WorldWideScience

Sample records for hollow-core photonic-crystal fibres

  1. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  2. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    guides via a photonic bandgap and the other guides by virtue of an inhibited coupling between core and cladding mode constituents. For the former fibre type, we explore how the bandgap is formed using a photonic analogue of the tight-binding model and how it is related to the anti-resonant reflection...... on electromagnetically induced transparency in a rubidium filled hollow-core photonic crystal fibre, the CW-pumped hydrogen Raman laser and the generation of multi-octave spanning stimulated Raman scattering spectral combs....

  3. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    CERN Document Server

    Konorov, S O; Kolevatova, O A; Beloglasov, V I; Skibina, N B; Shcherbakov, A V; Wintner, E; Zheltikov, A M

    2003-01-01

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 mu m. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot.

  5. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  6. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  7. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths

    International Nuclear Information System (INIS)

    Jin-Hui, Yuan; Chong-Xiu, Yu; Xin-Zhu, Sang; Wen-Jing, Li; Gui-Yao, Zhou; Shu-Guang, Li; Lan-Tian, Hou

    2009-01-01

    Guided-mode characteristics of hollow-core photonic crystal fibre (HC-PCF) are experimentally and theoretically investigated. The transmission spectrum in the range from 755 to 845 nm is observed and the loss is measured to be 0.12 dB/m at 800 nm by cut-back method. Based on the full-vector beam propagation method and the full-vector plane-wave method, the characteristics of mode field over propagation distance 1 m are simulated, and the results show that the propagation efficiency can be above 80%. Compared with the fundamental guided mode well confined in air core within shorter propagation distance, the second-order guided mode leaks into the cladding region and gradually attenuates due to larger refractive index difference. The primary loss factors in HC-PCF and the corresponding solutions are elementarily discussed. (fundamental areas of phenomenology (including applications))

  8. Mode multiplexing at 2×20Gbps over 19-cell hollow-core photonic band gap fibre

    DEFF Research Database (Denmark)

    Carpenter, Joel; Xu, Jing; Peucheret, Christophe

    2012-01-01

    This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes.......This paper demonstrates the first mode-multiplexed system over 19-cell hollow-core photonic band gap fibre, at 2×20Gbps using the LP0,1 and LP2,1-like modes....

  9. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  10. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  11. Photonic Crystal Fibres for Dispersion and Sensor Applications

    DEFF Research Database (Denmark)

    Sørensen, Thorkild

    2005-01-01

    of the involved nonlinear processes. A hollow-core photonic crystal fibre (HC-PCF) is used as a sensor for gas. It is filled with two gasses, 12C2H2 acetylene, and H13CN hydrogen cyanide, and the transmission spectra are subject for a discussion. A model for infusion speed of fluids to a capillary presented...

  12. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  13. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  14. Gamma irradiation of minimal latency Hollow-Core Photonic Bandgap Fibres

    CERN Document Server

    Olanterae, L; Richardson, D J; Vasey, F; Wooler, J P; Petrovich, M N; Wheeler, N V; Poletti, F; Troska, J

    2013-01-01

    Hollow-Core Photonic-Bandgap Fibres (HC-PBGFs) offer several distinct advantages over conventional fibres, such as low latency and radiation hardness; properties that make HC-PBGFs interesting for the high energy physics community. This contribution presents the results from a gamma irradiation test carried out using a new type of HC-PBGF that combines sufficiently low attenuation over distances that are compatible with high energy physics applications together with a transmission bandwidth that covers the 1550 nm region. The radiation induced attenuation of the HC-PBGF was two orders of magnitude lower than that of a conventional fibre during a 67.5 h exposure to gamma-rays, resulting in a radiation-induced attenuation of only 2.1 dB/km at an accumulated dose of 940 kGy.

  15. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated.......17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  16. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  17. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  18. Mode division multiplexing over 19-cell hollow-core photonic bandgap fibre by employing integrated mode multiplexer

    NARCIS (Netherlands)

    Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Jung, Y.; Wheeler, N.V.; Fokoua, E.N.; Baddela, N.; Petrovich, M.N.; Poletti, F.; Richardson, D.J.; Raz, O.; Waardt, de H.; Koonen, A.M.J.

    2014-01-01

    A photonic integrated mode coupler based on silicon-on-insulator is employed for mode division multiplexing (MDM) over a 193 m 19-cell hollow-core photonic bandgap fibre (HC-PBGF) with a -3 dB bandwidth >120 nm. Robust MDM transmissions using LP01 and LP11 modes, and two degenerate LP11 modes (LP11a

  19. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  20. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  1. Spectrofluorimetry with attomole sensitivity in photonic crystal fibres

    International Nuclear Information System (INIS)

    Williams, Gareth O S; Jones, Anita C; Euser, Tijmen G; Russell, Philip St J

    2013-01-01

    We report the use of photonic crystal fibres (PCF) as spectrofluorimetric systems in which sample solutions are excited within the microstructure of the fibre. The use of intra-fibre excitation has several advantages that combine to enable highly sensitive measurements of fluorescence spectra and lifetimes: long path-lengths are achieved by the efficient guidance of the fundamental mode; sample volumes contained within the micron-scale structure are very small, only a few nanolitres per cm of path; collection and guidance of the emitted fluorescence is efficient and the fluorescence lifetime is unperturbed. Fluorophores in bulk solution can be studied in hollow core PCF, whereas the use of PCF with a suspended, solid core enables selective excitation of molecules in close proximity to the silica surface, through interaction with the evanescent field. We demonstrate the measurement of fluorescence spectra and fluorescence lifetimes in each of these excitation regimes and report the detection of attomole quantities of fluorescein. (paper)

  2. Soliton-based ultrafast multi-wavelength nonlinear switching in dual-core photonic crystal fibre

    International Nuclear Information System (INIS)

    Stajanca, P; Pysz, D; Michalka, M; Bugar, I; Andriukaitis, G; Balciunas, T; Fan, G; Baltuska, A

    2014-01-01

    Systematic experimental study of ultrafast multi-wavelength all-optical switching performance in a dual-core photonic crystal fibre is presented. The focus is on nonlinearly induced switching between the two output ports at non-excitation wavelengths, which are generated during nonlinear propagation of femtosecond pulses in the anomalous dispersion region of a dual-core photonic crystal fibre made of multicomponent glass. Spatial and spectral characteristics of the fibre output radiation were measured separately for both fibre cores under various polarization and intensity conditions upon selective, individual excitation of each fibre core. Polarization-controlled nonlinear switching performance at multiple non-excitation wavelengths was demonstrated in the long-wavelength optical communication bands and beyond. Depending on the input pulse polarization, narrowband switching operation at 1560 nm and 1730 nm takes place with double core extinction ratio contrasts of 9 dB and 14.5 dB, respectively. Moreover, our approach allows switching with simultaneous wavelength shift from 1650 to 1775 nm with extinction ratio contrast larger than 18 dB. In addition, non-reciprocal behaviour of the soliton fission process under different fibre core excitations was observed and its effect on the multi-wavelength nonlinear switching performance was explained, taking into account the slight dual-core structure asymmetry. The obtained results represent ultrafast all-optical switching with an extended dimension of wavelength shift, controllable with both the input radiation intensity and the polarization by simple propagation along a 14 mm long fibre. (paper)

  3. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  4. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  5. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  6. Acousto-optic mode coupling excited by flexural waves in simplified hollow-core photonic crystal fibers

    International Nuclear Information System (INIS)

    Zhang, Hao; Qiu, Minghui; Wu, Zhifang; Dong, Hongguang; Liu, Bo; Miao, Yinping

    2013-01-01

    We have demonstrated the formation of an acoustic grating in a simplified hollow-core photonic crystal fiber, which consists of a hollow hexagonal core and six crown-like air holes, by applying flexural acoustic waves along the fiber axis. The dependence of the resonance wavelength on the applied acoustic frequency has been acquired on the basis of the theoretical calculation of the phase matching curve; it is in good agreement with our experimental observation of the transmission spectral evolution as the applied acoustic frequency varies. Experimental results show that the acoustic grating resonance peak possesses acoustic frequency and strain dependences of 728 nm MHz −1 and −6.98 pm με −1 , respectively, based on which high-performance acousto-optic tunable filters and fiber-optic strain sensors with high sensitivity could be achieved. And furthermore, the research work presented in this paper indicates that microbending rather than physical deformation is the main physical mechanism that leads to the formation of equivalent long-period gratings, which would be of significance for developing related grating devices based on simplified hollow-core photonic crystal fibers. (paper)

  7. Laser-cooled atoms inside a hollow-core photonic-crystal fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2011-01-01

    We describe the loading of laser-cooled rubidium atoms into a single-mode hollow-core photonic-crystal fiber. Inside the fiber, the atoms are confined by a far-detuned optical trap and probed by a weak resonant beam. We describe different loading methods and compare their trade-offs in terms...... of implementation complexity and atom-loading efficiency. The most efficient procedure results in loading of ∼30,000 rubidium atoms, which creates a medium with an optical depth of ∼180 inside the fiber. Compared to our earlier study this represents a sixfold increase in the maximum achieved optical depth...

  8. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  9. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  10. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  11. Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and its Applications

    DEFF Research Database (Denmark)

    2010-01-01

    An optical fibre is provided having a fibre cladding around a longitudinally extending optical propagation core. The cladding has a reflection region of a varying refractive index in the longitudinal direction....

  12. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  13. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  14. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  15. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  16. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  17. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  18. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  19. Fluorescence-based remote irradiation sensor in liquid-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zeltner, R.; Russell, P. St.J. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Bykov, D. S.; Xie, S. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Euser, T. G. [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-06-06

    We report an irradiation sensor based on a fluorescent “flying particle” that is optically trapped and propelled inside the core of a water-filled hollow-core photonic crystal fiber. When the moving particle passes through an irradiated region, its emitted fluorescence is captured by guided modes of the fiber core and so can be monitored using a filtered photodiode placed at the fiber end. The particle speed and position can be precisely monitored using in-fiber Doppler velocimetry, allowing the irradiation profile to be measured to a spatial resolution of ∼10 μm. The spectral response can be readily adjusted by appropriate choice of particle material. Using dye-doped polystyrene particles, we demonstrate detection of green (532 nm) and ultraviolet (340 nm) light.

  20. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  1. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  2. Hollow-core revolver fibre with a double-capillary reflective cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kosolapov, A F; Alagashev, G K; Kolyadin, A N; Pryamikov, A D; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Biryukov, A S; Bufetov, I A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation)

    2016-03-31

    We report the fabrication of the first hollow-core revolver fibre with a core diameter as small as 25 μm and an optical loss no higher than 75 dB km{sup -1} at a wavelength of 1850 nm. The decrease in core diameter, with no significant increase in optical loss, is due to the use of double nested capillaries in the reflective cladding design. A number of technical problems pertaining to the fabrication of such fibres are resolved. (fiber optics)

  3. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  4. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction

    Directory of Open Access Journals (Sweden)

    Nathaniel Groothoff

    2007-10-01

    Full Text Available A new class of refractive index sensors using solid core photonic crystal fibres isdemonstrated. Coherent scattering at the cladding lattice is used to optically characterizematerials inserted into the fibre holes. The liquid to solid phase transition of water uponfreezing to ice 1h is characterized by determining the refractive index.

  5. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  6. Agile Photonic Crystals

    Science.gov (United States)

    2011-01-03

    75, pp. 3253-3256, Oct. 1995. [24] F. Benabid, J. C. Knight, and P. S. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal...B. Mizaikoff, “Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

  7. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  8. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  9. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  10. Mode conversion in magneto photonic crystal fibre

    International Nuclear Information System (INIS)

    Otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; Benmerkhi, Ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  11. Numerical Methods for the Design and Analysis of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Roberts, John

    2008-01-01

    The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted.......The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted....

  12. Optical trapping and control of nanoparticles inside evacuated hollow core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Grass, David, E-mail: david.grass@univie.ac.at; Fesel, Julian; Hofer, Sebastian G.; Kiesel, Nikolai; Aspelmeyer, Markus, E-mail: markus.aspelmeyer@univie.ac.at [Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, A-1090 Vienna (Austria)

    2016-05-30

    We demonstrate an optical conveyor belt for levitated nanoparticles over several centimeters inside both air-filled and evacuated hollow-core photonic crystal fibers (HCPCF). Detection of the transmitted light field allows three-dimensional read-out of the particle center-of-mass motion. An additional laser enables axial radiation pressure based feedback cooling over the full fiber length. We show that the particle dynamics is a sensitive local probe for characterizing the optical intensity profile inside the fiber as well as the pressure distribution along the fiber axis. In contrast to some theoretical predictions, we find a linear pressure dependence inside the HCPCF, extending over three orders of magnitude from 0.2 mbar to 100 mbar. A targeted application is the controlled delivery of nanoparticles from ambient pressure into medium vacuum.

  13. Photonic crystal fibres in the market

    DEFF Research Database (Denmark)

    Broeng, Jes; Laurila, Marko; Noordegraaf, Danny

    2011-01-01

    Photonic crystal fibres (PCFs) emerged as a research topic in the mid 1990'ies [1]. Today, 15 years later, these fibres are increasing deployed in various commercial markets. Here, we will address three of these markets; medical imaging, materials processing and sensors. We will describe how...... the PCFs provide radical improvements and illustrate the strong diversity in the evolution of PCFs to serve these different markets....

  14. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  15. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  16. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  17. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  18. Lateral stress-induced propagation characteristics in photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Tian Hong-Da; Yu Zhong-Yuan; Han Li-Hong; Liu Yu-Min

    2009-01-01

    Using the finite element method, this paper investigates lateral stress-induced propagation characteristics in a pho-tonic crystal fibre of hexagonal symmetry. The results of simulation show the strong stress dependence of effective index of the fundamental guided mode, phase modal birefringence and confinement loss. It also finds that the contribution of the geometrical effect that is related only to deformation of the photonic crystal fibre and the stress-related contribution to phase modal birefringence and confinement loss are entirely different. Furthermore, polarization-dependent stress sensitivity of confinement loss is proposed in this paper.

  19. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2015-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers......We demonstrated robust and bend insensitive fiber delivery of high power pulsed laser with diffraction limited beam quality for two different kind of hollow core photonic band gap fibers...

  20. Stress-induced phase sensitivity of small diameter polarization maintaining solid-core photonic crystal fibre

    Science.gov (United States)

    Zhang, Zhihao; Zhang, Chunxi; Xu, Xiaobin

    2017-09-01

    Small diameter (cladding and coating diameter of 100 and 135 μm) polarization maintaining photonic crystal fibres (SDPM-PCFs) possess many unique properties and are extremely suitable for applications in fibre optic gyroscopes. In this study, we have investigated and measured the stress characteristics of an SDPM-PCF using the finite-element method and a Mach-Zehnder interferometer, respectively. Our results reveal a radial and axial sensitivity of 0.315 ppm/N/m and 25.2 ppm per 1 × 105 N/m2, respectively, for the SDPM-PCF. These values are 40% smaller than the corresponding parameters of conventional small diameter (cladding and coating diameter of 80 and 135 μm) panda fibres.

  1. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  2. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  3. A microring multimode laser using hollow polymer optical fibre

    Indian Academy of Sciences (India)

    Dye-doped optical fibre; fibre laser; microcavity; whispering gallery mode. ... Cylindrical microcavities with diameters 155, 340 and 615 m were fabricated from a dye-doped hollow polymer optical fibre preform. ... International School of Photonics, Cochin University of Science and Technology, Kochi 682 022, India ...

