to this drop in sea level can be regionally expressed on seismic lines as a laterally-continuous stratigraphic surface named Horizon I, interpreted as representing the sub-aerial exposure of the continental shelf. Many incised valleys were excavated on this exposed shelf, including that of the Apodi-Mossoró Estuary and its incised valley system. This incised valley has lain buried since the Holocene transgression. The Holocene sediments present sub-horizontal layers, or they have filled the incised valley with oblique features.Este estudo utiliza a integração de dados sísmicos de alta resolução, batimétricos, SRTM e imagens de satélite para desenvolvimento da estratigrafia relativa visando entender as variações do nível do mar durante o Quaternário no estuário do rio Apodi-Mossoró e plataforma adjacente, nordeste do Brasil. A principal feição identificada foi um canal submerso, na plataforma interna, parcialmente preenchido, provavelmente relacionado com o sistema de vales incisos formado durante o rebaixamento do nível do mar no Pleistoceno. O canal

  15. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    Directory of Open Access Journals (Sweden)

    Bâki Iz H.

    2017-02-01

    Full Text Available This study demonstrates that relative sea level trends calculated from long-term tide gauge records can be used to estimate relative vertical crustal velocities in a region with high accuracy. A comparison of the weighted averages of the relative sea level trends estimated at six tide gauge stations in two clusters along the Eastern coast of United States, in Florida and in Maryland, reveals a statistically significant regional vertical crustal motion of Maryland with respect to Florida with a subsidence rate of −1.15±0.15 mm/yr identified predominantly due to the ongoing glacial isostatic adjustment process. The estimate is a consilience value to validate vertical crustal velocities calculated from GPS time series as well as towards constraining predictive GIA models in these regions.

  16. Sea level rise and the geoid: factor analysis approach

    Directory of Open Access Journals (Sweden)

    Alexey Sadovski

    2013-08-01

    Full Text Available Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical approach by using factor analysis of regional sea level rates of change. Unlike physical models and semi-empirical models that attempt to approach how much and how fast sea levels are changing, this methodology allows for a discussion of the factor(s that statistically affects sea level rates of change, and seeks patterns to explain spatial correlations.

  17. The global coastline dataset: the observed relation between erosion and sea-level rise

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Luijendijk, A.; Hagenaars, G.

    2017-12-01

    Erosion of sandy coasts is considered one of the key risks of sea-level rise. Because sandy coastlines of the world are often highly populated, erosive coastline trends result in risk to populations and infrastructure. Most of our understanding of the relation between sea-level rise and coastal erosion is based on local or regional observations and generalizations of numerical and physical experiments. Until recently there was no reliable global scale assessment of the location of sandy coasts and their rate of erosion and accretion. Here we present the global coastline dataset that covers erosion indicators on a local scale with global coverage. The dataset uses our global coastline transects grid defined with an alongshore spacing of 250 m and a cross shore length extending 1 km seaward and 1 km landward. This grid matches up with pre-existing local grids where available. We present the latest results on validation of coastal-erosion trends (based on optical satellites) and classification of sandy versus non-sandy coasts. We show the relation between sea-level rise (based both on tide-gauges and multi-mission satellite altimetry) and observed erosion trends over the last decades, taking into account broken-coastline trends (for example due to nourishments).An interactive web application presents the publicly-accessible results using a backend based on Google Earth Engine. It allows both researchers and stakeholders to use objective estimates of coastline trends, particularly when authoritative sources are not available.

  18. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson

    2013-09-01

    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  19. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    Science.gov (United States)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo; Bennike, Ole; Hübscher, Christian; Clausen, Ole Rønø

    2017-12-01

    High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels in the period 10.3-9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea-level rise. The estuary existed simultaneously with the occurrence and drainage of the Ancylus Lake. The drainage of this lake occurred through the Dana River (palaeo-Great Belt channel) into the southern Kattegat and then into the study area. The level of the Ancylus Lake in the Baltic Sea region dropped significantly at about 10.2 cal. ka BP at the same time as the estuary developed in the Kattegat region. One outcome of the present study is an enhanced understanding of the Ancylus Lake drainage path. No evidence of major erosion is seen, which indicates non-catastrophic continuous water flow from the south without major drainage events of the Ancylus Lake to the southern Kattegat. During the Littorina transgression, coastal estuarine conditions characterized the Hesselø Bay area where elongated ridges formed a bar system. As the Littorina transgression continued, back-stepping of the bar system and coastline occurred. When the transgression breached the Great Belt threshold, flooding caused major erosion throughout the study area.

  20. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    Science.gov (United States)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  1. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    Science.gov (United States)

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical

  2. Holocene climate and fjord glaciations in Northeast Greenland: implications for IRD deposition in the North Atlantic

    DEFF Research Database (Denmark)

    Reeh, Niels

    2004-01-01

    been released by intensive sub-glacial melting during the long stay of the ice-islands in coastal waters. The Holocene glacial geological record from Northeast Greenland is compared to the record of ice rafted debris (IRD) from North Atlantic deep-sea sediment cores. The comparison shows that transport...... by icebergs in the form of basal debris is unlikely to be the dominant transport mechanism of IRD to deposition sites in the North Atlantic during the Holocene. The ice rafted debris is more likely to be carried at the surface of sea- (or glacier) ice. This supports the result of previous studies by other...... workers that changes of atmospheric and ocean-surface circulation and temperature are the likely causes of Holocene cycles in IRD concentration in North Atlantic deep-sea sediments....

  3. Present-day sea level rise: a synthesis

    International Nuclear Information System (INIS)

    Cazenave, A.; Llovel, W.; Lombard, A.

    2008-01-01

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  4. Continuous sea-level reconstructions beyond the Pleistocene: improving the Mediterranean sea-level method

    Science.gov (United States)

    Grant, K.; Rohling, E. J.; Amies, J.

    2017-12-01

    Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.

  5. The social values at risk from sea-level rise

    International Nuclear Information System (INIS)

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-01-01

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies

  6. The social values at risk from sea-level rise

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Barnett, Jon, E-mail: jbarn@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Hurlimann, Anna, E-mail: anna.hurlimann@unimelb.edu.au [Faculty of Architecture, Building and Planning, The University of Melbourne, Architecture and Planning Building, Parkville, Victoria 3010 (Australia); Mortreux, Colette, E-mail: colettem@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Waters, Elissa, E-mail: elissa.waters@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia)

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  7. A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability

    Directory of Open Access Journals (Sweden)

    J. Frigola

    2012-06-01

    Full Text Available Borehole PRGL1-4 drilled in the upper slope of the Gulf of Lion provides an exceptional record to investigate the impact of late Pleistocene orbitally-driven glacio-eustatic sea-level oscillations on the sedimentary outbuilding of a river fed continental margin. High-resolution grain-size and geochemical records supported by oxygen isotope chronostratigraphy allow reinterpreting the last 500 ka upper slope seismostratigraphy of the Gulf of Lion. Five main sequences, stacked during the sea-level lowering phases of the last five glacial-interglacial 100-kyr cycles, form the upper stratigraphic outbuilding of the continental margin. The high sensitivity of the grain-size record down the borehole to sea-level oscillations can be explained by the great width of the Gulf of Lion continental shelf. Sea level driven changes in accommodation space over the shelf cyclically modified the depositional mode of the entire margin. PRGL1-4 data also illustrate the imprint of sea-level oscillations at millennial time-scale, as shown for Marine Isotopic Stage 3, and provide unambiguous evidence of relative high sea-levels at the onset of each Dansgaard-Oeschger Greenland warm interstadial. The PRGL1-4 grain-size record represents the first evidence for a one-to-one coupling of millennial time-scale sea-level oscillations associated with each Dansgaard-Oeschger cycle.

  8. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  9. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  10. Sea level rise and variability around Peninsular Malaysia

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  11. Potential of sea level rise impact on South China Sea: a preliminary ...

    African Journals Online (AJOL)

    The effect of the sea level rise was involved the existence of sea water intrusion and coastal erosion phenomenon in the coastal of Terengganu. This study aim to determine fluctuation of high and low tides of the South China Sea in their relation to water quality value of Marang and Paka Rivers as well as from wells ...

  12. Holocene deltaic succession recording millennium-scale subsidence trend near the source region of the 2011 Tohoku-oki earthquake: An example from the Tsugaruishi plain, northeast Japan

    Science.gov (United States)

    Niwa, Y.; Sugai, T.; Matsushima, Y.; Toda, S.

    2017-12-01

    For clarification of megathrust earthquake cycle with recurrence interval of several hundreds to about a thousand years, crustal movement trend on a timescale of 103-104 years can be basic and important data. Well-dated Holocene sedimentary succession provides useful information for estimation of crustal movement trend on a timescale of 103 - 104 years. Here we collected three sediment cores, TGI1, TGI2, and TGI3, from the Tsugaruishi delta plain on the central Sanriku coast, which is near the source region of the 2011 Tohoku-oki earthquake and where discrepancies in crustal movement have been reported between uplift on a timescale of 105 years inferred from marine terrace versus subsidence on a timescale of 101-102 years from geodetic measurement. We recognized a Holocene deltaic succession in all three cores; basal gravel of alluvium, floodplain sand and mud, inner bay mud, prodelta delta front sand and mud, and fluvial sand and gravel, from lower to upper. In core TGI3, from the farthest inland site, the intertidal sediment facies, deposited from 7500 to 7000 cal BP, and the overlying 6-m-thick delta to floodplain facies, deposited from 7000 to 5000 cal BP, are both below the present sea level. Because a sea-level highstand due to hydroisostatic uplift around Japan occurred in the mid-Holocene, we inferred that the Tsugaruishi plain subsided during the Holocene, and the estimated subsidence rate, 1.1-1.9 mm/yr at maximum, is consistent with the recently reported subsidence rate along the southern Sanriku coast. The results of this study confirm that the central to southern Sanriku coast is subsiding, in contrast to an interpretation based on the study of marine terraces that this part of the coast is uplifting. The Holocene deltaic succession presented here will be useful for constructing an earthquake cycle model related to plate subduction.

  13. Sea level ~400 000 years ago (MIS 11: analogue for present and future sea-level?

    Directory of Open Access Journals (Sweden)

    D. Q. Bowen

    2010-01-01

    Full Text Available Comparison of the sea-level today with that of 400 000 years ago (MIS 11, when the Earth's orbital characteristics were similar may provide, under conditions of natural variability, indications of future sea-level during the present interglacial. Then, as now, orbital eccentricity was low and precession dampened. Evidence for MIS 11 sea-level occurs on uplifting coastlines where shorelines with geochronological ages have been preserved. The sea-level term and the uplift term may be separated with an "uplift correction" formula. This discovers the original sea-level at which the now uplifted shoreline was fashioned. Estimates are based on average uplift rates of the "last interglacial" sea-level (MIS 5.5 using a range of estimates for sea-level and age at that time at different locations. These, with varying secular tectonic regimes in different ocean basins, provide a band of estimates for the MIS 11 sea-level. They do not support the hypothesis of an MIS 11 sea-level at ~20 m, and instead show that it was closer to its present level.

  14. Assessing risk of navigational hazard from sea-level-related datum in the South West of Java Sea, Indonesia

    Science.gov (United States)

    Poerbandono

    2017-07-01

    This paper assesses the presence of navigational hazards due to underestimation of charted depths originated from an establishment of a sea-level-related reference plane, i.e. datum. The study domain is situated in one of Indonesia's densest marine traffic, SW Java Sea, Indonesia. The assessment is based on the comparison of the authorized Chart Datum (CD), being uniformly located at 0.6 m below Mean Sea Level (MSL), and a spatially varying Lowest Astronomical Tide (LAT) generated for the purpose of this research. Hazards are considered here as the deviation of LAT from CD and quantified as the ratio of LAT -CD deviation with respect to the allowable Total Vertical Uncertainty (TVU), i.e. the international standard for accuracy of depth information on nautical charts. Underestimation of charted depth is expected for the case that LAT falls below CD. Such a risk magnifies with decreasing depths, as well as the increasing volume of traffic and draught of the vessel. It is found that most of the domain is in the interior of risk-free zone from using uniform CD. As much as 0.08 and 0.19 parts of the area are in zones where the uncertainty of CD contributes respectively to 50% and 30% of Total Vertical Uncertainty. These are zones where the hazard of navigation is expected to increase due to underestimated lowest tidal level.

  15. The Holocene History of Placentia Bay, Newfoundland

    DEFF Research Database (Denmark)

    Sheldon, Christina; Seidenkrantz, Marit-Solveig; Reynisson, Njall

    2013-01-01

    Marine sediments analyzed from cores taken in Placentia Bay, Newfoundland, located in the Labrador Sea, captured oceanographic and climatic changes from the end of the Younger Dryas through the Holocene. Placentia Bay is an ideal site to capture changes in both the south-flowing Labrador Current ...

  16. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  17. Geochemical characteristics of Holocene laminated sapropel (unit II) and underlying lacustrine unit III in the Black Sea

    Science.gov (United States)

    Dean, Walter E.; Arthur, Michael A.

    2011-01-01

    eg 1 of the 1988 R/V Knorr expeditions to the Black Sea recovered 90 gravity and box cores. The longest recovery by gravity cores was about 3 meters, with an average of about 2.5 meters, recovering all of the Holocene and upper Pleistocene sections in the Black Sea. During the latest Pleistocene glaciation, sea level dropped below the 35-meters-deep Bosporus outlet sill of the Black Sea. Therefore throughout most of its history the Black Sea was a lake, and most of its sediments are lacustrine. The oldest sediments recovered (older than 8,000 calendar years) consist of massive to coarsely banded lacustrine calcareous clay designated as lithologic Unit III, generally containing less than 1 percent organic carbon (OC). The base of overlying Unit II marks the first incursion of Mediterranean seawater into the Black Sea, and the onset of bottom-water anoxia about 7,900 calendar years. Unit II contains as much as 15 percent OC in cores from the deepest part of the Black Sea (2,200 meters). The calcium carbonate (CaCO3) remains of the coccolith Emiliania huxleyi form the distinctive white laminae of overlying Unit I. The composition of Unit III and Unit II sediments are quite different, reflecting different terrigenous clastic sources and increased contributions from hydrogenous and biogenic components in anoxic Unit II sapropel. In Unit II, positive covariance between OC and three trace elements commonly concentrated in OC-rich sediments where sulfate reduction has occurred (molybdenum, nickel, and vanadium) and a nutrient (phosphorus) suggest a large marine source for these elements although nickel and vanadium also have a large terrigenous clastic source. The marine sources may be biogenic or hydrogenous. A large biogenic source is also suggested for copper and cobalt. Because abundant pyrite forms in the water column and sediments of the Black Sea, we expected to find a large hydrogenous iron component, but a strong covariance of iron with aluminum suggests that the

  18. Nannoplankton and uranium concentration relations in the Black Sea Deposits

    Directory of Open Access Journals (Sweden)

    Vedia TOKER

    1983-12-01

    Full Text Available Nannoplanktons obtained from sixty-two core samples taken from twenty-three holes penetrated in the Southern part of Black Sea were investigated in this work. Twelve species belonging to the Emiliania huxleyi zone (NN 21-Holocene were determined. Emiliania huxleyi (Lohmann came into existence in Black Sea three thousand years ago and is very abundant in these sediments. This study clearly showed that uranium concentration increases with increasing nannoplankton content of the sediments. It is also observed that the uranium oxide (U3O8 contents of the Emiliania huxleyi (Lohmann accumulations on the abyssal plains are higher than those other sediments in the same environments.

  19. Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam

    Science.gov (United States)

    Kuroda, Keisuke; Hayashi, Takeshi; Funabiki, Ayako; Do, An Thuan; Canh, Vu Duc; Nga, Tran Thi Viet; Takizawa, Satoshi

    2017-06-01

    Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25-40 m depth, 9.6-4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25-94 μg/L) than in the HUA (5.2-42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.

  20. Global change and relative sea level rise at Venice: what impact in term of flooding

    Energy Technology Data Exchange (ETDEWEB)

    Carbognin, Laura; Tosi, Luigi [Institute of Marine Sciences, National Research Council, Venice (Italy); Teatini, Pietro [Institute of Marine Sciences, National Research Council, Venice (Italy); University of Padova, Department of Mathematical Methods and Models for Scientific Applications, Padua (Italy); Tomasin, Alberto [Institute of Marine Sciences, National Research Council, Venice (Italy); University Ca' Foscari in Venice, Venice (Italy)

    2010-11-15

    Relative sea level rise (RSLR) due to climate change and geodynamics represents the main threat for the survival of Venice, emerging today only 90 cm above the Northern Adriatic mean sea level (msl). The 25 cm RSLR occurred over the 20th century, consisting of about 12 cm of land subsidence and 13 cm of sea level rise, has increased the flood frequency by more than seven times with severe damages to the urban heritage. Reasonable forecasts of the RSLR expected to the century end must be investigated to assess the suitability of the Mo.S.E. project planned for the city safeguarding, i.e., the closure of the lagoon inlets by mobile barriers. Here we consider three RSLR scenarios as resulting from the past sea level rise recorded in the Northern Adriatic Sea, the IPCC mid-range A1B scenario, and the expected land subsidence. Available sea level measurements show that more than 5 decades are required to compute a meaningful eustatic trend, due to pseudo-cyclic 7-8 year long fluctuations. The period from 1890 to 2007 is characterized by an average rate of 0.12 {+-} 0.01 cm/year. We demonstrate that linear regression is the most suitable model to represent the eustatic process over these 117 year. Concerning subsidence, at present Venice is sinking due to natural causes at 0.05 cm/year. The RSLR is expected to range between 17 and 53 cm by 2100, and its repercussions in terms of flooding frequency are associated here to each scenario. In particular, the frequency of tides higher than 110 cm, i.e., the value above which the gates would close the lagoon to the sea, will increase from the nowadays 4 times per year to a range between 20 and 250. These projections provide a large spread of possible conditions concerning the survival of Venice, from a moderate nuisance to an intolerable aggression. Hence, complementary solutions to Mo.S.E. may well be investigated. (orig.)

  1. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  2. Compilation of information on the climate and evaluation of the hydrochemical and isotopic composition during Late Pleistocene and Holocene

    International Nuclear Information System (INIS)

    Andersson, Cecilia

    1998-01-01

    This report summarises and evaluates some of the existing information on the Late Pleistocene and Holocene climates, i.e. the last 130 000 years. An estimation of the conditions at the Aespoe island (southeast Sweden) has also been made during this time span. The knowledge about Late Pleistocene (Eemian Interglacial and Weichselian glacial) is not yet fully understood. There are still a lot of assumptions concerning this period and more information is needed to be able to establish the climatic conditions. This is not the case for the Weichselian deglaciation and the present interglacial, Holocene, for which the environmental conditions are quite certain. It has been concluded, however, that the Eemian climatic development probably was similar to the Holocene but perhaps somewhat warmer and more humid. The Eemian Baltic Sea level was probably also higher than the present Baltic Sea level and there was a connection between it and the White Sea in the northeast. Aespoe was probably situated below sea level during the greater part of Eemian. Not much is known about the last glacial period, the Weichselian glaciation, until the final deglaciation. The ice sheet during Early Weichselian was probably mostly concentrated to the Scandinavian mountain area and in northern Scandinavia. At least two intervals with higher temperatures have been recorded, the Broerup and Odderade interstadials. The Middle Weichselian substage is characterised by fluctuations, melting and re-advances. Aespoe was probably not glaciated until the middle or latter part of Middle Weichselian. The maximum extension of the Weichselian ice sheet occurred in Late Weichselian, around 20 to 18 ka BP, which was succeeded by the final deglaciation. The retreat of the Weichselian ice sheet is described by for example end moraines and glacial varved clay. The Aespoe area was glaciated until 12 500 BP. Huge quantities of glacial meltwater was released into the Baltic basin as the ice receded. Due to different

  3. Compilation of information on the climate and evaluation of the hydrochemical and isotopic composition during Late Pleistocene and Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cecilia [Intera KB (Sweden)

    1998-01-01

    This report summarises and evaluates some of the existing information on the Late Pleistocene and Holocene climates, i.e. the last 130 000 years. An estimation of the conditions at the Aespoe island (southeast Sweden) has also been made during this time span. The knowledge about Late Pleistocene (Eemian Interglacial and Weichselian glacial) is not yet fully understood. There are still a lot of assumptions concerning this period and more information is needed to be able to establish the climatic conditions. This is not the case for the Weichselian deglaciation and the present interglacial, Holocene, for which the environmental conditions are quite certain. It has been concluded, however, that the Eemian climatic development probably was similar to the Holocene but perhaps somewhat warmer and more humid. The Eemian Baltic Sea level was probably also higher than the present Baltic Sea level and there was a connection between it and the White Sea in the northeast. Aespoe was probably situated below sea level during the greater part of Eemian. Not much is known about the last glacial period, the Weichselian glaciation, until the final deglaciation. The ice sheet during Early Weichselian was probably mostly concentrated to the Scandinavian mountain area and in northern Scandinavia. At least two intervals with higher temperatures have been recorded, the Broerup and Odderade interstadials. The Middle Weichselian substage is characterised by fluctuations, melting and re-advances. Aespoe was probably not glaciated until the middle or latter part of Middle Weichselian. The maximum extension of the Weichselian ice sheet occurred in Late Weichselian, around 20 to 18 ka BP, which was succeeded by the final deglaciation. The retreat of the Weichselian ice sheet is described by for example end moraines and glacial varved clay. The Aespoe area was glaciated until 12 500 BP. Huge quantities of glacial meltwater was released into the Baltic basin as the ice receded. Due to different

  4. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum

    Science.gov (United States)

    Shennan, Ian; Bradley, Sarah L.; Edwards, Robin

    2018-05-01

    The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.

  5. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  6. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  7. A Record of Holocene Paleoclimate Evolution from Robertson Bay, Victoria Land, Antarctica

    Science.gov (United States)

    Riesselman, C. R.; Truax, O.; Wilson, G. S.; Parker, R. L.; Yoo, K. C.; Lee, J. I.; Levy, R. H.; Mckay, R. M.

    2017-12-01

    Regionally representative records of how Antarctica responded to the transition from the Last Glacial Maximum into the Holocene are an essential component of understanding the processes by which the Antarctic cryosphere responds to a changing climate. Here, we present a high-resolution record of Holocene Antarctic paleoclimate evolution from a previously unstudied section of the Victoria Land margin. In 2015 the Korea Polar Research Institute collected a 571 cm sediment core, GC57, from Robertson Bay, a protected embayment west of Cape Adare and adjacent to the outlet glaciers of the Transantarctic Mountains. Using diatom assemblages, bulk sediment geochemistry, and the magnetic properties of GC57, we aim to reconstruct the response of the East Antarctic Ice Sheet to warming associated with deglaciation and the Holocene climatic optima at the interface between the Ross Sea and the Southern Ocean. Our multiproxy approach allows us to study sea ice extent, seasonality, ocean stratification and circulation, and primary productivity from the mid-Holocene (7,400 14C year BP) to the present. A sea-ice associated diatom assemblage indicative of summer sea surface temperatures below 0˚C dominates the basal section of GC57. Although diatoms are well preserved, the unit is characterized by low wt% biogenic silica (average 9%) and a high concentration of magnetic minerals, indicating that biogenic production persisted despite substantial terrigenous input into the bay. A rapid transition at 4708 14C yr BP is identified by a steep increase in wt% BSi (average 13%), a decrease in magnetic minerals, and a subtle assemblage change towards sea-ice associated diatoms with slightly warmer temperature tolerances. The novel ramped pyrolosis 14C dating methodology allows us to date the carbon fixed concurrent with deposition and generate a robust age model for GC57 with an accuracy previously difficult to achieve given the uncertainties associated with dating bulk acid insoluble

  8. Late Quaternary Variability of Arctic Sea Ice: Insights From Biomarker Proxy Records and Model Simulations

    Science.gov (United States)

    Stein, R. H.; Fahl, K.; Gierz, P.; Niessen, F.; Lohmann, G.

