WorldWideScience

Sample records for hollow spindle attached

  1. Glucose assisted synthesis of hollow spindle LiMnPO_4/C nanocomposites for high performance Li-ion batteries

    International Nuclear Information System (INIS)

    Fu, Xiaoning; Chang, Zhaorong; Chang, Kun; Li, Bao; Tang, Hongwei; Shangguan, Enbo; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure exhibits a high specific capacity and cycling performance. - Highlights: • A pure and well-crystallized LiMnPO_4 are synthesized via a solution-phase method. • The LiMnPO_4/C composite constitutes highly and uniformly distributed hollow spindles. • The LiMnPO_4/C composite exhibits a high specific capacity and cycling performance. • The growth process of the hollow spindle LiMnPO_4 particles is revealed. - Abstract: Nano-sized hollow spindle LiMnPO_4 with a well-developed olivine-type structure was synthesized with the assistance of glucose in dimethyl sulfoxide (DMSO)/H_2O under ambient pressure and 108 °C. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images show that the LiMnPO_4 particles consist of hollow spindles with a mean width of 200 nm, length of 500-700 nm, and wall thickness of about 30-60 nm. The LiMnPO_4/C nanocomposite was obtained by sintering nano-sized LiMnPO_4 with glucose at 650 °C under an inert atmosphere for 4 h. With a coated carbon thickness of about 10 nm, the obtained composite maintained the morphology and size of the hollow spindle. The electrochemical tests show the specific capacity of LiMnPO_4/C nanocomposite is 161.8 mAh g"−"1 at 0.05C, 137.7 mAh g"−"1 at 0.1C and 110.8 mAh g"−"1 at 0.2 C. The retention of discharge capacity maintains 92% after 100 cycles at 0.2 C. After different rate cycles the high capacity of the LiMnPO_4/C nanocomposite can be recovered. This high performance is attributed to the composite material's hollow spindle structure, which facilitates the electrolyte infiltration, resulting in an increased solid-liquid interface. The carbon layer covering the hollow spindle also contributes to the high performance of the LiMnPO_4/C material as the carbon layer improves its electronic conductivity and the nano-scaled wall thickness decreases the paths of Li

  2. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells.

    Directory of Open Access Journals (Sweden)

    William T Silkworth

    Full Text Available Many cancer cells display a CIN (Chromosome Instability phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed gamma-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells.

  3. A cast partial obturator with hollow occlusal shim and semi-precision attachment

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Singhal

    2018-01-01

    Full Text Available A maxillofacial patient's quality of life is distorted and social integration becomes difficult. An obturator is a maxillofacial prosthesis used to close a congenital or acquired tissue defect, primarily of the hard palate and/or contiguous alveolar/soft-tissue structures. Subsequently, it restores the esthetics, speech, and function. The present clinical report aimed for the prosthetic rehabilitation of a maxillectomy defect by the incorporation of a semi-precision attachment as PRECI-SAGIX – male part of 2.2 mm on fixed partial denture (#22 and #23 teeth and matrix – plastic female part of size 2.2 mm and height 4.2 mm of yellow on cast partial in polymer base. It aids in the retention of a hollow lightweight obturator. The technique also described the method to make a bulbless obturator with a hollow self-cured acrylic resin occlusal shim. A patient is quite satisfied with bulb less, lightweight cast partial and hollow shim palatal obturator.

  4. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures.

    Science.gov (United States)

    Almada, Evangelina; Tonucci, Facundo M; Hidalgo, Florencia; Ferretti, Anabela; Ibarra, Solange; Pariani, Alejandro; Vena, Rodrigo; Favre, Cristián; Girardini, Javier; Kierbel, Arlinet; Larocca, M Cecilia

    2017-11-02

    The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.

  5. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    Science.gov (United States)

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  6. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  7. Inscuteable Regulates the Pins-Mud Spindle Orientation Pathway

    Science.gov (United States)

    Mauser, Jonathon F.; Prehoda, Kenneth E.

    2012-01-01

    During asymmetric cell division, alignment of the mitotic spindle with the cell polarity axis ensures that the cleavage furrow separates fate determinants into distinct daughter cells. The protein Inscuteable (Insc) is thought to link cell polarity and spindle positioning in diverse systems by binding the polarity protein Bazooka (Baz; aka Par-3) and the spindle orienting protein Partner of Inscuteable (Pins; mPins or LGN in mammals). Here we investigate the mechanism of spindle orientation by the Insc-Pins complex. Previously, we defined two Pins spindle orientation pathways: a complex with Mushroom body defect (Mud; NuMA in mammals) is required for full activity, whereas binding to Discs large (Dlg) is sufficient for partial activity. In the current study, we have examined the role of Inscuteable in mediating downstream Pins-mediated spindle orientation pathways. We find that the Insc-Pins complex requires Gαi for partial activity and that the complex specifically recruits Dlg but not Mud. In vitro competition experiments revealed that Insc and Mud compete for binding to the Pins TPR motifs, while Dlg can form a ternary complex with Insc-Pins. Our results suggest that Insc does not passively couple polarity and spindle orientation but preferentially inhibits the Mud pathway, while allowing the Dlg pathway to remain active. Insc-regulated complex assembly may ensure that the spindle is attached to the cortex (via Dlg) before activation of spindle pulling forces by Dynein/Dynactin (via Mud). PMID:22253744

  8. Measurement of Spindle Rigidity by using a Magnet Loader

    Science.gov (United States)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  9. Zwint-1 is required for spindle assembly checkpoint function and kinetochore-microtubule attachment during oocyte meiosis.

    Science.gov (United States)

    Woo Seo, Dong; Yeop You, Seung; Chung, Woo-Jae; Cho, Dong-Hyung; Kim, Jae-Sung; Su Oh, Jeong

    2015-10-21

    The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.

  10. Modified snap-on attachment with ′O-ring′ for two piece hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    C Gunasekar

    2013-01-01

    Full Text Available Restoration of near normal functions in patients who have been treated with hemimaxillectomy is generally difficult, in view of the restriction in mouth opening following healing of large surgical wound. Further, the extent and nature of the surgical defect differ from patient to patient. Thus, design of an obturator needs to be patient oriented. In this report, we describe a novel snap-on attachment with O-ring in a conventional two piece hollow bulb obturator for a 70-year-old male treated for carcinoma of the left maxilla and sinus.

  11. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  12. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Directory of Open Access Journals (Sweden)

    Adele L. Marston

    2017-12-01

    Full Text Available Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3, and Aurora B and C (Ipl1 will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.

  13. Direct kinetochore?spindle pole connections are not required for chromosome segregation

    OpenAIRE

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Ma?l; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.; Khodjakov, Alexey

    2014-01-01

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes? kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the...

  14. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  15. CENP-W Plays a Role in Maintaining Bipolar Spindle Structure

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F.