  4. Realization of low loss and polarization maintaining hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Mangan, Brian Joseph; Lyngsøe, Jens Kristian; Roberts, John

    2008-01-01

    Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm......Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm...

  5. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  6. Macrobending loss properties of photonic crystal fibres with different air filling fractions

    DEFF Research Database (Denmark)

    Sørensen, Thorkild; Broeng, Jes; Bjarklev, Anders Overgaard

    2001-01-01

    We present experimental and theoretical analysis of macrobending losses of photonic crystal fibres with various air filling fractions. A scalar, effective-index method provides a good description of the losses for fibres with limited air filling fractions, whereas the method overestimates...... the losses for fibres with larger air filling fractions....

  7. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  8. Tunable polarisation-maintaining filter based on liquid crystal photonic bandgap fibre

    DEFF Research Database (Denmark)

    Scolari, Lara; Olausson, Christina Bjarnal Thulin; Weirich, Johannes

    2008-01-01

    A tunable and polarisation-maintaining all-in-fibre filter based on a liquid crystal photonic bandgap fibre is demonstrated. Its polarisation extinction ratio reaches 14 dB at 1550 nm wavelength. Its spectral tunability range spans over 250 nm in the temperature range 30–70°C. The measured...

  9. Realization of 7-cell hollow-core photonic crystal fibers with low loss in the region between 1.4 μm and 2.3 μm

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Jakobsen, C.

    2009-01-01

    Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm.......Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm....

  10. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  11. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  12. Characterization and study of photonic crystal fibres with bends

    International Nuclear Information System (INIS)

    Belhadj, W.; AbdelMalek, F.; Bouchriha, H.

    2006-01-01

    Analysis of a photonic crystal fibre (PRCF) with bends is presented. Using the versatile finite difference time domain method, the modal characteristics of the PCFs are found. Possibilities of employing PCFs with bends in sensing are discussed. It is found that a large evanescent field is present when the bend angle exceeds 45 o

  13. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  14. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  15. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Mohammed F.; Biancalana, Fabio [Max Planck Institute for the Science of Light, Guenther-Scharowsky Str. 1, DE-91058 Erlangen (Germany)

    2011-12-15

    We present the details of our previously formulated model [Saleh et al., Phys. Rev. Lett. 107, 203902 (2011)] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizable gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency redshift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107, 203901 (2011)]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blueshift in the frequency domain. By applying the Gagnon-Belanger gauge transformation, multipeak ''inverted gravitylike'' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range nonlocal interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the conversion efficiency of resonant radiation into the deep UV can be improved via plasma formation.

  16. Microstructured Optical Fibres

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to a new class of optical waveguides, in which waveguiding along one or more core regions is obtained through the application of the Photonic Bandgap (PBG) effect. The invention further relates to optimised two-dimensional lattice structures capable of providing......, which are easy to manufacture. Finally, the present invention relates to a new fabrication technique, which allows easy manufacturing of preforms for photonic crystal fibers with large void filling fractions, as well as it allows a high flexibility in the design of the cladding and core structures....... complete PBGs, which reflects light incident from air or vacuum. Such structures may be used as cladding structures in optical fibres, where light is confined and thereby guided in a hollow core region. In addition, the present invention relates to designs for ultra low-loss PBG waveguiding structures...

  17. Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    . The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse......We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror...

  18. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  19. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  20. Supercontinuum Generation in a Photonic Crystal Fibre

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  1. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  2. High performance yttrium-doped BSCF hollow fibre membranes

    DEFF Research Database (Denmark)

    Haworth, P.; Smart, S.; Glasscock, Julie

    2012-01-01

    measurements in air was similar for both compositions, suggesting that the higher oxygen fluxes obtained for BSCFY hollow fibres could be attributed to the higher non-stoichiometry due to yttrium addition to the BSCF crystal structure. In addition, the improvement of oxygen fluxes for small wall thickness (∼0...

  3. The analogy between photonic crystal fibres and step index fibres

    DEFF Research Database (Denmark)

    Birks, T.A.; Mogilevtsev, D.; Knight, J.C.

    1999-01-01

    The propagation constant of a photonic crystal fiber (PCF) can be approximated by substituting the effective V-value and NA into a formula valid for step index fibers (SIF), provided the V-value is defined with a core radius of 0.625 $Lambda@. V$PRM and NA must still be computed. Care must be taken...

  4. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  5. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  6. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  7. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  8. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....... After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non...

  9. Efficient 1.9-μm Raman generation in a hydrogen-filled hollow-core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Gladyshev, A V; Kolyadin, A N; Kosolapov, A F; Yatsenko, Yu P; Pryamikov, A D; Biryukov, A S; Bufetov, I A; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-09-30

    Efficient Raman generation in a molecular hydrogenfilled hollow-core fibre having a cladding in the form of a single ring of capillaries has been demonstrated for the first time. The pump source used was a Q-switched Nd:YAG laser with a pulse duration of 125 ns, and a single-pass (cavity-free) configuration was employed. The maximum average output power at 1.9 μm was 300 mW, and the differential quantum efficiency was 87%, a record level for such experiments. (lasers)

  10. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC Porto—Instituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Física, da Faculdade de Ciências, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5 × 10{sup −5} nm/psi at 1480 nm to 1.3 × 10{sup −3} nm/psi at 1680 nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000 psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from −3.4 × 10{sup −6} 1/psi to −1.3 × 10{sup −6} 1/psi and from −5 × 10{sup −6} 1/psi to −1.8 × 10{sup −6} 1/psi, respectively, which were in a good accordance with each other.

  11. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  12. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    The transmission properties of five types of hollow-core photonic bandgap fibers (HC-PBFs) are characterized in the telecom wavelength range around 1:5 μm. The variations in optical transmission are measured as a function of laser frequency over a 2GHz scan range as well as a function of time over...

  13. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  14. Monolithic femtosecond Yb-fiber laser with photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    We demonstrate a monolithic stable SESAM-modelocked self-starting Yb-fiber laser. A novel PM all-solid photonic bandgap fiber is used for intra-cavity of dispersion management. The ex-cavity final pulse compression is performed in a spliced-on PM hollow-core photonic crystal fiber. The laser...... directly delivers 9 nJ pulses of 275 fs duration with pulse repetition of 26.7MHz....

  15. 3D-printed PMMA Preform for Hollow-core POF Drawing

    DEFF Research Database (Denmark)

    Zubel, M. G.; Fasano, Andrea; Woyessa, Getinet

    2016-01-01

    In this paper we report the first, to our knowledge, 3D-printed hollow-core poly(methyl methacrylate) (PMMA) preform for polymer optical fibre drawing. It was printed of commercial PMMA by means of fused deposition modelling technique. The preform was drawn to cane, proving good enough quality...... of drawing process and the PMMA molecular weight to be appropriate for drawing. This ascertains that the manufacturing process provides preforms suitable for hollow-core fibre drawing. The paper focuses on maximisation of transparency of PMMA 3D printouts by optimising printing process parameters: nozzle...... temperature, printing speed and infill...

  16. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  17. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  18. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  19. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  20. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Science.gov (United States)

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  1. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  2. Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...... frequency shift. Analytical expressions for this limit are derived and compared with results of detailed numerical simulations for a realistic fiber structure....

  3. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  4. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  5. Photonic crystals of core-shell colloidal particles

    NARCIS (Netherlands)

    Velikov, K.P.; Moroz, A.; Blaaderen, A. van

    2001-01-01

    We report on the fabrication and optical transmission studies of thin three-dimensional (3D) photonic crystals of high-dielectric ZnS-core and low-dielectric SiO2-shell colloidal particles. These samples were fabricated using a vertical controlled drying method. The spectral position and width of a

  6. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    Directory of Open Access Journals (Sweden)

    Ciprian Dumitrache

    2014-08-01

    Full Text Available This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs, the hollow core kagome fibers have larger core diameter (~50 µm, which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25. We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine.

  7. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...... technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  8. Mode-coupling in photonic crystal fibers with multiple cores

    DEFF Research Database (Denmark)

    Kristensen, Martin

    2000-01-01

    Summary form only given. We have fabricated a photonic crystal fiber (PCF) with multiple cores by drawing a fiber preform from stacked glass tubes. Transmission is high through each core despite many unintentional defects in the cladding indicating that the guidance is determined by the holes near...

  9. An All-Fiber Gas Raman Light Source Based on a Hydrogen-Filled Hollow-Core Photonic Crystal Fiber Pumped with a Q-Switched Fiber Laser

    International Nuclear Information System (INIS)

    Chen Xiao-Dong; Mao Qing-He; Sun Qing; Zhao Jia-Sheng; Li Pan; Feng Su-Juan

    2011-01-01

    A gas Raman light source based on a H 2 -filled hollow-core photonic-crystal-fiber cell with a Q-switched fiber laser followed by a fiber amplifier as the Raman pump source is demonstrated. The Stokes frequency-shift lasing line is observed at 1135.7 nm with the Q-switched pump pulses at 1064.7 nm. Our experimental results show that the generated Stokes pulse is much narrower than the pump pulse, and the generated Stokes pulse duration is increased with the single pulse energy for the same duration pump pulses. For the 125 ns pump pulses with a repetition rate of 5 kHz, the Raman threshold pump energy and the conversion efficiency at the Raman threshold are 2.13 μJ and 9.82%. Moreover, by choosing narrower pump pulses, the Raman threshold pump energy may be reduced and the conversion efficiency may be improved. (fundamental areas of phenomenology(including applications))

  10. Estimation of photonic band gap in the hollow core cylindrical multilayer structure

    Science.gov (United States)

    Chourasia, Ritesh Kumar; Singh, Vivek

    2018-04-01

    The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.

  11. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  12. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  13. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  14. Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2009-01-01

    We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm.......We present a monolithic Yb fiber laser, dispersion managed by an all-solid photonic bandgap fiber, and pulse compressed in a hollow-core photonic crystal fiber. The laser delivers 9 nJ, 275-fs long pulses at 1035 nm....

  15. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals.

    Science.gov (United States)

    Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua

    2016-08-08

    A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.

  16. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing

    Directory of Open Access Journals (Sweden)

    Mark G. Scullion

    2014-11-01

    Full Text Available We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

  17. Photonic Crystal Fibres as the Transmission Medium for Future Optical Communication Systems

    DEFF Research Database (Denmark)

    Zsigri, Beata

    2006-01-01

    major groups: index guiding PCFs and photonic bandgap fibres (PBGFs). Several aspects of index guiding PCFs are similar to conventional fibres. On the contrary, PBGFs form a fundamentally new class of fibres and their properties differ considerably from those observed for both conventional fibres...

  18. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  19. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  20. Photonic crystal fiber modal interferometer based on thin-core-fiber mode exciter.

    Science.gov (United States)

    Miao, Yinping; Ma, Xixi; Wu, Jixuan; Song, Binbin; Zhang, Hao; Liu, Bo; Yao, Jianquan

    2015-11-10

    A thin-core-fiber excited photonic crystal fiber modal interferometer has been proposed and experimentally demonstrated. By employing a thin-core fiber as the mode exciter, both of the core and cladding modes propagate in the photonic crystal fiber and interfere with each other. The experimental results show that the transmission dips corresponding to different-order modes have various strain responses with opposite shift directions. The strain sensitivity could be improved to 58.57  pm/με for the applied strain from 0 to 491 με by utilizing the wavelength interval between the dips with opposite shift directions. Moreover, due to the pure silica property of the employed photonic crystal fiber, the proposed fiber modal interferometer exhibits a low-temperature sensitivity of about 0.56  pm/°C within a temperature range from 26.4°C (room temperature) to 70°C. Additionally, the proposed fiber modal interferometer has several advantages, such as good stability, compact structure, and simple fabrication. Therefore, it is more applicable for strain measurement with reducing temperature cross-sensitivity.

  1. Influence of air pressure on soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, Peter John

    2009-01-01

    Abstract Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective...... of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse...

  2. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  3. Intrinsically narrowband pair photon generation in microstructured fibres

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Alex; Bell, Bryn; Fulconis, Jeremie; Halder, Matthaeus M; Cemlyn, Ben; Rarity, John G [Centre for Communications Research, Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB (United Kingdom); Alibart, Olivier [Laboratoire de Physique de la Matiere Condensee, Unite Mixte de Recherche 6622, Centre National de la Recherche Scientifique, Universite de Nice-Sophia Antipolis, Parc Valrose 06108, Nice 2 (France); Xiong Chunle; Wadsworth, William J, E-mail: alex.clark@bristol.ac.uk [Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-06-15

    In this paper, we study the tailoring of photon spectral properties generated by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is to produce intrinsically narrow-band photons and hence to achieve high non-classical interference visibility and generate high-fidelity entanglement without any requirement for spectral filtering, leading to high effective detection efficiencies. We show unfiltered Hong-Ou-Mandel interference visibilities of 77% between photons from the same PCF and 80% between separate sources. We compare results from modelling the PCF to these experiments and analyse photon purities.

  4. 2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF

    Science.gov (United States)

    Maurel, M.; Chafer, M.; Delahaye, F.; Amrani, F.; Debord, B.; Gerome, F.; Benabid, F.

    2018-02-01

    We report on the design and fabrication of inhibited-coupling guiding hollow-core photonic crystal fiber with a transmission band optimized for low loss guidance around 2 μm. Two fibers design based on a Kagome-lattice cladding have been studied to demonstrate a minimum loss figure of 25 dB/km at 2 μm associated to an ultra-broad transmission band spanning from the visible to our detection limit of 3.4 μm. Such fibers could be an excellent tool to deliver and compress ultra-short pulse laser systems, especially for the emerging 2-3 μm spectral region.

  5. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  6. Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2015-01-01

    We present a thorough numerical analysis of a highly birefringent slotted porous-core circular photonic crystal fiber (PCF) for terahertz (THz) wave guidance. The slot shaped air-holes break the symmetry of the porous-core which offers a very high birefringence whereas the compact geometry of the...

  7. Compression of realistic laser pulses in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Roberts, John

    2009-01-01

    Dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap fiber is studied numerically. The performance of ideal parabolic input pulses is compared to pulses from a narrowband picosecond oscillator broadened by self-phase modulation during...... amplification. It is shown that the parabolic pulses are superior for compression of high-quality femtosecond pulses up to the few-megawatts level. With peak powers of 5-10 MW or higher, there is no significant difference in power scaling and pulse quality between the two pulse types for comparable values...... of power, duration, and bandwidth. The same conclusion is found for the peak power and energy of solitons formed beyond the point of maximal compression. Long-pass filtering of these solitons is shown to be a promising route to clean solitonlike output pulses with peak powers of several MW....

  8. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  9. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Weichert, Stefan

    2017-05-15

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  10. Spectral broadening of 25 fs laser pulses via self-phase modulation in a neon filled hollow core fibre

    International Nuclear Information System (INIS)

    Weichert, Stefan

    2017-05-01

    The goal of this work was the realisation of a setup for spectral broadening and subsequent compression of 25 fs laser pulses provided by a commercial Ti:Sapphire based CPA laser system by means of the hollow core fibre chirped mirror compressor technique. For the spectral broadening a vessel containing the hollow waveguide filled with a noble gas serving as the nonlinear medium was set up and an alignment procedure was developed. Neon was chosen as the nonlinear medium for the self-phase modulation of the pulses. With this setup spectral broadening, sufficient for supporting sub 5 fs pulses, was observed. The spectra at different input energies and neon gas pressures were measured and the stability of these and their respective Fourier transform-limited pulses determined in order to find an operating point. For the compression of the self-phase modulated pulses a chirped mirror compressor was designed and set up, but not tested yet. The layout of a single-shot intensity autocorrelator capable of estimating the pulse duration of sub 10 fs pulses was given.