    2017-12-01

    Over the last about four decades, coinciding with global warming and atmospheric CO2increase, the extent and thickness of Arctic sea ice has decreased dramatically, a decrease much more rapid than predicted by climate models. The driving forces of this change are still not fully understood. In this context, detailed paleoclimatic records going back beyond the timescale of direct observations, i.e., high-resolution Holocene records but also records representing more distant warm periods, may help to to distinguish and quantify more precisely the natural and anthropogenic greenhouse gas forcing of global climate change and related sea ice decrease. Here, we concentrate on sea ice biomarker records representing the penultimate glacial/last interglacial (MIS 6/MIS 5e) and the Holocene time intervals. Our proxy records are compared with climate model simulations using a coupled atmosphere-ocean general circulation model (AOGCM). Based on our data, polynya-type sea ice conditions probably occurred off the major ice sheets along the northern Barents and East Siberian continental margins during late MIS 6. Furthermore, we demonstrate that even during MIS 5e, i.e., a time interval when the high latitudes have been significantly warmer than today, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Assuming a closed Bering Strait (no Pacific Water inflow) during early MIS 5, model simulations point to a significantly reduced sea ice cover in the central Arctic Ocean, a scenario that is however not supported by the proxy record and thus seems to be less realistic. Our Holocene biomarker proxy records from the Chukchi Sea indicate that main factors controlling the millennial Holocene variability in sea ice are probably changes in surface water and heat flow from the Pacific into the Arctic Ocean as well as the long-term decrease in summer insolation

  9. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands NationalPark, California, USA

    Science.gov (United States)

    Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Schumann, R. Randall; Agenbroad, Larry D.

    2015-01-01

    Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

  10. Timing, cause and consequences of mid-Holocene climate transition in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Naik, Dinesh K.; Nigam, R.; Gaur, A.S.

    -50,000 years cal BP. Radiocarbon 51, 1111-1150. Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R., Sadori, L., 2011. The mid-Holocene climatic transition in the Mediterranean: Causes and consequences. The Holocene 21, 3-13. Ruddiman, W.F., Ellis, E...

  11. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    Science.gov (United States)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant

  12. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    Science.gov (United States)

    Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V

    2015-01-01

    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal

  13. Analysis of Sea Level Rise in Singapore Strait

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  14. Experiments in Reconstructing Twentieth-Century Sea Levels

    Science.gov (United States)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  15. Holocene RSL variation on southwestern Disko Island (Greenland)

    DEFF Research Database (Denmark)

    Emerich Souza, Priscila; Nielsen, Lars; Kroon, Aart

    We investigate RSL variations during the Holocene in Lakse Bugt by assessing topography, internal structure, and luminescence ages of fossil beach ridges and the modern beach. Lakse Bugt (Bay) lies on the southwestern coast of Disko Island in a mesotidal regime and a mild wave climate. Beach ridges...... are widespread over the marine terrace, extending from ~40 above sea level (m asl). The most recent ridges terminate either at the beach or at the coastal sandy cliffs ~8 m asl immediately behind the modern beach. These ridges are covered mainly by rounded boulders; the terrain surfaces of the swales have...... clearly been deformed by freezing and thawing processes, in contrast to those of the ridge crests, which are relatively smooth. High-resolution reflection GPR data and high resolution topographical data were collected along cross-shore transects using a shielded 250 MHz antennae system and a DGPS system...

  16. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  17. Penguin tissue as a proxy for relative krill abundance in East Antarctica during the Holocene.

    Science.gov (United States)

    Huang, Tao; Sun, Liguang; Long, Nanye; Wang, Yuhong; Huang, Wen

    2013-09-30

    Antarctic krill (Euphausia superba) is a key component of the Southern Ocean food web. It supports a large number of upper trophic-level predators, and is also a major fishery resource. Understanding changes in krill abundance has long been a priority for research and conservation in the Southern Ocean. In this study, we performed stable isotope analyses on ancient Adélie penguin tissues and inferred relative krill abundance during the Holocene epoch from paleodiets of Adélie penguin (Pygoscelis adeliae), using inverse of δ¹⁵N (ratio of ¹⁵N/¹⁴N) value as a proxy. We find that variations in krill abundance during the Holocene are in accord with episodes of regional climate changes, showing greater krill abundance in cold periods. Moreover, the low δ¹⁵N values found in modern Adélie penguins indicate relatively high krill availability, which supports the hypothesis of krill surplus in modern ages due to recent hunt for krill-eating seals and whales by humans.

  18. Late Post-glacial Sea Level Rise and Its Effects On Human Activity In Asia

    Science.gov (United States)

    Oppenheimer, S. J.

    Three rapid post-glacial sea-level rises flooded coastlines with large continental shelves. The last of these, shortly before the interglacial optimum c.7,500BP, not only changed coastal Neolithic societies, but may also have stimulated maritime skills. Two Asian examples explore these aspects. First, during the Mid-Holocene, the Arabian Gulf transgressed as far inland as Ur probably laying down Woolley's famous Ur Flood silt layer between 7,000-5,500 BP. Stratigraphy and dating suggests the phase of rapid sea level rise immediately preceded the start of the 'Ubaid pottery period. Red-slipped Uruk pottery and copper items then appear from about 6,000BP, but above Woolley's silt layer. The Sumerian King Lists also record a major upheaval and dynastic change after 'the Flood'. Second, the final flooding of the Sunda shelf in Southeast Asia was followed by a maritime extension of human occupation from Northern Melanesia south into the Solomon Islands 6,000 years ago. Simultaneously, further west on the north coast of New Guinea, new archaeological assemblages ap- pear beneath a silt layer left by a pro-grading 6,000 year-old inland sea. The presence of arboriculture items such as betel nuts and the contemporary arrival of dogs and pigs in the same region suggests intrusion from Southeast Asia. This supports Solheim's suggestion that rapid sea-level rise on the eastern edge of the Sunda Shelf stimulated maritime skills and invention in Southeast Asia. This may have provided the initial stimulus to the first maritime expansion that was later to colonise the whole Pacific.

  19. Principles and reconstruction of the ancient sea levels during the Quaternary

    International Nuclear Information System (INIS)

    Martin, L.; Flexor, J.M.; Suguio, K.

    1986-01-01

    This work focused the multiple aspects related to the ''reconstruction of the ancient sea level during the Quaternary''. The relative sea level, fluctuations are produced by true variations of the level (eustasy) and by changes in the land level (tectonism and isostasy). The changes of the relative levels are reconstructed through several evidence of these fluctuations, which are recognised in time and space. To define their situation in space is necessary to know their present altitude in relation to their original altitude, that is, to determine their position in relation to the sea level during their formation or sedimentation. Their situation in time is determined by measuring the moment of their formation or sedimentation, using for this the dating methods (isotopic, archeological, etc.) When numerous ancient levels could be reconstructed, spread through a considerable time interval, is possible to delineate the sea level fluctuation curve for this period. (C.D.G.) [pt

  20. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    Science.gov (United States)

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    Tidal marshes commonly build upward apace with gradual rise in the level of the sea. It is expected, however, that few tidal marshes will keep up with accelerated sea-level rise later in this century. Tidal marshes have been drowned, moreover, after subsiding during earthquakes.

  1. High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution.

    Science.gov (United States)

    Lecavalier, Benoit S; Fisher, David A; Milne, Glenn A; Vinther, Bo M; Tarasov, Lev; Huybrechts, Philippe; Lacelle, Denis; Main, Brittany; Zheng, James; Bourgeois, Jocelyne; Dyke, Arthur S

    2017-06-06

    We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

  2. A Holocene progradation record from Okains Bay, Banks Peninsula, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Stephenson, W.; Shulmeister, J.

    1999-01-01

    Fifty-eight distinct ridges are preserved on the Holocene progradation plain in Okains Bay, Banks Peninsula, Canterbury. Of these, 48 represent beach berm and foredune complexes and the remaining 10 are transverse dune ridges. Periods of rapid coastal progradation are marked by multiple beach berm preservation, whereas intervening periods of lower sediment accumulation result in a stable coastline and transverse dune formation. Infilling of the bay began following sea-level stabilisation in the mid Holocene. The fill is dominantly fine sand, which is derived from sediment carried around Banks Peninsula in the Southland Current and washed into Okains Bay by wave action. Variations in the progradation rate are therefore proxy indicators of coastal erosion in the Canterbury Bight. We demonstrate that there is little progradational fill preserved between c. 6500 and 2000 yr BP. This implies significant changes in sediment delivery to the Southland Current within the last 2000 yr, which we attribute to increased coastal erosion in South Canterbury. We speculate that this increasing erosion resulted from increased wave energy regimes, which in turn may relate to increasing Southern Hemisphere seasonality following the precessional cycle. (author). 32 refs., 4 figs., 3 tabs

  3. Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands

    Science.gov (United States)

    List, J.H.; Sallenger, A.H.; Hansen, M.E.; Jaffe, B.E.

    1997-01-01

    The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s. 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium Criterion this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus in terms of the Bruun approach relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.

  4. Sea level trend and variability around Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5-25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian-Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian-western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Nino-Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Nino events and positive phases of IOD, whilst rises are correlated with La Nina episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986-2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr-1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr-1), their corresponding geocentric sea level rise rates

  5. Tidal notches, coastal landforms and relative sea-level changes during the Late Quaternary at Ustica Island (Tyrrhenian Sea, Italy)

    Science.gov (United States)

    Furlani, Stefano; Antonioli, Fabrizio; Cavallaro, Danilo; Chirco, Pietro; Caldareri, Francesco; Martin, Franco Foresta; Morticelli, Maurizio Gasparo; Monaco, Carmelo; Sulli, Attilio; Quarta, Gianluca; Biolchi, Sara; Sannino, Gianmaria; de Vita, Sandro; Calcagnile, Lucio; Agate, Mauro

    2017-12-01

    In this paper we present and discuss data concerning the morphostructural evolution at Ustica Island (Tyrrhenian Sea, Italy) during Late Quaternary. New insights on the relative sea-level changes of Ustica are coming from data collected during a geomorphological field survey around the island, together with the bathymetric analysis of the surrounding seabed and 14C datings on samples of speleothems, flowstones and marine shells found inside three selected sea caves. The survey was mainly accomplished on June 2015 through the first complete snorkel investigation off the about 18 km-long volcanic coast of the island, which allowed to precisely define location, relationship and morphometric features of coastal landforms associated with modern sea level. This study highlights the occurrence, for the first time in the Mediterranean, of tidal notches in correspondence of carbonate inclusions in volcanic rocks. The elevation of the modern tidal notch suggests that no significant vertical deformations occurred in the southeastern and eastern sectors of Ustica in the last 100 years. However, the presence of pillow lavas along the coast demonstrates that Ustica was affected by a regional uplift since the Late Quaternary, as also confirmed by MIS5.5 deposits located at about 30 m a.s.l., which suggests an average uplift rate of 0.23 mm/y. Radiocarbon dating of fossil barnacles collected inside the Grotta Segreta cave indicate an age of 1823 ± 104 cal. BP. The difference in height with respect to living barnacles in the same site suggests that their present elevation could be related to stick-slip coseismic deformations caused by the four earthquake sequences (two of which with Mw = 4.63 ± 0.46) that strongly struck the island between 1906 and 1924.

  6. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  7. Sea level trend and variability around the Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2014-06-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. Resulting sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); while long-term sea level trend is related to global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability around the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 1.6 mm yr-1 and 2.7 ± 1.0 mm yr-1, respectively. Allowing for corresponding vertical land movements (VLM; 0.8 ± 2.6 mm yr-1 and 0.9 ± 2.2 mm yr-1), their absolute SLR rates are 3.2 ± 4.2 mm yr-1 and 3.6 ± 3.2 mm yr-1, respectively. For the common period 1993-2009, absolute SLR rates obtained from both tide gauge and satellite altimetry in Peninsular Malaysia are similar; and they are slightly higher than the global tendency. It further underlines that VLM should be taken into account to get better estimates of SLR observations. At interannual scale, ENSO affects sea level over the Malaysian coast in the range of ±5 cm with a very high correlation. Meanwhile, IOD modulates sea level anomalies mainly in the Malacca Strait in the range of ±2 cm with a high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index

  8. The Deglacial to Holocene Paleoceanography of Bering Strait: Results From the SWERUS-C3 Program

    Science.gov (United States)

    Jakobsson, M.; Anderson, L. G.; Backman, J.; Barrientos, N.; Björk, G. M.; Coxall, H.; Cronin, T. M.; De Boer, A. M.; Gemery, L.; Jerram, K.; Johansson, C.; Kirchner, N.; Mayer, L. A.; Mörth, C. M.; Nilsson, J.; Noormets, R. R. N. N.; O'Regan, M.; Pearce, C.; Semiletov, I. P.; Stranne, C.

    2017-12-01

    The climate-carbon-cryosphere (C3) interactions in the East Siberian Arctic Ocean and related ocean, river and land areas of the Arctic have been the focus for the SWERUS-C3 Program (Swedish - Russian - US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions). This multi-investigator, multi-disciplinary program was carried out on a two-leg 90-day long expedition in 2014 with Swedish icebreaker Oden. One component of the expedition consisted of geophysical mapping and coring of Herald Canyon, located on the Chukchi Sea shelf north of the Bering Strait in the western Arctic Ocean. Herald Canyon is strategically placed to capture the history of the Pacific-Arctic Ocean connection and related changes in Arctic Ocean paleoceanography. Here we present a summary of key results from analyses of the marine geophysical mapping data and cores collected from Herald Canyon on the shelf and slope that proved to be particularly well suited for paleoceanographic reconstruction. For example, we provide a new age constraint of 11 cal ka BP on sediments from the uppermost slope for the initial flooding of the Bering Land Bridge and reestablishment of the Pacific-Arctic Ocean connection following the last glaciation. This age corresponds to meltwater pulse 1b (MWP1b) known as a post-Younger Dryas warming in many sea level and paleoclimate records. In addition, high late Holocene sedimentation rates that range between about 100 and 300 cm kyr-1, in Herald Canyon permitted paleoceanographic reconstructions of ocean circulation and sea ice cover at centennial scales throughout the late Holocene. Evidence suggests varying influence from inflowing Pacific water into the western Arctic Ocean including some evidence for quasi-cyclic variability in several paleoceanographic parameters, e.g. micropaleontological assemblages, isotope geochemistry and sediment physical properties.

  9. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    Science.gov (United States)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  10. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    Science.gov (United States)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  11. Early Holocene estuary development of the Hesselø Bay area, southern Kattegat, Denmark and its implication for Ancylus Lake drainage

    DEFF Research Database (Denmark)

    Bendixen, Carina; Boldreel, Lars Ole; Jensen, Jørn Bo

    2017-01-01

    environment and a description of coastal processes associated with a river outlet into the bay are presented. Weichselian glacial deposits form the lowermost interpreted unit, covered by late glacial (LG) and postglacial (PG, Holocene) sediments. A funnel-shaped estuary existed at the mouth of channels......High-resolution shallow seismic data, sediment core information, radiocarbon dating and sequence stratigraphy have been used to interpret the late glacial to early Holocene geological evolution of Hesselø Bay in the southern Kattegat, Denmark. A reconstruction of the early Holocene coastal...... in the period 10.3–9.2 cal. ka BP; the channels drained water from south to north. The early PG is characterised by estuarine and coastal deposits. The early Holocene bars that developed in the estuary are preserved as morphological features on the present-day seabed, possibly as a result of rapid relative sea...

  12. Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel)

    Science.gov (United States)

    Lisker, Sorin; Porat, Roi; Davidovich, Uri; Eshel, Hanan; Lauritzen, Stein-Erik; Frumkin, Amos

    2007-09-01

    The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.

  13. The rise of sea level. To understand and to anticipate

    International Nuclear Information System (INIS)

    2013-03-01

    By proposing and briefly commenting graphs and drawings, this publication propose brief presentations of the main issues related to sea level rise: global warming and climate disturbance, description of the phenomenon of sea level rise (difference between sea ice and ground ice, melting of glaciers), increase of sea level rise during the twentieth century, territories at risk (examples of Greenland, Tuvalu, Shanghai), acceleration of ice melting during the twenty first century with many coastal areas at risk, already noticed and possible future impacts in France (glaciers runoff, threatened coasts, example of the Xynthia tempest), how to be united and to anticipate (a threat for millions of people, adaptation to sea level rise, limitation of global warming to limit sea level rise)

  14. Estuarine development and early Holocene transgression across an aeolianite substrate, Caesarea, central Israel

    Science.gov (United States)

    Goff, John A.; Austin, James A.; Goodman-Tchernov, Beverly N.

    2018-04-01

    Estuaries are important features on the coastal landscape due to their potential for rich, diverse, and abundant resources. The modern coast of the southeast Mediterranean is largely devoid of estuaries except in rare circumstances where ample sands are delivered to the shore, such as east of the Nile Delta. Whether or not today's condition is reflective of that present during lower sea-levels is greatly speculative in part due to a dearth of high-resolution sub-surface mapping in the shallower (sediments in water depths 45-10 mbsl, both within paleo-channels of the Crocodile and Hadera rivers, and more broadly across the shelf. These water depths correspond to early Holocene dates ( 10.5-7.5 ka) which, based on global sea-level curves, was a period of rapid ( 1-1.7 cm/yr) sea-level rise. Now-submerged aeolianite ridges (locally referred to as 'kurkar'), cemented aeolian deposits formed during pre-Last-Glacial-Maximum (LGM) seaward advance (regression) of the coastline, likely provided some offshore barrier for estuarine development. These were insufficient, however, to account for all the estuarine deposition interpreted, leading us to hypothesize that sand-constructed barrier islands were also present as sea-level rose during the Holocene. This supply of sand, clearly greater than what is evident today, could have originated from sea-level rise phase eroding Nile Delta sediments transported northward by littoral currents, or from increased output from local rivers during wetter climatic conditions. We also observe a transition from linear, shore-parallel aeolianite ridge morphology features on land and in shallow water, to nested, arcuate features below 30 mbsl. Whereas the linear ridges are thought to be coastal foredune remnants abandoned by the retreating shoreline, the arcuate forms resemble fossil parabolic (blowout) dunes. Based on the recent initiation of parabolic dunes on Cape Cod following anthropogenic denudation of forests there, we suggest that

  15. The Barbados Sea Level Record

    Science.gov (United States)

    Fairbanks, R. G.; Mortlock, R. A.; Abdul, N. A.; Wright, J. D.; Cao, L.; Mey, J. L.

    2013-12-01

    Additional offshore drill cores, nearly 100 new radiometric dates, and more than 1000 kilometers of Multibeam mapping greatly enhance the Barbados Sea Level record. Extensive Multibeam mapping around the entire island covers approximately 2650 km2 of the sea bottom and now integrates the offshore reef topography and Barbados Sea Level Record with the unparalleled onshore core collection, digital elevation maps, and Pleistocene sea level record spanning the past one million years. The reef crest coral, Acropora palmata, remains the stalwart indicator of sea level for many reasons that are validated by our redundant sea level records and redundant dating via Th/U and Pa/U analyses. Microanalysis and densitometry studies better explain why Acropora palmata is so well preserved in the Pleistocene reef records and therefore why it is the species of choice for sea level reconstructions and radiometric dating. New drill cores into reefs that formed during Marine Isotope Stage 3 lead us to a model of diagenesis that allows us to better prospect for unaltered coral samples in older reefs that may be suitable for Th/U dating. Equally important, our diagenesis model reinforces our rigorous sample quality criteria in a more quantitative manner. The Barbados Sea Level record has a sampling resolution of better than 100 years throughout much of the last deglaciation showing unprecedented detail in redundant drill cores. The Melt Water Pulses (MWP1A and MWP1B) are well resolved and the intervening interval that includes the Younger Dryas reveals sea level changes in new detail that are consistent with the terrestrial records of ice margins (see Abdul et al., this section). More than 100 paired Th/U and radiocarbon ages place the Barbados Sea Level Record unambiguously on the radiocarbon time scale for direct comparisons with the terrestrial records of ice margin changes.

  16. Caribbean Sea Level Network

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  17. Constraining Holocene Evolution of Shelf Bayhead Delta Deposits Offshore Mississippi, USA

    Science.gov (United States)

    Hollis, R. J.; Wallace, D. J.; Miner, M. D.

    2017-12-01

    The slowly subsiding inner shelf of Mississippi-Alabama (MS-AL) has a complex network of Late Quaternary paleofluvial and deltaic deposits driven by fluctuating sea levels. Since the Last Glacial Maximum, sea-level rise (SLR) has lead to transgressive reworking of these lithosomes. In rare instances, typically when the rate of relative sea-level rise was particularly rapid or sediment supply was high, these deposits are preserved. Results from studies in Texas and Alabama suggest bayhead deltas (or upper-estuarine units) backstepped kilometers landward in response to periods of rapid sea-level rise (i.e. 9.8-9.5 ka, 8.9-8.5 ka, 8.4-8.0 ka, 7.9-7.5 ka, and 7.4-6.8 ka). Bayhead delta backstepping depends on relative SLR rates, accommodation space, shelf slope, wave climate and sediment supply. While at least one preserved bayhead delta deposit has been identified on the inner shelf of MS-AL, the flooding and abandonment chronology is currently unknown. The previously quantified sandy bayhead delta deposit (>100.4 x106 m3) is roughly twice the combined volume of the subaerial Petit Bois barrier island, located two miles to the north, and the three western offshore shelf sand shoals (55.9 x106 m3). The sediment supply needed for the shoal's genesis requires further exploration and likely has many contributors, but transgressive ravinement of the sandy bayhead delta seems like a logical source. This study builds on previous work that has extensively mapped the stratigraphy of the eastern MS-AL inner shelf using geophysical and core data by adding a robust number of radiocarbon ages and macro-/micro- faunal analysis from new cores as a proxy for depositional environments. This source-to-sink approach helps to detail the evolution of ancient Pascagoula/Escatawpa, La Batre and Fowl paleo rivers, and their roles in the formation of the large inner shelf, shore-oblique shoals as well as Petit Bois Island. Correlating the new ages with previously published high-resolution sea

  18. Holocene environmental change along the southern Cape coast of South Africa - Insights from the Eilandvlei sediment record spanning the last 8.9 kyr

    Science.gov (United States)

    Wündsch, Michael; Haberzettl, Torsten; Cawthra, Hayley C.; Kirsten, Kelly L.; Quick, Lynne J.; Zabel, Matthias; Frenzel, Peter; Hahn, Annette; Baade, Jussi; Daut, Gerhard; Kasper, Thomas; Meadows, Michael E.; Mäusbacher, Roland

    2018-04-01

    This study investigates Holocene sediments from Eilandvlei, a coastal lake located within the Wilderness embayment at the southern Cape coast of South Africa. The evolution of the present estuarine/coastal lake system is reconstructed based on seismic data as well as a multi-proxy approach on a 30.5 m sediment core spanning the last 8.9 kyr. Geochemical (Ca, TOC/S, Br/TOC) and micropalaeontological data (diatoms, foraminifera) reflect changes in the degree of marine influence at the core site. The embayment likely developed via distinct phases of connectivity to the Indian Ocean caused by sea level changes and dune progradation. Marine conditions prevailed at the core site from 8900 to 4700 cal BP. The rapid sea level rise during the early Holocene caused the inundation of a palaeovalley that most likely had formed at lower sea levels during the Pleistocene. Towards the mid-Holocene the sea level exceeded its present height around 7500 cal BP creating a marine embayment. At 4700 cal BP, the embayment became distinctly more disconnected from the ocean turning into a lagoon system that persisted until 1200 cal BP. Subsequently, the marine influence further decreased and the present estuarine/coastal lake system was established. Grain size and geochemical data (Fe, Si/Al, chemical index of alteration (CIA)) further reflect changes in the deposition of terrigenous sediments at the core site. While the sedimentation of fine-grained (climatic conditions than today from 8900 to 7900 cal BP and 6400 to 3000 cal BP. In contrast, the periods between 7900-6400 cal BP and 3000 cal BP-present were likely characterized by high river discharge and thus, generally more rainfall. The reconstructed palaeoclimatic variations are discussed within the context of e.g., shifts in the position of the Antarctic sea ice extent and the mid-latitude westerly wind belt as well as changes in the El Niño-Southern Oscillation (ENSO).