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted

  16. Direct kinetochore–spindle pole connections are not required for chromosome segregation

    Science.gov (United States)

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B.; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G.; McEwen, Bruce F.; Chen, James K.; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M.

    2014-01-01

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells. PMID:25023516

  17. Direct kinetochore-spindle pole connections are not required for chromosome segregation.

    Science.gov (United States)

    Sikirzhytski, Vitali; Magidson, Valentin; Steinman, Jonathan B; He, Jie; Le Berre, Maël; Tikhonenko, Irina; Ault, Jeffrey G; McEwen, Bruce F; Chen, James K; Sui, Haixin; Piel, Matthieu; Kapoor, Tarun M; Khodjakov, Alexey

    2014-07-21

    Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes' kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells.

  18. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  19. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    Science.gov (United States)

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  20. On the Development of a Micro Electro Discharge Machine

    OpenAIRE

    Behera, Amar Kumar; Dalai, Samir; Saha, Partha; Mishra, Prasanta Kumar

    2005-01-01

    An attempt has been made to design and fabricate a micro spindle turning (micro lathe) attachment with a micro EDG. The main hollow spindle of the former is positioned horizontally (can also be vertically, if required), located over two tungsten carbide V-bearings and steel ball as end-thrust bearing on a carbide support. This can be rotated about the horizontal axis by a balanced miniature DC motor via a belt-pulley system, reducing the spindle speed to about 3000 rpm (can also be either dec...

  1. The Aurora B kinase in chromosome biorientation and spindle checkpoint signalling

    Directory of Open Access Journals (Sweden)

    Veronica eKrenn

    2015-10-01

    Full Text Available Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore-microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.

  2. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis

    Directory of Open Access Journals (Sweden)

    Woods C Geoffrey

    2010-11-01

    Full Text Available Abstract Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM are the commonest cause of autosomal recessive primary microcephaly (MCPH a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC. Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical

  3. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    2008-02-01

    Full Text Available The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer.We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  4. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  5. Sine-Bar Attachment For Machine Tools

    Science.gov (United States)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  6. Nap sleep spindle correlates of intelligence.

    Science.gov (United States)

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  7. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  8. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  9. Tension-Induced Error Correction and Not Kinetochore Attachment Status Activates the SAC in an Aurora-B/C-Dependent Manner in Oocytes.

    Science.gov (United States)

    Vallot, Antoine; Leontiou, Ioanna; Cladière, Damien; El Yakoubi, Warif; Bolte, Susanne; Buffin, Eulalie; Wassmann, Katja

    2018-01-08

    Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Accuracy of Spindle Units with Hydrostatic Bearings

    Directory of Open Access Journals (Sweden)

    Fedorynenko Dmytro

    2016-06-01

    Full Text Available The work is devoted to the research of precision regularities in a spindle unit by the trajectory of the spindle installed on hydrostatic bearings. The mathematical model of trajectories spindle with lumped parameters that allows to define the position of the spindle with regard the simultaneous influence of design parameters, geometrical deviations ofform, temperature deformation bearing surfaces, the random nature of operational parameters and technical loads of hydrostatic bearings has been developed. Based on the results of numerical modeling the influence of shape errors of bearing surface of hydrostatic bearing on the statistical characteristics of the radius vector trajectories of the spindle by varying the values rotational speed of the spindle and oil pressure in front hydrostatic bearing has been developed. The obtained statistical regularities of precision spindle unit have been confirmed experimentally. It has been shown that an effective way to increase the precision of spindle units is to regulate the size of the gap in hydrostatic spindle bearings. The new design of an adjustable hydrostatic bearing, which can improve the accuracy of regulation size gap has been proposed.

  11. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  12. Mechanical design principles of a mitotic spindle.

    Science.gov (United States)

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  13. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu

    2017-12-11

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers in length by adjusting the concentration of PVA to 0.8 g L. Microstructure characterization of the samples at different reaction times revealed that PP-PTF were formed via a three-dimensional (3D) hierarchical oriented attachment (OA) growth process. The initial growth units were determined to be single-crystal pre-perovskite PbTiO fibers with a diameter of 10-20 nm. Zeta potential measurement suggested that the main driving force of the OA process is the surface electrostatic force, which is induced by the incompletely bonded Pb and O atomic layers on the surface of the {110} plane. Moreover, molecular dynamics simulations have been employed to reveal a stable configuration of the initial pre-perovskite PbTiO growth units, agreeing well with the experimental results.

  14. The Spindle Cell Neoplasms of the Oral Cavity.

    Science.gov (United States)

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.

  15. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  16. Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein

    International Nuclear Information System (INIS)

    Li, Ya; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Su, Huilan; Zhang, Yuxia

    2014-01-01

    We report on a novel electrochemical signal amplification strategy for use in immunoassays. The highly responsive immunoelectrode was constructed in the following way: (1) The surface of a gold electrode was covered with a layer single-walled carbon nanotubes dispersed in chitosane functionalized with L-cysteine; (2) Gold nanoparticles containing protein A and anti-alpha-fetoprotein (anti-AFP) were then covalently attached to the surface via the thiol groups of the chitosane. The electrode is then exposed to the analyte (AFP) which then is bound by the antibody. In the next step, a gold-conjugated secondary antibody is added that was prepared in the following way: (1) Horseradish peroxidase was crosslinked and the resulting spheres were coated with hollow gold nanoparticles (hollow Au-NPs) to give nanospheres of ∼100 nm in diameter. (2) These were the coated with thionine and, in a last step, with secondary antibody. The use of these materials has several attractive features: The HRP-NPs functionalized with hollow Au-NPs possess a large surface area that can load the large amount of secondary antibody. Thionine (Thi) is highly redox active and improves the intensity of the signal. Carbon nanotubes were used because they possess an excellent electron transfer rate and large surface area. Following incubation of the modified electrode (a) with a sample containing AFP, (b) then with the secondary antibody, and (c) with washing buffer, the electrode is placed in a solution containing H 2 O 2 . The HRP in the smart secondary antibody causes the catalytic decomposition of H 2 O 2 and the results in an electrical current that is linearly related to the concentration of AFP in the 0.025 to 5.0 ng mL −1 concentration range. The detection limit for AFP is as low as 8.3 pg mL −1 . We believe that this novel kind of immunoassay represents a promising tool for use in sensitive clinical assays. (author)

  17. Investigation of the Rolling Motion of a Hollow Cylinder Using a Smartphone's Digital Compass

    Science.gov (United States)

    Wattanayotin, Phattara; Puttharugsa, Chokchai; Khemmani, Supitch

    2017-01-01

    This study used a smartphone's digital compass to observe the rolling motion of a hollow cylinder on an inclined plane. The smartphone (an iPhone 4s) was attached to the end of one side of a hollow cylinder to record the experimental data using the SensorLog application. In the experiment, the change of angular position was measured by the…

  18. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  19. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis.