  11. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  12. Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; Bise, R. T.; Kaňka, Jiří; Peterka, Pavel; Du, H.

    Vol. 281, No. 1 (2008), s. 55-60 ISSN 0030-4018 R&D Projects: GA ČR GA102/05/0995 Grant - others:US National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Keywords : photonic crystals * fibre optic sensors * optic al fibres Subject RIV: BH - Optic s, Masers, Lasers Impact factor: 1.552, year: 2008

  13. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    Science.gov (United States)

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  14. Structural Color Palettes of Core-Shell Photonic Ink Capsules Containing Cholesteric Liquid Crystals.

    Science.gov (United States)

    Lee, Sang Seok; Seo, Hyeon Jin; Kim, Yun Ho; Kim, Shin-Hyun

    2017-06-01

    Photonic microcapsules with onion-like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light-handedness. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Slow-light enhanced absorption in a hollow-core fiber

    DEFF Research Database (Denmark)

    Grgic, Jure; Xiao, Sanshui; Mørk, Jesper

    2010-01-01

    Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate...

  17. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.

    Science.gov (United States)

    Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias

    2018-01-23

    Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core

  18. Simple fibre based dispersion management for two-photon excited fluorescence imaging through an endoscope

    DEFF Research Database (Denmark)

    Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.

    2018-01-01

    We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others...... the delivery of short laser pulses to the distal end of the endoscope. To this avail, we present imaging results using an all-fibre dispersion management scheme in a TPEFM setup. The scheme has been conceived by Jespersen et al. in 20101 and relies on the combination of a single mode fibre with normal...

  19. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    Science.gov (United States)

    Selleri, S.; Poli, F.; Passaro, D.; Cucinotta, A.; Lægsgaard, J.; Broeng, J.

    2009-05-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Ybdoped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has been applied to properly design the low refractive index ring in the fiber core, which can provide an increase of the differential overlap between the fundamental and the higher-order mode. Then, the gain competition among the guided modes along the Yb-doped rod-type fibers has been investigated with a spatial and spectral amplifier model. Simulation results have shown the effectiveness of the sectioned core doping in worsening the higher-order mode overlap on the doped area, thus providing an effective single-mode behavior of the Yb-doped rod-type photonic crystal fibers.

  20. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  1. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  2. Spectroscopy of Rb atoms in hollow-core fibers

    International Nuclear Information System (INIS)

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-01-01

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  3. Deep-blue supercontinuum light sources based on tapered photonic crystal bres

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft

    applications in areas such as spectroscopy and microscopy. In this work, we exploit the tremendous design freedom in air hole structured photonic crystal fibres to shape the supercontinuum spectrum. Specifically, the supercontinuum dynamics can be controlled by clever engineering of fibres with longitudinally...... varying air hole structures. Here we demonstrate supercontinuum generation into the commercially attractive deep-blue spectral region below 400 nm from an Yb laser in such fibres. In particular, we introduce the concept of a group acceleration mismatch that allows us to enhance the amount of light...... in the deep-blue by optimising the fibre structure. To this end, we fabricate the first single-mode high air-fill fraction photonic crystal fibre for blue-extended supercontinuum sources. The mechanisms of supercontinuum broadening are highly sensitive to noise, and the inherent shot-to-shot variations...

  4. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  5. Extremely Low Loss THz Guidance Using Kagome Lattice Porous Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Hossain, Anwar; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A novel porous core Kagome lattice photonic crystal fiber is proposed for extremely low loss THz waves guiding. It has been reported that 82.5% of bulk effective material loss of Topas can be reduced...

  6. Seven-core active fibre for application in telecommunication satellites

    Science.gov (United States)

    Filipowicz, Marta; Napierała, Marek; Murawski, Michał; Ostrowski, Łukasz; Szostkiewicz, Łukasz; Szymański, Michał; Tenderenda, Tadeusz; Anders, Krzysztof; Piramidowicz, Ryszard; Wójcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Paweł; Nasiłowski, Tomasz

    2015-12-01

    The use of optical elements and other photonic components makes it possible to overcome telecommunication satellite's bottleneck problems such as size and weight reduction. Despite the unquestionable potential of such elements, nowadays they are not widely used in systems operating in space. This is due to many factors, including the fact that space radiation has disruptive influence on optical fibre. Namely it introduces additional radiation induced attenuation (RIA) that significantly lowers efficiency of optical fibre based systems. However, there is a possibility to produce radiation-hardened (rad-hard) components. One of them is seven core erbium-doped active fibre (MC-EDF) for fibre amplifiers in satellites that we have been developing. In this paper we present a detailed description of seven core structure design as well as experimental results. We report that average gain of 20 dB in C-band with noise figure of 5.8 dB was obtained. We also confirmed that low crosstalk value for a multicore fibre amplifier based on our fibre can be achieved.

  7. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  8. Hollow fibre supported liquid membrane extraction of ...

    African Journals Online (AJOL)

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  9. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...... hollow core of a single-mode photonic-crystal fiber....

  10. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  11. Ultrabroadband polarization splitter based on three-core photonic crystal fiber with a modulation core.

    Science.gov (United States)

    Zhao, Tongtong; Lou, Shuqin; Wang, Xin; Zhou, Min; Lian, Zhenggang

    2016-08-10

    We design an ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF). A modulation core and two fluorine-doped cores are introduced to achieve an ultrawide bandwidth. The properties of three-core PCF are modeled by using the full-vector finite element method along with the full-vector beam propagation method. Numerical results demonstrate that an ultrabroadband splitter with 320 nm bandwidth with an extinction ratio as low as -20  dB can be achieved by using 52.8 mm long three-core PCF. This splitter also has high compatibility with standard single-mode fibers as the input and output ports due to low splicing loss of 0.02 dB. All the air holes in the proposed structure are circular holes and arranged in a triangular lattice that makes it easy to fabricate.

  12. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  13. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  14. Guiding and amplification properties of rod-type photonic crystal fibers with sectioned core doping

    DEFF Research Database (Denmark)

    Selleri, Stefano; Poli, Federica; Passaro, Davide

    2009-01-01

    Rod-type photonic crystal fibers are large mode area double-cladding fibers with an outer diameter of few millimeters which can provide important advantages for high-power lasers and amplifiers. Numerical studies have recently demonstrated the guidance of higher-order modes in these fibers, which...... can worsen the output beam quality of lasers and amplifiers. In the present analysis a sectioned core doping has been proposed for Yb-doped rod-type photonic crystal fibers, with the aim to improve the higher-order mode suppression. A full-vector modal solver based on the finite element method has...

  15. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  16. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... contributed to the compounding of new and improved material compositions. The second part is an investigation of pump absorption in photonic crystal bers, demonstrating that the microstructure in photonic crystal bers improves the pump absorption by up to a factor of two compared to step-index bers....... This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...

  17. EXPERIMENTAL STUDY OF 3D SELF-ASSEMBLED PHOTONIC CRYSTALS AND COLLOIDAL CORE-SHELL SEMICONDUCTOR QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    Pham Thu Nga

    2017-11-01

    Full Text Available In this contribution we present an experimental study of 3D opal photonic crystals. The samples are opals constituted by colloidal silica spheres, realized with self-assembly technique. The sphere diameter is selected in order to obtain coupling of the photonic band gap with the emission from CdSe/ZnS colloidal quantum dots. The quantum dots infiltrated in the opals is expected to be enhanced or suppressed depending on the detection angle from the photonic crystal. The structural and optical characterization of the SiO2 opal photonic crystals are performed by field-emission scanning electron microscopy and reflectivity spectroscopy. Measurements performed on samples permits to put into evidence the influence of the different preparation methods on the optical properties. Study of self-activated luminescence of the pure opals is also presented. It is shown that the luminescence of the sample with QDs have original QD emission and not due to the photonic crystal structure. The optical properties of colloidal core-shell semiconductor quantum dots of CdSe/ZnS which are prepared in our lab will be mention.

  18. Sensing Features of Long Period Gratings in Hollow Core Fibers

    Directory of Open Access Journals (Sweden)

    Agostino Iadicicco

    2015-04-01

    Full Text Available We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs fabricated in hollow core photonic crystal fibers (HC-PCFs by the pressure assisted Electric Arc Discharge (EAD technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index.

  19. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    Science.gov (United States)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  20. Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers

    Science.gov (United States)

    Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.

    2018-02-01

    Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.

  1. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  2. Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Habib, Selim; Abdur Razzak, S. M.

    2015-01-01

    A novel porous-core kagome lattice photonic crystal fiber (PCF) is designed and analyzed in this paper for terahertz (THz) wave guidance. Using finite element method (FEM), properties of the proposed kagome lattice PCF are simulated in details including the effective material loss (EML), confinem...

  3. Molecular Gas-Filled Hollow Optical Fiber Lasers in the Near Infrared

    Science.gov (United States)

    2012-01-12

    Benabid, F., Roberts , P. J., Light, P. S., and Raymer , M. G., “Generation and photonic guidance of multi-octave optical-frequency combs,” Science, 318...scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004). 16. F. Couny, F. Benabid, P. J. Roberts , P. S. Light, and M. G. Raymer ...Couny, F., Wang, Y. Y., Wheeler, N. V., Roberts , P. J., and Benabid, F., “Double photonic bandgap hollow-core photonic crystal fiber,” Opt

  4. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    Science.gov (United States)

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  5. Multicore fibre photonic lanterns for precision radial velocity Science

    Science.gov (United States)

    Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.

    2018-04-01

    Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.

  6. Soliton fission and supercontinuum generation in photonic crystal

    Indian Academy of Sciences (India)

    2015-10-17

    Oct 17, 2015 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the ...

  7. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  8. Biodegradable hollow fibres for the controlled release of drugs

    NARCIS (Netherlands)

    Schakenraad, J.M.; Oosterbaan, J.A.; Nieuwenhuis, P.; Molenaar, I.; Olijslager, J.; Potman, W.; Eenink, M.J.D.; Feijen, Jan

    1988-01-01

    Biodegradable hollow fibres of poly-l-lactic acid (PLLA) filled with a suspension of the contraceptive hormone levonorgestrel in castor oil were implanted subcutaneously in rats to study the rate of drug release, rate of biodegradation and tissue reaction caused by the implant. The in vivo drug

  9. Controlling X-ray beam trajectory with a flexible hollow glass fibre

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoshihito, E-mail: yotanaka@riken.jp [RIKEN, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan); Nakatani, Takashi; Onitsuka, Rena [Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan); Sawada, Kei [RIKEN, 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Takahashi, Isao [Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-01-01

    X-ray beam trajectory control has been performed by using a 1.5 m-long flexible hollow glass fibre. A two-dimensional scan of a synchrotron radiation beam was demonstrated for X-ray absorption mapping. A metre-length flexible hollow glass fibre with 20 µm-bore and 1.5 mm-cladding diameters for transporting a synchrotron X-ray beam and controlling the trajectory has been examined. The large cladding diameter maintains a moderate curvature to satisfy the shallow glancing angle of total reflection. The observed transmission efficiency was more than 20% at 12.4 keV. As a demonstration, a wide-area scan of a synchrotron radiation beam was performed to identify the elements for a fixed metal film through its absorption spectra.

  10. New generation of optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  11. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  12. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  13. Frequency stabilization of a 2.05 μm laser using hollow-core fiber CO2 frequency reference cell

    Science.gov (United States)

    Meras, Patrick; Poberezhskiy, Ilya Y.; Chang, Daniel H.; Spiers, Gary D.

    2010-04-01

    We have designed and built a hollow-core fiber frequency reference cell, filled it with CO2, and used it to demonstrate frequency stabilization of a 2.05 μm Tm:Ho:YLF laser using frequency modulation (FM) spectroscopy technique. The frequency reference cell is housed in a compact and robust hermetic package that contains a several meter long hollow-core photonic crystal fiber optically coupled to index-guiding fibers with a fusion splice on one end and a mechanical splice on the other end. The package has connectorized fiber pigtails and a valve used to evacuate, refill it, or adjust the gas pressure. We have demonstrated laser frequency standard deviation decreasing from >450MHz (free-running) to laser wavelength is of particular interest for spectroscopic instruments due to the presence of many CO2 and H20 absorption lines in its vicinity. To our knowledge, this is the first reported demonstration of laser frequency stabilization at this wavelength using a hollow-core fiber reference cell. This approach enables all-fiber implementation of the optical portion of laser frequency stabilization system, thus making it dramatically more lightweight, compact, and robust than the traditional free-space version that utilizes glass or metal gas cells. It can also provide much longer interaction length of light with gas and does not require any alignment. The demonstrated frequency reference cell is particularly attractive for use in aircraft and space coherent lidar instruments for measuring atmospheric CO2 profile.

  14. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  15. Influence of fibre design and curvature on crosstalk in multi-core fibre

    International Nuclear Information System (INIS)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M; Melnikov, L A; Salganskii, M Yu; Mishkin, S N; Nishchev, K N

    2016-01-01

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  16. Influence of fibre design and curvature on crosstalk in multi-core fibre

    Energy Technology Data Exchange (ETDEWEB)

    Egorova, O N; Astapovich, M S; Semjonov, S L; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Melnikov, L A [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, Saratov (Russian Federation); Salganskii, M Yu [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Mishkin, S N; Nishchev, K N [N.P. Ogarev Mordovia State University, Physics and Chemistry Institute, Saransk (Russian Federation)

    2016-03-31

    We have studied the influence of cross-sectional structure and bends on optical cross-talk in a multicore fibre. A reduced refractive index layer produced between the cores of such fibre with a small centre-to-centre spacing between neighbouring cores (27 μm) reduces optical cross-talk by 20 dB. The cross-talk level achieved, 30 dB per kilometre of the length of the multicore fibre, is acceptable for a number of applications where relatively small lengths of fibre are needed. Moreover, a significant decrease in optical cross-talk has been ensured by reducing the winding diameter of multicore fibres with identical cores. (fiber optics)

  17. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  18. Single-mode amplification in Yb-doped rod-type photonic crystal fibers for high brilliance lasers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.

    2009-01-01

    This paper presents the effect of a low refractive index ring in the Yb-doped rod-type photonic crystal fibre core on the guided mode propagation and analyzed through a spatial and spectral amplifier model. The ring provides a higher differential overlap between the fundamental mode (FM...... to identify a proper ring characteristic that is width, position and refractive index. Then rod-type PCF designs have been optimized with a full-vector modal solver based on the finite-element method. Then, the amplification properties of the Yb-doped rod-type PCFs have been investigated by assuming a forward...

  19. All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm

    DEFF Research Database (Denmark)

    Riishede, Jesper; Lægsgaard, Jesper; Broeng, Jes

    2004-01-01

    A theoretical analysis of a photonic bandgap fibre, consisting of a pure silica background with a triangular lattice of Ge-doped high-index rods, is presented. This novel fibre design guides a single, well-confined mode in a core region made from undoped silica. The fibre is found to have positive...... waveguide dispersion, which may be used to shift the zero-dispersion wavelength down to 730 nm, while maintaining an effective mode area of 17 $mu@-m$+2$/. This is an order of magnitude larger than what may be achieved in highly non-linear index-guiding microstructured fibres with comparable zero...