  19. Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study

    Science.gov (United States)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng

    1998-03-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equation model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to January 1994. The physical nature of sea level's temporal variability from periods of days to a year is examined on the basis of spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements. The study elucidates and diagnoses the inhomogeneous physics of sea level change in space and frequency domain. At midlatitudes, large-scale sea level variability is primarily due to steric changes associated with the seasonal heating and cooling cycle of the surface layer. In comparison, changes in the tropics and high latitudes are mainly wind driven. Wind-driven variability exhibits a strong latitudinal dependence in itself. Wind-driven changes are largely baroclinic in the tropics but barotropic at higher latitudes. Baroclinic changes are dominated by the annual harmonic of the first baroclinic mode and is largest off the equator; variabilities associated with equatorial waves are smaller in comparison. Wind-driven barotropic changes exhibit a notable enhancement over several abyssal plains in the Southern Ocean, which is likely due to resonant planetary wave modes in basins semienclosed by discontinuities in potential vorticity. Otherwise, barotropic sea level changes are typically dominated by high frequencies with as much as half the total variance in periods shorter than 20 days, reflecting the frequency spectra of wind stress curl. Implications of the findings with regards to analyzing observations and data assimilation are discussed.

  20. Sea-Level Allowances along the World Coastlines

    Science.gov (United States)

    Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.

    2017-12-01

    Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.

  1. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    Science.gov (United States)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Kao, Shuhji; Kuhn, Gerhard

    2016-04-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  2. Holocene Millennial-scale Surface and Bottom Water Variability, Feni Drift, NE Atlantic Ocean: Foraminiferal Assemblages

    Science.gov (United States)

    Lassen, S. J.; Richter, T. O.; de Stigter, H. C.; van Weering, T. C. E.; de Haas, H.

    A high-resolution sediment core from Feni Drift (ENAM9606, 56N 14W, 2543 m wa- ter depth) was investigated for planktonic and benthic foraminiferal assemblages dur- ing the last 12,000 years. During the Preboreal, peak abundances of T.quinqueloba indicate the passage of the Arctic front over the core site. Holocene planktonic foraminiferal assemblages indicate a gradual warming trend of surface water masses punctuated by a major cooling (8,200ky event s.l.), and possibly a slight cooling dur- ing the last 3,000 years. The interval from 10 to 5kyrs shows higher and fluctuating abundances of T.quinqueloba and G.bulloides, which suggest proximity of the subarc- tic front and enhanced spring blooms compared to the upper Holocene. Abundance peaks of N.pachyderma(s) and/or T.quinqueloba indicate a series of millennial-scale cooling events during the entire Holocene, which can be correlated to similar episodes previously described from other locations in the North Atlantic and Norwegian- Greenland Sea. Benthic foraminiferal assemblages indicate a gradual transition from seasonal, spring-bloom related food supply in the Lower Holocene (dominance of the phytodetritus species E.exigua) to possibly lower, but more sustained food supply in the Upper Holocene (dominance of C.obtusa and C.laevigata).

  3. Patagonian and southern South Atlantic view of Holocene climate

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Denton, G. H.; Anderson, R. F.; Vandergoes, M. J.; Finkel, R. C.; Schwartz, R.; Travis, S. G.; Garcia, J. L.; Martini, M. A.; Nielsen, S. H. H.

    2016-06-01

    We present a comprehensive 10Be chronology for Holocene moraines in the Lago Argentino basin, on the east side of the South Patagonian Icefield. We focus on three different areas, where prior studies show ample glacier moraine records exist because they were formed by outlet glaciers sensitive to climate change. The 10Be dated records are from the Lago Pearson, Herminita Península-Brazo Upsala, and Lago Frías areas, which span a distance of almost 100 km adjacent to the modern Icefield. New 10Be ages show that expanded glaciers and moraine building events occurred at least at 6120 ± 390 (n = 13), 4450 ± 220 (n = 7), 1450 or 1410 ± 110 (n = 18), 360 ± 30 (n = 5), and 240 ± 20 (n = 8) years ago. Furthermore, other less well-dated glacier expansions of the Upsala Glacier occurred between 1400 and ∼1000 and ∼2300 and ∼2000 years ago. The most extensive glaciers occurred over the interval from ∼6100 to ∼4500 years ago, and their margins over the last ∼600 years were well within and lower than those in the middle Holocene. The 10Be ages agree with 14C-limiting data for the glacier histories in this area. We then link southern South American, adjacent South Atlantic, and other Southern Hemisphere records to elucidate broader regional patterns of climate and their possible causes. In the early Holocene, a far southward position of the westerly winds fostered warmth, small Patagonian glaciers, and reduced sea ice coverage over the South Atlantic. Although we infer a pronounced southward displacement of the westerlies during the early Holocene, these conditions did not occur throughout the southern mid-high latitudes, an important exception being over the southwest Pacific sector. Subsequently, a northward locus and/or expansion of the winds over the Patagonia-South Atlantic sector promoted the largest glaciers between ∼6100 and ∼4500 years ago and greatest sea ice coverage. Over the last few millennia, the South Patagonian Icefield has experienced

  4. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M

    1988-04-01

    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  5. A model–data comparison of the Holocene global sea surface temperature evolution

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2013-08-01

    Full Text Available We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere–ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST in the models shows a high-latitude cooling and a low-latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 yr. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We test if such discrepancies can be caused by too simplistic interpretations of the proxy data. We explore whether consideration of different growing seasons and depth habitats of the planktonic organisms used for temperature reconstruction could lead to a better agreement of model results with proxy data on a regional scale. The extent to which temporal shifts in growing season or vertical shifts in depth habitat can reduce model–data misfits is determined. We find that invoking shifts in the living season and habitat depth can remove some of the model–data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modelled temperature trends are set up to allow drastic shifts in the ecological behaviour of planktonic organisms, they do not capture the full range of reconstructed SST trends. Results indicate that modelled and reconstructed

  6. Holocene evolution of Apalachicola Bay, Florida

    Science.gov (United States)

    Osterman, L.E.; Twichell, D.C.; Poore, R.Z.

    2009-01-01

    A program of geophysical mapping and vibracoring was conducted to better understand the geologic evolution of Apalachicola Bay. Analyses of the geophysical data and sediment cores along with age control provided by 34 AMS 14C dates on marine shells and wood reveal the following history. As sea level rose in the early Holocene, fluvial deposits filled the Apalachicola River paleochannel, which extended southward under the central part of the bay and seaward across the continental shelf. Sediments to either side of the paleochannel contain abundant wood fragments, with dates documenting that those areas were forested at 8,000 14C years b.p. As sea level continued to rise, spits formed of headland prodelta deposits. Between ???6,400 and ???2,500 14C years b.p., an Apalachicola prodelta prograded and receded several times across the inner shelf that underlies the western part of the bay. An eastern deltaic lobe was active for a shorter time, between ???5,800 and 5,100 14C years b.p. Estuarine benthic foraminiferal assemblages occurred in the western bay as early as 6,400 14C years b.p., and indicate that there was some physical barrier to open-ocean circulation and shelf species established by that time. It is considered that shoals formed in the region of the present barrier islands as the rising sea flooded an interstream divide. Estuarine conditions were established very early in the post-glacial flooding of the bay. ?? 2009 US Government.

  7. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  8. Climatic-eustatic control of Holocene nearshore parasequence development, southeastern Texas coast

    Science.gov (United States)

    Morton, Robert A.; Kindinger, Jack G.; Flocks, James G.; Stewart, Laura B.

    1999-01-01

    Sediment cores, seismic profiles, radiocarbon dates, and faunal assemblages were used to interpret the depositional setting and geological evolution of the southeastern Texas coast during the last glacio-eustatic cycle. Discrete lithofacies and biofacies zones in the ebb-dominated Sabine Lake estuary and adjacent chenier plain record alternating periods of rapid marine flooding and gradual shoaling related to linked climatic/eustatic fluctuations. Monospecific zones of the mollusks Rangia cuneata and Crassostrea virginica, respectively, indicate high fresh water outflow followed by invasion of marine water, whereas intervening organic-rich zones record bayhead delta deposition. High-frequency parasequence stacking patterns within the valley fill and across the adjacent interfluve reflect an initial rapid rise in sea level about 9 ka that flooded abandoned alluvial terraces and caused onlap of Holocene marsh in the incised valley. The rapid rise was followed by slowly rising and oscillating sea level that filled the deepest portions of the incised valleys with fluvially dominated estuarine deposits, and then a maximum highstand (+1 m msl) about 5 ka that flooded the former subaerial coastal plain between the incised valleys and constructed the highest beach ridges. Between 3.5 and 1.5 ka, sea level oscillated and gradually fell, causing a forced regression and rapid progradation of both the chenier plain and accretionary barrier islands. The only significant sands in the valley fill are (1) falling-stage and lowstand-fluvial sediments between the basal sequence boundary and transgressive surface unconformity, and (2) highstand beach-ridge sediments of the chenier plain.

  9. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    Science.gov (United States)

    Menviel, L.; Joos, F.

    2012-03-01

    The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotemporal evolution of δ13C and carbonate ion concentration in the deep sea. Deposition of shallow water carbonate, carbonate compensation of land uptake during the glacial termination, land carbon uptake and release during the Holocene, and the response of the ocean-sediment system to marine changes during the termination contribute roughly equally to the reconstructed late Holocene pCO2 rise of 20 ppmv. The 5 ppmv early Holocene pCO2 decrease reflects terrestrial uptake largely compensated by carbonate deposition and ocean sediment responses. Additional small contributions arise from Holocene changes in sea surface temperature, ocean circulation, and export productivity. The Holocene pCO2 variations result from the subtle balance of forcings and processes acting on different timescales and partly in opposite direction as well as from memory effects associated with changes occurring during the termination. Different interglacial periods with different forcing histories are thus expected to yield different pCO2 evolutions as documented by ice cores.

  10. Holocene Evolution of Incised Coastal Channels on the Isle of Wight, UK: Interpretation via Numerical Simulation.

    Science.gov (United States)

    Leyland, J.; Darby, S. E.

    2006-12-01

    Incised coastal channels are found in numerous locations around the world where the shoreline morphology consists of cliffs. The incised coastal channels found on the Isle of Wight, UK, are known locally as `Chines' and debouche (up to 45m) through the soft cliffs of the south west coast, maintaining steep side walls subject to deep-seated mass wasting. These canyons offer sheltered locations and bare substrate, providing habitat for plant (Philonotis marchica, Anthoceros punctatos) and invertebrate (Psen atratinus, Baris analis, Melitaea cinxi) species of international importance. The base level of the Chines is highly dynamic, with episodes of sea cliff erosion causing the rejuvenation of the channel network. Consequently a key factor in Chine evolution is the relative balance between rates of cliff retreat and headwards incision caused by knickpoint migration. Specifically, there is concern that if contemporary coastal retreat rates are higher than the corresponding rates of knickpoint recession, there will be long-term a reduction in the overall extent of the Chines and their associated habitats. In an attempt to provide a long-term context for these issues, in this poster we explore the Holocene erosional history of the Chines using a numerical landscape evolution model. The model includes a stochastic cliff recession function that controls the position of the outlet boundary. Knickpoint recession rates are simulated using a detachment-limited channel erosion law wherein erosion rate is a power function of drainage area and stream gradient with model parameters defined using empirically- derived data. Simulations are undertaken for a range of imposed boundary conditions representing different scenarios of long-term cliff retreat forced by Holocene sea-level rise, plausible scenarios corresponding to cases where simulated and observed Chine and landscape forms match. The study provides an example of how a landscape evolution model could be used to reconstruct

  11. Perceptions of Climate Change, Sea Level Rise, and Possible Consequences Relate Mainly to Self-Valuation of Science Knowledge.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Pittfield, Taryn; Jeitner, Christian

    2016-05-01

    This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Climate change and increasing temperatures have an anthropogenic cause, which relates to energy use, making it important to examine whether people believe that it is occurring. In late 2012 New Jersey experienced Super storm Sandy, one of the worst hurricanes in its history, followed by public discussion and media coverage of stronger more frequent storms due to climate change. Using structured interviews, we tested the null hypotheses that there were no differences in perceptions of 1260 interviewees as a function of year of the survey, age, gender, years of education, and self-evaluation of science knowledge (on a scale of 1 to 5). In 2012 460 of 639 (72%) rated "global warming occurring" as "certain" (#4) or "very certain" (#5) compared with 453 of 621 (73%) in 2014. For "due to human activities" the numbers of "certain" or "very certain" were 71% in 2012, and 67% in 2014 and for sea level rise the numbers were 64% and 70%. There were some inconsistent between-year differences with higher ratings in 2012 for 3 outcomes and higher ratings in 2014 for 5 outcomes. However, for 25 questions relative to climate change, sea level rise, and the personal and ecological effects of sea level rise, self-evaluation of science knowledge, independent of years of education, was the factor that entered 23 of the models, accounting for the most variability in ratings. People who believed they had a "high knowledge" (#4) or "very high knowledge" (#5) of science rated all issues as more important than did those people who rated their own scientific knowledge as average or below average.

  12. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    Science.gov (United States)

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  13. Mid-Holocene Strengthening of the Bering Strait Inflow to the Arctic and its Linkage With the North Atlantic Subpolar Gyre Circulation

    Science.gov (United States)

    Yamamoto, M.; Nam, S. I.; Polyak, L.; Kobayashi, D.; Suzuki, K.; Irino, T.; Shimada, K.

    2017-12-01

    The Bering Strait inflow (BSI) is an important element of the Arctic Ocean circulation system. We report records of the chlorite/illite ratios in three sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BSI during the Holocene. The BSI approximation by the chlorite/illite record, despite a considerable geographic variability, consistently shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of higher atmospheric pressure over the Aleutian Basin. The intensified BSI was associated with decrease in sea-ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting a major influence of the BSI on sea-ice and biological conditions in the Chukchi Sea. Multi-century to millennial fluctuations, presumably controlled by solar activity, were also identified. This middle Holocene strengthening of the BSI was coeval with intense subpolar gyre circulation in the North Atlantic. We propose that the BSI is linked with the North Atlantic circulation via an atmospheric teleconnection between the Aleutian and Icelandic Lows.

  14. Recording of the Holocene sediment infilling in a confined tide-dominated estuary: the bay of Brest (Britanny, France)

    Science.gov (United States)

    Gregoire, Gwendoline; Le Roy, Pascal; Ehrhold, Axel; Jouet, Gwenael; Garlan, Thierry

    2016-04-01

    Modern estuaries constitute key areas for the preservation of sedimentary deposits related to the Holocene period. Several previous studies using stratigraphic reconstructions in such environments allowed to characterise the major parameters controlling the Holocene transgressive sequence and to decipher their respective role in the sedimentary infill: (1) the evolution of main hydrologic factors (wave or tide-dominated environment), (2) the sea level fluctuation and (3) the morphologies of the bedrock and the coastline. Nevertheless, the timing of the transgressive deposits and the detailed facies need to be precise in regard to the stratigraphic schemes. The Bay of Brest (Western Brittany, France) offers the opportunity to examine these points and to compare with previous studies. It constitutes an original tide-dominated estuary that communicates to the open sea (Iroise Sea) by a narrow strait. Two main rivers (Aulne and Elorn) are connected to a submerged paleovalleys network that was incised in the Paleozoic basement during lowstands and still preserved in the present morphology. It delineates the central basin surrounded by tidal flat located in sheltered area. The analysis of high and very-high resolution seismic lines recorded through the whole bay combined with sediment cores (up to 4.5 m long) and radiocarbon dating allow to precise the architecture and the timing of the thick Holocene coastal wedge. It is preserved from the valley network to the shore and presents a longitudinal variability (downstream-upstream evolution). The infill is divided into two successive stages (corresponding to the transgressive and highstand system tracts) which laterally evolve from the paleo-valley to the coast. Two units constitute the transgressive system tract. The oldest, dated from 8200 to 7000 cal B.P. is composed of fine-grained, organic-rich tidal flat deposits located in the sheltered area and organised in levees on the terrace bordering the paleo-valley. A tidal

  15. Geochronology and subsurface stratigraphy of Pukapuka and Rakahanga atolls, Cook Islands: Late Quaternary reef growth and sea level history

    Science.gov (United States)

    Gray, S.C.; Hein, J.R.; Hausmann, R.; Radtke, U.

    1992-01-01

    Eustatic sea-level cycles superposed on thermal subsidence of an atoll produce layers of high sea-level reefs separated by erosional unconformities. Coral samples from these reefs from cores drilled to 50 m beneath the lagoons of Pukapuka and Rakahanga atolls, northern Cook Islands give electron spin resonance (ESR) and U-series ages ranging from the Holocene to 600,000 yr B.P. Subgroups of these ages and the stratigraphic position of their bounding unconformities define at least 5 periods of reef growth and high sea-level (0-9000 yr B.P., 125,000-180,000 yr B.P., 180,000-230,000 yr B.P., 300,000-460,000 yr B.P., 460,000-650,000 yr B.P.). Only two ages fall within error of the last interglacial high sea-level stand (???125,000-135,000 yr B.P.). This paucity of ages may result from extensive erosion of the last intergracial reef. In addition, post-depositional isotope exchange may have altered the time ages of three coral samples to apparent ages that fall within glacial stage 6. For the record to be preserved, vertical accretion during rising sea-level must compensate for surface lowering from erosion during sea-level lowstands and subsidence of the atoll; erosion rates (6-63 cm/1000 yr) can therefore be calculated from reef accretion rates (100-400 cm/1000 yr), subsidence rates (2-6 cm/1000 yr), and the duration of island submergence (8-15% of the last 600,000 yr). The stratigraphy of coral ages indicates island subsidence rates of 4.5 ?? 2.8 cm/1000 yr for both islands. A model of reef growth and erosion based on the stratigraphy of the Cook Islands atolls suggests average subsidence and erosion rates of between 3-6 and 15-20 cm/1000 yr, respectively. ?? 1992.

  16. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  17. Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present

    Science.gov (United States)

    Zinke, J.; Pfeiffer, M.; Park, W.; Schneider, B.; Reuning, L.; Dullo, W.-Chr.; Camoin, G. F.; Mangini, A.; Schroeder-Ritzrau, A.; Garbe-Schönberg, D.; Davies, G. R.

    2014-08-01

    We report fossil coral records from the Seychelles comprising individual time slices of 14-20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990-2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2-5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere-ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean-atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only

  18. Sea Level Changes: Determination and Effects

    Science.gov (United States)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  19. Chronology of Fluctuating Sea Levels since the Triassic

    Science.gov (United States)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  20. Holocene vegetation history from fossil rodent middens near Arequipa, Peru

    Science.gov (United States)

    Holmgren, C.A.; Betancourt, J.L.; Rylander, K.A.; Roque, J.; Tovar, O.; Zeballos, H.; Linares, E.; Quade, Jay

    2001-01-01

    Rodent (Abrocoma, Lagidium, Phyllotis) middens collected from 2350 to 2750 m elevation near Arequipa, Peru (16??S), provide an ???9600-yr vegetation history of the northern Atacama Desert, based on identification of >50 species of plant macrofossils. These midden floras show considerable stability throughout the Holocene, with slightly more mesophytic plant assemblages in the middle Holocene. Unlike the southwestern United States, rodent middens of mid-Holocene age are common. In the Arequipa area, the midden record does not reflect any effects of a mid-Holocene mega drought proposed from the extreme lowstand (100 m below modern levels, >6000 to 3500 yr B.P.) of Lake Titicaca, only 200 km east of Arequipa. This is perhaps not surprising, given other evidence for wetter summers on the Pacific slope of the Andes during the middle Holocene as well as the poor correlation of summer rainfall among modern weather stations in the central AndesAtacama Desert. The apparent difference in paleoclimatic reconstructions suggests that it is premature to relate changes observed during the Holocene to changes in El Nin??o Southern Oscillation modes. ?? 2001 University of Washington.

  1. Holocene evolution of the western Orinoco Delta, Venezuela

    Science.gov (United States)

    Aslan, A.; White, W.A.; Warne, A.G.; Guevara, E.H.

    2003-01-01

    The pristine nature of the Orinoco Delta of eastern Venezuela provides unique opportunities to study the geologic processes and environments of a major tropical delta. Remote-sensing images, shallow cores, and radiocarbon-dating of organic remains form the basis for describing deltaic environments and interpreting the Holocene history of the delta. The Orinoco Delta can be subdivided into two major sectors. The southeast sector is dominated by the Rio Grande-the principal distributary-and complex networks of anastomosing fluvial and tidal channels. The abundance of siliciclastic deposits suggests that fluvial processes such as over-bank flooding strongly influence this part of the delta. In contrast, the northwest sector is represented by few major distributaries, and overbank sedimentation is less widespread relative to the southeast sector. Peat is abundant and occurs in herbaceous and forested swamps that are individually up to 200 km2 in area. Northwest-directed littoral currents transport large volumes of suspended sediment and produce prominent mudcapes along the northwest coast. Mapping of surface sediments, vegetation, and major landforms identified four principal geomorphic systems within the western delta plain: (1) distributary channels, (2) interdistributary flood basins, (3) fluvial-marine transitional environments, and (4) marine-influenced coastal environments. Coring and radiocarbon dating of deltaic deposits show that the northern delta shoreline has prograded 20-30 km during the late Holocene sea-level highstand. Progradation has been accomplished by a combination of distributary avulsion and mudcape progradation. This style of deltaic progradation differs markedly from other deltas such as the Mississippi where distributary avulsion leads to coastal land loss, rather than shoreline progradation. The key difference is that the Orinoco Delta coastal zone receives prodigious amounts of sediment from northwest-moving littoral currents that transport

  2. Tracking multidecadal trends in sea level using coral microatolls

    Science.gov (United States)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  3. Present day sea level changes: observations and climatic causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2007-01-01

    After a few thousand years of relative stability, sea level has risen of about 20 cm since the beginning of the 20. century. It currently rises at an average rate of about 3 mm/yr in response to global warming. About half of this rate is directly attributed to thermal expansion of sea water due to ocean warming, while the other half is mainly due to the melting of mountain glaciers and ice sheets. Satellite observations show that sea level rise is highly non-uniform. (author)

  4. Northeast Guanabara Bay and coastal plain Holocene sedimentary evolution (Brazil: A contribution

    Directory of Open Access Journals (Sweden)

    Rodrigo Coutinho Abuchacra

    2017-02-01

    Full Text Available Sedimentological and radiocarbon investigations are part of an ongoing research on the Bay-head delta of northeast Guanabara Bay, Rio de Janeiro State. Sediment accumulation indicates that the Holocene infill of the bay-head delta started around 8.2 kyr BP and was not in pace with the eustatic sea-level rise. Sediment accumulation was faster during the transgressive phase (0.56 cm.yr-1. However, during the regressive phase, progradation driven by base-level fall was predominant over vertical sediment accumulation (0.02 cm.yr-1. Based on coring, three sedimentary units were defined: fluvial sands (U1, estuarine deposits (U2 and fluvial mud (U3.

  5. Evidence of exceptional oyster-reef resilience to fluctuations in sea level.

    Science.gov (United States)

    Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel

    2017-12-01

    Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n  = 3) constructed in 1997 and 2000, young reefs ( n  = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and

  6. Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan

    Science.gov (United States)

    Chen, Y.-G.; Liu, J.C.-L.; Shieh, Y.-N.; Liu, T.-K.

    2004-01-01

    A core, drilled at San-liao-wan in the southwestern coastal plain of Taiwan, has been analyzed for total sulfur contents, isotopic values, as well as ratios of pyritic sulfur to organic carbon. Our results demonstrate a close relationship between late Pleistocene sea-level change and the proxies generated in this study. The inorganic sulfur contents indicate that at our study site, the Holocene transgression started at ???11 ka and remained under seawater for thousands of years until the late Holocene, corresponding to a depth of 20 m in the study core. The uppermost 20 m of core shows relatively high total organic carbon (TOC) and ??34S of inorganic sulfur, suggesting a transitional environment such as muddy lagoon or marsh, before the site turned into a modern coastal plain. In the lower part of the core, at depths of 110-145 m (corresponding ages of ???12-30 ka), low sulfur contents are recorded, probably indicating fluvial sediments deposited during the oceanic isotope stage (OIS) 2, a sea-level lowstand. The lower part of the core, roughly within OIS 3, records at least two transgressions, although the transgressional signals may be somewhat obscured by subsequent weathering. The reworked origin of organic matter reported in previous studies is confirmed by our organic sulfur data; however, the marine organic source was periodically dominant. The modern high sulfate concentrations in pore water have no correlation to the other sulfur species in the sediments, probably indicating that the sulfate migrated into the site subsequent to early diagenesis. ?? 2003 Elsevier Ltd. All rights reserved.