    Science.gov (United States)

    Feitosa, Weber Beringui; Hwang, KeumSil; Morris, Patricia L

    2018-02-15

    During mammalian meiosis, Polo-like kinase 1 (PLK1) is essential during cell cycle progression. In oocyte maturation, PLK1 expression is well characterized but timing of posttranslational modifications regulating its activity and subcellular localization are less clear. Small ubiquitin-related modifier (SUMO) posttranslational modifier proteins have been detected in mammalian gametes but their precise function during gametogenesis is largely unknown. In the present paper we report for mouse oocytes that both PLK1 and phosphorylated PLK1 undergo SUMOylation in meiosis II (MII) oocytes using immunocytochemistry, immunoprecipitation and in vitro SUMOylation assays. At MII, PLK1 is phosphorylated at threonine-210 and serine-137. MII oocyte PLK1 and phosphorylated PLK1 undergo SUMOylation by SUMO-1, -2 and -3 as shown by individual in vitro assays. Using these assays, forms of phosphorylated PLK1 normalized to PLK1 increased significantly and correlated with SUMOylated PLK1 levels. During meiotic progression and maturation, SUMO-1-SUMOylation of PLK1 is involved in spindle formation whereas SUMO-2/3-SUMOylation may regulate PLK1 activity at kinetochore-spindle attachment sites. Microtubule integrity is required for PLK1 localization with SUMO-1 but not with SUMO-2/3. Inhibition of SUMOylation disrupts proper meiotic bipolar spindle organization and spindle-kinetochore attachment. The data show that both temporal and SUMO-specific-SUMOylation play important roles in orchestrating functional dynamics of PLK1 during mouse oocyte meiosis, including subcellular compartmentalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  1. A defect-driven diagnostic method for machine tool spindles.

    Science.gov (United States)

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  2. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  3. Measuring and modeling polymer concentration profiles near spindle boundaries argues that spindle microtubules regulate their own nucleation

    Science.gov (United States)

    Kaye, Bryan; Stiehl, Olivia; Foster, Peter J.; Shelley, Michael J.; Needleman, Daniel J.; Fürthauer, Sebastian

    2018-05-01

    Spindles are self-organized microtubule-based structures that segregate chromosomes during cell division. The mass of the spindle is controlled by the balance between microtubule turnover and nucleation. The mechanisms that control the spatial regulation of microtubule nucleation remain poorly understood. While previous work found that microtubule nucleators bind to pre-existing microtubules in the spindle, it is still unclear whether this binding regulates the activity of those nucleators. Here we use a combination of experiments and mathematical modeling to investigate this issue. We measured the concentration of microtubules and soluble tubulin in and around the spindle. We found a very sharp decay in the concentration of microtubules at the spindle interface. This is inconsistent with a model in which the activity of nucleators is independent of their association with microtubules but consistent with a model in which microtubule nucleators are only active when bound to pre-existing microtubules. This argues that the activity of microtubule nucleators is greatly enhanced when bound to pre-existing microtubules. Thus, microtubule nucleators are both localized and activated by the microtubules they generate.

  4. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  5. The Physics of the Metaphase Spindle.

    Science.gov (United States)

    Oriola, David; Needleman, Daniel J; Brugués, Jan

    2018-05-20

    The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.

  6. Mitotic spindle proteomics in Chinese hamster ovary cells.

    Directory of Open Access Journals (Sweden)

    Mary Kate Bonner

    Full Text Available Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells.

  7. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    Science.gov (United States)

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-03

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males. Copyright © 2014 the authors 0270-6474/14/3416358-11$15.00/0.

  8. Analysis and topology optimization design of high-speed driving spindle

    Science.gov (United States)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  9. Combination spindle-drive system for high precision machining

    Science.gov (United States)

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  10. Sleep spindles predict stress-related increases in sleep disturbances

    Directory of Open Access Journals (Sweden)

    Thien Thanh eDang-Vu

    2015-02-01

    Full Text Available Background and Aim: Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Methods: 12 healthy students had a polysomnography (PSG recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the Insomnia Severity Index (ISI. They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration and frequency, as well as sigma power were computed from C4-O2 electroencephalography (EEG derivation during stages N2-N3 of non-rapid-eye-movement (NREM sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester.Results: Spindle density (as well as spindle amplitude and sigma power, particularly during the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05. Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively predicted larger increases in insomnia symptoms in response to stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  11. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  12. Chiasmata promote monopolar attachment of sister chromatids and their co-segregation toward the proper pole during meiosis I.

    Directory of Open Access Journals (Sweden)

    Yukinobu Hirose

    2011-03-01

    Full Text Available The chiasma is a structure that forms between a pair of homologous chromosomes by crossover recombination and physically links the homologous chromosomes during meiosis. Chiasmata are essential for the attachment of the homologous chromosomes to opposite spindle poles (bipolar attachment and their subsequent segregation to the opposite poles during meiosis I. However, the overall function of chiasmata during meiosis is not fully understood. Here, we show that chiasmata also play a crucial role in the attachment of sister chromatids to the same spindle pole and in their co-segregation during meiosis I in fission yeast. Analysis of cells lacking chiasmata and the cohesin protector Sgo1 showed that loss of chiasmata causes frequent bipolar attachment of sister chromatids during anaphase. Furthermore, high time-resolution analysis of centromere dynamics in various types of chiasmate and achiasmate cells, including those lacking the DNA replication checkpoint factor Mrc1 or the meiotic centromere protein Moa1, showed the following three outcomes: (i during the pre-anaphase stage, the bipolar attachment of sister chromatids occurs irrespective of chiasma formation; (ii the chiasma contributes to the elimination of the pre-anaphase bipolar attachment; and (iii when the bipolar attachment remains during anaphase, the chiasmata generate a bias toward the proper pole during poleward chromosome pulling that results in appropriate chromosome segregation. Based on these results, we propose that chiasmata play a pivotal role in the selection of proper attachments and provide a backup mechanism that promotes correct chromosome segregation when improper attachments remain during anaphase I.

  13. Spatial signals link exit from mitosis to spindle position.

    Science.gov (United States)

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-05-11

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT- bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position.

  14. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    Science.gov (United States)

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  15. Inter-expert and intra-expert reliability in sleep spindle scoring

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Welinder, Peter; Sørensen, Helge Bjarup Dissing

    2015-01-01

    Objectives To measure the inter-expert and intra-expert agreement in sleep spindle scoring, and to quantify how many experts are needed to build a reliable dataset of sleep spindle scorings. Methods The EEG dataset was comprised of 400 randomly selected 115 s segments of stage 2 sleep from 110...... with higher reliability than the estimation of spindle duration. Reliability of sleep spindle scoring can be improved by using qualitative confidence scores, rather than a dichotomous yes/no scoring system. Conclusions We estimate that 2–3 experts are needed to build a spindle scoring dataset...... with ‘substantial’ reliability (κ: 0.61–0.8), and 4 or more experts are needed to build a dataset with ‘almost perfect’ reliability (κ: 0.81–1). Significance Spindle scoring is a critical part of sleep staging, and spindles are believed to play an important role in development, aging, and diseases of the nervous...