  20. Generation of 2.5 μm and 4.6 μm Dispersive Waves in Kagome Photonic Crystal Fiber with Plasma Production

    Institute of Scientific and Technical Information of China (English)

    Tian-Qi Zhao; Meng Li; Dong Wei; Xin Ding; Gui-Zhong Zhang; Jian-Quan Yao

    2017-01-01

    We report our numerical simulation on dispersive waves (DWs) generated in the Kr-filled Kagome hollow-core photonic crystal fiber,by deploying the unidirectional pulse propagation equation.Relatively strong dispersive waves are simultaneously generated at 2.5μm and 4.6μm.It is deciphered that the interplay between plasma currents due to Kr ionization and nonlinear effects plays a key role in DW generation.Remarkably,this kind of DW generation is corroborated by the plasma-corrected phase-matching condition.

  1. Multimode laser emission from dye-doped hollow polymer optical fibre

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Fibre lasers; optical microcavities; whispering gallery modes. ... A blueshift in the mode structure was observed with decrease in fibre diameter leading to wide range tunability of the laser emission. ... International School of Photonics, Cochin University of Science & Technology, Cochin 682 022, India ...

  2. Ballistic and snake photon imaging for locating optical endomicroscopy fibres

    Science.gov (United States)

    Tanner, M. G.; Choudhary, T. R.; Craven, T. H.; Mills, B.; Bradley, M.; Henderson, R. K.; Dhaliwal, K.; Thomson, R. R.

    2017-01-01

    We demonstrate determination of the location of the distal-end of a fibre-optic device deep in tissue through the imaging of ballistic and snake photons using a time resolved single-photon detector array. The fibre was imaged with centimetre resolution, within clinically relevant settings and models. This technique can overcome the limitations imposed by tissue scattering in optically determining the in vivo location of fibre-optic medical instruments. PMID:28966848

  3. Numerical simulation of terahertz-wave propagation in photonic crystal waveguide based on sapphire shaped crystal

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V

    2016-01-01

    Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)

  4. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

    2013-12-23

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  5. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngso, J. K.; Lægsgaard, Jesper

    2014-01-01

    We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation...... of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined...... with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties. (C) 2014 Optical Society of America...

  6. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  7. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  8. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  9. Fibre Bragg grating and no-core fibre sensors

    CERN Document Server

    Daud, Suzairi

    2018-01-01

    This book focuses on the development and set-up of fibre Bragg grating (FBG) and no-core fibre (NCF) sensors. It discusses the properties of the sensors and modelling of the resulting devices, which include electronic, optoelectronic, photovoltaic, and spintronic devices. In addition to providing detailed explanations of the properties of FBG and NCF sensors, it features a wealth of instructive illustrations and tables, helping to visualize the respective devices’ functions.

  10. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  11. Yb-doped rod-type photonic crystal fibers for single-mode amplification

    DEFF Research Database (Denmark)

    Poli, Frederica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression.......The competition among the guided modes in rod-type photonic crystal fibers with a low refractive index ring in the Yb-doped core is investigated with an amplifier model to demonstrate the effective higher-order mode suppression....

  12. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  13. Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Fukumoto, Ryohei; Takenaga, Katsuhiro

    2016-01-01

    A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously....

  14. Air gap membrane distillation. 2. Model validation and hollow fibre module performance analysis

    NARCIS (Netherlands)

    Guijt, C.M.; Meindersma, G.W.; Reith, T.; de Haan, A.B.

    2005-01-01

    In this paper the experimental results of counter current flow air gap membrane distillation experiments are presented and compared with predictive model calculations. Measurements were carried out with a cylindrical test module containing a single hollow fibre membrane in the centre and a

  15. Fibre Bragg grating encapted with no-core fibre sensors for SRI and temperature monitoring

    Directory of Open Access Journals (Sweden)

    S. Daud

    2018-06-01

    Full Text Available In this work, a Fibre Bragg grating (FBG encapted with no-core fibre (NCF as surrounding refractive index (SRI and temperature sensors are practically demonstrated. A FBG with 1550 nm wavelength was attached with 5 cm length of no-core fibre (NCF is used as SRI and temperature sensing probe. The change of temperature and SRI induced the wavelength shift in FBG. The wavelength shift in FBG reacts directly proportional to the temperature with a sensitivity of while the sensitivity of NCF was measured as 13.13 pm °C−1. Keywords: FBG, No-core fibre (NCF, Temperature, Sensor

  16. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  17. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  18. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  19. Selective detection of labeled DNA using an air-clad photonic crystal fiber

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Pedersen, L.H.

    2004-01-01

    Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core.......Demonstration of selective detection of fluorophore labeled DNA by hybridization inside the air holes of a photonic crystal fiber A laser exposes the fiber from the side and the emitted fluorescence tunnels into the core....

  20. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  1. Graphene-based photonic crystal

    International Nuclear Information System (INIS)

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radiation in doped graphene the damping and skin effect in the photonic crystal are also suppressed. The advantages of the graphene-based photonic crystal are discussed.

  2. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  3. Arc-Induced Long Period Gratings from Standard to Polarization-Maintaining and Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Flavio Esposito

    2018-03-01

    Full Text Available In this work, we report about our recent results concerning the fabrication of Long Period Grating (LPG sensors in several optical fibers, through the Electric Arc Discharge (EAD technique. In particular, the following silica fibers with both different dopants and geometrical structures are considered: standard Ge-doped, photosensitive B/Ge codoped, P-doped, pure-silica core with F-doped cladding, Panda type Polarization-maintaining, and Hollow core Photonic crystal fiber. An adaptive platform was developed and the appropriate “recipe” was identified for each fiber, in terms of both arc discharge parameters and setup arrangement, for manufacturing LPGs with strong and narrow attenuation bands, low insertion losses, and short length. As the fabricated devices have appealing features from the application point of view, the sensitivity characteristics towards changes in different external perturbations (i.e., surrounding refractive index, temperature, and strain are investigated and compared, highlighting the effects of different fiber composition and structure.

  4. Investigation on the Effect of Underwater Acoustic Pressure on the Fundamental Mode of Hollow-Core Photonic Bandgap Fibers

    Directory of Open Access Journals (Sweden)

    Adel Abdallah

    2015-01-01

    Full Text Available Recently, microstructured optical fibers have become the subject of extensive research as they can be employed in many civilian and military applications. One of the recent areas of research is to enhance the normalized responsivity (NR to acoustic pressure of the optical fiber hydrophones by replacing the conventional single mode fibers (SMFs with hollow-core photonic bandgap fibers (HC-PBFs. However, this needs further investigation. In order to fully understand the feasibility of using HC-PBFs as acoustic pressure sensors and in underwater communication systems, it is important to study their modal properties in this environment. In this paper, the finite element solver (FES COMSOL Multiphysics is used to study the effect of underwater acoustic pressure on the effective refractive index neff of the fundamental mode and discuss its contribution to NR. Besides, we investigate, for the first time to our knowledge, the effect of underwater acoustic pressure on the effective area Aeff and the numerical aperture (NA of the HC-PBF.

  5. Distributed gas sensing with optical fibre photothermal interferometry.

    Science.gov (United States)

    Lin, Yuechuan; Liu, Fei; He, Xiangge; Jin, Wei; Zhang, Min; Yang, Fan; Ho, Hoi Lut; Tan, Yanzhen; Gu, Lijuan

    2017-12-11

    We report the first distributed optical fibre trace-gas detection system based on photothermal interferometry (PTI) in a hollow-core photonic bandgap fibre (HC-PBF). Absorption of a modulated pump propagating in the gas-filled HC-PBF generates distributed phase modulation along the fibre, which is detected by a dual-pulse heterodyne phase-sensitive optical time-domain reflectometry (OTDR) system. Quasi-distributed sensing experiment with two 28-meter-long HC-PBF sensing sections connected by single-mode transmission fibres demonstrated a limit of detection (LOD) of ∼10 ppb acetylene with a pump power level of 55 mW and an effective noise bandwidth (ENBW) of 0.01 Hz, corresponding to a normalized detection limit of 5.5ppb⋅W/Hz. Distributed sensing experiment over a 200-meter-long sensing cable made of serially connected HC-PBFs demonstrated a LOD of ∼ 5 ppm with 62.5 mW peak pump power and 11.8 Hz ENBW, or a normalized detection limit of 312ppb⋅W/Hz. The spatial resolution of the current distributed detection system is limited to ∼ 30 m, but it is possible to reduce down to 1 meter or smaller by optimizing the phase detection system.

  6. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  7. Optics of globular photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2007-01-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ∼200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  8. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  9. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  10. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  11. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    Energy Technology Data Exchange (ETDEWEB)

    Ishak, M R; Leman, Z; Sapuan, S M [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Edeerozey, A M M; Othman, I S, E-mail: zleman@eng.upm.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia)

    2010-05-15

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  12. Mechanical properties of kenaf bast and core fibre reinforced unsaturated polyester composites

    International Nuclear Information System (INIS)

    Ishak, M R; Leman, Z; Sapuan, S M; Edeerozey, A M M; Othman, I S

    2010-01-01

    Kenaf fibre has high potential to be used for composite reinforcement in biocomposite material. It is made up of an inner woody core and an outer fibrous bark surrounding the core. The aim of this study was to compare the mechanical properties of short kenaf bast and core fibre reinforced unsaturated polyester composites with varying fibre weight fraction i.e. 0%, 5%, 10%, 20%, 30% and 40%. The compression moulding technique was used to prepare the composite specimens for tensile, flexural and impact tests in accordance to the ASTM D5083, ASTM D790 and ASTM D256 respectively. The overall results showed that the composites reinforced with kenaf bast fibre had higher mechanical properties than kenaf core fibre composites. The results also showed that the optimum fibre content for achieving highest tensile strength for both bast and core fibre composites was 20%wt. It was also observed that the elongation at break for both composites decreased as the fibre content increased. For the flexural strength, the optimum fibre content for both composites was 10%wt while for impact strength, it was at 10%wt and 5%wt for bast and core fibre composites respectively.

  13. Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    A theoretical investigation of a novel type of optical fiber is presented. The operation of the fiber relies entirely on wave guidance through the photonic bandgap effect and not on total internal reflection, thereby distinguishing that fiber from all other known fibers, including recently studied...... photonic crystal fibers. The novel fiber has a central low-index core region and a cladding consisting of a silica background material with air holes situated within a honeycomb lattice structure. We show the existence of photonic bandgaps for the silica–air cladding structure and demonstrate how light can...... be guided at the central low-index core region for a well-defined frequency that falls inside the photonic bandgap region of the cladding structure....

  14. Simulation of hemp fibre bundle and cores using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amin Sadek, M.; Chen, Y. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Biosystems Engineering; Lague, C. [Ottawa Univ., Ottawa, ON (Canada). Faculty of Engineering; Landry, H. [Prairie Agricultural Machinery Inst., Humboldt, SK (Canada); Peng, Q. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical and Manufacturing Engineering; Zhong, W. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Textile Sciences

    2010-07-01

    The mechanical behaviour of hemp fibre and core must be well understood in order to obtain high-grade hemp fibre that is currently in high demand for various industrial applications. Modelling by discrete element method can simulate the mechanical behaviour of such materials. A commercial discrete element software called Particle Flow Code was used in this study. In particular, the 3-dimension (PFC3D) was used to simulate hemp fibre and core. Since the basic PFC3D particles are spherical, the individual virtual hemp fibres were defined as strings of balls held together by PFC3D parallel bonds. The study showed that the virtual fibre is flexible and can bend and break by forces. This reflects the characteristics of hemp fibre. Using the clump logic of PFC3D, the virtual hemp core was defined as a rigid and unbreakable body, which reflect the characteristics of the core. The virtual fibre and core were defined with several microproperties, some of which were previously calibrated. The PFC3D bond properties were calibrated in this study. They included normal and shear stiffness; pb{sub k}n and pb{sub k}s; normal and shear strength; and bond disk radius, R of the virtual fibre. The calibration started with developing a PFC3D model to simulate fibre tensile test. The microproperties of virtual fibre and core were calibrated by running the PFC3D model. Literature data from fibre tensile tests was compared with simulation results.

  15. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  16. Distributed plastic optical fibre measurement of pH using a photon counting OTDR

    International Nuclear Information System (INIS)

    Saunders, C; Scully, P J

    2005-01-01

    Distributed measurement of pH was demonstrated at a sensitised region 4m from the distal end of a 20m length of plastic optical fibre. The cladding was removed from the fibre over 150mm and the bare core was exposed to an aqueous solution of methyl red at three values of pH, between 2.89 and 9.70. The optical fibre was interrogated at 648nm using a Luciol photon counting optical time domain reflectometer, and demonstrated that the sensing region was attenuated as a function of pH. The attenuation varied from 16.3 dB at pH 2.89 to 8.6 dB at pH 9.70; this range equated to -1.13 ± 0.04 dB/pH. It is thus possible to determine both the position to ± 12mm and pH to an estimated ± 0.5pH at the sensing region

  17. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  18. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  19. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules.

    Science.gov (United States)

    Lee, Sang Seok; Kim, Bomi; Kim, Su Kyung; Won, Jong Chan; Kim, Yun Ho; Kim, Shin-Hyun

    2015-01-27

    Robust photonic microcapsules are created by microfluidic encapsulation of cholesteric liquid crystals with a hydrogel membrane. The membrane encloses the cholesteric core without leakage in water and the core exhibits pronounced structural colors. The photonic ink capsules, which have a precisely controlled bandgap position and size, provide new opportunities in colorimetric micro-thermometers and optoelectric applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Numerical analysis and experimental investigation of highly sensitive photonic crystal fiber long-period grating refractive index sensor

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; He, Z.; Kaňka, Jiří; Du, H.

    2008-01-01

    Roč. 129, č. 1 (2008), s. 99-105 ISSN 0925-4005 R&D Projects: GA MŠk 1P05OC002 Grant - others:National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Source of funding: V - iné verejné zdroje Keywords : photonic crystals * Bragg gratings * optical fibres * fibre optic sensors * refractometers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.122, year: 2008

  2. Large-area photonic crystals

    Science.gov (United States)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  3. High-spatial-multiplicity multi-core fibres for future dense space-division-multiplexing system

    DEFF Research Database (Denmark)

    Matsuo, Shoichiro; Takenaga, Katsuhiro; Saitoh, Kunimasa

    2015-01-01

    Design and fabrication results of high-spatial-multiplicity multi-core fibres are presented. A 30-core single-mode multi-core fibre and a 36-spatial-channels multi-core fibre with low differential mode delay have been realized with low-crosstalk characteristics through optimisation of core struct...

  4. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  5. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals

    OpenAIRE

    Scolari, Lara; Gauza, Sebastian; Xianyu, Haiqing; Zhai, Lei; Eskildsen, Lars; Alkeskjold, Thomas Tanggaard; Wu, Shin-Tson; Bjarklev, Anders Overgaard

    2009-01-01

    We infiltrate liquid crystals doped with BaTiO3 nanoparticles in a photonic crystal fiber and compare the measured transmission spectrum with the one achieved without dopant. New interesting features, such as frequency modulation response of the device and a transmission spectrum with tunable attenuation on the short wavelength side of the widest bandgap, suggest a potential application of this device as a tunable all-in-fiber gain equalization filter with an adjustable slope. The tunability ...