  7. Holocene climate variability and oceanographic changes off western South Africa

    Science.gov (United States)

    Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold

    2017-04-01

    and nutrient-rich waters with active upwelling. Thus, sea surface temperatures are dominated by upwelling dynamics influenced by the latitudinal position of the southern westerlies rather than warm waters via the Agulhas leakage. The paleo-productivity changes during the late Holocene are controlled by the freshwater influx of the Orange River indicated by abundant fluvial-related taxa such as Brigantedinium spp., Protoperidinium americanum and Lejeunecysta oliva. This corroborates the increase of Poaceae/Asteraceae ratio suggesting increased summer rainfall in the SRZ. Therefore, the terrestrial (pollen) and marine (dinoflagellate cyst) records generated from the same sediment sequence enable a clear understanding of the mechanisms driving variability in the Holocene of South Africa and provide significant insight into the land-ocean linkages.

  8. Sandy berm and beach-ridge formation in relation to extreme sea-levels

    DEFF Research Database (Denmark)

    Bendixen, Mette; Clemmensen, Lars B; Kroon, Aart

    2013-01-01

    The formation of berms and their transformation into beach ridges in a micro-tidal environment is coupled to wave run-up and overtopping during extreme sea levels. A straight-forward comparison between extreme sea levels due to storm-surges and active berm levels is impossible in the semi...... prograding spit on the south-eastern Baltic shores of Zealand, Denmark. The modern, sandy beach at this location consists of a beachface with a shallow incipient berm, a mature berm, and a dune-covered beach ridge. It borders a beach-ridge plain to the west, where more than 20 N–S oriented beach ridges...... and swales are present. Measured water-level data from 1991 to 2012 and topographical observations, carried out during fair weather period and during a storm event, provided the basis for a conceptual model exhibiting berm formation and transformation into the local beach-ridge system. The character...

  9. Seabed Gradient Controlling Onshore Transport Rates of Surf Sand during Beach Retreat by Sea Level Rise

    Science.gov (United States)

    Lee, Hee Jun; Yi, Hi-Il

    2018-03-01

    A simple relationship is proposed for the onshore transport rates of surf-zone sand to evaluate the beach retreat caused by sea level rise. It suggests that the preservation potential of surf sand is proportional inversely to the seabed gradient during beach retreat. According to this relationship, the erosional remnants of surf sand would be more readily developed on a gentler shelf collectively as transgressive sand sheets. This finding may explain the previous studies regarding the Korean shelves that proposed that the Holocene transgressive sand sheets (HTSS) occur not in the steep eastern shelf but in the gentle western shelf. In line with such presence/absence of the HTSS are the results from some coastal seismic profiles obtained in the present study. The profiles indicate that sand deposits are restricted within the nearshore in the eastern coast, whereas they are persistently traceable to the offshore HTSS in the western coast. Tide is proven to have a negligible influence on the total duration of surf-zone processes. This study may be useful in predicting the consequences of the beach retreat that takes place worldwide as sea levels rise as a result of global warming.

  10. Estimating sea-level allowances for Atlantic Canada under conditions of uncertain sea-level rise

    Directory of Open Access Journals (Sweden)

    B. Greenan

    2015-03-01

    Full Text Available This paper documents the methodology of computing sea-level rise allowances for Atlantic Canada in the 21st century under conditions of uncertain sea-level rise. The sea-level rise allowances are defined as the amount by which an asset needs to be raised in order to maintain the same likelihood of future flooding events as that site has experienced in the recent past. The allowances are determined by combination of the statistics of present tides and storm surges (storm tides and the regional projections of sea-level rise and associated uncertainty. Tide-gauge data for nine sites from the Canadian Atlantic coast are used to derive the scale parameters of present sea-level extremes using the Gumbel distribution function. The allowances in the 21st century, with respect to the year 1990, were computed for the Intergovernmental Panel on Climate Change (IPCC A1FI emission scenario. For Atlantic Canada, the allowances are regionally variable and, for the period 1990–2050, range between –13 and 38 cm while, for the period 1990–2100, they range between 7 and 108 cm. The negative allowances in the northern Gulf of St. Lawrence region are caused by land uplift due to glacial isostatic adjustment (GIA.

  11. Vertical tectonic movement in northeastern Marlborough : stratigraphic, radiocarbon, and paleoecological data from Holocene estuaries

    International Nuclear Information System (INIS)

    Ota, Y.; Brown, L.J.; Berryman, K.R.; Fujimori, T.; Miyauchi, T.

    1995-01-01

    Height and age information from Holocene estuarine deposits along the northeastern Marlborough coast provide a database to evaluate coastal vertical tectonics. These data are related to the postglacial marine transgression and coastal geomorphic features formed since the culmination of sea-level rise. Four tectonic domains are recognised. The Wairau domain is characterised by subsidence at rates over 4 mm/yr. About 60% of this subsidence is tectonic and may be related to Marlborough Sounds subsidence, and 40% is a result of compaction. The Vernon Fault at the south side of the lower Wairau plain separates the Wairau domain from the high-standing Vernon domain. The Awatere Fault marks the southern boundary between the Vernon domain and the Grassmere domain, which extends from the Awatere River valley to Mussel Point. Slight uplift (c. 1 m in 6500 yr) characterises the Grassmere domain, based on data obtained from Blind River, Lake Grassmere, and, to a lesser extent, from Awatere River fluvial terraces. The north-trending London Hill Fault reaches the coast at Mussel Point and coincides with the boundary between the Grassmere and Cape Campbell domains. The latter is characterised by rapid uplift (16 m in c. 6500 yr). No late Quaternary traces are known on the London Hill Fault, but the data presented are indicative of Holocene activity. (author). 23 refs., 10 figs., 1 tab

  12. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  13. Relative sea-level rise and the conterminous United States : Consequences of potential land inundation in terms of population at risk and GDP loss

    NARCIS (Netherlands)

    Haer, Toon; Kalnay, Eugenia; Kearney, Michael; Moll, Henk

    2013-01-01

    Global sea-level rise poses a significant threat not only for coastal communities as development continues but also for national economies. This paper presents estimates of how future changes in relative sea-level rise puts coastal populations at risk, as well as affect overall GDP in the

  14. Holocene emergence in the Cook Islands, South Pacific

    Science.gov (United States)

    Woodroffe, C. D.; Stoddart, D. R.; Spencer, T.; Scoffin, T. P.; Tudhope, A. W.

    1990-03-01

    There is evidence of Holocene emergence on several of the Cook Islands. On Suwarrow Atoll there are extensive outcrops of emergent, but truncated, reef on the northern atoll rim, radiocarbon-dated 4680 4310 years B. P., overlain by younger cemented boulder conglomerates. On the northeast of the atoll there are fossil algal ridges indicating up to 1 m of emergence; the landwardmost has been dated 4220 years B. P., the intermediate one 3420 years B. P. and the present one 1250 years B. P. On Mitiaro, a makatea island in the Southern Cooks, there are emergent reefal deposits in the centre of the reef flat dated 5140 3620 years B. P. Similar thought poorly preserved deposits occur on Mauke, and an erosional bench and notch occurs on Atiu. Emergence on all islands appears synchronous with that reported on Mangaia, where a relative fall of sea level of at least 1.7 m in the last 3400 years has been reported. The evidence for emergence is broadly similar to that described from French Polynesia, though timing of emergence appears to differ.

  15. Land Sea Level Difference Impacts on Socio-Hydrological System.

    Science.gov (United States)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.

    2016-12-01

    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation

  16. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  17. The dynamic nature of relative sea level in Southeast Asia: tectonic effects and human impacts (Invited)

    Science.gov (United States)

    Hill, E.; Qiu, Q.; Feng, L.; Lubis, A.; Meltzner, A. J.; Tsang, L. L.; Daly, P.; McCaughey, J.; Banerjee, P.; Rubin, C. M.; Sieh, K.

    2013-12-01

    Tectonic changes can have significant effects on crustal deformation, the geoid, and relative sea level (RSL). Indeed, the tectonic impacts on RSL in some regions can be greater than those predicted as a result of climate change. In the case of earthquakes, these changes can occur suddenly, as coastlines uplift or subside by up to many meters. The changes can also occur over many decades as a result of interseismic or postseismic processes, or periodically in the form of transient slow-slip events. Although these effects are (mostly) recovered elastically over the course of the earthquake cycle, they are occurring in the context of ever-increasing populations living along affected coastlines, particularly the case in areas such as SE Asia. The societal effects of these tectonic-induced sea-level changes are therefore becoming increasingly significant, and important to consider in future projections for sea-level change. Additionally, tide-gauge and gravity measurements made in tectonically active areas cannot be interpreted without consideration and modeling of the tectonic setting. These facts highlight the need for accurate geodetic measurements of land-height change. Along the Sumatra subduction zone, a series of great earthquakes have occurred over the last decade, along with numerous moderate and smaller earthquakes. These, and their ensuing postseismic deformation, have reshaped regional coastlines. We will show visualization of land height changes using a decade of Sumatra GPS Array (SuGAr) data, and related tectonic models, that demonstrate dramatically the ups and downs of land elevation close to the earthquake sources. Vertical coseismic displacements as large as ~2.9 m have been recorded by the SuGAr (an uplift at Nias, during the 2005 Mw 8.6 earthquake), and vertical postseismic rates on the order of tens of mm/yr or greater (e.g., in northern Aceh, one station has been uplifting at a rate of ~34 mm/yr since the 2004 Mw 9.2 earthquake, while in southern

  18. Retinal vessel diameters in relation to hematocrit variation during acclimatization of highlanders to sea level altitude

    DEFF Research Database (Denmark)

    Kofoed, Peter Kristian; Sander, Birgit; Zubieta-Calleja, Gustavo

    2009-01-01

    PURPOSE: To examine variations in retinal vessel diameters during acclimatization of native highlanders to normobaric normoxia at sea level. METHODS: Fifteen healthy residents of the greater La Paz region in Bolivia (3600 m above sea level) were examined thrice over a 72-day period, after having...... traveled by airplane to Copenhagen, Denmark, near sea level. RESULTS: In the study subjects, hematocrit decreased from 49.6% (day 2) to 45.9% (P = 0.0066, day 23) and 41.7% (P ... diameters were indistinguishable from baseline after 72 days. No funduscopic signs of retinopathy were observed. Arterial blood pressure remained stable throughout the study. CONCLUSIONS: Although a 16% reduction in hematocrit occurred between days 2 and 72 after arrival at sea level, the only significant...

  19. Precession and atmospheric CO2 modulated variability of sea ice in the central Okhotsk Sea since 130,000 years ago

    Science.gov (United States)

    Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.

    2018-04-01

    Recent reduction in high-latitude sea ice extent demonstrates that sea ice is highly sensitive to external and internal radiative forcings. In order to better understand sea ice system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea ice extent and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea ice (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was ice-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea ice cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea ice extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near ice-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea ice conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.

  20. Late Holocene evolution of the Northeast intertidal region of Sepetiba Bay, Rio de Janeiro (Brazil)

    OpenAIRE

    Anita Fernandes Souza Pinto; Maria Virgínia Alves Martins; Maria Antonieta da Conceição Rodrigues; Leandro Nogueira; Lazaro Luiz Mattos Laut; Egberto Pereira

    2016-01-01

    This work is based on the study of the core T1 collected in the Guaratiba Mangrove, located on the northeastern margin of Sepetiba Bay. Few studies dealing with the application of benthic foraminifera to study sea level changes during the Holocene have been conducted in Sepetiba Bay, State of Rio de Janeiro, Brazil. In order to fill this gap, the core T1 was studied using textural, geochemical (carbonate, total organic carbon, total sulfur and stable isotopes evaluated in Ammonia tepida) and ...

  1. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  2. The relationship between Holocene cultural site distribution and marine terrace uplift on the coast fringing Coastal Range, Taiwan

    Science.gov (United States)

    Yang, Hsiaochin; Chen, Wenshan

    2013-04-01

    According to the collision of Philippine Sea plate and Eurasia plate, a series of left-lateral active faults with reverse sense exists in the Longitudinal Valley of east Taiwan. The Holocene marine terraces along the east coast of the Coastal Range in Taiwan are well known for their very rapid uplift and record tectonic history of this active collision boundary. The Holocene marine terrace sequence resulting from successive sea level change and tectonic activation is subdivided into several steps where the highest and oldest terrace, back to ca 13,000yr BP, reaches up to ca 80 m above sea level, and the lower terraces are mostly erosional ones, overlain by less than 1m thick coral beds in situ. The uplift of the coast is very high, ranging from 5 to 10 m/ka. According to the fabrics of potsherds and geochronological data, the prehistoric cultures in eastern Taiwan could be classified into three stages: Fushan (ca 5000-3500yr BP), Peinan/Chilin (ca3500-2000yr BP), Kweishan (ca2000-1000 yr BP) and Jinpu (ca 1000-400yr BP) cultural assemblages respectively. A great difference exists between the various cultural stage, not only the pottery making techniques, but also the distributions of archaeological sites. Combined with the dynamic geomorphic evolution of marine terraces and the distribution of prehistoric culture sites on the east coast of the Coastal Range, a coastal migration trend could be established.

  3. NW Pacific mid-depth ventilation changes during the Holocene

    Science.gov (United States)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  4. Aspects of the Quaternary evolution of the Southern Kattegat and the central North Sea based on interpretation of 2D and 3D marine reflection seismic profiles

    DEFF Research Database (Denmark)

    Bendixen, Carina

    In this PhD study interpretation of 2D shallow seismic data in the Kattegat region (Pinger, Sparker and Innomar parametric sub-bottom profiler), 3D conventional seismic data in the central North Sea, combined with sediment core interpretation and radiocarbon dating has been carried out in order...... to outline the geological development of the southwestern part of the Kattegat region, from the Late Weichselian to Early Holocene and to investigate the potential of using 3D seismic in Quaternary geology. Within the study area of the Kattegat region Late Weichselian (Lateglacial - LG) sediments...... are widespread and seen as semi-transparent reflections. The LG deposits drape the surface of the underlying till and were deposited during a period of relative high sea level (highstand system tract). The following postglacial (PG - Holocene) sediments represent a full depositional sequence including lowstand...

  5. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  6. Remarks on the sea level records of the north Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    variability in the tide gauge records along the coasts of the north Indian Ocean A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa, India 403004 e-mail: unni@nio.org Introduction Global sea-level rise has been relatively well... studied by making use of the coastal tide gauge data that are available (Woodworth and Player, 2003) through the Permanent Service for Mean Sea Level (PSMSL). However, studies on regional sea level rise have not gathered momentum, similar to those on a...

  7. Sea-level Variation Along the Suez Canal

    Science.gov (United States)

    Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.

    1997-05-01

    The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.

  8. IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere

    Science.gov (United States)

    Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the

    2015-12-01

    The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to

  9. Sea-level rise: towards understanding local vulnerability

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-06-01

    , experts are increasingly looking at its potential impacts on coasts to facilitate local adaptation planning. This is a more complex issue than one might think, because different stretches of coast can be affected in very different ways. First of all, the sea-level response to global warming will not be globally uniform, since factors like changes in ocean currents (Levermann et al 2005) and the changing gravitational pull of continental ice (Mitrovica et al 2001) affect the local rise. Secondly, superimposed on the climatic trend is natural variability in sea level, which regionally can be as large as the climatic signal on multi-decadal timescales. Over the past decades, sea level has dropped in sizable parts of the world ocean, although it has of course risen in global mean (IPCC 2007). Thirdly, local land uplift or subsidence affects the local sea-level change relative to the coast, both for natural reasons (post-glacial isostatic adjustment centred on regions that were covered by ice sheets during the last ice age) and artificial ones (e.g., extraction of water or oil as in the Gulf of Mexico). Finally, local vulnerability to sea-level rise depends on many factors. Two interesting new studies in this journal (Tebaldi et al 2012, Strauss et al 2012) make important steps towards understanding sea-level vulnerability along the coasts of the United States, with methods that could also be applied elsewhere. The first, by Strauss and colleagues, merges high-resolution topographic data and a newly available tidal model together with population and housing data in order to estimate what land area and population would be at risk given certain increments in sea level. The results are mapped and tabulated at county and city level. They reveal the 'hot spots' along the US coast where sea-level rise is of the highest concern because of large populations living near the high-tide line: New York City and Long Island; the New Jersey shore; the Norfolk, Virginia, area; near Charleston

  10. The Offlap Break Position Vs Sea Level: A Discussion

    Science.gov (United States)

    Tropeano, M.; Pieri, P.; Pomar, L.; Sabato, L.

    Sedimentary lithosomes with subhorizontal topsets, basinward prograding foresets and subhorizontal bottomsets are common in the geologic record, and most of them display similar bedding architectures and/or seismic reflection patterns (i.e. Gylbert- type deltas and shelf wedges). Nevertheless, in shallow marine settings these bodies may form in distinct sedimentary environments and they result from different sed- imentary processes. The offlap break (topset edge) occurs in relation to the posi- tion of baselevel and two main groups of lithosomes can be differentiated with re- spect to the position of the offlap break within the shelf profile. The baselevel of the first group is the sea level (or lake level); the topsets are mainly composed by continental- or very-shallow-water sedimentary facies and the offlap break practi- cally corresponds to the shoreline. Exemples of these lithosomes are high-constructive deltas (river-dominated deltas) and prograding beaches. For the second group, base- level corresponds to the base of wave/tide traction, and their topsets are mostly composed by shoreface/nearshore deposits. Examples of these lithosomes are high- destructive deltas (wave/tide-dominated deltas) and infralittoral prograding wedges (i.e Hernandez-Molina et al., 2000). The offlap break corresponds to the shelf edge (shoreface edge), which is located at the transition between nearshore and offshore set- tings, where a terrace prodelta- or transition-slope may develop (Pomar &Tropeano, 2001). Two main problems derive from these alternative interpretations of shallow- marine seaward prograding lithosomes: 1) both in ancient sedimentary shallow-marine successios (showing seaward prograding foresets) and in high resolution seismic pro- files (showing shelf wedges), the offlap break is commonly considered to correspond to the sea-level (shoreline) and used to inferr paleo sea-level positions and to construct sea-level curves. Without a good facies control, this use of

  11. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    Science.gov (United States)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  12. Holocene environmental and parasequence development of the St. Jones Estuary, Delaware (USA): Foraminiferal proxies of natural climatic and anthropogenic change

    Science.gov (United States)

    Leorri, E.; Martin, R.; McLaughlin, P.

    2006-01-01

    The benthic foraminiferal record of marshes located along western Delaware Bay (St. Jones Estuary, USA) reflects the response of estuaries to sea-level and paleoclimate change during the Holocene. System tracts are recognized and within them parasequences based on sedimentological and foraminiferal assemblages identification. The parasequences defined by foraminiferal assemblages appear correlative with rapid Holocene climate changes that are of worldwide significance: 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600??cal years BP. Following postglacial sea-level rise, modern subestuaries and marshes in the region began to develop between 6000 and 4000??years BP, depending on their proximity to the mouth of Delaware Bay and coastal geomorphology. Initial sediments were fluvial in origin, with freshwater marshes established around 4000??years BP. The subsequent sea-level transgression occurred sufficiently slowly that freshwater marshes alternated with salt marshes at the same sites to around 3000??years BP. Locally another two transgressions are identified at 1800 and 1000??years BP respectively. Marine influence increased in the estuaries until 600??years BP (Little Ice Age), when regression occurred. Sea-level began to rise again during the mid-19th Century at the end of the Little Ice Age, when marshes became established. The presence of a sand lens in the upper and middle estuary and the reduction in the number of tests in the top samples in cores from the same area also suggest an anthropogenic influence. The estuary infill resulted in a sharp transgressive sequence, represented by salt marsh foraminiferal assemblages in the upper part of the cores. The increase in marsh foraminifera in both areas suggests an increase in marine influence that might be due to the transgression beginning at the end of the Little Ice Age about 150-180??years ago coupled with anthropogenic straightening of the channel in 1913. ?? 2006 Elsevier B.V. All rights reserved.

  13. Determining Late Pleistocene to Early Holocene deglaciation of the Baltic Ice Lake through sedimentological core sample analysis of IODP Site M0064

    Science.gov (United States)

    Kelly, A. L.; Passchier, S.

    2016-12-01

    This study investigates the deglaciation history of the Scandinavian Ice Sheet (SIS) within the Baltic Sea's Hanö Bay from the Late Pleistocene to the Holocene using samples from International Ocean Discovery Program (IODP) Site M0064. The research aims to understand how the speed of deglaciation influences Baltic Ice Lake (BIL) drainage patterns and relative sea level changes on a high-resolution timescale. Glacial history of the SIS has been studied through glacial till analysis, surface exposure dating, and modeling, encompassing its most recent deglaciation 20-14ka BP, and suggests ice retreated from the project site 16.7ka BP. Between 17 and 14ka BP global sea level rose 4 meters per century, accompanied by a dramatic increase in atmospheric carbon. This period of rapid sea level rise and global warming is a valuable analog for understanding the Earth's current and projected climate. This project uses particle size analysis to better understand the late-glacial depositional environment in Hanö Bay, and ICP-OES geochemical analysis for evidence pertaining to changing sediment provenance and bottom water oxygenation in the BIL. Diamicton is present between 47 and 9 mbsf in Hole M0064D. At 8 mbsf, the sediment exhibits a prominent upward transition from well-laminated cm-scale grey to more thinly laminated reddish brown rhythmites. With calculated Al/Ti ratios, we find that there is not much provenance change in the sequence, however we see fluctuations in Mn/Al ratios, implying shifts in sediment color may be chemical, possibly indicating redox changes in the water column during sediment deposition. Although we find that particle size in the varve sequence does not change, this factor may be driving chemical fluctuations in the diamicton. These results increase the understanding of ice retreat, paleocirculation and relative sea level changes in the Baltic Sea at the onset of the last deglaciation.

  14. Monthly Variations in Sea Level at the Island of Zanzibar | Mahongo ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science ... Air pressure and rainfall remained relatively constant during the 20-year study period, but there were trends in sea level, northeast winds, southeast winds and air temperature. Monthly ... The trend in sea level (9%) appeared to be mainly correlated with northeast winds.

  15. IODP Expedition 310 Reconstructs Sea Level, Climatic, and Environmental Changes in the South Pacific during the Last Deglaciation

    Directory of Open Access Journals (Sweden)

    Yasufumi Iryu

    2007-07-01

    Full Text Available The timing and course of the last deglaciation (19,000–6,000 years BP are essential components for understanding the dynamics of large ice sheets (Lindstrom and MacAyeal, 1993 and their effects on Earth’s isostasy (Nakada and Lambeck, 1989; Lambeck, 1993; Peltier, 1994, as well as the complex relationship between freshwater fluxes to the ocean, thermohaline circulation, and, hence, global climate during the Late Pleistocene and the Holocene. Moreover, the lastdeglaciation is generally seen as a possible analogue for the environmental changes and increased sea level that Earth may experience because of the greenhouse effect, related thermal expansion of oceans, and the melting of polar ice sheets.

  16. Mapping Relative Sea Level Influences of the Cape Fear Arch in southern North Carolina

    Science.gov (United States)

    Hawkes, A.; Kemp, A.; Capar, P.