  16. Molecular basis of APC/C regulation by the spindle assembly checkpoint

    Science.gov (United States)

    Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In the dividing eukaryotic cell the spindle assembly checkpoint (SAC) ensures each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), a multimeric assembly that inhibits the APC/C, delaying chromosome segregation. Here, using cryo-electron microscopy we determined the near-atomic resolution structure of an APC/C-MCC complex (APC/CMCC). We reveal how degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit (Cdc20APC/C) responsible for substrate interactions. BubR1 also obstructs binding of UbcH10 (APC/C’s initiating E2) to repress APC/C ubiquitination activity. Conformational variability of the complex allows for UbcH10 association, and we show from a structure of APC/CMCC in complex with UbcH10 how the Cdc20 subunit intrinsic to the MCC (Cdc20MCC) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced. PMID:27509861

  17. The fission yeast spindle orientation checkpoint: a model that generates tension?

    Science.gov (United States)

    Gachet, Yannick; Reyes, Céline; Goldstone, Sherilyn; Tournier, Sylvie

    2006-10-15

    In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression. Copyright 2006 John Wiley & Sons, Ltd.

  18. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood

    Directory of Open Access Journals (Sweden)

    Ian J. McClain

    2016-01-01

    Full Text Available Sleep spindles, a prominent feature of the non-rapid eye movement (NREM sleep electroencephalogram (EEG, are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density and power in the sigma frequency range (10–16 Hz across ages 2, 3, and 5 years (n=8; 3 males. At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05. We also found a developmental decrease in mean spindle frequency (p<0.05 but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation.

  19. Spinal spindle cell haemangioma: an atypical location.

    Science.gov (United States)

    Talan-Hranilović, J; Vucić, M; Sajko, T; Bedek, D; Tomić, K; Lupret, V

    2007-03-01

    We present a case of the 31-year-old male patient who complained of weakness in both legs and progressed slowly. Neuroimagine of the thoracic spine showed an intraspinal, extradural mass lesion, measuring 5.3 x 1.2 cm at the Th1-Th3 level. Histologically the lesion was a spindle cell haemangioma composed of dilated vascular spaces and a proliferation of bland appearing interspersed spindle cells. Immunohistochemical analysis was diffusely positive for VIM, SMA and focally for CD34. This lesion is uncommon and shows a predilection for distal extremities. Spindle cell haemangioma within the spine has not been previously reported in the literature.

  20. Local sleep spindle modulations in relation to specific memory cues

    NARCIS (Netherlands)

    Cox, R.; Hofman, W.F.; de Boer, M.; Talamini, L.M.

    2014-01-01

    Sleep spindles have been connected to memory processes in various ways. In addition, spindles appear to be modulated at the local cortical network level. We investigated whether cueing specific memories during sleep leads to localized spindle modulations in humans. During learning of word-location

  1. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.

    Science.gov (United States)

    Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex

    2010-06-01

    Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.

  2. Modal analysis of spindle of grinder machine based on ANSYS

    OpenAIRE

    HE Chaocong; LIU Peipei; YAN Chunfei; WANG Muhuan; LIN Jun

    2015-01-01

    The object of research is to a certain type grinding wheel spindle for which a 3D model of the spindle is established by SolidWorks software and ANSYS software is imported for model analysis.Natural frequency,vibration type and critical speed of the spindle model are obtained and the resulting data are scientifically analyzed.The results show that the spindle structure is reasonable,the machining accuracy can be ensured and the position where the most severe deformation and the main shaft fat...

  3. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation.

    Science.gov (United States)

    Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E

    2013-06-12

    Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.

  4. Sleep spindles and intelligence in early childhood-developmental and trait-dependent aspects.

    Science.gov (United States)

    Ujma, Péter P; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-12-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our previous work in older subjects revealed sex differences in the sleep spindle correlates of IQ, which was never investigated in small children before. We investigated the relationship between age, Raven Colored Progressive Matrices (CPM) scores and sleep spindles in 28 young children (age 4-8 years, 15 girls). We specifically investigated sex differences in the psychometric correlates of sleep spindles. We also aimed to separate the correlates of sleep spindles that are because of age-related maturation from other effects that reflect an age-independent relationship between sleep spindles and general intelligence. Our results revealed a modest positive correlation between fast spindle amplitude and age. Raven CPM scores positively correlated with both slow and fast spindle amplitude, but this effect remained a tendency in males and vanished after correcting for the effects of age. Age-corrected correlations between Raven CPM scores and both slow and fast spindle amplitude were only significant in females. Overall, our results show that in male children sleep spindles are a maturational marker, but in female children they indicate trait-like intelligence, in line with previous studies in adolescent and adult subjects. Thalamocortical white matter connectivity may be the underlying mechanism behind both higher spindle amplitude and higher intelligence in female, but not male subjects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    Directory of Open Access Journals (Sweden)

    Dorothée Coppieters ’t Wallant

    2016-01-01

    Full Text Available Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation and individual characteristics (intellectual quotient. Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way.

  6. Muscle Spindles and Locomotor Control-An Unrecognized Falls Determinant?

    OpenAIRE

    Marks Ray

    2015-01-01

    BACKGROUND: Historically, evidence muscle spindles might be involved in locomotion was provided by their presence in tetrapod antigravity muscles associated with posture and locomotion. Later, Brodal (1962) noted muscle spindles in all muscles of locomotion. To unravel the complexity of the muscle spindle and its role in human locomotor control many investigators have since conducted lesion and/or anaesthesia studies in subhuman species and human contexts. QUESTIONS: How ...

  7. Sleep spindling and fluid intelligence across adolescent development: sex matters

    Directory of Open Access Journals (Sweden)

    Róbert eBódizs

    2014-11-01

    Full Text Available Evidence supports the intricate relationship between sleep electroencephalogram (EEG spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males with an age range of 15–22 years (mean: 18 years and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test. Slow spindles (SSs and fast spindles (FSs were analyzed in 21 EEG derivations by using the individual adjustment method. A significant age-dependent increase in average FS density (r = .57; p = .005 was found. Moreover, fluid IQ correlated with FS density (r = .43; p = .04 and amplitude (r = .41; p = .049. The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = .80 (p = .002 and r = .67 (p = .012, for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = .60, p = .04. Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unravelling gender differences in adolescent brain maturation and perhaps cognitive

  8. Investigation of the rolling motion of a hollow cylinder using a smartphone

    Science.gov (United States)

    Puttharugsa, Chokchai; Khemmani, Supitch; Utayarat, Patipan; Luangtip, Wasutep

    2016-09-01

    This paper describes the use of smartphone’s gyroscope sensor to analyse a hollow cylinder rolling down an inclined plane. The smartphone (iPhone 4s) was attached to the end of hollow cylinder and was equipped with the Sensorlog application (Sensorlog app) to record the angular speed of rolling down an inclined plane. The experimental results agree with the theoretical model that is familiar to students for the rolling motion on an inclined plane. Moreover, the coefficients of static friction and kinetic friction were determined to be 0.205 ± 0.011 and 0.178 ± 0.003 from the measurements, respectively. This experiment demonstrated an alternative way to teach the rolling motion in a physics laboratory.