  6. REVIEW: Optics of globular photonic crystals

    Science.gov (United States)

    Gorelik, V. S.

    2007-05-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ~200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported.

  7. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    Science.gov (United States)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with EIT was up to 40 and 15% for the co- and counter-propagation of the probe and control waves, respectively, and importance of the waves polarization matching was demonstrated. For a qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  8. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  9. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  10. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    Science.gov (United States)

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  11. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  12. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  13. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Giuliani, Luisa; Sørensen, Lars Schiøtt

    2016-01-01

    Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60- and 120 minutes found in most...... a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. For the first time the mechanisms responsible for loss of load......-bearing capacity are identified and test results and calculation approach are for the first time Applied in accordance with each other for assessment of fire resistance of the structure....

  14. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  15. Coupling-reducing k-points for photonic crystal fibre calculations

    DEFF Research Database (Denmark)

    Albertsen, Maja; Lægsgaard, Jesper; Barkou Libori, Stig Eigil

    2003-01-01

    When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice of the tran......When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice...... of the transverse Bloch wave vector, k. We describe a method to derive k-points that minimize the coupling between repeated images of the guided modes in real space. Calculations have been done for a quadratic and a triangular photonic crystal fiber structure. With the new coupling reducing (CR) k...

  16. FDTD simulation for plasma photonic crystals

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhu Chuanxi; Yuan Naichang

    2005-01-01

    Plasma photonic crystals are artificially periodic structures, which are composed of plasmas and dielectric structures (or vacuum). In this paper, the piecewise linear current density recursive convolution (PLCDRC) finite-difference time-domain (FDTD) method is applied to study the plasma photonic crystals and those containing defects. In time-domain, the electromagnetic (EM) propagation process and reflection/transmission electric field of Gauss pulses passing through the plasma photonic crystals are investigated. In frequency-domain, the reflection and transmission coefficients of the pulses through the two kinds of crystals are computed. The results illustrate that the plasma photonic crystals mostly reflect for the EM wave of frequencies less than the plasma frequency, and mostly transmit for EM wave of frequencies higher than the plasma frequency. In high frequency domain, the plasma photonic crystals have photonic band gaps, which is analogous to the conventional photonic crystals. (authors)

  17. Intermodal parametric gain of degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard

    2013-01-01

    Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process.......Intermodal degenerate four wave mixing (FWM) is investigated numerically in large mode area hybrid photonic crystal fibers. The dispersion is controlled independently of core size, and thus allows for power scaling of the FWM process....

  18. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  19. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  20. A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-04-01

    A novel waveguide consisting of oligo-porous core photonic crystal fiber (PCF) with a kagome lattice cladding has been designed for highly birefringent and near zero dispersion flattened applications of terahertz waves. The wave guiding properties of the designed PCF including birefringence, dispersion, effective material loss (EML), core power fraction, confinement loss, and modal effective area are investigated using a full vector Finite Element Method (FEM) with Perfectly Matched Layer (PML) absorbing boundary condition. Simulation results demonstrate that an ultra-high birefringence of 0.079, low EML of 0.05 cm-1, higher core power fraction of 44% and negligible confinement loss of 7 . 24 × 10-7 cm-1 can be achieved at 1 THz. Furthermore, for the y-polarization mode a near zero flattened dispersion of 0 . 49 ± 0 . 05 ps/THz/cm is achieved within a broad frequency range of 0.8-1.7 THz. The fabrication of the proposed fiber is feasible using the existing fabrication technology. Due to favorable wave-guiding properties, the proposed fiber has potential for terahertz imaging, sensing and polarization maintaining applications in the terahertz frequency range.

  1. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  2. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  3. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  4. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    Science.gov (United States)

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  5. Manipulation of photons at the surface of three-dimensional photonic crystals.

    Science.gov (United States)

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  6. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  7. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  8. Quasi-single-mode homogeneous 31-core fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  9. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Chah, Karima; Caucheteur, Christophe; Schuster, Kay; Kobelke, Jens; Thienpont, Hugo; Berghmans, Francis

    2018-04-03

    It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal's feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal's transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.

  10. Photon Irradiation Response on Ge and Al-Doped SiO2 Optical Fibres

    Science.gov (United States)

    Yaakob, Nor Haliza; Wagiran, Husin; Ramli, Ahmad Termizi; Ali, Hassan; Asni, Hazila

    2010-07-01

    Recently, research groups have reported a number of radiation effects on the applications of SiO2 optical fibres with possible use as dosimeter material because these optical fibre provide a good basis for medical radiation dosimetry. The objective of this study is to investigate the thermoluminescence response and fading characteristic for germanium and aluminium doped SiO2 optical fibres with photon irradiation. These optical fibres are placed in solid phantom and irradiated to 6 and 10 MV photon beam at dose ranging from 0.06 Gy to 0.24 Gy using Primus MLC 3339 linear accelerator at Hospital Sultan Ismail, Johor Bahru. In fading studies, the TL measurements were continued up to 14 days period. The optical fibres will produce glow curves whereby the information is then analyzed. Al and Ge-doped optical fibres have a linear dose-TL signal relationship that is proportionality between the TL signal and the doses. Comparison for TL response between different linear accelerator showed a good agreement because these optical fibres also have a linear dose-TL signal relationship even using different equipments.

  11. Control of the wavelength dependent thermo-optic coefficients in structured fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Lægsgaard, Jesper

    2006-01-01

    By controlling the fibre geometry, the fraction of optical field within the holes and the inserted material of a photonic crystal fibre, we demonstrate that it is possible to engineer any arbitrary wavelength-dependent thermo-optic coefficient. The possibility of making a fibre with a zero temper...... temperature dependent thermo-optic coefficient, ideal for packaging of structured fibre gratings, is proposed and explored....

  12. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  13. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  14. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  15. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  16. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  17. All-in-fibre Rayleigh-rejection filter for raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, L.; Lund-Hansen, T.

    2012-01-01

    An in-line Rayleigh-rejection filter for Raman spectroscopy is demonstrated. The device is based on a solid-core photonic crystal fibre infiltrated with a high-index liquid. At room temperature, the filter exhibits a full width at half maximum bandwidth of 143 nm and an insertion loss of 0.3 d......B. A shift of 32 nm of the central wavelength is demonstrated by increasing the temperature from 22 to 70°C. FEM simulations of the spectra at different temperatures showed good agreement with experimental results. The device was successfully employed to perform Raman spectroscopy of a sample of cyclohexane...

  18. Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre

    Energy Technology Data Exchange (ETDEWEB)

    Guardado Calvo, Pablo [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Llamas-Saiz, Antonio L. [Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Langlois, Patrick [Agence Francaise de Securité Sanitaire des Aliments, Unité Génétique Virale et Biosecurité, Site Les Croix, BP 53, F-22440 Ploufragan (France); Raaij, Mark J. van, E-mail: vanraaij@usc.es [Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain); Unidad de Difracción de Rayos X, Laboratorio Integral de Dinámica y Estructura de Biomoléculas José R. Carracido, Edificio CACTUS, Universidad de Santiago de Compostela, Campus Sur, E-15782 Santiago de Compostela (Spain)

    2006-05-01

    Avian adenovirus long-fibre head trimers were expressed, purified and crystallized. The crystals belong to space group C2 (unit-cell parameters a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°). A complete highly redundant data set was collected to 2.2 Å resolution at 100 K using a rotating-anode X-ray source. Avian adenovirus CELO contains two different fibres: fibre 1, the long fibre, and fibre 2, the short fibre. The short fibre is responsible for binding to an unknown avian receptor and is essential for infection of birds. The long fibre is not essential, but is known to bind the coxsackievirus and adenovirus receptor protein. Both trimeric fibres are attached to the same penton base, of which each icosahedral virus contains 12 copies. The short fibre extends straight outwards, while the long fibre emerges at an angle. The carboxy-terminal amino acids 579–793 of the avian adenovirus long fibre have been expressed with an amino-terminal hexahistidine tag and the expressed trimeric protein has been purified by nickel-affinity chromatography and crystallized. Crystals were grown at low pH using PEG 10 000 as precipitant and belonged to space group C2. The crystals diffracted rotating-anode Cu Kα radiation to at least 1.9 Å resolution and a complete data set was collected from a single crystal to 2.2 Å resolution. Unit-cell parameters were a = 216.5, b = 59.2, c = 57.5 Å, β = 101.3°, suggesting one trimer per asymmetric unit and a solvent content of 46%. The long fibre head does not have significant sequence homology to any other protein of known structure and molecular-replacement attempts with known fibre-head structures were unsuccessful. However, a map calculated using SIRAS phasing shows a clear trimer with a shape similar to known adenovirus fibre-head structures. Structure solution is in progress.

  19. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  20. Photonic crystals physics, fabrication and applications

    CERN Document Server

    Ohtaka, Kazuo

    2004-01-01

    "Photonic Crystals" details recent progress in the study of photonic crystals, ranging from fundamental aspects to up-to-date applications, in one unified treatment It covers most of the worldwide frontier fields in photonic crystals, including up-to-date fabrication techniques, recent and future technological applications, and our basic understanding of the various optical properties of photonic crystals Brand-new theoretical and experimental data are also presented The book is intended for graduate course students and specialists actively working in this field, but it will also be useful for newcomers, especially the extensive chapter dealing with fundamental aspects of photonic crystals, which paves the way to a full appreciation of the other topics addressed

  1. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    Science.gov (United States)

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  3. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  4. Synthesis and luminescence of CePO4 and CePO4:Tb hollow and core-shell microspheres composed of single-crystal nanorods

    International Nuclear Information System (INIS)

    Guan Mingyun; Sun Jianhua; Han Min; Xu Zheng; Tao Feifei; Yin Gui; Wei Xianwen; Zhu Jianmin; Jiang Xiqun

    2007-01-01

    Lanthanide phosphate microspheres composed of single-crystal CePO 4 and CePO 4 :Tb nanorods were successfully synthesized, respectively, using the functionalized composite aggregate as a template, which is composed of P123, H 6 P 4 O 13 and Ce 3+ , and also as a resource of reaction species with high chemical potential. The shape and the phase structure of the CePO 4 nanocrystal can be easily controlled via adjusting reaction temperature, monomer concentration and annealing temperature. SEM images show the spherical superstructure composed of nanorods. HRTEM and SAED images reveal the single-crystalline nature of nanorod and TEM images show the hollow interiors of the superstructure. XRD patterns indicate that the crystal structure of the nanorods is hexagonal before and monoclinic after annealing. The formation mechanism was proposed. Strong UV and green luminescence were observed for the CePO 4 and CePO 4 :Tb microspheres, respectively. The synthesis method can be extended to the fabrication of NRHS and core-shell microspheres of other rare-earth or doped LnPO 4 materials for wide applications

  5. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  6. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  7. Dopant concentration and thermoluminescence (TL) properties of tailor-made Ge-doped SiO2 fibres

    International Nuclear Information System (INIS)

    Zahaimi, Nurul Arina; Ooi Abdullah, Mohd Haris Ridzuan; Zin, Hafiz; Abdul Rahman, Ahmad Lutfi; Hashim, Suhairul; Saripan, Mohd Iqbal; Paul, Mukul Chandra; Bradley, D.A.; Abdul Rahman, Ahmad Taufek

    2014-01-01

    Study focuses on characterisation of diverse concentrations of Ge-doped SiO 2 fibre as a potential thermoluminescence (TL) system for radiotherapy dosimetry. Irradiations were made using a linear accelerator providing 6 MV and 10 MV photon beams. Investigation has been done on various doped core diameter Ge-doped SiO 2 glass fibres such as commercial telecommunication fibres of 8 µm and 9 µm (CorActive High Tech, Canada), tailor-made fibres of 23 and 50 µm produced by the Central Glass and Ceramic Research Institute Kolkata, and tailor-made fibres of 11 µm produced by the University of Malaya Photonics Research Centre. The fibres have been characterised for TL sensitivity, reproducibility, dose- and energy-dependence. The area under the TL glow curve increases with increasing core diameter. For repeat irradiations at a fixed dose the dosimeter produces a flat response better than 4% (1SD) of the mean of the TL distribution. Minimal TL signal fading was found, less than 0.5% per day post irradiation. Linearity of TL has been observed with a correlation coefficient (r 2 ) of better than 0.980 (at 95% confidence level). For particular dopant concentrations, the least square fits show the change in TL yield, in counts per second per unit mass, obtained from 50 µm core diameter fibres irradiated at 6 MV of photon to be 8 times greater than that of 8 µm core diameter fibre. With respect to energy response, the TL yield at 10 MV decreases by∼5% compared to that at 6 MV, primarily due to the lower mass energy absorption coefficient at higher photon energy. These early results indicate that selectively screened fibres can be developed into a promising TL system, offering high spatial resolution capability and, with this, verification of complex radiotherapy dose distributions. - Highlights: • We examined the TL glow curve intensity for various diameter sizes of germanium doped silica glass fibre. • TL sensitivity increased with the increase of fibre core

  8. Monolithic stabilized Yb-fiber All-PM laser directly delivering nJ-level femtosecond pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Liu, Xiaomin; Lægsgaard, Jesper

    2008-01-01

    We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality.......We present a monolithic, self-starting, all-PM, stabilized Yb-fiber laser, pulse-compressed in a hollow-core PM photonic crystal fiber, providing the 370 fs pulses of 4 nJ energy with high mode quality....

  9. Theory of fluorescence in photonic crystals

    International Nuclear Information System (INIS)

    Vats, Nipun; John, Sajeev; Busch, Kurt

    2002-01-01

    We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to the emitting atoms in either the high or low dielectric regions of the crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quantities for model photon densities of states. The connection of our calculations to the description of realistic systems is discussed. We also describe the consequences of these analyses on the accurate description of the interaction between radiative systems and the electromagnetic reservoir within photonic crystals

  10. Photon-phonon interaction in photonic crystals

    International Nuclear Information System (INIS)

    Ueta, T

    2010-01-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analysed and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers increases. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration.

  11. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  12. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.

    Science.gov (United States)

    Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L

    2013-05-13

    Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The renaissance and bright future of fibre lasers

    International Nuclear Information System (INIS)

    Tuennermann, A; Schreiber, T; Roeser, F; Liem, A; Hoefer, S; Zellmer, H; Nolte, S; Limpert, J

    2005-01-01

    The first rare-earth-doped fibre lasers were operated in the early 1960s and produced a few milliwatts at a wavelength around 1 μm. For the next several decades, fibre lasers were little more than a low-power laboratory curiosity. Recently, however, fibre lasers have entered the realm of kilowatt powers with diffraction-limited beam quality. In this paper we review the reasons for this power evolution. Beyond this, we will discuss how the next generation of fibres, so-called photonic crystal fibres, enable upward power scaling and therefore open up the avenue to new performance levels of solid-state lasers

  14. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    Science.gov (United States)

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  15. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  16. Random photonic crystal optical memory

    International Nuclear Information System (INIS)

    Wirth Lima Jr, A; Sombra, A S B

    2012-01-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects. (paper)

  17. Characteristics of Highly Birefringent Photonic Crystal Fiber with Defected Core and Equilateral Pentagon Architecture

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2016-01-01

    Full Text Available A novel high birefringence and nearly zero dispersion-flattened photonic crystal fiber (PCF with elliptical defected core (E-DC and equilateral pentagonal architecture is designed. By applying the full-vector finite element method (FEM, the characteristics of electric field distribution, birefringence, and chromatic dispersion of the proposed E-DC PCF are numerically investigated in detail. The simulation results reveal that the proposed PCF can realize high birefringence, ranging from 10-3 to 10-2 orders of magnitude, owing to the embedded elliptical air hole in the core center. However, the existence of the elliptical air hole gives rise to an extraordinary electric field distribution, where a V-shaped notch appears and the size of the V-shaped notch varies at different operating wavelengths. Also, the mode field diameter is estimated to be about 2 μm, which implies the small effective mode area and highly nonlinear coefficient. Furthermore, the investigation of the chromatic dispersion characteristic shows that the introduction of the elliptical air hole is helpful to control the chromatic dispersion to be negative or nearly zero flattened over a wide wavelength bandwidth.