    2017-12-01

    Long-term relative sea-level (RSL) records are a necessary benchmark by which to gauge present accelerated rates of sea-level rise, future sea-level predictions, and their implications to the coastal zone. The east coast of the United States functions as a significant region of latitudinal RSL variability due to the continuous recovery of land from the deglaciation of the Laurentide Ice Sheet since the Last Glacial Maximum. Differential glacial isostatic adjustment (GIA) along the coastline has caused higher rates of subsidence in areas around the former forbulge maxima near New Jersey and Delaware and lower rates to the north and south of this maxima. However, the coast between southern North Carolina and northern South Carolina is experiencing a slower rate of RSL rise then is seen in reconstructed GIA latitudinal trends along the U.S. east coast. It was thought that this could have been attributed to non-isostatic, long-term tectonic processes causing less GIA subsidence of the lithosphere within the region impacted by uplift from the Cape Fear Arch (CFA), an underlying crystalline basement high. A recent study suggests that RSL rise is slower around the CFA than areas to the north and south due to suggested CFA uplift rates of 0.24+0.15mm a-1. An absence of RSL records for 200km north of the CFA make mapping of its influence difficult. Additional RSL records to the north of the CFA allow for a better understanding of the asymmetrical distribution in the rate of RSL rise in this region. Because the distribution in the rate of RSLR between records is not linear it is important for these low-lying coastal communities to better understand their risk to future RSLR.

  17. Observed Sea-Level Changes along the Norwegian Coast

    Directory of Open Access Journals (Sweden)

    Kristian Breili

    2017-07-01

    Full Text Available Norway’s national sea level observing system consists of an extensive array of tide gauges, permanent GNSS stations, and lines of repeated levelling. Here, we make use of this observation system to calculate relative sea-level rates and rates corrected for glacial isostatic adjustment (GIA along the Norwegian coast for three different periods, i.e., 1960 to 2010, 1984 to 2014, and 1993 to 2016. For all periods, the relative sea-level rates show considerable spatial variations that are largely due to differences in vertical land motion due to GIA. The variation is reduced by applying corrections for vertical land motion and associated gravitational effects on sea level. For 1960 to 2010 and 1984 to 2014, the coastal average GIA-corrected rates for Norway are 2.0 ± 0.6 mm/year and 2.2 ± 0.6 mm/year, respectively. This is close to the rate of global sea-level rise for the same periods. For the most recent period, 1993 to 2016, the GIA-corrected coastal average is 3.5 ± 0.6 mm/year and 3.2 ± 0.6 mm/year with and without inverse barometer (IB corrections, respectively, which is significantly higher than for the two earlier periods. For 1993 to 2016, the coastal average IB-corrected rates show broad agreement with two independent sets of altimetry. This suggests that there is no systematic error in the vertical land motion corrections applied to the tide-gauge data. At the same time, altimetry does not capture the spatial variation identified in the tide-gauge records. This could be an effect of using altimetry observations off the coast instead of directly at each tide gauge. Finally, we note that, owing to natural variability in the climate system, our estimates are highly sensitive to the selected study period. For example, using a 30-year moving window, we find that the estimated rates may change by up to 1 mm/year when shifting the start epoch by only one year.

  18. Pleistocene to holocene expansion of the black-belt cichlid in Central America, Vieja maculicauda (Teleostei: Cichlidae.

    Directory of Open Access Journals (Sweden)

    Caleb D McMahan

    Full Text Available The distributions of many Northern Hemisphere organisms have been influenced by fluctuations in sea level and climatic conditions during Pleistocene interglacial periods. These cycles are associated with range contraction and refugia for northern-distributed organisms as a response to glaciers. However, lower sea levels in the tropics and sub-tropics created available habitat for expansion of the ranges of freshwater organisms. The goal of this study was to use ecological niche modeling to test the hypothesis of north to south range expansion of Vieja maculicauda associated with Pleistocene glacial cycles. Understanding the biogeography of this widespread species may help us better understand the geology and interconnectivity of Central American freshwaters. Occurrence data for V. maculicauda was based on georeferencing of all museum records of specimens recovered from FishNet2. General patterns of phylogeographic structure were assessed with mtDNA. Present day niche models were generated and subsequently projected onto paleoclimatic maps of the region during the Last Interglacial, Last Glacial Maximum, and mid-Holocene. Phylogenetic analysis of mtDNA sequence data showed no phylogeographic structure throughout the range of this widespread species. Present day niche models were congruent with the observed distribution of V. maculicauda in Central America. Results showed a lack of suitable freshwater habitat in northern Central America and Mexico during the Last Interglacial, with greatest range expansion during the Last Glacial Maximum and mid-Holocene. Results support the hypothesis of a north to south range expansion of V. maculicauda associated with glacial cycles. The wide distribution of this species compared to other closely related cichlids indicates the latter did not respond to the degree of V. maculicauda in expansion of their distributions. Future work aimed at comparisons with other species and modeling of future climatic scenarios

  19. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  20. Isotope heterogeneity of Pre-Holocene groundwater in Iceland

    DEFF Research Database (Denmark)

    Sveinbjörnsdóttir, Á.E.; Arnorsson, S.; Heinemeier, Jan

    2007-01-01

    In recent years, it has been shown that groundwater with a Pre-Holocene component is more common in the Icelandic bedrock than previously thought. Some of the Pre-Holocene water samples are more depleted in delta H-2 and delta O-18 than any mean annual precipitation in Iceland today due to the cold...... climate at that time. However, most often Pre-Holocene water components cannot be detected based on the water isotopes alone due to mixing with younger and isotopically heavier water. The Cl concentration in relation to the water isotopes in specific areas has proved to be a good indicator of a Pre......-Holocene component in the groundwater. The deuterium excess value may also help to identify water from a different climate regime, if no oxygen shift has occurred. The relative abundance of a Pre-Holocene water component of the Icelandic groundwater has led to the understanding that combined interpretation of water...

  1. National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach

    International Nuclear Information System (INIS)

    Zhan, Q; Fan, X; Du, X; Zhu, J

    2014-01-01

    In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise

  2. Radiocarbon dates from the holocene levels at Nelson Bay Cave, and an interim report on their associations

    International Nuclear Information System (INIS)

    Inskeep, R.R.; Vogel, J.C.

    1985-01-01

    Various changes in the cultural material derived from the later Holocene levels of Nelson Bay Cave can be pinpointed in temporal context by means of a large series of radiocarbon dates, such as Carbon 13 and Carbon 14 covering the past 6 000 years. As excavations and analysis of the recovered materials proceeded, radiocarbon dates were sought in order to provide a chronological frame work for what are taken to be significant features in the history of the site, and these are discussed in the article. Several pottery and assumed sheep remains were recorded. Six human burials were also recovered and this helps with the characterization of Holocene burial practices

  3. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    Science.gov (United States)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  4. Long-Term Design of Mangrove Landfills as an Effective Tide Attenuator under Relative Sea-Level Rise

    Directory of Open Access Journals (Sweden)

    Hiroshi Takagi

    2018-04-01

    Full Text Available A mangrove ecosystem is an important option in Ecosystem based Disaster Risk Reduction (Eco-DRR. The effectiveness of an artificial mangrove landfill in reducing tidal amplitudes was studied by performing a coupled numerical model that simulated wave propagation and soil consolidation. The constructed model simulated the propagation of tide over an artificial landfill that was subjected to land subsidence, sea-level rise, vegetation growth, and sediment deposition. A case study analysis confirmed that the tidal amplitudes are reduced if the initial elevation of the landfill is appropriately considered to achieve an equilibrium state of the landfill over its lifetime. Sediment deposition may be the only dependable source to sustain the surface elevation of a mangrove with relative sea-level rise. Sediment deposition is important to promote vegetation growth, which in turn contributes to sedimentation by enhancing a tranquil hydrodynamic environment. An insufficient initial elevation of the landfill will result in less effective protection against tidal propagation after it substantially subsides.

  5. Estimating absolute sea level variations by combining GNSS and Tide gauge data

    Digital Repository Service at National Institute of Oceanography (India)

    Bos, M.S.; Fernandes, R.M.S; Vethamony, P.; Mehra, P.

    Indian tide gauges can be used to estimate sea level rise. To separate relative sea level rise from vertical land motion at the tide gauges, various GNSS stations have been installed in the last years at, or nearby, tide gauges. Using the PSMSL...

  6. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  7. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  8. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872-2012

    Directory of Open Access Journals (Sweden)

    Gaia Galassi

    2015-03-01

    Full Text Available We have analyzed tide gauge data from the Adriatic Sea in order to assess the secular sea-level trend, its acceleration and the existence of possible cyclic variation. Analyzing the sea-level stack of all Adriatic tide gauges, we have obtained a trend of (1.25±0.04 mm yr-1, in agreement with that observed for the last century in the Mediterranean Sea, and an acceleration that is negligibile compared to the average global values. By means of the Ensemble Empirical Mode Decomposition technique, we have evidenced an energetic oscillation with a period of ∼20 years that we relate with the recurrence of opposite phases in the Atlantic Multi–decadal Oscillation and North Atlantic Oscillation indices. We suggest that anomalously high sea-level values observed at all the Adriatic tide gauges during 2010 and 2011 can be explained by the rising phase of this 20 years cycle.

  9. Present day sea level changes: observation and causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2005-11-01

    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  10. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    Science.gov (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  11. Is sea-level rising?

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    correction in the estimation of trends obtained for tide gauge records. The altimeter data permits to prepare spatial maps of sea-level rise trends. We present a map prepared for the Indian Ocean (Figure 4) north of 10oS , which shows a fairly uniform... drawn information from research papers published by the author and report of the IPCC AR5 WG1 Chapter 13: Sea Level Changes, in which the author has served as a ‘Lead Author’. Figure1 is prepared using data from the University of Colorado. Nerem, R...

  12. Measuring the Rate of Change in Sea Level and Its Adherence to USACE Sea Level Rise Planning Scenarios Using Timeseries Metrics

    Science.gov (United States)

    White, K. D.; Huang, N.; Huber, M.; Veatch, W.; Moritz, H.; Obrien, P. S.; Friedman, D.

    2017-12-01

    In 2013, the United States Army Corps of Engineers (USACE) issued guidance for all Civil Works activities to incorporate the effects of sea level change as described in three distinct planning scenarios.[1] These planning scenarios provided a useful framework to incorporate these effects into Civil Works activities, but required the manual calculation of these scenarios for a given gage and set of datum. To address this need, USACE developed the Sea Level Change Curve Calculator (SLCCC) in 2014 which provided a "simple, web-based tool to provide repeatable analytical results."[2]USACE has been developing a successor to the SLCCC application which retains the same, intuitive functionality to calculate these planning scenarios, but it also allows the comparison of actual sea level change between 1992 and today against the projections, and builds on the user's ability to understand the rate of change using a variety of timeseries metrics (e.g. moving averages, trends) and related visualizations. These new metrics help both illustrate and measure the complexity and nuances of sea level change. [1] ER 1000-2-8162. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerRegulations/ER_1100-2-8162.pdf. [2] SLCC Manual. http://www.corpsclimate.us/docs/SLC_Calculator_Manual_2014_88.pdf.

  13. Modelling sea level rise impacts on storm surges along US coasts

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; Strauss, Benjamin H; Zervas, Chris E

    2012-01-01

    Sound policies for protecting coastal communities and assets require good information about vulnerability to flooding. Here, we investigate the influence of sea level rise on expected storm surge-driven water levels and their frequencies along the contiguous United States. We use model output for global temperature changes, a semi-empirical model of global sea level rise, and long-term records from 55 nationally distributed tidal gauges to develop sea level rise projections at each gauge location. We employ more detailed records over the period 1979–2008 from the same gauges to elicit historic patterns of extreme high water events, and combine these statistics with anticipated relative sea level rise to project changing local extremes through 2050. We find that substantial changes in the frequency of what are now considered extreme water levels may occur even at locations with relatively slow local sea level rise, when the difference in height between presently common and rare water levels is small. We estimate that, by mid-century, some locations may experience high water levels annually that would qualify today as ‘century’ (i.e., having a chance of occurrence of 1% annually) extremes. Today’s century levels become ‘decade’ (having a chance of 10% annually) or more frequent events at about a third of the study gauges, and the majority of locations see substantially higher frequency of previously rare storm-driven water heights in the future. These results add support to the need for policy approaches that consider the non-stationarity of extreme events when evaluating risks of adverse climate impacts. (letter)

  14. Relative sea level and coastal environments in arctic Alaska during Marine Isotope Stage 5

    Science.gov (United States)

    Farquharson, L. M.; Mann, D. H.; Jones, B. M.; Rittenour, T. M.; Grosse, G.; Groves, P.

    2015-12-01

    Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.

  15. Observed sea-level rise in the north Indian Ocean coasts during the past century

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Content-Type text/plain; charset=UTF-8 91 Observed sea-level rise in the north Indian Ocean coasts during the past century A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa-403004 unni@nio.org Introduction Sea-level... rise is one of the good indicators of global warming. Rise in sea level occurs mainly through melting of glaciers, thermal expansion due to ocean warming and some other processes of relatively smaller magnitudes. Sea level rise is a global...

  16. Arctic Sea Level During the Satellite Altimetry Era

    DEFF Research Database (Denmark)

    Carret, A.; Johannessen, J. A.; Andersen, Ole Baltazar

    2017-01-01

    Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data....... However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry......-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled...

  17. Emergent Marine Terraces in Cebu Island, Philippines and Their Implications for Relative Sea Level Changes in the Late Quaternary

    Science.gov (United States)

    Ramos, N. T.; Sarmiento, K. J. S.; Maxwell, K. V.; Soberano, O. B.; Dimalanta, C. B.

    2017-12-01

    The remarkable preservation and extensive distribution of emergent marine terraces in the Philippines allow us to study relative sea level changes and tectonic processes during the Late Quaternary. While higher uplift rates and possible prehistoric coseismic events are recorded by emergent coral reefs facing subduction zones, the central Philippine islands are reported to reflect vertical tectonic stability as they are distant from trenches. To constrain the coastal tectonics of the central Philippine region, we studied emergent sea level indicators along the coasts of northern Cebu Island in Tabuelan, San Remigio, and Bogo City. Upper steps of marine terraces were interpreted from IFSAR-derived DEMs, in which at least two and seven steps were identified along the west (Tabuelan) and east (Bogo) coasts, respectively. In Tabuelan, two extensive terrace steps (TPT) were interpreted with TPT1 at 5-13 m above mean sea level (amsl) and TPT2 at 27-44 m amsl. Five to possibly seven terrace steps (BPT) were delineated in Bogo City with elevations from lowest (BPT1) to highest (BPT7) at BPT1: 4-6 m, BPT2: 12-18 m, BPT3: 27-33 m, BPT4: 39-46 m, BPT5: 59-71 m, BPT6: 80-92 m, and BPT7: 103-108 m amsl. These upper terraces are inferred to be Late Pleistocene in age based on an initial MIS 5e age reported for a 5-m-high terrace in Mactan Island. At some sites, even lower and narrower terrace surfaces were observed, consisting of cemented coral rubble that surround eroded and attached corals. These lower carbonate steps, with elevations ranging from 1 to 3 m amsl, further provide clues on relative sea level changes and long-term tectonic deformation across Cebu Island.

  18. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    Science.gov (United States)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  19. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  20. Coastal Sea Levels, Impacts, and Adaptation

    Directory of Open Access Journals (Sweden)

    Thomas Wahl

    2018-02-01

    Full Text Available Sea-level rise (SLR poses a great threat to approximately 10% of the world’s population residing in low-elevation coastal zones (i.e., land located up to 10 m of present-day mean sea-level (MSL[...

  1. Euphotic zone bacterioplankton sources major sedimentary bacteriohopanepolyols in the Holocene Black Sea

    Science.gov (United States)

    Blumenberg, Martin; Seifert, Richard; Kasten, Sabine; Bahlmann, Enno; Michaelis, Walter

    2009-02-01

    Bacteriohopanepolyols (BHPs) are lipid constituents of many bacterial groups. Geohopanoids, the diagenetic products, are therefore ubiquitous in organic matter of the geosphere. To examine the potential of BHPs as environmental markers in marine sediments, we investigated a Holocene sediment core from the Black Sea. The concentrations of BHPs mirror the environmental shift from a well-mixed lake to a stratified marine environment by a strong and gradual increase from low values (˜30 μg g -1 TOC) in the oldest sediments to ˜170 μg g -1 TOC in sediments representing the onset of a permanently anoxic water body at about 7500 years before present (BP). This increase in BHP concentrations was most likely caused by a strong increase in bacterioplanktonic paleoproductivity brought about by several ingressions of Mediterranean Sea waters at the end of the lacustrine stage (˜9500 years BP). δ 15N values coevally decreasing with increasing BHP concentrations may indicate a shift from a phosphorus- to a nitrogen-limited setting supporting growth of N 2-fixing, BHP-producing bacteria. In sediments of the last ˜3000 years BHP concentrations have remained relatively stable at about 50 μg g -1 TOC. The distributions of major BHPs did not change significantly during the shift from lacustrine (or oligohaline) to marine conditions. Tetrafunctionalized BHPs prevailed throughout the entire sediment core, with the common bacteriohopanetetrol and 35-aminobacteriohopanetriol and the rare 35-aminobacteriohopenetriol, so far only known from a purple non-sulfur α-proteobacterium, being the main components. Other BHPs specific to cyanobacteria and pelagic methanotrophic bacteria were also found but only in much smaller amounts. Our results demonstrate that BHPs from microorganisms living in deeper biogeochemical zones of marine water columns are underrepresented or even absent in the sediment compared to the BHPs of bacteria present in the euphotic zone. Obviously, the assemblage of

  2. On the regional characteristics of past and future sea-level change (Invited)

    Science.gov (United States)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  3. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    OpenAIRE

    Andersen O.B., Passaro M., Benveniste J., Piccioni G.

    2016-01-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reproce...

  4. A scaling approach to project regional sea level rise and its uncertainties

    Directory of Open Access Journals (Sweden)

    M. Perrette

    2013-01-01

    Full Text Available Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011. Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6 with the new CMIP5 general circulation models. The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%. Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.

  5. Evaluation of sea level rise in Bohai Bay and associated responses

    Directory of Open Access Journals (Sweden)

    Ke-Xiu LIU

    2017-03-01

    Full Text Available Tide gauge data from 1950 to 2015 are used to analyze sea level change, tidal change, return levels, and design tide levels under rising sea level scenarios in Bohai Bay. Results show the following: 1 Since 1950 sea levels in Bohai Bay show a significant rising trend of 3.3 mm per year. The speed has been particularly rapid in 1980–2015 at a rate of 4.7 mm per year. 2 Astronomical tides showed a clear long-term trend in 1950–2015. The amplitude and phase lag of the M2 tide constituent decreased at a rate of 0.21 cm per year and 0.11° per year, respectively and the phase lag of K1 decreased at a rate of 0.09° per year, whereas there was little change in its amplitude. The mean high and low tides increased at a rate of 0.08 and 0.52 cm per year, respectively, whereas the mean tidal range decreased at a rate of 0.44 cm per year. Results from numerical experiments show that local sea level rise plays an important role in the tidal dynamics change in Bohai Bay. 3 It is considered that the sea level return periods will decrease owing to the influence of sea level rise and land subsidence, therefore design tide level will change in relation to sea level rise. Therefore, the ability of seawalls to withstand water will diminish, and storm surge disasters will become more serious in the future.

  6. IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere

    DEFF Research Database (Denmark)

    Andrén, T; Jørgensen, Bo Barker; Cotterill, Carol

    2015-01-01

    -rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly...... degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to Holocene brackish mud. High-resolution sampling and analyses of interstitial water chemistry revealed the intensive mineralization......The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different set- tings of the Baltic Sea covering the last glacial–interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region...

  7. Hypoxia and cyanobacteria blooms - are they really natural features of the late Holocene history of the Baltic Sea?

    Directory of Open Access Journals (Sweden)

    L. Zillén

    2010-08-01

    Full Text Available During the last century (1900s industrialized forms of agriculture and human activities have caused eutrophication of Baltic Sea waters. As a consequence, the hypoxic zone in the Baltic Sea has increased, especially during the last 50 years, and has caused severe ecosystem disturbance. Climate forcing has been proposed to be responsible for the reported trends in hypoxia (< 2 mg/l O2 both during the last c. 100 years (since c. 1900 AD and the Medieval Period. By contrast, investigations of the degree of anthropogenic forcing on the ecosystem on long time-scales (millennial and greater have not been thoroughly addressed. This paper examines evidence for anthropogenic disturbance of the marine environment beyond the last century through the analysis of the human population growth, technological development and land-use changes in the drainage area. Natural environmental changes, i.e. changes in the morphology and depths of the Baltic basin and the sills, were probably the main driver for large-scale hypoxia during the early Holocene (8000–4000 cal yr BP. We show that hypoxia during the last two millennia has followed the general expansion and contraction trends in Europe and that human perturbation has been an important driver for hypoxia during that time. Hypoxia occurring during the Medieval Period coincides with a doubling of the population (from c. 4.6 to 9.5 million in the Baltic Sea watershed, a massive reclamation of land in both established and marginal cultivated areas and significant increases in soil nutrient release. The role of climate forcing on hypoxia in the Baltic Sea has yet to be demonstrated convincingly, although it could have helped to sustain hypoxia through enhanced salt water inflows or through changes in hydrological inputs. In addition, cyanobacteria blooms are not natural features of the Baltic Sea as previously deduced, but are a consequence of enhanced phosphorus release from the seabed that occurs during

  8. Human responses to Middle Holocene climate change on California's Channel Islands

    Science.gov (United States)

    Kennett, Douglas J.; Kennett, James P.; Erlandson, Jon M.; Cannariato, Kevin G.

    2007-02-01

    High-resolution archaeological and paleoenvironmental records from California's Channel Islands provide a unique opportunity to examine potential relationships between climatically induced environmental changes and prehistoric human behavioral responses. Available climate records in western North America (7-3.8 ka) indicate a severe dry interval between 6.3 and 4.8 ka embedded within a generally warm and dry Middle Holocene. Very dry conditions in western North America between 6.3 and 4.8 ka correlate with cold to moderate sea-surface temperatures (SST) along the southern California Coast evident in Ocean Drilling Program (ODP) Core 893A/B (Santa Barbara Basin). An episode of inferred high marine productivity between 6.3 and 5.8 ka corresponds with the coldest estimated SSTs of the Middle Holocene, otherwise marked by warm/low productivity marine conditions (7.5-3.8 ka). The impact of this severe aridity on humans was different between the northern and southern Channel Islands, apparently related to degree of island isolation, size and productivity of islands relative to population, fresh water availability, and on-going social relationships between island and continental populations. Northern Channel Islanders seem to have been largely unaffected by this severe arid phase. In contrast, cultural changes on the southern Channel Islands were likely influenced by the climatically induced environmental changes. We suggest that productive marine conditions coupled with a dry terrestrial climate between 6.3 and 5.8 ka stimulated early village development and intensified fishing on the more remote southern islands. Contact with people on the adjacent southern California Coast increased during this time with increased participation in a down-the-line trade network extending into the western Great Basin and central Oregon. Genetic similarities between Middle Holocene burial populations on the southern Channel Islands and modern California Uto-Aztecan populations suggest

  9. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  10. Multivariate Regression Approach To Integrate Multiple Satellite And Tide Gauge Data For Real Time Sea Level Prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2010-01-01

    The Sea Level Thematic Assembly Center in the EUFP7 MyOcean project aims at build a sea level service for multiple satellite sea level observations at a European level for GMES marine applications. It aims to improve the sea level related products to guarantee the sustainability and the quality...

  11. Late Holocene spatio-temporal variability of the south Greenland Ice Sheet and adjacent mountain glaciers

    Science.gov (United States)

    Sinclair, G.; Carlson, A. E.; Rood, D. H.; Axford, Y.

    2017-12-01

    The late Holocene, with its spatially complex pattern of centennial-scale climate variation, is an ideal time period to test the response of the cryosphere to atmospheric and oceanic temperature changes. The south Greenland Ice Sheet (sGrIS), with its proximity to areas of North Atlantic Deep Water formation and a large spectrum of glaciological regimes over a relatively small area, provides an excellent location to examine the spatial heterogeneity of ice-sheet and glacier responses to climate change. Here, we will present 50 Be-10 surface exposure ages from eight moraines in six locations around the margin of the sGrIS. These moraines are located just outboard of historical moraines, and will therefore allow us to constrain the timing of the most extensive prehistoric late-Holocene advance and retreat of ice margins draining the sGrIS and independent valley glaciers. The dataset includes both marine- and land-terminating glaciers draining the sGrIS, the low-altitude Qassimiut lobe, the high-altitude alpine Julianhåb ice cap and isolated valley glaciers. This diverse dataset will allow us to determine to what extent late-Holocene centennial-scale behavior of the ice-sheet and glacier margins were synchronous, perhaps in response to an external climate forcing, or more stochastic, governed instead by local factors such as basal thermal regime, bedrock topography, or microclimates. This has implications for understanding the forcings and responses of cryospheric changes at timescales relevant to human society. In addition to providing context for paleoclimatic and glacial geologic investigations, this work will inform future sea-level projections by providing targets for validating high-resolution ice-sheet and glacier models.