  9. Thermal Characteristic Analysis and Experimental Study of a Spindle-Bearing System

    Directory of Open Access Journals (Sweden)

    Li Wu

    2016-07-01

    Full Text Available In this paper, a thermo-mechanical coupling analysis model of the spindle-bearing system based on Hertz’s contact theory and a point contact non-Newtonian thermal elastohydrodynamic lubrication (EHL theory are developed. In this model, the effect of preload, centrifugal force, the gyroscopic moment, and the lubrication state of the spindle-bearing system are considered. According to the heat transfer theory, the mathematical model for the temperature field of the spindle system is developed and the effect of the spindle cooling system on the spindle temperature distribution is analyzed. The theoretical simulations and the experimental results indicate that the bearing preload has great effect on the frictional heat generation; the cooling fluid has great effect on the heat balance of the spindle system. If a steady-state heat balance between the friction heat generation and the cooling system cannot be reached, thermally-induced preload will lead to a further increase of the frictional heat generation and then cause the thermal failure of the spindle.

  10. Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells

    International Nuclear Information System (INIS)

    Sakaushi, Shinji; Nishida, Kumi; Minamikawa, Harumi; Fukada, Takashi; Oka, Shigenori; Sugimoto, Kenji

    2007-01-01

    Treatment of cells with docetaxel at low concentrations induces aberrant bipolar spindles of which two centrosomes stay at only one pole, and also induces multipolar spindles. To gain insight into the relations between centrosome impairment and structural defects of the spindle, live-cell imaging was performed on a human MDA Auro/imp/H3 cell line in which centrosomes/mitotic spindles, nuclear membrane and chromatin were simultaneously visualized by fluorescent proteins. In the presence of docetaxel at IC 50 concentration, the centrosomes did not segregate, and multiple aster-like structures ectopically arose around the disappearing nuclear membrane. Those ectopic structures formed an acentrosomal pole opposing to the two-centrosomes-containing pole. In late metaphase, one pole often fragmented into multiple spindle poles, leading multipolar division. These results suggest that spindle pole fragility may be induced by centrosome impairment, and collapse of the pole may contribute to induction of aneuploid daughter cells

  11. Germline-specific MATH-BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize.

    Science.gov (United States)

    Juranič, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanic, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-12-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).

  12. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  13. Using Micromanipulation to Analyze Control of Vertebrate Meiotic Spindle Size

    Directory of Open Access Journals (Sweden)

    Jun Takagi

    2013-10-01

    Full Text Available The polymerization/depolymerization dynamics of microtubules (MTs have been reported to contribute to control of the size and shape of spindles, but quantitative analysis of how the size and shape correlate with the amount and density of MTs in the spindle remains incomplete. Here, we measured these parameters using 3D microscopy of meiotic spindles that self-organized in Xenopus egg extracts and presented a simple equation describing the relationship among these parameters. To examine the validity of the equation, we cut the spindle into two fragments along the pole-to-pole axis by micromanipulation techniques that rapidly decrease the amount of MTs. The spheroidal shape spontaneously recovered within 5 min, but the size of each fragment remained small. The equation we obtained quantitatively describes how the spindle size correlates with the amount of MTs while maintaining the shape and the MT density.

  14. Modal analysis of spindle of grinder machine based on ANSYS

    Directory of Open Access Journals (Sweden)

    HE Chaocong

    2015-10-01

    Full Text Available The object of research is to a certain type grinding wheel spindle for which a 3D model of the spindle is established by SolidWorks software and ANSYS software is imported for model analysis.Natural frequency,vibration type and critical speed of the spindle model are obtained and the resulting data are scientifically analyzed.The results show that the spindle structure is reasonable,the machining accuracy can be ensured and the position where the most severe deformation and the main shaft fatigue fracture may occur can be found out,which also provide the theoretical basis for further optimization design and precision control.

  15. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    Science.gov (United States)

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  16. Sleep spindling and fluid intelligence across adolescent development: sex matters.

    Science.gov (United States)

    Bódizs, Róbert; Gombos, Ferenc; Ujma, Péter P; Kovács, Ilona

    2014-01-01

    Evidence supports the intricate relationship between sleep electroencephalogram (EEG) spindling and cognitive abilities in children and adults. Although sleep EEG changes during adolescence index fundamental brain reorganization, a detailed analysis of sleep spindling and the spindle-intelligence relationship was not yet provided for adolescents. Therefore, adolescent development of sleep spindle oscillations were studied in a home polysomnographic study focusing on the effects of chronological age and developmentally acquired overall mental efficiency (fluid IQ) with sex as a potential modulating factor. Subjects were 24 healthy adolescents (12 males) with an age range of 15-22 years (mean: 18 years) and fluid IQ of 91-126 (mean: 104.12, Raven Progressive Matrices Test). Slow spindles (SSs) and fast spindles (FSs) were analyzed in 21 EEG derivations by using the individual adjustment method (IAM). A significant age-dependent increase in average FS density (r = 0.57; p = 0.005) was found. Moreover, fluid IQ correlated with FS density (r = 0.43; p = 0.04) and amplitude (r = 0.41; p = 0.049). The latter effects were entirely driven by particularly reliable FS-IQ correlations in females [r = 0.80 (p = 0.002) and r = 0.67 (p = 0.012), for density and amplitude, respectively]. Region-specific analyses revealed that these correlations peak in the fronto-central regions. The control of the age-dependence of FS measures and IQ scores did not considerably reduce the spindle-IQ correlations with respect to FS density. The only positive spindle-index of fluid IQ in males turned out to be the frequency of FSs (r = 0.60, p = 0.04). Increases in FS density during adolescence may index reshaped structural connectivity related to white matter maturation in the late developing human brain. The continued development over this age range of cognitive functions is indexed by specific measures of sleep spindling unraveling gender differences in adolescent brain maturation and perhaps

  17. Hybrid Prediction Model of the Temperature Field of a Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Lixiu Zhang

    2017-10-01

    Full Text Available The thermal characteristics of a motorized spindle are the main determinants of its performance, and influence the machining accuracy of computer numerical control machine tools. It is important to accurately predict the thermal field of a motorized spindle during its operation to improve its thermal characteristics. This paper proposes a model to predict the temperature field of a high-speed and high-precision motorized spindle under different working conditions using a finite element model and test data. The finite element model considers the influence of the parameters of the cooling system and the lubrication system, and that of environmental conditions on the coefficient of heat transfer based on test data for the surface temperature of the motorized spindle. A genetic algorithm is used to optimize the coefficient of heat transfer of the spindle, and its temperature field is predicted using a three-dimensional model that employs this optimal coefficient. A prediction model of the 170MD30 temperature field of the motorized spindle is created and simulation data for the temperature field are compared with the test data. The results show that when the speed of the spindle is 10,000 rpm, the relative mean prediction error is 1.5%, and when its speed is 15,000 rpm, the prediction error is 3.6%. Therefore, the proposed prediction model can predict the temperature field of the motorized spindle with high accuracy.