  18. Design of a novel multi channel photonic crystal fiber polarization beam splitter

    Science.gov (United States)

    Zhao, Yunyan; Li, Shuguang; Wang, Xinyu; Wang, Guangyao; Shi, Min; Wu, Junjun

    2017-10-01

    A kind of multi channel dual-core photonic crystal fiber polarization beam splitter is designed. We analyze the effects of the lattice parameters and the thickness of gold layer on the beam splitting by the finite element method. Numerical results show that the thickness of metal layer and the size of the air holes near the fiber cores are closely linked with the nature of the polarization beam splitter. We also obtain that extinction ratio can reach -73.87 dB at 1 . 55 μm wavelength and at 1 . 41 μm, 1 . 65 μm extinction ratio can reach 30.8978 dB and 31.1741 dB, respectively. The comparison of the effect on the characteristic of the photonic crystal fiber with coating no gold is also taken into account.

  19. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    Science.gov (United States)

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  20. Photonic quasi-crystal terahertz lasers

    Science.gov (United States)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  1. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  2. Hollow-core infrared fiber incorporating metal-wire metamaterial

    DEFF Research Database (Denmark)

    Yan, Min; Mortensen, Asger

    2009-01-01

    Infrared (IR) light is considered important for short-range wireless communication, thermal sensing, spectroscopy, material processing, medical surgery, astronomy etc. However, IR light is in general much harder to transport than optical light or microwave radiation. Existing hollow-core IR...

  3. CdSe/AsS core-shell quantum dots: preparation and two-photon fluorescence.

    Science.gov (United States)

    Wang, Junzhong; Lin, Ming; Yan, Yongli; Wang, Zhe; Ho, Paul C; Loh, Kian Ping

    2009-08-19

    Arsenic(II) sulfide (AsS)-coated CdSe core-shell nanocrystals can be prepared by a cluster-complex deposition approach under mild conditions. At 60 degrees C, growth of an AsS shell onto a CdSe nanocrystal can be realized through the crystallization of a cluster complex of AsS/butylamine in a mixed solvent of isopropanol/chloroform. The new, type I core-shell nanocrystal exhibits markedly enhanced one-photon fluorescence as well two-photon upconversion fluorescence. The nanocrystals can be used for infrared-excited upconversion cellular labeling.

  4. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    . Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors....... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  5. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  6. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  7. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  8. Calculation of shear strength of prestressed hollow core slabs by use of plastic theory

    DEFF Research Database (Denmark)

    Hoang, Linh Cao; Jørgensen, H.G.; Nielsen, Mogens Peter

    2014-01-01

    Th is paper deals with calculations of the shear capacity of precast, prestressed hollow core slabs. Such slabs are often used as floor systems in building structures. A common way to produce hollow core slabs is to use the extrusion technique where long strips of slabs are extruded and thereafter...

  9. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending......, filters, sensors, and photodetectors utilizing silicon photonic platforms....... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators...

  10. Ultra compact spectrometer apparatus and method using photonic crystals

    Science.gov (United States)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  11. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  12. Massive photon properties in 3D photonic crystals, filled by dielectrics or metals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2009-01-01

    The optical properties of 3D photonic crystals-artificial opals, consisting of monosized silica globules-have been investigated. The volume between globules was filled by various dielectrics or metals. The dispersion law of electromagnetic waves of this type of crystal has been obtained. It was shown that the sign of photonic mass in globular photonic crystals may be positive or negative for different points on dispersion curves. The value of the effective mass of photons depends on the refractive index of the substance infiltrated into the globular photonic crystal.

  13. In-line formation of chemically cross-linked P84® co-polyimide hollow fibre membranes for H2/CO2 separation

    KAUST Repository

    Choi, Seung Hak; Jansen, Johannes C.; Tasselli, Franco; Barbieri, Giuseppe; Drioli, Enrico

    2010-01-01

    In this study, chemically cross-linked asymmetric P84® co-polyimide hollow fibre membranes with enhanced separation performance were fabricated, using a dry-wet spinning process with an innovative in-line cross-linking step. The chemical

  14. Testing and performance analysis of a hollow fiber-based core for evaporative cooling and liquid desiccant dehumidification

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2016-01-01

    In this study, an innovative heat and mass transfer core is proposed to provide thermal comfort and humidity control using a hollow fiber contactor with multiple bundles of micro-porous hollow fibers. The hollow fiberbased core utilizes 12 bundles aligned vertically, each with 1,000 packed...

  15. Fiber transport of spatially entangled photons

    Science.gov (United States)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  16. Coatings influencing thermal stress in photonic crystal fiber laser

    Science.gov (United States)

    Pang, Dongqing; Li, Yan; Li, Yao; Hu, Minglie

    2018-06-01

    We studied how coating materials influence the thermal stress in the fiber core for three holding methods by simulating the temperature distribution and the thermal stress distribution in the photonic-crystal fiber laser. The results show that coating materials strongly influence both the thermal stress in the fiber core and the stress differences caused by holding methods. On the basis of the results, a two-coating PCF was designed. This design reduces the stress differences caused by variant holding conditions to zero, then the stability of laser operations can be improved.

  17. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  18. Optical devices based on liquid crystal photonic bandgap fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard

    2005-01-01

    the waveguiding mechanism of LC filled PCFs. The principle of tunable fibers based on LCs is thereafter discussed and an alignment and coating study of LC in capillaries is presented. Next, the Liquid Crystal Photonic BandGap (LCPBG) fiber is presented and the waveguiding mechanism is analyzed through plane...... hole. The presence of a LC in the holes of the PCF transforms the fiber from a Total Internal Reflection (TIR) guiding type into a Photonic BandGap (PBG) guiding type, where light is confined to the silica core by coherent scattering from the LC-billed holes. The high dielectric and optical anisotropy...

  19. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  20. Long period gratings written in large-mode area photonic crystal fiber

    DEFF Research Database (Denmark)

    Nodop, D.; Linke, S.; Jansen, F.

    2008-01-01

    We report for the first time, to the best of our knowledge, on the fabrication and characterization of CO2-laser written long-period gratings in a large-mode area photonic crystal fiber with a core diameter of 25 mu m. The gratings have low insertion losses ( 10 d...

  1. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  2. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  3. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  4. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  5. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  6. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Optofluidic in-fiber interferometer based on hollow optical fiber with two cores.

    Science.gov (United States)

    Yuan, Tingting; Yang, Xinghua; Liu, Zhihai; Yang, Jun; Li, Song; Kong, Depeng; Qi, Xiuxiu; Yu, Wenting; Long, Qunlong; Yuan, Libo

    2017-07-24

    We demonstrate a novel integrated optical fiber interferometer for in-fiber optofluidic detection. It is composed of a specially designed hollow optical fiber with a micro-channel and two cores. One core on the inner surface of the micro-channel is served as sensing arm and the other core in the annular cladding is served as reference arm. Fusion-and-tapering method is employed to couple light from a single mode fiber to the hollow optical fiber in this device. Sampling is realized by side opening a microhole on the surface of the hollow optical fiber. Under differential pressure between the end of the hollow fiber and the microhole, the liquids can form steady microflows in the micro-channel. Simultaneously, the interference spectrum of the interferometer device shifts with the variation of the concentration of the microfluid in the channel. The optofluidic in-fiber interferometer has a sensitivity of refractive index around 2508 nm/RIU for NaCl. For medicine concentration detection, its sensitivity is 0.076 nm/mmolL -1 for ascorbic acid. Significantly, this work presents a compact microfluidic in-fiber interferometer with a micro-channel which can be integrated with chip devices without spatial optical coupling and without complex manufacturing procedure of the waveguide on the chips.

  8. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  9. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  10. Gold Nanoparticles in Photonic Crystals Applications: A Review.

    Science.gov (United States)

    Venditti, Iole

    2017-01-24

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  11. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  12. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  13. Hollow Electron Beam Collimation For HL-LHC - Effect On The Beam Core

    CERN Document Server

    Fitterer, M; Valishev, A; Bruce, R; Papadopoulou, S; Papotti, G; Pellegrini, D; Redaelli, S; Valuch, D; Wagner, J F

    2017-01-01

    Collimation with hollow electron beams or lenses (HEL) is currently one of the most promising concepts for active halo control in HL-LHC. In previous studies it has been shown that the halo can be efficiently removed with a hollow electron lens. Equally important as an efficient removal of the halo, is also to demonstrate that the core stays unperturbed. In this paper, we present a summary of the experiment at the LHC and simulations in view of the effect of the HEL on the beam core in case of a pulsed operation.

  14. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...

  15. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  16. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra-low eff...

  17. Curvature and position of nested tubes in hollow-core anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers where a symmetric distribution of cladding tubes compose a “negative-curvature” core boundary have extraordinary optical properties, such as low transmission loss, wide transmission bands and weak power overlap between the core modes and the silica parts [1...

  18. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  19. Confinement less spectral behavior in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Foroni, M.; Passaro, D.; Poli, F.

    2007-01-01

    The influence of each cross-section geometric parameter on hollow-core Bragg fiber guiding properties has been numerically investigated. Fabricated fibers have been modeled, giving insight into the spectral behavior of the confinement loss. It has been verified that, by changing the amount...

  20. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  1. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  2. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  3. Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes.

    Directory of Open Access Journals (Sweden)

    Xun Xu

    Full Text Available We propose a novel four-ring hollow-core silicon photonic crystal fiber (PCF, and we systematically and theoretically investigate the properties of their vector modes. Our PCF can stably support 30 OAM states from the wavelength of 1.5 μm to 2.4 μm, with a large effective refractive index separation of above 1×10-4. The confinement loss is less than 1×10-9 dB/m at the wavelength of 1.55 μm, and the average confinement loss is less than 1×10-8 dB/m from the wavelength of 1.2 μm to 2.4 μm. Moreover, the curve of the dispersion tends to flatten as the wavelength increases. In addition, we comparably investigate PCFs with different hole spacing. This kind of fiber structure will be a potential candidate for high-capacity optical fiber communications and OAM sensing applications using fibers.

  4. Photonic-crystal lasers light up

    Energy Technology Data Exchange (ETDEWEB)

    Faist, Jerome [Institute of Physics, University of Neuchatel (Switzerland)

    2004-03-01

    Every laptop computer, PDA or mobile phone contains a microprocessor in which millions of interconnected transistors perform complex logical functions. Optical circuits, in contrast, are still at the pre-integrated- circuit stage. The optical fibres that form the backbone of the Internet, for example, are mostly connected individually between sources and detectors. Direct optical signal routing, on the other hand, would provide a reconfigurable network that fulfils the requirements of today's bandwidth-hungry applications, such as video-on-demand. Optical routing could even be used inside computers to connect the central processing unit to its peripherals. Now researchers in the US have brought the dream of all-optical circuits a little closer. Raffaele Colombelli of Bell Labs and co-workers at the California Institute of Technology and Harvard University have developed a new type of light source by combining a quantum cascade laser with a photonic crystal (Science 302 1374). The team used lithography to etch an array of holes in the semiconductor laser, which allowed the spectral and spatial properties of the output radiation to be controlled. The marriage of these two devices could form miniature chemical sensors for medical or environmental applications. (author)

  5. Breakdown of Bose-Einstein distribution in photonic crystals.

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  6. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  7. Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Jerome; Light, Philip S.; Kashyap, Raman; Luiten, Andre N. [Frequency Standards and Metrology Group, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia); Department of Engineering Physics, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada H3C 3A7 (Canada); Frequency Standards and Metrology, School of Physics, University of Western Australia, Western Australia 6009, Perth (Australia)

    2011-11-15

    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow beam can confine cold atoms to the darkest regions of the beam, thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and a guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{mu}m-radius core hollow fiber, it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When the MOT is positioned farther away, coupling efficiencies over 50% can be achieved with larger core fibers.

  8. From core/shell to hollow Fe/γ-Fe_2O_3 nanoparticles: evolution of the magnetic behavior

    International Nuclear Information System (INIS)

    Nemati, Z; Khurshid, H; Alonso, J; Phan, M H; Mukherjee, P; Srikanth, H

    2015-01-01

    High quality Fe/γ-Fe_2O_3 core/shell, core/void/shell, and hollow nanoparticles with two different sizes of 8 and 12 nm were synthesized, and the effect of morphology, surface and finite-size effects on their magnetic properties including the exchange bias (EB) effect were systematically investigated. We find a general trend for both systems that as the morphology changes from core/shell to core/void/shell, the magnetization of the system decays and inter-particle interactions become weaker, while the effective anisotropy and the EB effect increase. The changes are more drastic when the nanoparticles become completely hollow. Noticeably, the morphological change from core/shell to hollow increases the mean blocking temperature for the 12 nm particles but decreases for the 8 nm particles. The low-temperature magnetic behavior of the 12 nm particles changes from a collective super-spin-glass system mediated by dipolar interactions for the core/shell nanoparticles to a frustrated cluster glass-like state for the shell nanograins in the hollow morphology. On the other hand for the 8 nm nanoparticles core/shell and hollow particles the magnetic behavior is more similar, and a conventional spin glass-like transition is obtained at low temperatures. In the case of the hollow nanoparticles, the coupling between the inner and outer spin layers in the shell gives rise to an enhanced EB effect, which increases with increasing shell thickness. This indicates that the morphology of the shell plays a crucial role in this kind of exchange-biased systems. (paper)

  9. Optimization of planar self-collimating photonic crystals.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  10. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  11. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  12. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  13. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  14. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  15. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Department of Applied Physics, Delhi College of Engineering, Faculty of Technology. (University of ... Photonic crystal; photonic band gap; plane-wave expansion method. PACS Nos 71.20 .... Numerical analysis and results. To obtain the ...

  16. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  17. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  18. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    Science.gov (United States)

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  19. Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals.

    Science.gov (United States)

    Iwanaga, Masanobu; Choi, Bongseok

    2015-03-11

    We constructed plasmo-photonic crystals in which efficient light-trapping, plasmonic resonances couple with photonic guided resonances of large density of states and high-quality factor. We have numerically and experimentally shown that heteroplasmon hybrid modes emerge in stacked complementary (SC) plasmo-photonic crystals. The resonant electromagnetic-field distributions evidence that the two hybrid modes originate from two different heteroplasmons, exhibiting a large energy splitting of 300 meV. We further revealed a series of plasmo-photonic modes in the SC crystals.

  20. One-by-one imprinting in two eccentric layers of hollow core-shells: Sequential electroanalysis of anti-HIV drugs.

    Science.gov (United States)

    Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali

    2018-07-15

    Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  2. Block Copolymer Micelles for Photonic Fluids and Crystals.