  12. Sedimentology of middle ordovician carbonates in the Argentine precordillera: evidence of regional relative sea-level changes

    Science.gov (United States)

    Keller, M.; Eberlein, S.; Lehnert, O.

    1993-07-01

    The Las Aguaditas Formation in the Argentine Precordillera of San Juan is the only Ordovician carbonate sequence deposited on a slope. Spiculites, mudstones and calcisiltites represent the autochthonous sediments, characterized by a fine lamination, rare fossils and their dark colour. The pelagic fauna consists of rare radiolarians/calcispheres, trinucleid trilobites, graptolites and conodonts. The latter are typical of an open marine environment and proved a Llanvirn—Llandeilo age for the Las Aguaditas Formation. In the upper part of the succession there are several intercalations of megabreccias. Their thickness decreases from about 20 to 4 m towards the top of the formation, accompanied by an increasing amount of carbonate turbidites. The clasts of the breccias are derived from the slope as well as the platform. Each of the megabreccia horizons represents a system of channels, lobes and interchannel deposits, which together form a slope apron. On top of the lower breccia a small biostrome developed, where bryozoans and crinoids are preserved in an autochthonous position. Sedimentation of the Las Aguaditas Formation started with the drowning of the underlying carbonate platform (San Juan limestones). Near the Arenig-Llanvirn boundary, a rapid ecstatic sea-level rise led to the deposition of graptolitic black shales and mudstones. Upwards, allochthonous carbonates become increasingly abundant. The onset of megabreccia deposition coincides with a major relative sea-level fall, caused by block movements in connection with rifting. The subsequent transition from breccia formation towards turbiditic sedimentation corresponds to an environmental shift from the slope towards the toe of slope and basin and marks a renewed moderate sea-level rise.

  13. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  14. Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion

    Science.gov (United States)

    Caccamise, Dana J.; Merrifield, Mark A.; Bevis, Michael; Foster, James; Firing, Yvonne L.; Schenewerk, Mark S.; Taylor, Frederick W.; Thomas, Donald A.

    2005-02-01

    Since 1946, sea level at Hilo on the Big Island of Hawaii has risen an average of 1.8 +/- 0.4 mm/yr faster than at Honolulu on the island of Oahu. This difference has been attributed to subsidence of the Big Island. However, GPS measurements indicate that Hilo is sinking relative to Honolulu at a rate of -0.4 +/- 0.5 mm/yr, which is too small to account for the difference in sea level trends. In the past 30 years, there has been a statistically significant reduction in the relative sea level trend. While it is possible that the rates of land motion have changed over this time period, the available hydrographic data suggest that interdecadal variations in upper ocean temperature account for much of the differential sea level signal between the two stations, including the recent trend change. These results highlight the challenges involved in estimating secular sea level trends in the presence of significant low frequency variability.

  15. PALEOENVIRONMENTAL RECONSTRUCTION FROM BENTHIC FORAMINIFERAL ASSEMBLAGES OF EARLY HOLOCENE, SHALLOW MARINE DEPOSITS IN GOMBONG, CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Luli Gustiani

    2017-07-01

    Full Text Available A 30m-long sediment core covering the Holocene period was taken from the area of Gombong in the southern part of Central Java. The sediments were deposited in a shallow marine to lagoonal environment that was confirmed by the dominance of Ammonia beccarii along the core intervals. In addition, the species Quinqueloculina poeyana, Miliolinella lakemacquariensis, and Miliolinella subrotunda were also found in the sediments that are typical of normal shallow marine conditions. The decrease and increase in the abundance of these species throughout the core is an expression of sea level change in the area, which results the environmental changes. Low sea level is expressed by the dominance of Ammonia beccarii, and the low abundances or absence of the other three species. In contrast, high sea level stands are reflected by the presence of all four species. The high sea level would imply favorable conditions for benthic foraminifera because it would result in normal shallow marine conditions in the area. Finally, from this benthic assemblages study, it can be assumed that the environmental transformation from the originally shallow marine environment into land was occurred at level 5.5m depths of the sediment core, when all benthic foraminifera were terminated, including Ammonia beccarii. These new results from the shallow marine deposits in the Gombong area are a new contribution to the understanding of paleoenvironmental change in the region, which in turn is important for understanding sea level change as well as climate change in the region.

  16. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    Science.gov (United States)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  17. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    Science.gov (United States)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  18. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa L.; Bentley, Michael J.; King, Matt A.

    2015-03-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial isostatic adjustment to match present-day uplift rates. By combining a suite of ice loading histories that include a readvance with a model of glacial isostatic adjustment we report substantial improvements to predictions of present-day uplift rates, including reconciling one problematic observation of land sinking. We suggest retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery has since led to shallowing, ice sheet re-grounding and readvance. The paradoxical existence of grounding lines in apparently unstable configurations on reverse bed slopes may be resolved by invoking the process of unstable advance, in accordance with our load modelling.

  19. Late Glacial and Holocene Flow Dynamics of the Denmark Strait Overflow Water

    Science.gov (United States)

    Williams, M.; Schmidt, D. N.; Andersen, M. B.; Barker, S.; McCave, I. N. N.

    2014-12-01

    The overflow of dense water from the Nordic Seas to the North Atlantic across the Greenland-Scotland Ridge forms a major component of the deep branch of the Atlantic Meridional Overturning Circulation and influences the climate system in Northwest Europe. Research has focused on deep convection of the Iceland Scotland Overflow Water (ISOW) and its links to climate variability in the North Atlantic. Our understanding of the history of the Denmark Strait Overflow Water (DSOW) is significantly less constrained and yet it accounts for half of the total overflow production today. We focus on the Eirik Drift south of Greenland in the vicinity of the DSOW. Down-core 230Thxs derived sediment focusing factors (Ψ) and measurements of the mean size of sortable silt reveal winnowed sediments during the Last Glacial Maximum and Heinrich 1 suggesting an influx of vigorous southern sourced waters and restricted DSOW production. Reduced overflow may be due to glacial isostatic processes which shoaled the Denmark Strait sill combined with a southward shift of deep convection sites in response to enhanced ice cover in the Nordic Seas. Intensification of the DSOW is evident between 9 and 13ka BP indicating initial deepening of the Denmark Strait sill and northward migration of the locus of deep water production. Ψ values for the Holocene suggest an active DSOW with a shift in the flow regime at 6.8 ka BP indicated by a reduction and subsequent stabilization of mean size sortable silt during the mid-late Holocene. This is corroborated by other studies showing a reorganization of the deep water after 7ka. An establishment of the Labrador Sea Water at intermediate depths altered the density structure of the deep western boundary current and weakened the ISOW. Changes in deep water circulation occur as North Atlantic climate entered Neoglacial cooling determined by Mg/Ca derived sea surface temperatures and abundances of the polar planktic foraminifera species N. pachyderma. They

  20. Postglacial development of the eastern Gulf of Finland: from Pleistocene glacial lake basins to Holocene lagoon systems

    Science.gov (United States)

    Ryabchuk, Daria; Sergeev, Alexander; Kotilainen, Aarno; Hyttinen, Outi; Grigoriev, Andrey; Gerasimov, Dmitry; Anisimov, Mikhail; Gusentsova, Tatiana; Zhamoida, Vladimir; Amantov, Aleksey; Budanov, Leonid

    2016-04-01

    Despite significant amount of data, there are still lots of debatable questions and unsolved problems concerning postglacial geological history of the Eastern Gulf of Finland, the Baltic Sea. Among these problems are: 1) locations of the end moraine and glacio-fluvial deposits; 2) time and genesis of the large accretion forms (spits, bars, dunes); 3) basinwide correlations of trangression/regression culminations with the other parts of the Baltic Sea basin; 4) study of salinity, timing, frequency and intensity of Holocene saline water inflows and their links of sedimentation processes associated with climate change. Aiming to receive new data about regional postglacial development, the GIS analyses of bottom relief and available geological and geophysical data was undertaken, the maps of preQuaternary relief, moraine and Late Pleistocene surfaces, glacial moraine and Holocene sediments thicknesses were compiled. High-resolution sediment proxy study of several cores, taken from eastern Gulf of Finland bottom, allows to study grain-size distribution and geochemical features of glacial lake and Holocene sediments, to reveal sedimentation rates and paleoenvironment features of postglacial basins. Interdisciplinary geoarcheological approaches offer new opportunities for studying the region's geological history and paleogeography. Based on proxy marine geological and coastal geoarcheological studies (e.g. off-shore acoustic survey, side-scan profiling and sediment sampling, on-shore ground-penetrating radar (GPR SIR 2000), leveling, drilling, grain-size analyses and radiocarbon dating and archeological research) detailed paleogeographical reconstruction for three micro-regions - Sestroretsky and Lahta Lowlands, Narva-Luga Klint Bay and Southern Ladoga - were compiled. As a result, new high resolution models of Holocene geological development of the Eastern Gulf of Finland were received. Model calibration and verification used results from proxy geoarcheological research

  1. Detection of a dynamic topography signal in last interglacial sea-level records.

    Science.gov (United States)

    Austermann, Jacqueline; Mitrovica, Jerry X; Huybers, Peter; Rovere, Alessio

    2017-07-01

    Estimating minimum ice volume during the last interglacial based on local sea-level indicators requires that these indicators are corrected for processes that alter local sea level relative to the global average. Although glacial isostatic adjustment is generally accounted for, global scale dynamic changes in topography driven by convective mantle flow are generally not considered. We use numerical models of mantle flow to quantify vertical deflections caused by dynamic topography and compare predictions at passive margins to a globally distributed set of last interglacial sea-level markers. The deflections predicted as a result of dynamic topography are significantly correlated with marker elevations (>95% probability) and are consistent with construction and preservation attributes across marker types. We conclude that a dynamic topography signal is present in the elevation of last interglacial sea-level records and that the signal must be accounted for in any effort to determine peak global mean sea level during the last interglacial to within an accuracy of several meters.

  2. Sea Level Forecasts Aggregated from Established Operational Systems

    Directory of Open Access Journals (Sweden)

    Andy Taylor

    2017-08-01

    Full Text Available A system for providing routine seven-day forecasts of sea level observable at tide gauge locations is described and evaluated. Forecast time series are aggregated from well-established operational systems of the Australian Bureau of Meteorology; although following some adjustments these systems are only quasi-complimentary. Target applications are routine coastal decision processes under non-extreme conditions. The configuration aims to be relatively robust to operational realities such as version upgrades, data gaps and metadata ambiguities. Forecast skill is evaluated against hourly tide gauge observations. Characteristics of the bias correction term are demonstrated to be primarily static in time, with time varying signals showing regional coherence. This simple approach to exploiting existing complex systems can offer valuable levels of skill at a range of Australian locations. The prospect of interpolation between observation sites and exploitation of lagged-ensemble uncertainty estimates could be meaningfully pursued. Skill characteristics define a benchmark against which new operational sea level forecasting systems can be measured. More generally, an aggregation approach may prove to be optimal for routine sea level forecast services given the physically inhomogeneous processes involved and ability to incorporate ongoing improvements and extensions of source systems.

  3. Sulphate and chloride aerosols during Holocene and last glacial periods preserved in the Talos Dome Ice Core, a peripheral region of Antarctica

    Directory of Open Access Journals (Sweden)

    Yoshinori Iizuka

    2013-04-01

    Full Text Available Antarctic ice cores preserve the record of past aerosols, an important proxy of past atmospheric chemistry. Here we present the aerosol compositions of sulphate and chloride particles in the Talos Dome (TD ice core from the Holocene and Last Glacial Period. We find that the main salt types of both periods are NaCl, Na2SO4 and CaSO4, indicating that TD ice contains relatively abundant sea salt (NaCl from marine primary particles. By evaluating the molar ratio of NaCl to Na2SO4, we show that about half of the sea salt does not undergo sulphatisation during late Holocene. Compared to in inland Antarctica, the lower sulphatisation rate at TD is probably due to relatively little contact between sea salt and sulphuric acid. This low contact rate can be related to a reduced time of reaction for marine-sourced aerosol before reaching TD and/or to a reduced post-depositional effect from the higher accumulation rate at TD. Many sulphate and chloride salts are adhered to silicate minerals. The ratio of sulphate-adhered mineral to particle mass and the corresponding ratio of chloride-adhered mineral both increase with increasing dust concentration. Also, the TD ice appears to contain Ca(NO32 or CaCO3 particles, thus differing from aerosol compositions in inland Antarctica, and indicating the proximity of peripheral regions to marine aerosols.

  4. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.

    2013-01-01

    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  5. Sea level monitoring in Africa | Woodworth | African Journal of ...

    African Journals Online (AJOL)

    Information Network for Africa (ODINAfrica) programme are described and a survey of currently existing and planned sea level stations in Africa is presented, together with information on where data for existing stations may be found. Keywords: sea level data applications, sea level data telemetry, sea level networks. African ...

  6. Reconstruction of Grønfjordbreen dynamics (West Spitsbergen in the Holocene

    Directory of Open Access Journals (Sweden)

    O. V. Kokin

    2017-01-01

    Full Text Available In the past 80 years, the Grønfjord Glacier front retreated for a distance longer than 2.5 km, and thus, a big part of the proglacial zone became free of ice. The detailed geomorphological survey of this zone made pos‑ sible to identify the following landforms: exaration-glacial, glacial-accumulative, exaration-extrusive, pushmoraine (thrusting, fluvioglacial and limnoglacial ones. Geomorphological analysis of the forms indicat‑ ing the Grønfjord Glacier movement and degradation allowed establishing its dynamics over the last glacial cycle. The river running from the moraine-dammed lake erodes a great thickness of a push-moraine (up to 20‑25  m which is composed by marine sediments, accumulated on the site of the present-day proglacial zone under a relatively higher sea level than now. Careful investigation of lithology and stratigraphy of the push-moraine together with radiocarbon dating of marine shells resulted in determination of chronology of the main sedimentation stages during the Holocene within area of the present-day proglacial zone. During the reconstruction evidences of only two stages of the significant Grønfjord Glacier advance were revealed: in the early Holocene (9.5‑10 thousand years ago and in the little ice age (before beginning of XX century, with the maximum advance at the last stage. Basing on the results of the reconstruction the suggestion had been made that during the little ice age the Grønfjord Glacier was a surging one.

  7. Sea level change: lessons from the geologic record

    Science.gov (United States)

    ,

    1995-01-01

    Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.

  8. Sea level rise : A literature survey

    NARCIS (Netherlands)

    Oude Essink, G.H.P.

    1992-01-01

    In order to assess the impact of sea level rise on Water Management, it is useful to understand the mechanisrns that determine the level of the sea. In this study, a literature survey is executed to analyze these mechanisms. Climate plays a centra! role in these mechanisms, Climate mainly changes

  9. South America Monsoon variability on millennial to multi-centennial time scale during the Holocene in central eastern Brazil

    Science.gov (United States)

    Strikis, N. M.; Cruz, F. W.; Cheng, H.; Karmann, I.; Vuille, M.; Edwards, R.; Wang, X.; Paula, M. S.; Novello, V. F.; Auler, A.

    2011-12-01

    A paleoprecipitation reconstruction based on high resolution and well-dated speleothem oxygen isotope records shows that the monsoon precipitation over central eastern Brazil underwent to strong variations on millennial to multi-centennial time-scales during the Holocene. This new record indicates that abrupt events of increase in monsoon precipitation are correlated to Bond events 6, 5 and 4 and also with 8.2 ky event during the early and mid-Holocene, with a mean amplitude of 1.5 % (PDB). The pacing and structure of such events are general consistent with variations in solar activity suggested by atmospheric Δ14 C records. In the late-Holocene, abrupt events of increase in monsoon precipitation peaking at 3.2, 2.7 and 2.3 ky B.P. are approximately synchronous with periods of low solar minima. In this regard, the most prominent event occurred during the late Holocene occurred at ~2.7 ky B.P. In addition, these positive anomalies of the precipitation recorded in central eastern Brazil are also in good agreement with variations in Titicaca lake level. The good correspondence between the speleothem and marine records imply that the variations in the north Atlantic sea surface temperature is the main forcing for abrupt millennial to multi-centennial precipitations variation within the region under influence of South American Monsoon.

  10. Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change

    NARCIS (Netherlands)

    Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G.

    2017-01-01

    Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project

  11. Deglacial remobilization of permafrost carbon to sediments along the East Siberian Arctic Seas

    Science.gov (United States)

    Martens, J.; Wild, B.; Bröder, L.; Andersson, A.; Pearce, C.; O'Regan, M.; Jakobsson, M.; Tesi, T.; Muschitiello, F.; Sköld, M.; Semiletov, I. P.; Dudarev, O.; Gustafsson, O.

    2017-12-01

    Current climate change is expected to thaw large quantities of permafrost carbon (PF-C) and expose it to degradation which emits greenhouse gases (i.e. CO2 and CH4). Warming causes a gradual deepening of the seasonally thawed active layer surface of permafrost soils, but also the abrupt collapse of deeper Ice Complex Deposits (ICD), especially along Siberian coastlines. It was recently hypothesized that past warming already induced large-scale permafrost degradation after the last glacial, which ultimately amplified climate forcing. We here assess the mobilization of PF-C to East Siberian Arctic Sea sediments during these warming periods. We perform source apportionment using bulk carbon isotopes (ΔΔ14C, δ13C) together with terrestrial biomarkers (CuO-derived lignin phenols) as indicators for PF-C transfer. We apply these techniques to sediment cores (SWERUS-L2) from the Chukchi Sea (4-PC1) and the southern Lomonosov Ridge (31-PC1). We found that PF-C fluxes during the Bølling-Allerød warming (14.7 to 12.7 cal ka BP), the Younger Dryas cooling (12.7 to 11.7 cal ka BP) and the early Holocene warming (until 11 cal ka BP) were overall higher than mid and late Holocene fluxes. In the Chukchi Sea, PF-C burial was 2x higher during the deglaciation (7.2 g m-2 a-1) than in the mid and late Holocene (3.6 g m-2 a-1), and ICD were the dominant source of PF-C (79.1%). Smaller fractions originated from the active layer (9.1%) and marine sources (11.7%). We conclude that thermo-erosion of ICD released large amounts of PF-C to the Chukchi Sea, likely driven by climate warming and the deglacial sea level rise. This contrasts to earlier analyses of Laptev Sea sediments where active layer material from river transport dominated the carbon flux. Preliminary data on lignin phenol concentrations of Lomonosov Ridge sediments suggest that the postglacial remobilization of PF-C was one order of magnitude higher (10x) than during both the preceding glacial and the subsequent Holocene

  12. Holocene productivity changes off Adélie Land (East Antarctica) on decadal to millennial timescales

    NARCIS (Netherlands)

    Denis, D.; Crosta, X.; Schmidt, S.; Carson, D.; Ganeshram, R.; Renssen, H.; Crespin, J.; Ther, O.; Billy, I.; Giraudeau, J.

    2009-01-01

    This study presents the first high-resolution multiproxy investigation of primary productivity (PP) during the Holocene from the Antarctic continental margins. Micropaleontological and geochemical data from the sediment core MD03-2601,associated to sea ice model outputs, give unprecedented insights

  13. Probabilistic reanalysis of twentieth-century sea-level rise.

    Science.gov (United States)

    Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X

    2015-01-22

    Estimating and accounting for twentieth-century global mean sea level (GMSL) rise is critical to characterizing current and future human-induced sea-level change. Several previous analyses of tide gauge records--employing different methods to accommodate the spatial sparsity and temporal incompleteness of the data and to constrain the geometry of long-term sea-level change--have concluded that GMSL rose over the twentieth century at a mean rate of 1.6 to 1.9 millimetres per year. Efforts to account for this rate by summing estimates of individual contributions from glacier and ice-sheet mass loss, ocean thermal expansion, and changes in land water storage fall significantly short in the period before 1990. The failure to close the budget of GMSL during this period has led to suggestions that several contributions may have been systematically underestimated. However, the extent to which the limitations of tide gauge analyses have affected estimates of the GMSL rate of change is unclear. Here we revisit estimates of twentieth-century GMSL rise using probabilistic techniques and find a rate of GMSL rise from 1901 to 1990 of 1.2 ± 0.2 millimetres per year (90% confidence interval). Based on individual contributions tabulated in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, this estimate closes the twentieth-century sea-level budget. Our analysis, which combines tide gauge records with physics-based and model-derived geometries of the various contributing signals, also indicates that GMSL rose at a rate of 3.0 ± 0.7 millimetres per year between 1993 and 2010, consistent with prior estimates from tide gauge records.The increase in rate relative to the 1901-90 trend is accordingly larger than previously thought; this revision may affect some projections of future sea-level rise.

  14. Bipolar seesaw control on last interglacial sea level.

    Science.gov (United States)

    Marino, G; Rohling, E J; Rodríguez-Sanz, L; Grant, K M; Heslop, D; Roberts, A P; Stanford, J D; Yu, J

    2015-06-11

    Our current understanding of ocean-atmosphere-cryosphere interactions at ice-age terminations relies largely on assessments of the most recent (last) glacial-interglacial transition, Termination I (T-I). But the extent to which T-I is representative of previous terminations remains unclear. Testing the consistency of termination processes requires comparison of time series of critical climate parameters with detailed absolute and relative age control. However, such age control has been lacking for even the penultimate glacial termination (T-II), which culminated in a sea-level highstand during the last interglacial period that was several metres above present. Here we show that Heinrich Stadial 11 (HS11), a prominent North Atlantic cold episode, occurred between 135 ± 1 and 130 ± 2 thousand years ago and was linked with rapid sea-level rise during T-II. Our conclusions are based on new and existing data for T-II and the last interglacial that we collate onto a single, radiometrically constrained chronology. The HS11 cold episode punctuated T-II and coincided directly with a major deglacial meltwater pulse, which predominantly entered the North Atlantic Ocean and accounted for about 70 per cent of the glacial-interglacial sea-level rise. We conclude that, possibly in response to stronger insolation and CO2 forcing earlier in T-II, the relationship between climate and ice-volume changes differed fundamentally from that of T-I. In T-I, the major sea-level rise clearly post-dates Heinrich Stadial 1. We also find that HS11 coincided with sustained Antarctic warming, probably through a bipolar seesaw temperature response, and propose that this heat gain at high southern latitudes promoted Antarctic ice-sheet melting that fuelled the last interglacial sea-level peak.

  15. Latest Pleistocene to Holocene Evolution of the Baie de Port au Prince, Haiti

    Science.gov (United States)

    Rios, J. K.; McHugh, C. M.; Seeber, L.; Blair, S.; Sorlien, C. C.

    2012-12-01

    The Baie de Port au Prince (BPP) is adjacent a restraining segment of the sinistral Caribbean-North America plate boundary and is therefore situated between converging high-relief thrust systems, the Massif Selle (Peninsula Range) to the south and the Chaine de Matheux (Hispaniola highlands) to the north. To evaluate neotectonic deformation, seismic hazards and sedimentation patterns for the BPP, six gravity cores were studied within the framework of chirp profiles collected from the R/V Endeavor in 2010. The cores were recovered from 76 m to 148 m of water depth sampling sediment from the carbonate platform that rims the BPP and from the slope. We studied the biostratigraphy (foraminifers, nannoplankton), geochemical elemental composition and physical properties of the sediment. An age model from the last glacial to the present (~20 ka BP) was derived from radiocarbon. Nannoplankton biostratigraphy provide constraints on the late Pleistocene. The BPP is 150 m maximum water depth and is rimmed by an ~30 m deep carbonate platform that has undergone dissolution. Terraces characterize the sub-bottom topography to the NE. This topography was covered by sediment during at least one relative sea-level cycle. Sediment progradation and mass-wasting on the northern and southern flanks of the BPP respectively, occurred during the latest Pleistocene low stand (~20 ka BP). Increased sedimentation from 0.2 mm/year to 0.8 mm/year occurred from 14.2 ka BP to 9.5 ka BP. This period also corresponds with a global rapid rate in sea-level rise from -94 m to -37 m. A basin wide acoustically transparent layer of sediment ~10 m thick covered the BPP. Mass-wasting, microfaulting, fluidization and turbidites caused by erosion triggered by pre-historic earthquakes possibly associated with EPG transform fault are found in the cores. One such deposit is possibly associated to the 2010 earthquake and another to an unconformable surface that separates early- from late-Holocene sediment on the

  16. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  17. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    Science.gov (United States)

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  18. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  19. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  20. Sea level change in Great Britain between 1859 and the present

    Science.gov (United States)

    Woodworth, Philip L.