  18. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  19. Dynamics Analysis of Unbalanced Motorized Spindles Supported on Ball Bearings

    Directory of Open Access Journals (Sweden)

    Junfeng Liu

    2016-01-01

    Full Text Available This paper presents an improved dynamic model for unbalanced high speed motorized spindles. The proposed model includes a Hertz contact force model which takes into the internal clearance and an unbalanced electromagnetic force model based on the energy of the air magnetic field. The nonlinear characteristic of the model is analysed by Lyapunov stability theory and numerical analysis to study the dynamic properties of the spindle system. Finally, a dynamic operating test is carried out on a DX100A-24000/20-type motorized spindle. The good agreement between the numerical solutions and the experimental data indicates that the proposed model is capable of accurately predicting the dynamic properties of motorized spindles. The influence of the unbalanced magnetic force on the system is studied, and the sensitivities of the system parameters to the critical speed of the system are obtained. These conclusions are useful for the dynamic design of high speed motorized spindles.

  20. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    Science.gov (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  1. TFG-MET fusion in an infantile spindle cell sarcoma with neural features

    NARCIS (Netherlands)

    Flucke, U.E.; Noesel, M.M. van; Wijnen, M.; Zhang, L.; Chen, C.L.; Sung, Y.S.; Antonescu, C.R.

    2017-01-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell

  2. Germline-Specific MATH-BTB Substrate Adaptor MAB1 Regulates Spindle Length and Nuclei Identity in Maize[W

    Science.gov (United States)

    Juranić, Martina; Srilunchang, Kanok-orn; Krohn, Nádia Graciele; Leljak-Levanić, Dunja; Sprunck, Stefanie; Dresselhaus, Thomas

    2012-01-01

    Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s). PMID:23250449

  3. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit.

    Directory of Open Access Journals (Sweden)

    Cheen Fei Chin

    2016-07-01

    Full Text Available Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS formation at the division site to drive acto-myosin ring (AMR constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit.

  4. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    Science.gov (United States)

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  5. Three-dimensional oriented attachment growth of single-crystal pre-perovskite PbTiO3 hollowed fibers

    KAUST Repository

    Zhao, Ruoyu; Li, Ming; Ren, Zhaohui; Zhu, Yihan; Han, Gaorong

    2017-01-01

    Hollowed single-crystal pre-perovskite PbTiO fibers (PP-PTF) were successfully synthesized via a polyvinyl alcohol (PVA) assisted hydrothermal process. The as-prepared PP-PTF were characterized to be 0.3-1 μm in diameter and tens of micrometers

  6. Force encoding in muscle spindles during stretch of passive muscle.

    Directory of Open Access Journals (Sweden)

    Kyle P Blum

    2017-09-01

    Full Text Available Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle

  7. Force encoding in muscle spindles during stretch of passive muscle.

    Science.gov (United States)

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions

  8. A New Approach to Spindle Radial Error Evaluation Using a Machine Vision System

    Directory of Open Access Journals (Sweden)

    Kavitha C.

    2017-03-01

    Full Text Available The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.

  9. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    NARCIS (Netherlands)

    Adamczyk, M.; Genzel, L.K.E.; Dresler, M.; Steiger, A.; Friess, E.

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle

  10. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  11. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    Science.gov (United States)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  12. Relationship between focal penicillin spikes and cortical spindles in the cerveau isolé cat.

    Science.gov (United States)

    McLachlan, R S; Kaibara, M; Girvin, J P

    1983-01-01

    Using the unanesthetized, cerveau isolé preparation in the cat, the association between artificially induced penicillin (PCN) spikes and spontaneously occurring electrocorticographic (ECoG) spindles was investigated. Spikes were elicited by surface application of small pledgets of PCN. After the application of PCN, there was a decrease in spindle amplitude but no change in frequency, duration, or spindle wave frequency in the area of the focus. Examination of the times of occurrence of the spikes and spindles disclosed that in the majority of cases, within a few minutes of the initiation of the foci, there was very high simultaneity, usually 100% between the occurrences of these two events. Examination of the times of occurrence of the spikes within the ECoG spindles failed to disclose any compelling evidence which would favor either the hypothesis that spikes "trigger" spindles or the hypothesis that spindles predispose to focal spikes. Thus, whether spikes trigger spindles, or spikes simply occur in a nonspecific manner during the occurrence of the spindle, or whether it is a combination of both these explanations, must remain an open question on the basis of the data available.

  13. Sleep Spindles and Intelligence in Early Childhood--Developmental and Trait-Dependent Aspects

    Science.gov (United States)

    Ujma, Péter P.; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-01-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our…

  14. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    Science.gov (United States)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  15. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance

    International Nuclear Information System (INIS)

    Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng

    2015-01-01

    Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.

  16. Frequency Response Studies using Receptance Coupling Approach in High Speed Spindles

    Science.gov (United States)

    Shaik, Jakeer Hussain; Ramakotaiah, K.; Srinivas, J.

    2018-01-01

    In order to assess the stability of high speed machining, estimate the frequency response at the end of tool tip is of great importance. Evaluating dynamic response of several combinations of integrated spindle-tool holder-tool will consume a lot of time. This paper presents coupled field dynamic response at tool tip for the entire integrated spindle tool unit. The spindle unit is assumed to be relying over the front and rear bearings and investigated using the Timoshenko beam theory to arrive the receptances at different locations of the spindle-tool unit. The responses are further validated with conventional finite element model as well as with the experiments. This approach permits quick outputs without losing accuracy of solution and further these methods are utilized to analyze the various design variables on system dynamics. The results obtained through this analysis are needed to design the better spindle unit in an attempt to reduce the frequency amplitudes at the tool tip to improvise the milling stability during cutting process.