    Science.gov (United States)

    Poutanen, Mikko; Guidetti, Giulia; Gröschel, Tina I; Borisov, Oleg V; Vignolini, Silvia; Ikkala, Olli; Gröschel, Andre H

    2018-03-15

    Block copolymer micelles (BCMs) are self-assembled nanoparticles in solution with a collapsed core and a brush-like stabilizing corona typically in the size range of tens of nanometers. Despite being widely studied in various fields of science and technology, their ability to form structural colors at visible wavelength has not received attention, mainly due to the stringent length requirements of photonic lattices. Here, we describe the precision assembly of BCMs with superstretched corona, yet with narrow size distribution to qualify as building blocks for tunable and reversible micellar photonic fluids (MPFs) and micellar photonic crystals (MPCs). The BCMs form free-flowing MPFs with an average interparticle distance of 150-300 nm as defined by electrosteric repulsion arising from the highly charged and stretched corona. Under quiescent conditions, millimeter-sized MPCs with classical FCC lattice grow within the photonic fluid-medium upon refinement of the positional order of the BCMs. We discuss the generic properties of MPCs with special emphasis on surprisingly narrow reflected wavelengths with full width at half-maximum (fwhm) as small as 1 nm. We expect this concept to open a generic and facile way for self-assembled tunable micellar photonic structures.

  3. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  4. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  5. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  6. A scintillating fibre detector for the Crystal Barrel experiment at ELSA

    International Nuclear Information System (INIS)

    Suft, G.; Anton, G.; Bogendoerfer, R.; Ehmanns, A.; Foesel, A.; Hoessl, J.; Kalinowsky, H.; Kueppersbusch, C.; Walther, D.

    2005-01-01

    A scintillating fibre detector with high spatial granularity was built for the Crystal Barrel experiment at ELSA (CB-ELSA) in Bonn. It consists of 513 scintillating fibres with 2mm in diameter, arranged in three layers with cylindrical geometry inside the Crystal Barrel detector surrounding the target cell. Two layers are wound in opposite directions, the third is parallel to the incident beam direction, resulting in an unambiguous hit reconstruction and a position resolution better than 1.6mm for charged particles. The read-out is done with 16-channel multi-anode photomultipliers. The detector was designed to cover the full angular acceptance of the Crystal Barrel detector with an angular range of 12 deg. ≤θ = 168 deg. and 0 deg. ≤φ≤360 deg. in the lab frame

  7. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  8. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  9. Fabrication and Measurements on Coupled Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Schubert, Martin

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  10. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  11. Photonic and plasmonic guided modes in graphene-silicon photonic crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...... and photonic modes....

  12. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  13. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  14. Optimising cell aggregate expansion in a perfused hollow fibre bioreactor via mathematical modelling.

    KAUST Repository

    Chapman, Lloyd A C

    2014-08-26

    The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to 0:05 Pa are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges 2.75 x 10(-5) m(2) s(-1) to 3 x 10(-5) m(2) s(-1) (equivalent to 2.07 ml min(-1) to 2.26 ml min(-1)) and 1.077 x 10(5) Pa to 1.083 x 10(5) Pa (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells.

  15. Angle- and strain-independent coloured free-standing films incorporating non-spherical colloidal photonic crystals.

    Science.gov (United States)

    Yeo, Seon Ju; Tu, Fuquan; Kim, Seung-hyun; Yi, Gi-Ra; Yoo, Pil J; Lee, Daeyeon

    2015-02-28

    Colloidal photonic crystals (CPCs) provide a convenient way to generate structural colour with high stability against degradation under environmental factors. For a number of applications including flexible electronic and energy devices, it is important to generate flexible structural colour that maintains its colour regardless of the angle of observation and the extent of mechanical deformation. However, it is challenging to simultaneously achieve these goals because anisotropy in typical CPC structures (e.g., CPC films) tends to lead to angle-dependent photonic properties and also changes in the lattice constant due to mechanical deformation lead to changes in the photonic properties of CPCs. To overcome these challenges, we present a means of fabricating large-area free-standing films of CPC structures that exhibit angle- and strain-independent photonic characteristics. First, monodisperse double emulsions encapsulating colloidal crystal arrays are prepared using a microfluidic device. By inducing crystallization of highly charged polystyrene particles in the core of double emulsions using osmotic annealing, we generate angle independent colloidal photonic crystal (CPC) supraparticles. Moreover, the shape and crystallinity of the CPC supraparticles can be tuned by changing the concentration of salt in the solution used for osmotic annealing. Subsequently, an array of CPC supraparticles is embedded inside an elastomeric matrix to form a flexible free-standing film, which exhibits structural colours that are independent of viewing angles and externally applied strain.

  16. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  17. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    International Nuclear Information System (INIS)

    Chopra, Nitin; Claypoole, Leslie; Bachas, Leonidas G.

    2010-01-01

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  18. Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Nitin [University of Alabama, Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT) (United States); Claypoole, Leslie [Fairmont State University (United States); Bachas, Leonidas G., E-mail: bachas@uky.ed [University of Kentucky, Department of Chemistry (United States)

    2010-10-15

    Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6-40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.

  19. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  20. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  1. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  2. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  3. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  4. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical and ...... and experimental results. Since the core mode is in resonance with cladding modes near the bandedges an unconventional measurement technique is used, in this work named nonlinear spatial mode imaging....

  5. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  6. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  7. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    extent these simplified models estimate the heat storage potential of precast hollow-core concrete decks correctly. This study investigates various approaches on how to model the heat transfer within the air void in the deck. Furthermore, it is analysed how different heat transfer models influence...... the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  8. A high-resolution detector based on liquid-core scintillating fibres with readout via an electron-bombarded charge-coupled device

    International Nuclear Information System (INIS)

    Cianfarani, C.; Duane, A.; Fabre, J.P.; Frenkel, A.; Golovkin, S.V.; Gorin, A.M.; Harrison, K.; Kozarenko, E.N.; Kushnirenko, A.E.; Ladygin, E.A.; Martellotti, G.; Medvedkov, A.M.; Nass, P.A.; Obudovski, V.P.; Penso, G.; Petukhov, Yu.P.; Siegmund, W.P.; Tyukov, V.E.; Vasilchenko, V.G.

    1994-01-01

    This paper is a presentation of results from tests in a 5 GeV/c hadron beam of detectors based on liquid-core scintillating fibres, each fibre consisting of a glass capillary filled with organic liquid scintillator. Fibre readout was performed via an Electron-Bombarded Charge-Coupled Device (EBCCD) image tube, a novel instrument that combines the functions of a high-gain, gated image intensifier and a Charge-Coupled Device. Using 1-methylnaphthalene doped with 3 g/l of R45 as liquid scintillator, the attenuation lengths obtained for light propagation over distances greater than 16 cm were 1.5 m in fibres of 20 μm core and 1.0 m in fibres of 16 μm core. For particles that crossed the fibres of 20 μm core at distances of ∼1.8 cm and ∼95 cm from the fibres' readout ends, the recorded hit densities were 5.3 mm -1 and 2.5 mm -1 respectively. Using 1-methylnaphthalene doped with 3.6 g/l of R39 as liquid scintillator and fibres of 75 μm core, the hit density obtained for particles that crossed the fibres at a distance of ∼1.8 cm from their readout ends was 8.5 mm -1 . With a specially designed bundle of tapered fibres, having core diameters that smoothly increase from 16 μm to 75 μm, a spatial precision of 6 μm was measured. (orig.)

  9. Precursors in photonic crystals - art. no. 618218

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.; DeLaRue, RM; Viktorovitch, P; Lopez, C; Midrio, M

    2006-01-01

    We derive the Sommerfeld precursor and present the first calculations for the Brillouin precursor that result from the transmission of a pulse through a photonic crystal. The photonic crystal is modelled by a one-dimensional N-layer medium and the pulse is a generic electromagnetic plane wave packet

  10. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  11. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  12. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  13. High efficient photocatalytic activity from nanostructuralized photonic crystal-like p-n coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays

    Science.gov (United States)

    Li, Yan; Liu, Fang-Ting; Chang, Yin; Wang, Jian; Wang, Cheng-Wei

    2017-12-01

    Structuring the materials in the form of photonic crystals is a new strategy for photocatalytic applications. Herein, a new concept of photonic crystal-induced p-n coaxial heterojunction film photocatalyst of Cu3SnS4/TiO2 (CTS/PhC-TNAs) was well-designed and successfully fabricated by combining periodic pulse anodic oxidation and in-situ self-assembling methods Such nanostructured CTS/PhC-TNAs exhibited significantly improved photocatalytic degradation activity under simulated sunlight irradiation with methyl orange (MO) as the target pollutants. Within 120 min, 82% of the MO (10 mg/L) was photodegraded and its kinetic constant per specific surface area reached 0.05332 μmol/m2h, which is 1.6 and 12.8 times more quickly than that of PhC-TNAs and CTS, respectively. Its significantly enhanced photocatalytic activity could be mainly attributed to a joint effect of the unique photonic crystal property of PhC-TNAs and the nanostructured hollow p-n coaxial hetero-junction, which result in an increased efficiency of charge separation and transfer and also an improved spectral response capability. This photonic crystal film photocatalyst has the potential for enhancing the photocatalytic activity via further optimizing the photonic stop band of PhC-TNAs. The study presents a new means to design the kind of photonic crystal structural-induced novel photocatalysts with high photocatalytic activities in pollution treatment.

  14. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  15. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  16. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  17. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    International Nuclear Information System (INIS)

    Pérez, Noemí; Tavera, Txaber; Rodríguez, Ainara; Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M.

    2012-01-01

    Highlights: ► Arrays of hollow-core sub-micrometric structures are fabricated. ► Laser interference lithography is used for the pattering of the resist sacrificial layer. ► The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 μm 2 . ► These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 μm 2 . The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  18. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  19. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  20. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  1. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...... and acoustic metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We discuss some functionalities of these confined WGM in both Bragg and low...

  2. Modeling thermo-optic effect in large mode area double cladding photonic crystal fibers

    Science.gov (United States)

    Coscelli, Enrico; Cucinotta, Annamaria

    2014-02-01

    The impact of thermally-induced refractive index changes on the single-mode (SM) properties of large mode area (LMA) photonic crystal fibers are thoroughly investigated by means of a full-vector modal solver with integrated thermal model. Three photonic crystal fiber designs are taken into account, namely the 19-cell core fiber, the large-pitch fiber (LPF) and the distributed modal filtering (DMF) fiber, to assess the effects of the interplay between thermal effects and the high-order mode (HOM) suppression mechanisms exploited in order to obtain effectively SM guiding. The results have shown significant differences in the way the SM regime is changed by the increase of heat load, providing useful hints for the design of LMA fibers for high power lasers.

  3. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  4. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Sougrat, Rachid; Hedhili, Mohamed N.; Khashab, Niveen M.

    2012-01-01

    that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au

  5. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    International Nuclear Information System (INIS)

    Chun-Ying, Guan; Jin-Hui, Shi; Li-Boo, Yuan

    2008-01-01

    A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method

  6. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  7. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  8. Characterization of Fabricated Photonic Crystal Fibers Using Effective Index Method

    OpenAIRE

    Faramarz E. Seraji

    2009-01-01

    In this paper, the characteristics of photonic crystal fibers (PCFs), which have been experimentally determined in the last few years in Iran's Telecom Research Center are analyzed and compared theoretically using an effective index method. The PCFs under investigation are fabricated with a high speed drawing process that has not yet been reported elsewhere. It was shown that at higher wavelengths in PCFs; the light field is confined in the core where in shorter wavelengths the field spread...

  9. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  10. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  11. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  12. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  13. Direct Spectroscopy in Hollow Optical with Fiber-Based Optical Frequency Combs

    Science.gov (United States)

    2015-07-09

    scheme is that the generation of carrier-envelope offset frequency f0 can be avoided, which reduces the system complexity . However, a high performance RF...Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). 56. C

  14. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  15. Quartz substrate infrared photonic crystal

    Science.gov (United States)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  16. Graded photonic crystals by optical interference holography

    International Nuclear Information System (INIS)

    Han, Chunrui; Tam, Wing Yim

    2012-01-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques. (paper)

  17. Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Fan Zhen-Kai; Li Shu-Guang; Fan Yu-Qiu; Zhang Wan; An Guo-Wen; Bao Ya-Jie

    2014-01-01

    We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach −58 dB and −60 dB and the bandwidths as the extinction ratio better than −12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  19. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  20. Fabrication of sub-micrometric metallic hollow-core structures by laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Noemi; Tavera, Txaber [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Rodriguez, Ainara [CIC Microgune, Paseo Mikeletegi 48, 20009 San Sebastian (Spain); Ellman, Miguel; Ayerdi, Isabel; Olaizola, Santiago M. [CEIT and Tecnun (University of Navarra) Manuel de Lardizabal 15, 20018 San Sebastian (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Arrays of hollow-core sub-micrometric structures are fabricated. Black-Right-Pointing-Pointer Laser interference lithography is used for the pattering of the resist sacrificial layer. Black-Right-Pointing-Pointer The removal of the sacrificial layer gives rise to metallic channels with a maximum crosssectional area of 0.1 {mu}m{sup 2}. Black-Right-Pointing-Pointer These structures can be used in nanofluidics. - Abstract: This work presents the fabrication of hollow-core metallic structures with a complete laser interference lithography (LIL) process. A negative photoresist is used as sacrificial layer. It is exposed to the pattern resulting from the interference of two laser beams, which produces a structure of photoresist lines with a period of 600 nm. After development of the resist, platinum is deposited on the samples by DC sputtering and the resist is removed with acetone. The resulting metallic structures consist in a continuous platinum film that replicates the photoresist relief with a hollow core. The cross section of the channels is up to 0.1 {mu}m{sup 2}. The fabricated samples are characterized by FESEM and FIB. This last tool helps to provide a clear picture of the shape and size of the channels. Conveniently dimensioned, this array of metallic submicrometric channels can be used in microfluidic or IC cooling applications.

  1. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    Science.gov (United States)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  2. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  3. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  4. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  5. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  6. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  7. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Directory of Open Access Journals (Sweden)

    Jonathan Dale Shephard

    2015-04-01

    Full Text Available The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included.High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications.In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical

  8. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    OpenAIRE

    Yannopapas, Vassilios

    2015-01-01

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional ...

  9. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.

    Science.gov (United States)

    Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo

    2011-07-01

    We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.

  10. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  11. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  12. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    Science.gov (United States)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  13. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  14. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Numerical demonstration of neuromorphic computing with photonic crystal cavities.

    Science.gov (United States)

    Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter

    2018-04-02

    We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

  16. Design of single-polarization wavelength splitter based on photonic crystal fiber.

    Science.gov (United States)

    Zhang, Shanshan; Zhang, Weigang; Geng, Pengcheng; Li, Xiaolan; Ruan, Juan

    2011-12-20

    A new single-polarization wavelength splitter based on the photonic crystal fiber (PCF) has been proposed. The full-vector finite-element method (FEM) is applied to analyze the single-polarization single-mode guiding properties. Splitting of two different wavelengths is realized by adjusting the structural parameters. The semi-vector three-dimensional beam propagation method is employed to confirm the wavelength splitting characteristics of the PCF. Numerical simulations show that the wavelengths of 1.3 μm and 1.55 μm are split for a fiber length of 10.7 mm with single-polarization guiding in each core. The crosstalk between the two cores is low over appreciable optical bandwidths.