    2018-04-01

    Short records of sea level measurements by the Ordnance Survey at 31 locations in 1859-1860, together with recent Mean Sea Level (MSL) information from the UK tide gauge network, have been used to estimate the average rates of sea level change around the coast of Great Britain since the mid-19th century. Rates are found to be approximately 1 mm yr-1 in excess of those expected for the present day based on geological information, providing evidence for a climate-change related component of the increase in UK sea level. In turn, the rates of change of MSL for the past 60 yr are estimated to be ˜1 mm yr-1 in excess of the long-term rates since 1859, suggesting an acceleration in the rate of sea level rise between the 19th and 20th/21st centuries. Although the historical records are very short (approximately a fortnight), this exercise in `data archaeology' shows how valuable to research even the shortest records can be, as long as the measurements were made by competent people and the datums of the measurements were fully documented.

  1. Upper Limit for Regional Sea Level Projections

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  2. Late Holocene evolution of the Northeast intertidal region of Sepetiba Bay, Rio de Janeiro (Brazil

    Directory of Open Access Journals (Sweden)

    Anita Fernandes Souza Pinto

    2016-03-01

    Full Text Available This work is based on the study of the core T1 collected in the Guaratiba Mangrove, located on the northeastern margin of Sepetiba Bay. Few studies dealing with the application of benthic foraminifera to study sea level changes during the Holocene have been conducted in Sepetiba Bay, State of Rio de Janeiro, Brazil. In order to fill this gap, the core T1 was studied using textural, geochemical (carbonate, total organic carbon, total sulfur and stable isotopes evaluated in Ammonia tepida and microfaunal (benthic foraminifera data, unveiling paleoecological relationships of these organisms and the evolutionary scenario of Guaratiba Mangrove. Radiocarbon results indicate an estimated age of about 2400 yrs cal BP for the core base. Textural, geochemical and benthic foraminifera data suggest that the study area changed significantly during the last 2400 yrs cal BP. It experienced coastal waves action and shoreface processes in the period between ≈2.400-1.400 yrs cal BP; then, this phase gave place to a shallow marine environment similar to that found currently in internal and protected areas of Sepetiba Bay, between ≈1.400-350 yrs cal BP. Thenceforth, the study area evolved to the present mangrove environment. Factors related to climatic oscillations and the formation, evolution and events of rupture of Marambaia sand ridge influenced the late Holocene evolution of the northeast intertidal area of Sepetiba Bay.

  3. Delayed recolonization of foraminifera in a suddenly flooded tidal (former freshwater) marsh in Oregon (USA): Implications for relative sea-level reconstructions

    Science.gov (United States)

    Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.

    2016-04-01

    Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow

  4. Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes

    Science.gov (United States)

    Caraivan, Glicherie; Stefanescu, Diana

    2013-04-01

    Maximum (MIS 2), the shoreline retreats eastwards, reaching the 100-120 m isobaths. In these conditions, the surface drainage base level was very low. Phreatic nape closely followed the river valleys dynamics. Mean depth aquifer discharged on the inner shelf , where Sarmatian limestones outcrop. The deep aquifer discharge was restricted by the Capidava- Ovidiu Fault to the north-east and by a presumed seawards longitudinal Fault. This process enabled the migration of the prehistoric human communities, from Asia to Europe, who established settlements on the newly created alluvial plain on the western Black Sea shelf. The Holocene Transgression (MIS 1) determined a sea level rise up to the modern one, and probably higher. Under the pressure of these environmental changes, the Neolithic settlements slowly retreated upstream. During the Greek colonization, the rising sea level caused the salinisation of the previous drinking water phreatic sources. In these conditions, in the Roman Age, a new hydraulic infrastructure had to be developed, using aqueducts for available inland water delivery.

  5. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    Science.gov (United States)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  6. Human occupation and environmental change in Holocene from a case of XDW2 relic site in the Tibetan Plateau at above 4000 meters above sea level.

    Science.gov (United States)

    Hou, G.; Li, F.; Zhu, Y.

    2017-12-01

    XDW2 is an important microlithic cultural relics with continuous stratum that is located in the the Tibetan plateau at above 4,000 masl, wich is a window of revealing the evolution of early human activities and the response and adaptation to extreme environmental in the principal part of Tibetan plateau. So it has important research significance. The analysis on human activity indicator(stoneware, potsherds) and environmental indicators(magnetic susceptibility, color, granularity and pollen) showed: the winter wind and dust storm intensity is weak in this area during 7.0-6 cal. Ka BP, pedogenesis is strong, the climate is humid, environment is suitable relatively, when is Holocene Megathermal; the active phase of microlithic human activities occurred during 7.2-6 cal. ka BP, and quickly weakened after 6 cal. ka BP. The number of stone tools reveal that human activities are concentrated before and after 7-6.2 cal. ka BP, charcoal fragmental concentration indicates that microlithic human activity reached the peak at around 6.7 cal. ka BP. Thus relatively suitable environment during Holocene Megathermal is the important motivating factor of active hunter-gatherer activities in the principal part of Tibetan plateau. After 6 cal. ka BP, summer monsoon weakened rapidly, agricultural growers in the Loess Plateau began to expand towards the plateau, under the effect of environmental degradation and new technologies, microlithic hunter-gatherers in the principal part of plateau moved towards the river valley at low altitude, and learnt settlement and plantation, microlithic activity in the main plateau began to decline.

  7. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation

    Directory of Open Access Journals (Sweden)

    M. Sollai

    2017-12-01

    Full Text Available Heterocyst glycolipids (HGs are lipids exclusively produced by heterocystous dinitrogen-fixing cyanobacteria. The Baltic Sea is an ideal environment to study the distribution of HGs and test their potential as biomarkers because of its recurring summer phytoplankton blooms, dominated by a few heterocystous cyanobacterial species of the genera Nodularia and Aphanizomenon. A multi-core and a gravity core from the Gotland Basin were analyzed to determine the abundance and distribution of a suite of selected HGs at a high resolution to investigate the changes in past cyanobacterial communities during the Holocene. The HG distribution of the sediments deposited during the Modern Warm Period (MoWP was compared with those of cultivated heterocystous cyanobacteria, including those isolated from Baltic Sea waters, revealing high similarity. However, the abundance of HGs dropped substantially with depth, and this may be caused by either a decrease in the occurrence of the cyanobacterial blooms or diagenesis, resulting in partial destruction of the HGs. The record also shows that the HG distribution has remained stable since the Baltic turned into a brackish semi-enclosed basin ∼ 7200 cal. yr BP. This suggests that the heterocystous cyanobacterial species composition remained relatively stable as well. During the earlier freshwater phase of the Baltic (i.e., the Ancylus Lake and Yoldia Sea phases, the distribution of the HGs varied much more than in the subsequent brackish phase, and the absolute abundance of HGs was much lower than during the brackish phase. This suggests that the cyanobacterial community adjusted to the different environmental conditions in the basin. Our results confirm the potential of HGs as a specific biomarker of heterocystous cyanobacteria in paleo-environmental studies.

  8. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  9. Sea-level rise risks to coastal cities

    Science.gov (United States)

    Nicholls, Robert J.

    2017-04-01

    Understanding the consequence of sea-level rise for coastal cities has long lead times and huge political implications. Civilisation has emerged and developed during a period of several thousand years during which in geological terms sea level has been unusually stable. We have now moved out of this period and the challenge will be to develop a long-term proactive assessment approach to manage this challenge. In 2005 there were 136 coastal cities with a population exceeding one million people and a collective population of 400 million people. All these coastal cities are threatened by flooding from the sea to varying degrees and these risks are increasing due to growing exposure (people and assets), rising sea levels due to climate change, and in some cities, significant coastal subsidence due to human agency (drainage and groundwater withdrawals from susceptible soils). In these cities we wish to avoid major flood events, with associated damage and potentially deaths and ultimately decline of the cities. Flood risks grow with sea-level rise as it raises extreme sea levels. As sea levels continue to rise, protection will have to be progressively upgraded. Even with this, the magnitude of losses when flood events do occur would increase as coastal cities expand, and water depths and hence unit damage increase with sea-level rise/subsidence. This makes it critical to also prepare for larger coastal flood disasters than we experience today and raises questions on the limits to adaptation. There is not an extensive literature or significant empirical information on the limits to adaptation in coastal cities. These limits are not predictable in a formal sense - while the rise in mean sea level raises the likelihood of a catastrophic flood, extreme events are what cause damage and trigger a response, be it abandonment, a defence upgrade or something else. There are several types of potential limits that could be categorised into three broad types: • Physical

  10. Sea level rise in the Arctic Ocean

    OpenAIRE

    Proshutinsky, Andrey; Pavlov, Vladimir; Bourke, Robert H.

    2001-01-01

    The article of record as published may be found at http://dx.doi.org/10.1029/2000GL012760 About 60 tide-gauge stations in the Kara, Laptev, East-Siberian and Chukchi Seas have recorded the sea level change from the 1950s through 1990s. Over this 40-year period, most of these stations show a significant sea level rise (SLR). In light of global change, this SLR could be a manifestation of warming in the Artic coupled with a decrease of sea ice extent, warming of Atlantic waters, changes in...

  11. Pleistocene-Holocene sedimentation of Solimões-Amazon fluvial system between the tributaries Negro and Madeira, Central Amazon

    Directory of Open Access Journals (Sweden)

    Eliezer Senna Gonçalves Júnior

    Full Text Available ABSTRACT: In the scope of Solimões-Amazon fluvial system between the Negro and Madeira tributaries, three levels of Quaternary fluvial terraces overlie the Alter do Chão and Novo Remanso formations further than 100 km southward its current main channel. Smooth undulated topography presenting low drainages density formed by sparse secondary plain channels and rounded lakes characterizes these deposits. Internally, they show point bars morphology constituted by intercalated layers of mud (silt and clay and sand forming an inclined heterolithic stratification. The asymmetric distribution of fluvial terraces allied to the records of old scroll-bars features and paleochannels in many extensions of the Solimões River suggests the predominance of a meander pattern between 240 to 6 kyears. On the other hand, the development of the current anabranching pattern took place in the last six kyears due to the Holocene sea-level rise, besides the action of neotectonics and rainforest establishment related to the increase of humidity in Amazonia.

  12. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Braconnot, P.; Zheng, W. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Luan, Y. [unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Chinese Academy of Sciences (CAS), State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Brewer, Simon [University of Wyoming, Department of Botany, Laramie, WY (United States)

    2012-03-15

    We use a state-of-the-art 3-dimensional coupled model to investigate the relative impact of long term variations in the Holocene insolation forcing and of a freshwater release in the North Atlantic. We show that insolation has a greater effect on seasonality and La Nina events and is the major driver of sea surface temperature changes. In contrast, the variations in precipitation reflect changes in El Nino events. The impact of ice-sheet melting may have offset the impact of insolation on El Nino Southern Oscillation variability at the beginning of the Holocene. These simulations provide a coherent framework to refine the interpretation of proxy data and show that changes in seasonality may bias the projection of relationships established between proxy indicators and climate variations in the east Pacific from present day records. (orig.)

  13. Rapid Holocene thinning of outlet glaciers followed by readvance in the western Ross Embayment, Antarctica

    Science.gov (United States)

    Jones, R. S.; Whitmore, R.; Mackintosh, A.; Norton, K. P.; Eaves, S.; Stutz, J.

    2017-12-01

    Investigating Antarctic deglaciation following the LGM provides an opportunity to better understand patterns, mechanisms and drivers of ice sheet retreat. In the Ross Sea sector, geomorphic features preserved on the seafloor indicate that streaming East Antarctic outlet glaciers once extended >100 km offshore of South Victoria Land prior to back-stepping towards their modern configurations. In order to adequately interpret the style and causes of this retreat, the timing and magnitude of corresponding ice thickness change is required. We present new constraints on ice surface lowering from Mawson Glacier, an outlet of the East Antarctic Ice Sheet that flows into the western Ross Sea. Surface-exposure (10Be) ages from samples collected in elevation transects above the modern ice surface reveal that rapid thinning occurred at 5-8 ka, broadly coeval with new ages of grounding-line retreat at 6 ka and rapid thinning recorded at nearby Mackay Glacier at 7 ka. Our data also show that a moraine formed near to the modern ice margin of Mawson Glacier at 0.8 ka, which, together with historical observations, indicates that glaciers in this region readvanced during the last thousand years. We argue that 1) the accelerated thinning of outlet glaciers was driven by local grounding-line retreat through overdeepened basins during the early-mid Holocene, and 2) the glaciers subsequently readvanced, possibly linked to late Holocene sea-ice expansion, before retreating to their current positions. Our work demonstrates that these outlet glaciers were closely coupled to environmental and topography-induced perturbations near their termini throughout the Holocene.

  14. Reconstructing the Limfjord’s history

    DEFF Research Database (Denmark)

    Philippsen, Bente

    The Limfjord is a sound in Northern Jutland, Denmark, connecting the North Sea with the Kattegatt. The complex interplay of eustatic sea level changes and isostatic land-rise caused the relative sea level of the region to fluctuate throughout the later part of the Holocene. Consequently, the regi...

  15. Changing Sea Levels

    Science.gov (United States)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  16. Atmospheric forcing on the seasonal variability of sea level at Cochin, southwest coast of India

    Science.gov (United States)

    Srinivas, K.; Dinesh Kumar, P. K.

    2006-07-01

    The seasonal cycles of some atmospheric parameters at Cochin (southwest coast of India) have been studied with a specific emphasis on the role played by them in forcing the seasonal sea level. Equatorward along-shore wind stress as well as equatorward volume transport by coastal currents along the Indian peninsula could play an important role in the sea level low during the premonsoon and southwest monsoon seasons. During postmonsoon season, along-shore wind stress plays no major role in the high sea level whereas this could be due to the poleward volume transport by the coastal along-shore currents. Atmospheric pressure and river discharge do not seem to influence much the sea level during the southwest monsoon period, even though the river discharge during that period is considerable. The sea level was minimal during the southwest monsoon season, when the river discharge was at its annual maximum. The difference between the seasonal march of observed and pressure corrected sea level (CSL) was not significant for the study region. Harmonic analysis of the climatological data on the various parameters revealed that air temperature is the only parameter with a dominance of the semi-annual over the annual cycle. Cross-shore wind stress indicated strong interannual variability whereas relative density showed strong seasonal variability. The climatological seasonal cycles of CSL at eight other tide gauge stations along the west coast of the Indian subcontinent are also examined, to assess the role of various forcings on the seasonal sea level cycle. The signatures of El Nino-Southern Oscillation (ENSO) phenomenon could be seen in some of the parameters (SST, air temperature, atmospheric pressure, along-shore wind stress, relative density and sea level). The signature of ENSO was particularly strong in the case of atmospheric pressure followed by relative density, the variance accounted by the relationship being 47% and 16%, respectively.

  17. Sea level change since 2005: importance of salinity

    Science.gov (United States)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  18. Sea level oscillations over minute timescales: a global perspective

    Science.gov (United States)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  19. Mid-Holocene to Present Climate Transition in Tropical South America

    Science.gov (United States)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.

    2008-12-01

    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  20. Sea surface density gradients in the Nordic Seas during the Holocene as revealed by paired microfossil and isotope proxies

    DEFF Research Database (Denmark)

    Van Nieuwenhove, Nicolas; Hillaire-Marcel, Claude; Bauch, Henning A.

    2016-01-01

    We attempt to assess the Holocene surface-subsurface seawater density gradient on millennial time-scale based on the reconstruction of potential density (σθ) by combining data from dinoflagellate cyst assemblages and planktic foraminiferal (Neogloboquadrina pachyderma (s)) stable oxygen isotopes (δ...

  1. Relation between century-scale Holocene arid intervals in tropical and temperate zones

    Science.gov (United States)

    Lamb, H. F.; Gasse, F.; Benkaddour, A.; El Hamouti, N.; van der Kaars, S.; Perkins, W. T.; Pearce, N. J.; Roberts, C. N.

    1995-01-01

    CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1-10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

  2. Assessing the potential of Southern Caribbean corals for reconstructions of Holocene temperature variability

    International Nuclear Information System (INIS)

    Giry, Cyril; Felis, Thomas; Scheffers, Sander; Fensterer, Claudia

    2010-01-01

    We present a 40-year long monthly resolved Sr/Ca record from a fossil Diploria strigosa coral from Bonaire (Southern Caribbean Sea) dated with U/Th at 2.35 ka before present (BP). Secondary modifiers of this sea surface temperature (SST) proxy in annually-banded corals such as diagenetic alteration of the skeleton and skeletal growth-rate are investigated. Extensive diagenetic investigations reveal that this fossil coral skeleton is pristine which is further supported by clear annual cycles in the coral Sr/Ca record. No significant correlation between annual growth rate and Sr/Ca is observed, suggesting that the Sr/Ca record is not affected by coral growth. Therefore, we conclude that the observed interannual Sr/Ca variability was influenced by ambient SST variability. Spectral analysis of the annual mean Sr/Ca record reveals a dominant frequency centred at 6-7 years that is not associated with changes of the annual growth rate. The first monthly resolved coral Sr/Ca record from the Southern Caribbean Sea for preindustrial time suggests that fossil corals from Bonaire are suitable tools for reconstructing past SST variability. Coastal deposits on Bonaire provide abundant fossil D. strigosa colonies of Holocene age that can be accurately dated and used to reconstruct climate variability. Comparisons of long monthly resolved Sr/Ca records from multiple fossil corals will provide a mean to estimate seasonality and interannual to interdecadal SST variability of the Southern Caribbean Sea during the Holocene.

  3. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  4. Modelling Morphological Response of Large Tidal Inlet Systems to Sea Level Rise

    NARCIS (Netherlands)

    Dissanayake, P.K.

    2011-01-01

    This dissertation qualitatively investigates the morphodynamic response of a large inlet system to IPCC projected relative sea level rise (RSLR). Adopted numerical approach (Delft3D) used a highly schematised model domain analogous to the Ameland inlet in the Dutch Wadden Sea. Predicted inlet

  5. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  6. Holocene reef building on eastern St. Croix, US Virgin Islands: Lang Bank revisited

    Science.gov (United States)

    Hubbard, D. K.; Gill, I. P.; Burke, R. B.

    2013-09-01

    New core and seismic data suggest that widespread reef building started on Lang Bank by 8,900 CalBP and was dominated by Acropora palmata for the next three millennia. Accretion rates averaged 5.81 m ky-1, a rate that was sufficient for reefs to keep pace with rising sea level on the bank throughout their history. Seismic data show a deep platform interior that was flooded well in advance of reef building along the elevated rim. As a result, those reefs were buffered from sediment stress by their higher positions and active water flow to the west. A. palmata disappeared from the shallow margin by 6,350 yr ago, and reef building on Lang Bank largely ceased by 5,035 CalBP. The reasons for these dramatic events are unclear. Water depth over the reefs was generally shallower than when they started to build, and sea level was slowing dramatically. The new data described here show that reefs flourished on Lang Bank throughout the hiatus suggested by earlier studies (10-7 kyrs BP), and the ultimate demise of shelf-edge reefs is clearly not associated with either poor water quality or sudden sea-level rise. In addition, accretion rates from eastern St. Croix and throughout the Caribbean were well below the high values (≥10 m ky-1) that have been widely assumed. These data collectively argue against models that require extreme environmental or oceanographic phenomena to drown reefs on Lang Bank where reef building was too fast to be outpaced by Holocene sea-level rise. This also bears on more generalized Caribbean models that depend on the presumed reef history on eastern St. Croix.

  7. Should We Leave? Attitudes towards Relocation in Response to Sea Level Rise

    Directory of Open Access Journals (Sweden)

    Jie Song

    2017-12-01

    Full Text Available The participation of individuals contributes significantly to the success of sea level rise adaptation. This study therefore addresses what influences people’s likelihood of relocating away from low-lying areas in response to rising sea levels. The analysis was based on a survey conducted in the City of Panama Beach in Florida (USA. Survey items relate to people’s risk perception, hazard experience, threat appraisal, and coping appraisal, whose theoretical background is Protection Motivation Theory. Descriptive and correlation analysis was first performed to highlight critical factors which were then examined by a multinomial Logit model. Results show that sea level rise awareness is the major explanatory variable. Coping appraisal is qualitatively viewed as a strong predictor for action, while threat appraisal is statistically significant in driving relocation intention. These factors should be integrated in current risk communication regarding sea level rise.

  8. A model for the Holocene extinction of the mammal megafauna in Ecuador

    Science.gov (United States)

    Ficcarelli, G.; Coltorti, M.; Moreno-Espinosa, M.; Pieruccini, P. L.; Rook, L.; Torre, D.

    2003-03-01

    This paper presents the results of multidisciplinary research in the Ecuadorian coastal regions, with particular emphasis on the Santa Elena Peninsula. The new evidence, together with previous data gathered on the Ecuadorian cordillera during the last 12 years, allows us to formulate a model that accounts for most of the mammal megafauna extinction at the Pleistocene/Holocene transition. After the illustration of geomorphological and paleontological evidences of the area of the Santa Elena Peninsula (and other sites), and of a summary of the paleoclimatic data, the main results and conclusions of this work are: (1) Late Pleistocene mammal assemblages survived in the Ecuadorian coast until the Early Holocene sea level rise; (2) Prior to the extinction of most of the megafauna elements (mastodons, ground sloths, equids, sabre-tooth felids), the mammal communities at Santa Elena Peninsula comprise elements with differing habitat requirements, attesting conditions of high biological pressure; (3) At the El Cautivo site (Santa Elena Peninsula), we have discovered Holocene sediments containing the first known occurrences in Ecuador of lithic artifacts that are associated with mammal megafauna remains; (4) During the last 10,000 years, the coastal region of Ecuador underwent significant changes in vegetation cover. At the Pleistocene/Holocene transition the climate changed from very arid conditions to humid conditions. Our data indicates that the megafauna definitively abandoned the Cordillera areas around 12,000 yr BP due to t he increasing aridity, and subsequently migrated to coastal areas where ecological conditions still were suitable, Santa Elena Peninsula and mainly Amazonian areas being typical. We conclude that the unusual high faunal concentrations and the change to dense vegetation cover (due to a rapid increase in precipitation in the lower Holocene) at 8000-6000 yr BP, caused the final collapse and extinction of most elements of the mammal megafauna

  9. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  10. Cyclicity in the Late Holocene monsoonal changes from the western Bay of Bengal: Foraminiferal approach.

    Digital Repository Service at National Institute of Oceanography (India)

    Rana, S.S.; Nigam, R.

    .; Imbrie, J.; Hays, J.; Kukla, G.; Saltzman, B.. NATO ASI Ser. C: Math. Phys. Sci.; 126: 349-366. Sarkar, A., Ramesh, R., Somayajulu, B.L.K., Agnihotri, R., Jull, A.J.T., Burr, G.S. 2000. High resolution Holocene monsoon record from the eastern Arabian Sea...

  11. Experimental investigation of channel avulsion frequency on river deltas under rising sea levels

    Science.gov (United States)

    Silvestre, J.; Chadwick, A. J.; Steele, S.; Lamb, M. P.