  17. Sleep Spindle Detection and Prediction Using a Mixture of Time Series and Chaotic Features

    Directory of Open Access Journals (Sweden)

    Amin Hekmatmanesh

    2017-01-01

    Full Text Available It is well established that sleep spindles (bursts of oscillatory brain electrical activity are significant indicators of learning, memory and some disease states. Therefore, many attempts have been made to detect these hallmark patterns automatically. In this pilot investigation, we paid special attention to nonlinear chaotic features of EEG signals (in combination with linear features to investigate the detection and prediction of sleep spindles. These nonlinear features included: Higuchi's, Katz's and Sevcik's Fractal Dimensions, as well as the Largest Lyapunov Exponent and Kolmogorov's Entropy. It was shown that the intensity map of various nonlinear features derived from the constructive interference of spindle signals could improve the detection of the sleep spindles. It was also observed that the prediction of sleep spindles could be facilitated by means of the analysis of these maps. Two well-known classifiers, namely the Multi-Layer Perceptron (MLP and the K-Nearest Neighbor (KNN were used to distinguish between spindle and non-spindle patterns. The MLP classifier produced a~high discriminative capacity (accuracy = 94.93%, sensitivity = 94.31% and specificity = 95.28% with significant robustness (accuracy ranging from 91.33% to 94.93%, sensitivity varying from 91.20% to 94.31%, and specificity extending from 89.79% to 95.28% in separating spindles from non-spindles. This classifier also generated the best results in predicting sleep spindles based on chaotic features. In addition, the MLP was used to find out the best time window for predicting the sleep spindles, with the experimental results reaching 97.96% accuracy.

  18. PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte.

    Science.gov (United States)

    Tang, An; Shi, Peiliang; Song, Anying; Zou, Dayuan; Zhou, Yue; Gu, Pengyu; Huang, Zan; Wang, Qinghua; Lin, Zhaoyu; Gao, Xiang

    2016-06-02

    Studies using in vitro cultured oocytes have indicated that the protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, participates in multiple steps of meiosis. Details of oocyte maturation regulation by PP2A remain unclear and an in vivo model can provide more convincing information. Here, we inactivated PP2A by mutating genes encoding for its catalytic subunits (PP2Acs) in mouse oocytes. We found that eliminating both PP2Acs caused female infertility. Oocytes lacking PP2Acs failed to complete 1(st) meiotic division due to chromosome misalignment and abnormal spindle assembly. In mitosis, PP2A counteracts Aurora kinase B/C (AurkB/C) to facilitate correct kinetochore-microtubule (KT-MT) attachment. In meiosis I in oocyte, we found that PP2Ac deficiency destabilized KT-MT attachments. Chemical inhibition of AurkB/C in PP2Ac-null oocytes partly restored the formation of lateral/merotelic KT-MT attachments but not correct KT-MT attachments. Taken together, our findings demonstrate that PP2Acs are essential for chromosome alignments and regulate the formation of correct KT-MT attachments in meiosis I in oocytes.

  19. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    International Nuclear Information System (INIS)

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-01-01

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules

  20. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  1. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  2. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.

    Science.gov (United States)

    Luo, Yongxiang; Zhai, Dong; Huan, Zhiguang; Zhu, Haibo; Xia, Lunguo; Chang, Jiang; Wu, Chengtie

    2015-11-04

    Three-dimensional printing technologies have shown distinct advantages to create porous scaffolds with designed macropores for application in bone tissue engineering. However, until now, 3D-printed bioceramic scaffolds only possessing a single type of macropore have been reported. Generally, those scaffolds with a single type of macropore have relatively low porosity and pore surfaces, limited delivery of oxygen and nutrition to surviving cells, and new bone tissue formation in the center of the scaffolds. Therefore, in this work, we present a useful and facile method for preparing hollow-struts-packed (HSP) bioceramic scaffolds with designed macropores and multioriented hollow channels via a modified coaxial 3D printing strategy. The prepared HSP scaffolds combined high porosity and surface area with impressive mechanical strength. The unique hollow-struts structures of bioceramic scaffolds significantly improved cell attachment and proliferation and further promoted formation of new bone tissue in the center of the scaffolds, indicating that HSP ceramic scaffolds can be used for regeneration of large bone defects. In addition, the strategy can be used to prepare other HSP ceramic scaffolds, indicating a universal application for tissue engineering, mechanical engineering, catalysis, and environmental materials.

  3. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted versus fixed frequencies

    Directory of Open Access Journals (Sweden)

    Péter Przemyslaw Ujma

    2015-02-01

    Full Text Available Sleep spindles are frequently studied for their relationship with state and trait cognitive variables, and they are thought to play an important role in sleep-related memory consolidation. Due to their frequent occurrence in NREM sleep, the detection of sleep spindles is only feasible using automatic algorithms, of which a large number is available. We compared subject averages of the spindle parameters computed by a fixed frequency (11-13 Hz for slow spindles, 13-15 Hz for fast spindles automatic detection algorithm and the individual adjustment method (IAM, which uses individual frequency bands for sleep spindle detection. Fast spindle duration and amplitude are strongly correlated in the two algorithms, but there is little overlap in fast spindle density and slow spindle parameters in general. The agreement between fixed and manually determined sleep spindle frequencies is limited, especially in case of slow spindles. This is the most likely reason for the poor agreement between the two detection methods in case of slow spindle parameters. Our results suggest that while various algorithms may reliably detect fast spindles, a more sophisticated algorithm primed to individual spindle frequencies is necessary for the detection of slow spindles as well as individual variations in the number of spindles in general.

  4. Simplified Dynamic Analysis of Grinders Spindle Node

    Science.gov (United States)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  5. Material Choice for spindle of machine tools

    Science.gov (United States)

    Gouasmi, S.; Merzoug, B.; Abba, G.; Kherredine, L.

    2012-02-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  6. Material Choice for spindle of machine tools

    International Nuclear Information System (INIS)

    Gouasmi, S; Merzoug, B; Kherredine, L; Abba, G

    2012-01-01

    The requirements of contemporary industry and the flashing development of modern sciences impose restrictions on the majority of the elements of machines; the resulting financial constraints can be satisfied by a better output of the production equipment. As for those concerning the design, the resistance and the correct operation of the product, these require the development of increasingly precise parts, therefore the use of increasingly powerful tools [5]. The precision of machining and the output of the machine tools are generally determined by the precision of rotation of the spindle, indeed, more this one is large more the dimensions to obtain are in the zone of tolerance and the defects of shape are minimized. During the development of the machine tool, the spindle which by definition is a rotating shaft receiving and transmitting to the work piece or the cutting tool the rotational movement, must be designed according to certain optimal parameters to be able to ensure the precision required. This study will be devoted to the choice of the material of the spindle fulfilling the imposed requirements of precision.