  17. Bench scale model studies on sanitary landfill leachate treatment with M. oleifera seed extract and hollow fibre micro-filtration membrane

    Directory of Open Access Journals (Sweden)

    S. A. Muyibi

    2002-10-01

    Full Text Available A laboratory-based study using a Bench Scale model of four unit operations made up of coagulation (using Moringa oleifera seed extract as a coagulant, flocculation, sedimentation and micro-filtration, have been adopted to treat the leachate from Air Hitman Sanitary Landfill at Puchong in Malaysia. M. oleifera dosages of 150 and 175 mg/L had achieved 43.8% Cadmium removal, 21.2% Total Chromium removal, 66.8% Lead removal and 16% Iron removal. It also removed 55.4% of Total Suspended Solids, 10% of Total Dissolved Solids and 24.2% of Volatile Suspended Solids. Micro-filtration hollow fibre membrane decreased the turbidity, total suspended solids, total dissolved solids, volatile suspended solids, and organic matter in the leachate by 98.3%, 96.7%, 20.8%, 36.6% and 21.9% respectively. Overall heavy metals removal after micro-filtration using hollow fibre membrane was 94% for Cadmium, 29.8% for Total Chromium, 73.2% for Lead, and 18.3% for Iron. The results have shown that M. oleifera is a promising natural polymer for removing heavy metals from leachates and may be used as a pre-treatment to eliminate a portion of the toxic heavy metals, which limits the activity of micro organisms in the leachates.

  18. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  19. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  20. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  1. Giant Lamb shift in photonic crystals

    International Nuclear Information System (INIS)

    Wang Xuehua; Kivshar, Yuri S.; Gu Benyuan

    2004-01-01

    We obtain a general result for the Lamb shift of excited states of multilevel atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also suggest that the position-dependent Lamb shift should extend from a single level to a miniband for an assembly of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases

  2. Photonic crystals: role of architecture and disorder on spectral properties.

    Science.gov (United States)

    Verma, Rupesh; Audhkhasi, Romil; Thyagarajan, Krishna; Banerjee, Varsha

    2018-03-01

    Many of the present-day optical devices use photonic crystals. These are multilayers of dielectric media that control the reflection and transmission of light falling on them. In this paper, we study the optical properties of periodic, fractal, and aperiodic photonic crystals and compare them based on their attributes. Our calculations of the band reflectivity and degree of robustness reveal novel features, e.g., fractal photonic crystals are found to reflect the maximum amount of incident light. On the other hand, aperiodic photonic crystals have the largest immunity to disorder. We believe that such properties will be useful in a variety of applications in the field of optical communication.

  3. Advances in laser technology and fibre-optic delivery systems in lithotripsy.

    Science.gov (United States)

    Fried, Nathaniel M; Irby, Pierce B

    2018-06-08

    The flashlamp-pumped, solid-state holmium:yttrium-aluminium-garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

  4. Research and application of active hollow core slabs in building systems for utilizing low energy sources

    International Nuclear Information System (INIS)

    Xu, Xinhua; Yu, Jinghua; Wang, Shengwei; Wang, Jinbo

    2014-01-01

    Highlights: • A review on the development and modeling of active hollow core slab is presented. • The applications and performance evaluation of the slab in building are reviewed. • Finite element or finite difference method is often used in multidimensional model. • Performance evaluations of building using active slabs for ventilation are limited. • More works on the active hollow core slab are worthwhile. - Abstract: The society and the building professionals have paid much concern in recent years on building energy efficiency and the development and applications of low energy technologies for buildings/green buildings allowing the elimination, or at least reduction of dependence on electricity or fossil fuel while maintaining acceptable indoor environment. Utilizations of favorable diurnal temperature difference and ground thermal source for air conditioning are among these low energy technologies. Utilization of the hollow cores in the prefabricated slab for ventilation and the mass of the slab for thermal storage is widely used in building systems in Europe by exploiting the low energy source of the ambient air. These hollow core slabs aim at enlarging the heat transfer surface between the slab mass and the air in the core, which permits substantial heat flows even for relatively small temperature differences. This, in turn, allows the use of low energy cooling or heating sources, such as the ground, outside air or recovered process heat. In this paper, we present a comprehensive review of the research and application of active hollow core slabs in building systems for utilizing low energy sources. The principle and development of active hollow core slabs in building systems for leveling the indoor temperature fluctuation by ventilation air passing the cores are described. Calculation models of the active hollow core concrete slab as well as the practical applications and performance evaluation of the slab applied in building systems for air

  5. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...

  6. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol.

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-08-07

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.

  7. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    Science.gov (United States)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  8. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  9. Plasmonic photonic crystals realized through DNA-programmable assembly.

    Science.gov (United States)

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  10. Plasmonic-photonic crystal coupled nanolaser

    International Nuclear Information System (INIS)

    Zhang, Taiping; Callard, Ségolène; Jamois, Cécile; Chevalier, Céline; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices. (paper)

  11. Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Chiang

    2018-04-01

    Full Text Available A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.

  12. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  13. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.

    Science.gov (United States)

    Debord, B; Jamier, R; Gérôme, F; Leroy, O; Boisse-Laporte, C; Leprince, P; Alves, L L; Benabid, F

    2013-10-21

    We report on a self-guided microwave surface-wave induced generation of ~60 μm diameter and 6 cm-long column of argon-plasma confined in the core of a hollow-core photonic crystal fiber. At gas pressure of 1 mbar, the micro-confined plasma exhibits a stable transverse profile with a maximum gas-temperature as high as 1300 ± 200 K, and a wall-temperature as low as 500 K, and an electron density level of 10¹⁴ cm⁻³. The fiber guided fluorescence emission presents strong Ar⁺ spectral lines in the visible and near UV. Theory shows that the observed combination of relatively low wall-temperature and high ionisation rate in this strongly confined configuration is due to an unprecedentedly wide electrostatic space-charge field and the subsequent ion acceleration dominance in the plasma-to-gas power transfer.

  14. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  15. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...

  16. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    Zong Yi-Xin; Xia Jian-Bai; Wu Hai-Bin

    2017-01-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. (paper)

  17. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  18. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  19. Fractional decay of quantum dots in photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  20. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  1. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  2. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  3. Natural photonic crystals

    International Nuclear Information System (INIS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-01-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  4. Opal-based photonic crystal with double photonic bandgap structure

    Science.gov (United States)

    Romanov, S. G.; Yates, H. M.; Pemble, M. E.; DeLa Rue, R. M.

    2000-09-01

    The interior surfaces of one part of a piece of artificial opal have been coated with GaP so that the remaining part of the opal crystal remains empty, thus forming a photonic heterostructure. Two Bragg resonances have been observed in the optical transmission and reflectance spectra. These two resonances were found to behave differently with changes in the polarization of the incident light and the angle of propagation of the light with respect to the (111) planes of opal. Depolarization of the light was observed to occur most effectively at frequencies within the stop-bands, apparently due to the re-coupling of the propagating electromagnetic wave to a different system of eigenmodes when it crosses the interface separating two parts of the double photonic crystal.

  5. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  6. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  7. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Science.gov (United States)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  8. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  9. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  10. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  11. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  12. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  13. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  14. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  15. Semi-analytical model for hollow-core anti-resonant fibers

    Directory of Open Access Journals (Sweden)

    Wei eDing

    2015-03-01

    Full Text Available We detailedly describe a recently-developed semi-analytical method to quantitatively calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs. Formation of equiphase interface at fiber’s outermost boundary and outward light emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis of this method. Our semi-analytical calculation results agree well with those of precise simulations and clarify the light leakage dependences on azimuthal angle, geometrical shape and polarization. Using this method, we show investigations on HC-ARFs having various core shapes (e.g. polygon, hypocycloid with single- and multi-layered core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical method provides clear physical insights into the light guidance in ARF and can play as a fast and useful design aid for better ARFs.

  16. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  17. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel

    Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  18. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  19. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  20. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  1. Thermally Optimized Polarization-Maintaining Photonic Crystal Fiber and Its FOG Application.

    Science.gov (United States)

    Zhang, Chunxi; Zhang, Zhihao; Xu, Xiaobin; Cai, Wei

    2018-02-13

    In this paper, we propose a small-diameter polarization-maintaining solid-core photonic crystal fiber. The coating diameter, cladding diameter and other key parameters relating to the thermal properties were studied. Based on the optimized parameters, a fiber with a Shupe constant 15% lower than commercial photonic crystal fibers (PCFs) was fabricated, and the transmission loss was lower than 2 dB/km. The superior thermal stability of our fiber design was proven through both simulation and measurement. Using the small-diameter fiber, a split high precision fiber optic gyro (FOG) prototype was fabricated. The bias stability of the FOG was 0.0023 °/h, the random walk was 0.0003 °/ h , and the scale factor error was less than 1 ppm. Throughout a temperature variation ranging from -40 to 60 °C, the bias stability was less than 0.02 °/h without temperature compensation which is notably better than FOG with panda fiber. As a result, the PCF FOG is a promising choice for high precision FOG applications.

  2. A Prussian Blue-Based Core-Shell Hollow-Structured Mesoporous Nanoparticle as a Smart Theranostic Agent with Ultrahigh pH-Responsive Longitudinal Relaxivity.

    Science.gov (United States)

    Cai, Xiaojun; Gao, Wei; Ma, Ming; Wu, Meiying; Zhang, Linlin; Zheng, Yuanyi; Chen, Hangrong; Shi, Jianlin

    2015-11-04

    Novel core-shell hollow mesoporous Prussian blue @ Mn-containing Prussian blue analogue (HMPB@MnPBA) nanoparticles, designated as HMPB-Mn) as an intelligent theranostic nanoagent, are successfully constructed by coating a similarly crystal-structured MnPBA onto HMPB. This can be used as a pH-responsive T1 -weighted magnetic resonance imaging contrast agent with ultrahigh longitudinal relaxivity (r1 = 7.43 m m(-1) s(-1) ), and achieves the real-time monitoring of drug release. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  4. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    Science.gov (United States)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  5. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  6. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  7. A study on new types of metallic photonic crystals

    International Nuclear Information System (INIS)

    Ahmed, M.I.

    2013-01-01

    In this thesis, I tried to synthesize a one dimension dielectric photonic crystal. I have succeeded in depositing single layers of zinc oxide and magnesium oxide on glass substrates. Each single layer was characterized by a scanning electron microscope, X-ray diffraction, A Mirue interferometer, and a spectrophotometer. The refractive indices, extinction coefficients, and absorption coefficients of each single layer were calculated from the measured transmittance, reflectance, and thickness data. Using the calculated parameters (refractive indices) and measured parameters (thicknesses) the transmission spectrum of the one dimension photonic crystal composed of zinc oxide and magnesium oxide was modelled. Using the transfer matrix method, a comparative study of the one dimension-dielectric and metallic photonic crystals was done. Effect of the refractive index difference, filling factor, number of periods, Plasmon frequency, damping coefficient, and incidence angle on the transmittance of the dielectric and metallic photonic crystal was carried out. A multilayered structure composed of Silver and Gallium Nitride was designed to transmit in the visible region, block UV frequencies, and reflect the IR and microwave frequencies. Using a combination of MaxwellGarnett Approximation and the transfer matrix method; the properties of a nanocomposite photonic crystal consisting of Cryolite and spherical nanoparticles of silver distributed in a dielectric matrix of titanium dioxide was studied. Effect of the nanoparticle concentration, lattice constant and incidence angle on the polaritonic and structure photonic band gap were studied.

  8. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  9. Terahertz spectroscopy of three-dimensional photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.

    1994-01-01

    We have fabricated and built three-dimensional photonic band-gap crystals with band-gap frequencies larger than 500 GHz. We built the crystals by stacking micromachined (110) silicon wafers. The transmission and dispersion characteristics of the structures were measured by an all-electronic terahertz spectroscopy setup. The experimental results were in good agreement with theoretical calculations. To our knowledge, our new crystal has the highest reported photonic band-gap frequency

  10. Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

    Directory of Open Access Journals (Sweden)

    Asghar Vatani Oskouei

    2015-12-01

    Full Text Available In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geometric non-linearities are also considered in the numerical simulation. The results obtained are compared with available experimental data to verify the developed FE model. Modeling techniques are described in detail. According to the results, sandwich panels with hollow I-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional I-core sandwich panels and also equivalent solid plate with the same weight and material.

  11. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  12. Design of photonic bandgap fibers by topology optimization

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Feurer, Thomas

    2010-01-01

    A method based on topology optimization is presented to design the cross section of hollow-core photonic bandgap fibers for minimizing energy loss by material absorption. The optical problem is modeled by the timeharmonic wave equation and solved with the finite element program Comsol Multiphysics...

  13. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  14. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  15. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  16. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  17. Optical switching in nonlinear photonic crystals lightly doped with nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2008-01-14

    A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.

  18. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  19. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  20. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  1. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  2. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    International Nuclear Information System (INIS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-01-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  3. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Jin, Tingting [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Zheng, Xing, E-mail: znhk113@163.com [Beijing ZNHK Science and Technology Development Co., Ltd. (China); Jiang, Bo; Zhu, Chaosheng [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China); Yuan, Xiangdong [Baotou Light Industry and Vocational Technical College (China); Zheng, Jingtang, E-mail: jtzheng03@163.com; Wu, Mingbo [China University of Petroleum, State Key Laboratory of Heavy Oil Processing (China)

    2016-11-15

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer–Emmett–Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher –OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV–vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less –OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  4. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  5. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  6. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  7. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  8. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    Science.gov (United States)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  9. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  10. Spectrum of a one-atom laser in photonic crystals

    International Nuclear Information System (INIS)

    Florescu, Lucia

    2006-01-01

    The emission spectrum of a single-emitter laser in a photonic crystal is presented. We consider a coherently pumped two-level emitter strongly coupled to a high-quality microcavity engineered within a photonic crystal. We show that the cavity spectrum consists of both elastic and inelastic components, for which we derive analytical expressions. Our study reveals enhanced, spectrally narrower emission resulting from the radiation reservoir of the photonic crystal. The cavity field spectral characteristics are fundamentally distinct from those of a corresponding microcavity in ordinary vacuum. At high pump intensities and for large discontinuities in the photon density of states between Mollow spectral components of atomic resonance fluorescence, the emitted intensity originating from the elastic spectral component increases with the intensity of the pump and the elastic component dominates the spectrum. In the case of a vanishing photon density of states in the spectral range surrounding the lower Mollow sideband and no dipolar dephasing, the cavity spectrum is elastic

  11. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....

  12. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  13. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  14. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    International Nuclear Information System (INIS)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi

    2011-01-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  15. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: liufa20719@126.com [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  16. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  17. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures.

    Science.gov (United States)

    Yannopapas, Vassilios

    2015-03-19

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  18. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  19. Photon Dispersion in a Supernova Core

    OpenAIRE

    Kopf, A.; Raffelt, G.

    1997-01-01

    While the photon forward-scattering amplitude on free magnetic dipoles (e.g. free neutrons) vanishes, the nucleon magnetic moments still contribute significantly to the photon dispersion relation in a supernova (SN) core where the nucleon spins are not free due to their interaction. We study the frequency dependence of the relevant spin susceptibility in a toy model with only neutrons which interact by one-pion exchange. Our approach amounts to calculating the photon absorption rate from the ...

  20. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....