    2017-12-01

    River deltas are low-relief landscapes that are socioeconomically important; they are home to over half a billion people worldwide. Many deltas are built by cycles of lobe growth punctuated by abrupt channel shifts, or avulsions, which often reoccur at a similar location and with a regular frequency. Previous experimental work has investigated the effect of hydrodynamic backwater in controlling channel avulsion location and timing on deltas under constant sea level conditions, but it is unclear how sea-level rise impacts avulsion dynamics. We present results from a flume experiment designed to isolate the role of relative sea-level rise on the evolution of a backwater-influenced delta. The experiment was conducted in the river-ocean facility at Caltech, where a 7m long, 14cm wide alluvial river drains into a 6m by 3m "ocean" basin. The experimental delta grew under subcritical flow, a persistent backwater zone, and a range of sea level rise rates. Without sea level rise, lobe progradation produced in-channel aggradation and periodic avulsions every 3.6 ± 0.9 hours, which corresponded to when channels aggraded to approximately one-half of their flow depth. With a modest rate of sea-level rise (0.25 mm/hr), we observed enhanced aggradation in the backwater zone, causing channels to aggrade more quickly and avulse more frequently (every 2.1 ± 0.6 hours). In future work, we expect further increases in the rate of relative sea-level rise to cause avulsion frequency to decrease as the delta drowns and the backwater zone retreats upstream. Experimental results can serve as tests of numerical models that are needed for hazard mitigation and coastal sustainability efforts on drowning deltas.

  12. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  13. Abrupt decadal-to-centennial hydroclimate changes in the Mediterranean region since the mid-Holocene

    Science.gov (United States)

    Hu, Hsun-Ming; Shen, Chuan-Chou; Jiang, Xiuyang; Wang, Yongjin; Mii, Horng-Sheng; Michel, Véronique

    2016-04-01

    A series of severe drought events in the Mediterranean region over the past two decades has posed a threat on both human society and biosystem. Holocene hydrological dynamics can offer valuable clues for understanding future climate and making proper adaption strategy. Here, we present a decadal-resolved stalagmite record documenting various hydroclimatic fluctuations in the north central Mediterranean region since the middle Holocene. The stalagmite δ18O sequence shows dramatic instability, characterized by abrupt shifts between dry and wet conditions Mycenaean Greece, Akkadian Empire, Egyptian Old Kingdom, and Uruk, occurred during the drought events, suggesting an important role of climate impact on human civilization. The unstable hydroclimate evolution is related to transferred North Atlantic Oscillation states. Rate of rapid transfer of precipitation patterns, which can be pin-pointed by our good chronology, improves the prediction to future climate changes in North Atlantic region. We also found that a strong correlation between this stalagmite δ18O and sea surface temperatures especially in Pacific Ocean. This agreement suggests a distant interregional climate teleconnection.

  14. The Nature of Global Large-scale Sea Level Variability in Relation to Atmospheric Forcing: A Modeling Study

    Science.gov (United States)

    Fukumori, I.; Raghunath, R.; Fu, L. L.

    1996-01-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.

  15. Topex-Poseidon analysis of sea level variability over the Atlantic Ocean

    Science.gov (United States)

    Catalan P-U, M.; Villares, P.; Catalan, M.; Gomez-Enri, J.

    2003-04-01

    The variability of sea level and surface geostrophic currents in Atlantic Ocean is investigated using 333 cycles of altimeter information obtained by TOPEX-POSEIDON satellite. After the improvements of orbit accuracy, the most important concern to studies of sea level variability from altimeter height data are related with the formalism used for modelling the altimetric measurement corrections. Presently, one of the main sources of potential error is the correction for atmospheric pressure loading, the so-called ‘inverse barometer effect’. As is well known, this correction is intended to adjust the sea surface elevation for the static effects of the downward force of the mass of the atmosphere on the sea surface, adjusted, in this oversimplified model in 1cm/mbar. The exact response of the sea surface to atmospheric pressure loading depends on the space and time scales of the pressure field and must be specially a concern at high latitudes where atmospheric pressure fluctuations are large due to the intensity of low pressure fields at these latitudes and the additional uncertainty in the model estimates of the local sea level pressure. To study these effects over the whole Atlantic Ocean we compute a linear regression adjustment and an Empirical Orthogonal Functions Decomposition (EOFD), between sea level variation without inverse barometer correction and the atmospheric pressure, in all the Topex-Poseidon cross points over the whole Atlantic, including both the Artic and Antarctic Oceans. We use the barometric factor computed from the linear regression to correct the satellite mean sea level variation, comparing the correlation with the pressure. Our results show an important improvement in the decorrelation between sea level and atmospheric pressure time series, compared with the use of Inverse Barometer model, at most of the satellite cross points. The complicated nature of sea level variability at high latitudes justify that EOFD analysis conclusions

  16. Palynoflora and radiocarbon dates of Holocene deposits of Dhamapur, Sindhudurg district, Maharashtra

    International Nuclear Information System (INIS)

    Kumaran, K.P.N.; Limaye, Ruta B.; Rajshekhar, C.; Rajagopalan, G.

    2001-01-01

    Radiocarbon dates of carbonized wood (2110 ± 80 yr BP) and oyster shells (7620 ± 110 yr BP) obtained from the sub-surface sediments of Dhamapur well fall within the Holocene period and the environments in which the above got deposited, might have been subjected to the sea-level oscillations of the past. The big oyster shells with barnacle growth, reminiscent of rocky intertidal environment, have shown to be related to Saccostrea sp. of Indo-West Pacific affinity. Presence of salt glands, presumably of mangrove plants, dinoflagellate cysts and organic-walled foraminiferal linings in the palynoflora assemblage infers that these elements must have been recruited from a shallow marine intertidal environment through creek channels. However, the carbonized wood materials and the palynoflora are essentially that of a lowland vegetation deposited in a freshwater facies. Further, larger proportion of pteridophytic spores, reflects a swampy and marshy habitat. The abundance of particulate organic matter (palynodebris), including various fungal elements suggests that the area had been under dense forest cover, receiving heavy precipitation with greater atmospheric moisture at the time of deposition. (author)

  17. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    Science.gov (United States)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  18. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    Science.gov (United States)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  19. Spatial sea-level reconstruction in the Baltic Sea and in the Pacific Ocean from tide gauges observations

    Directory of Open Access Journals (Sweden)

    Marco Olivieri

    2016-07-01

    Full Text Available Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.

  20. Air pollution related to sea transport

    International Nuclear Information System (INIS)

    Massin, J.M.; Hertz, O.

    1993-01-01

    Sea transportation contributes only 1-2% of world CO 2 emissions. Owing to the sulphur concentration in the bunker fuels, this transportation mode represents over 4% of the world SO 2 emissions. In addition, NO x emissions are likely to exceed 7% of the world emissions. SO 2 emissions in the North Sea and the Channel account for 15% of the whole French emissions, NO x emissions for about 10% and CO 2 emissions for about 3%. There are several potential measures to reduce the emissions of ship engines - propelling engines or generator driving engines - improvement of fuel quality, by desulphurizing and prohibiting the use of noxious additives such as PCB; use of alternative fuels; engine optimizing; exhaust gas processing; use of new propelling systems. A new organisation of world marketing of fuels with low or high sulphur levels could also be set up. The Sea Protection Committee of the International Maritime Organisation (IMO) discussed this problem during its meeting in 1990. The 73/78 MARPOL convention provides the IMO with an international juridical tool, especially designed for the preclusion of pollution due to sea transportation. It can address the issue of air pollution which requires a concerted approach between seaside countries and the drawing up of international regulations relating to the protection of the sea world. Fuel quality is already controlled by international standards drawn up by ISO. These standards should be improved to reduce air pollution due to sea transportation

  1. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    Science.gov (United States)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  2. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  3. Deglacial and post-glacial sea-level history for Bantry Bay (SW Ireland) based on offshore evidence

    Science.gov (United States)

    Plets, Ruth; Callard, Louise; Cooper, Andrew; Long, Antony; Belknap, Daniel; Edwards, Robin; Jackson, Derek; Kelley, Joseph; Long, David; Milne, Glenn; Monteys, Xavier; Quinn, Rory

    2014-05-01

    As part of a large NERC funded project, seven areas around the Irish Sea were investigated in order to provide offshore field data on the depth and age of the relative sea-level (RSL) minimum since the post-Last Glacial Maximum (LGM). Such evidence is currently sparse, resulting in poorly constrained glacio-isostatic adjustment (GIA) models, particularly for areas where RSL was significantly lower than present during the Late Pleistocene and Early Holocene. We present offshore geomorphological and stratigraphic evidence for a lower than present sea level from SW Ireland (Bantry Bay), and compare our findings with the current GIA model. Data examined consists of: multibeam bathymetry and backscatter, pinger sub-bottom and vibrocores (25 sites). A bluff line in the outer bay detected on the multibeam in water depths of c. 80 m forms the western edge of a large sediment lobe. The south-western boundary of this lobe is marked by a series of long (up to 22 km), parallel ridges at depths between -96 m and -131 m, with iceberg scouring evident on the offshore margin. This sediment lobe is interpreted as the top of a lowstand delta with the ridges representing ice-marginal submarine morainic or deltaic sediments, reworked by stronger-than-present tidal currents during the lowstand (c. -80 m pre- 14.6 ka cal BP). The bluff line could then represent the eroded northern edge of this lowstand delta. The seismic data show a prominent unit, which can be traced throughout the basin, sitting on an erosional surface and characterised by a turbid acoustic signature. In the cores, this unit is identified as alternating sand and clay layers with some traces of organic material and gas. The micro-palaeontological data shows an increase in marine and estuarine foraminifera in this unit, becoming predominantly marine in the overlying sediments. Based on the integration of all data, we interpret the erosional surface as the transgressive surface, underlying intertidal-estuarine sediments

  4. NEA Research and Environmental Surveillance Programme related to sea disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Ruegger, B.; Templeton, W.L.; Gurbutt, P.

    1983-05-01

    Sea dumping operations of certain types of packaged low and medium-level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance programme related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site-specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area (NEA 1983).It includes data in bathymetry, isopycnal topography, local and larger scale currents, sediment distribution and sedimentary processes, hydrochemistry, deep ocean biology and results of radiochemical analyses of sea water, sediments and biological materials. The modelling work is also well advanced allowing comparison of results obtained from different codes. After integration of the models, sensitivity analyses will provide indications for future research needs

  5. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response strategy will depend on environmental, economic and social factors. Most small island nations do not have the resources to fight sea level rise in the way that the Dutch have. Retreat can occur as a gradual process or as catastrophic abandonment. Prohibiting construction close to the water's edge is a good approach. Sea level histories for each island state should be compiled and updated, island geomorphology and settlement patterns should be surveyed to determine risk areas, storm regimes should be determined, and information on coastal impacts of sea level rise should be disseminated to the public

  6. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    Science.gov (United States)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  7. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  8. PERSPECTIVE: The tripping points of sea level rise

    Science.gov (United States)

    Hecht, Alan D.

    2009-12-01

    , according to Titus et al, is for communities to develop a common vision about which lands will be protected and which lands will yield to the rising sea, similar to the way land use plans identify commercial, residential, agricultural, and conservation lands. The supplementary material in their paper (as well as a related web site suggested by the peer review process of this journal) provides maps that depict the likelihood of shore protection based on existing land use data and the assessment of the local governments. Such maps, they suggest, might be used as a starting point to promote dialogue within communities about which lands should be protected and which lands are allowed to become submerged. A second tripping point relates to conflict between existing environmental laws and their collective ability to respond to the impacts of global warming. For example, property owners are automatically issued permits for construction of hard shore-protection structures (e.g. bulkheads and revetments) without an assessment of their environmental impact. Normally, under the Clean Water Act, the impact of each permit is assessed separately, but there is a special expedited process for activities with no cumulative impact. The Corps of Engineers concluded that shore protection does not have a cumulative impact, and that might be true if shore erosion was rare and stable shores the general rule. But once we recognize that the sea level is rising, then shore erosion becomes the general rule and a cumulative impact is likely. Under the National Environmental Protection Act (NEPA), cumulative impacts have been defined as `the impacts of an activity ``added to other past present and reasonably future actions'' regardless of who takes the other actions'. If the NEPA were actually evoked, it would considerably delay permit approvals and substantially impact the Corps of Engineers' process for issuing permits. The potential impact of sea level rise clearly requires a holistic approach to

  9. Appalachian Piedmont landscapes from the Permian to the Holocene

    Science.gov (United States)

    Cleaves, E.T.

    1989-01-01

    Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast

  10. New residence times of the Holocene reworked shells on the west coast of Bohai Bay, China

    Science.gov (United States)

    Shang, Zhiwen; Wang, Fu; Li, Jianfen; Marshall, William A.; Chen, Yongsheng; Jiang, Xingyu; Tian, Lizhu; Wang, Hong

    2016-01-01

    Shelly cheniers and shell-rich beds found intercalated in near-shore marine muds and sandy sediments can be used to indicate the location of ancient shorelines, and help to estimate the height of sea level. However, dating the deposition of material within cheniers and shell-rich beds is not straightforward because much of this material is transported and re-worked, creating an unknown temporal off-set, i.e., the residence time, between the death of a shell and its subsequent entombment. To quantify the residence time during the Holocene on a section of the northern Chinese coastline a total 47 shelly subsamples were taken from 17 discrete layers identified on the west coast of Bohai Bay. This material was AMS 14C dated and the calibrated ages were systematically compared. The subsamples were categorized by type as articulated and disarticulated bivalves, gastropod shells, and undifferentiated shell-hash. It was found that within most individual layers the calibrated ages of the subsamples got younger relative to the amount of apparent post-mortem re-working the material had been subject to. For examples, the 14C ages of the bivalve samples trended younger in this order: shell-hash → split shells → articulated shells. We propose that the younger subsample age determined within an individual layer will be the closest to the actual depositional age of the material dated. Using this approach at four Holocene sites we find residence times which range from 100 to 1260 cal yrs, with two average values of 600 cal yrs for the original 14C dates older than 1 ka cal BP and 100 cal yrs for the original 14C dates younger than 1 ka cal BP, respectively. Using this semi-empirical estimation of the shell residence times we have refined the existing chronology of the Holocene chenier ridges on the west coast of Bohai Bay.

  11. Exploring the Causes of Mid-Holocene Drought in the Rocky Mountains Using Hydrologic Forward Models

    Science.gov (United States)

    Meador, E.; Morrill, C.

    2017-12-01

    We present a quantitative model-data comparison for mid-Holocene (6 ka) lake levels in the Rocky Mountains, with the goals of assessing the skill coupled climate models and hydrologic forward models in simulating climate change and improving our understanding of the factors causing past changes in water resources. The mid-Holocene climate in this area may in some ways be similar to expected future climate, thus improved understanding of the factors causing past changes in water resources have the potential to aid in the process of water allocation for large areas that share a relatively small water source. This project focuses on Little Windy Hill Pond in the Medicine Bow Forest in the Rocky Mountains in southern Wyoming. We first calibrated the Variable Infiltration Capacity (VIC) catchment hydrologic model and the one-dimensional Hostetler Bartlein lake energy-balance model to modern observations, using U.S. Geological Survey stream discharge data and Snow Telemetry (SNOTEL) data to ensure appropriate selection of model parameters. Once the models were calibrated to modern conditions, we forced them with output from eight mid-Holocene coupled climate model simulations completed as part of the Coupled Model Intercomparison Project, Phase 5. Forcing from nearly all of the CMIP5 models generates intense, short-lived droughts for the mid-Holocene that are more severe than any we modeled for the past six decades. The severity of the mid-Holocene droughts could be sufficient, depending on sediment processes in the lake, to account for low lake levels recorded by loss-on-ignition in sediment cores. Our preliminary analysis of model output indicates that the combined effects of decreased snowmelt runoff and increased summer lake evaporation cause low mid-Holocene lake levels. These factors are also expected to be important in the future under anthropogenic climate change.

  12. Reconstruction of Holocene environmental changes in Southern Kurils (North-Western Pacific) based on palaeolake sediment proxies from Shikotan Island

    Science.gov (United States)

    Nazarova, Larisa; Grebennikova, Tatiana A.; Razjigaeva, Nadezhda G.; Ganzey, Larisa A.; Belyanina, Nina I.; Arslanov, Khikmat A.; Kaistrenko, Victor M.; Gorbunov, Aleksey O.; Kharlamov, Andrey A.; Rudaya, Natalia; Palagushkina, Olga; Biskaborn, Boris K.; Diekmann, Bernhard

    2017-12-01

    We investigated a well-dated sediment section of a palaeolake situated in the coastal zone of Shikotan Island (Lesser Kurils) for organic sediment-geochemistry and biotic components (diatoms, chironomids, pollen) in order to provide a reconstruction of the palaeoenvironmental changes and palaeo-events (tsunamis, sea-level fluctuations and landslides) in Holocene. During the ca 8000 years of sedimentation the changes in organic sediment-geochemistry and in composition of the diatoms and chironomids as well as the shifts in composition of terrestrial vegetation suggest that the period until ca 5800 cal yr BP was characterized by a warm and humid climate (corresponds to middle Holocene optimum) with climate cooling thereafter. A warm period reconstructed from ca 900 to at least ca 580 cal yr BP corresponds to a transition to a Nara-Heian-Kamakura warm stage and can be correlated to a Medieval Warm Period. After 580 cal yr PB, the lake gradually dried out and climatic signals could not be obtained from the declining lacustrine biological communities, but the increasing role of spruce and disappearance of the oak from the vegetation give evidences of the climate cooling that can be correlated with the LIA. The marine regression stages at the investigated site are identified for ca 6200-5900 (at the end of the middle Holocene transgression), ca 5500-5100 (Middle Jomon regression or Kemigawa regression), and ca 1070-360 cal yr BP (at the end of Heian transgression). The lithological structure of sediments and the diatom compositions give evidences for the multiple tsunami events of different strengths in the Island. Most remarkable of them can be dated at around ca 7000, 6460, 5750, 4800, 950 cal yr BP. The new results help to understand the Holocene environmental history of the Southern Kurils as a part of the Kuril-Kamchatka and Aleutian Marginal Sea-Island Arc Systems in the North-Western Pacific region.

  13. Geophysical Imaging of Sea-level Proxies in Beach-Ridge Deposits

    Science.gov (United States)

    Nielsen, L.; Emerich Souza, P.; Meldgaard, A.; Bendixen, M.; Kroon, A.; Clemmensen, L. B.

    2017-12-01

    We show ground-penetrating radar (GPR) reflection data collected over modern and fossil beach deposits from different localities along coastlines in meso-tidal regimes of Greenland and micro-tidal regimes of Denmark. The acquired reflection GPR sections show several similar characteristics but also some differences. A similar characteristic is the presence of downlapping reflections, where the downlap point is interpreted to mark the transition from upper shoreface to beachface deposits and, thus, be a marker of a level close to or at sea-level at the time of deposition. Differences in grain size of the investigated beach ridge system result in different scattering characteristics of the acquired GPR data. These differences call for tailored, careful processing of the GPR data for optimal imaging of internal beach ridge architecture. We outline elements of the GPR data processing of particular importance for optimal imaging. Moreover, we discuss advantages and challenges related to using GPR-based proxies of sea-level as compared to other methods traditionally used for establishment of curves of past sea-level variation.

  14. Relict ooids off northwestern India: Inferences on their genesis and late Quaternary sea level

    Science.gov (United States)

    Purnachandra Rao, V.; Milliman, John D.

    2017-08-01

    Relict carbonate sands dominated by ooids and faecal pellets are common on the continental shelf, between 60 and 110 m, off northwestern India. The shiny tan/white aragonitic ooids closely resemble modern Bahamian ooids, with cortex thicknesses varying from stacked tubules, similar in appearance to algal or microbial filaments. Bacteria associated with the decaying organic sheath of the laminae may have played an important role in subsequent aragonite precipitation. Bladed or radial aragonite microstructures are secondary features in the cortex, apparently formed during early diagenesis by mineralization of organic matter associated with the tangential laminae. Calibrated ages of the ooids range between 9.8 and > 23 ka BP, and δ18O values suggest that these relict ooids formed during cooler and drier post-LGM conditions and later during the re-intensified Holocene monsoon climate. An age vs. depth plot suggests that most of the ooids formed at water depths between 10 and - 40 m, thereby calling into question whether relict shelf ooids are reliable indicators of past sea level.

  15. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  16. Statistical analysis of the acceleration of Baltic mean sea-level rise, 1900-2012

    Directory of Open Access Journals (Sweden)

    Birgit Hünicke

    2016-07-01

    Full Text Available We analyse annual mean sea-level records from tide-gauges located in the Baltic and parts of the North Sea with the aim of detecting an acceleration of sea-level rise over the 20textsuperscript{th} and 21textsuperscript{st} centuries. The acceleration is estimated as a (1 fit to a polynomial of order two in time, (2 a long-term linear increase in the rates computed over gliding overlapping decadal time segments, and (3 a long-term increase of the annual increments of sea level.The estimation methods (1 and (2 prove to be more powerful in detecting acceleration when tested with sea-level records produced in global climate model simulations. These methods applied to the Baltic-Sea tide-gauges are, however, not powerful enough to detect a significant acceleration in most of individual records, although most estimated accelerations are positive. This lack of detection of statistically significant acceleration at the individual tide-gauge level can be due to the high-level of local noise and not necessarily to the absence of acceleration.The estimated accelerations tend to be stronger in the north and east of the Baltic Sea. Two hypothesis to explain this spatial pattern have been explored. One is that this pattern reflects the slow-down of the Glacial Isostatic Adjustment. However, a simple estimation of this effect suggests that this slow-down cannot explain the estimated acceleration. The second hypothesis is related to the diminishing sea-ice cover over the 20textsuperscript{th} century. The melting o of less saline and colder sea-ice can lead to changes in sea-level. Also, the melting of sea-ice can reduce the number of missing values in the tide-gauge records in winter, potentially influencing the estimated trends and acceleration of seasonal mean sea-level This hypothesis cannot be ascertained either since the spatial pattern of acceleration computed for winter and summer separately are very similar. The all-station-average-record displays an

  17. Do we have to take an acceleration of sea level rise into account?

    Science.gov (United States)

    Dillingh, D.; Baart, F.; de Ronde, J.

    2012-04-01

    In view of preservation of safety against inundation and of the many values and functions of the coastal zone, coastal retreat is no longer acceptable. That is why it was decided to maintain the Dutch coastline on its position in 1990. Later the preservation concept was extended to the Dutch coastal foundation, which is the area that encompasses all dune area's and hard sea defences and reaches seawards until the 20m depth contour line. Present Dutch coastal policy is to grow with sea level by means of sand nourishments. A main issue for the planning of sand nourishments is the rate of sea level rise, because that is the main parameter for the volume of the sand needed. The question is than relevant if we already have to take into account an acceleration of sea level rise. Six stations with long water level records, well spread along the Dutch coast, were analysed. Correction of the measured data was considered necessary for an adaptation of the NAP in 2005 as a consequence of movements of the top of the pleistoceen, on which the NAP bench marks have been founded, and for the 18.6 year (nodal) cycle in the time series of yearly mean sea levels. It has been concluded that along the Dutch coast no significant acceleration of sea level rise could be detected yet. Over the last 120 years sea level rose with an average speed of 19 cm per century relative to NAP (the Dutch ordnance datum). Time series shorter than about 50 years showed less robust estimates of sea level rise. Future sea level rise also needs consideration in view of the estimate of future sand nourishment volumes. Scenario's for sea level rise have been derived for the years 2050 and 2100 relative to 1990 by the KNMI (Dutch Met Office) in 2006 for the Dutch situation. Plausible curves have been drawn from 1990 tangent to the linear regression line in 1990 and forced through the high and low scenario projections for 2050 and 2100. These curves show discrepancies with measurements of the last decade

  18. Climate And Sea Level: It's In Our Hands Now

    Science.gov (United States)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  19. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  20. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA

    Science.gov (United States)

    2013-01-01

    Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...tive comments on the manuscript. Permission was granted by the Chief, USACE, to publish this information. LITERATURE CITED Blanton, B.; Stillwell, L...Geospatial Center. http://www.agc.army.mil/ (accessed February 29, 2012). Vickery, P.; Wadhera, D.; Cox, A.; Cardone , V.; Hanson, J., and Blanton, B