  7. Pituitary spindle cell oncocytoma

    Directory of Open Access Journals (Sweden)

    Soledad Sosa

    2018-01-01

    Full Text Available Spindle cell oncocytoma is an infrequent benign non-endocrine sellar neoplasm. Due to its similar morphology to pituitary adenomas, consideration of this differential diagnosis would conduce to a more careful surgical approach in order to avoid intraoperative bleeding and aiming to a complete resection, on which depends long-term outcomes. We present the case of a 60-year-old male who complained about visual abnormalities, with computerized visual field confirmation. On biochemistry, a panhypopituitarism was detected. The brain magnetic resonance images showed a sellar mass. A non-functioning pituitary macroadenoma was presumptively diagnosed and due to the visual impairment, surgical transesphenoidal treatment was indicated. The histological diagnosis was spindle cell oncocytoma. Five months after surgery, the control image demonstrated a lesion that was considered as remnant tumor, hence radiosurgery was performed. During the follow-up, the tumor reduced its size and four years after initial treatment, the sellar resonance imaging showed disappearance of the residual tumor. Communication of new cases of this rare entity will enlarge the existing evidence and will help to determinate the most effective treatment and prognosis.

  8. Sleep Spindles as Biomarker for Early Detection of Neurodegenerative Disorders

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to the use of sleep spindles as a novel biomarker for early diagnosis of synucleinopathies, in particular Parkinson's disease (PD). The method is based on automatic detection of sleep spindles. The method may be combined with measurements of one or more further...

  9. Automatic sleep spindle detection: Benchmarking with fine temporal resolution using open science tools

    Directory of Open Access Journals (Sweden)

    Christian eO'Reilly

    2015-06-01

    Full Text Available Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: 1 that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; 2 because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; 3 reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew’s correlation coefficient, F1-score, or Cohen’s κ is necessary for adequate evaluation; 4 reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; 5 performance differences between tested automated detectors were found to be similar to those between available expert scorings; 6 much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldom posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment.

  10. Sleep spindles may predict response to cognitive-behavioral therapy for chronic insomnia.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Hatch, Benjamin; Salimi, Ali; Mograss, Melodee; Boucetta, Soufiane; O'Byrne, Jordan; Brandewinder, Marie; Berthomier, Christian; Gouin, Jean-Philippe

    2017-11-01

    While cognitive-behavioral therapy for insomnia constitutes the first-line treatment for chronic insomnia, only few reports have investigated how sleep architecture relates to response to this treatment. In this pilot study, we aimed to determine whether pre-treatment sleep spindle density predicts treatment response to cognitive-behavioral therapy for insomnia. Twenty-four participants with chronic primary insomnia participated in a 6-week cognitive-behavioral therapy for insomnia performed in groups of 4-6 participants. Treatment response was assessed using the Pittsburgh Sleep Quality Index and the Insomnia Severity Index measured at pre- and post-treatment, and at 3- and 12-months' follow-up assessments. Secondary outcome measures were extracted from sleep diaries over 7 days and overnight polysomnography, obtained at pre- and post-treatment. Spindle density during stage N2-N3 sleep was extracted from polysomnography at pre-treatment. Hierarchical linear modeling analysis assessed whether sleep spindle density predicted response to cognitive-behavioral therapy. After adjusting for age, sex, and education level, lower spindle density at pre-treatment predicted poorer response over the 12-month follow-up, as reflected by a smaller reduction in Pittsburgh Sleep Quality Index over time. Reduced spindle density also predicted lower improvements in sleep diary sleep efficiency and wake after sleep onset immediately after treatment. There were no significant associations between spindle density and changes in the Insomnia Severity Index or polysomnography variables over time. These preliminary results suggest that inter-individual differences in sleep spindle density in insomnia may represent an endogenous biomarker predicting responsiveness to cognitive-behavioral therapy. Insomnia with altered spindle activity might constitute an insomnia subtype characterized by a neurophysiological vulnerability to sleep disruption associated with impaired responsiveness to

  11. Spindle-cell carcinoma of esophagus: a case report

    International Nuclear Information System (INIS)

    Kim, Ji Chang; Lee, Jae Mun; Jung, Seung Eun; Lee, Kyo Young; Hahn, Seong Tai; Kim, Man Deuk

    2001-01-01

    Spindle-cell carcinoma of the esophagus is a rare malignant tumor composed of both carcinomatous and sarcomatous elements, and has generated many terminology problems. It is characterized by a bulky polypoid intraluminal mass with a lobulated surface located in the middle third of the esophagus. Local expansion of this organ is observed. The lesion may be pedunculated but despite its bulk, causes little obstruction. We report the imaging findings of a case of spindle-cell carcinoma arising in the upper esophagus

  12. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M

    2013-03-20

    Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis.

    Science.gov (United States)

    Wang, HaiYang; Jo, Yu-Jin; Sun, Tian-Yi; Namgoong, Suk; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2016-12-01

    To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  15. Breast spindle cell tumours: about eight cases

    Directory of Open Access Journals (Sweden)

    Abd El All Howayda S

    2006-07-01

    Full Text Available Abstract Background Breast spindle cell tumours (BSCTs, although rare, represent a heterogeneous group with different treatment modalities. This work was undertaken to evaluate the utility of fine needle aspiration cytology (FNAC, histopathology and immunohistochemistry (IHC in differentiating BSCTs. Methods FNAC of eight breast masses diagnosed cytologically as BSCTs was followed by wide excision biopsy. IHC using a panel of antibodies against vimentin, pan-cytokeratin, s100, desmin, smooth muscle actin, CD34, and CD10 was evaluated to define their nature. Results FNAC defined the tumors as benign (n = 4, suspicious (n = 2 and malignant (n = 3, based on the cytopathological criteria of malignancy. Following wide excision biopsy, the tumors were reclassified into benign (n = 5 and malignant (n = 3. In the benign group, the diagnosis was raised histologically and confirmed by IHC for 3 cases (one spindle cell lipoma, one myofibroblastoma and one leiomyoma. For the remaining two cases, the diagnosis was set up after IHC (one fibromatosis and one spindle cell variant of adenomyoepithelioma. In the malignant group, a leiomyosarcoma was diagnosed histologically, while IHC was crucial to set up the diagnosis of one case of spindle cell carcinoma and one malignant myoepithelioma. Conclusion FNAC in BSCTs is an insufficient tool and should be followed by wide excision biopsy. The latter technique differentiate benign from malignant BSCTs and is able in 50% of the cases to set up the definite diagnosis. IHC is of value to define the nature of different benign lesions and is mandatory in the malignant ones for optimal treatment. Awareness of the different types of BSCTs prevents unnecessary extensive therapeutic regimes.

  16. Comparison of a Four-Section Spindle and Stomacher for Efficacy of Detaching Microorganisms from Fresh Vegetables.

    Science.gov (United States)

    Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun

    2015-07-01

    This study was undertaken to compare the effect of the spindle and stomacher for detaching microorganisms from fresh vegetables. The spindle is an apparatus for detaching microorganisms from food surfaces, which was developed in our laboratory. When processed with the spindle, food samples were barely disrupted, the original shape was maintained, and the diluent was clear, facilitating further detection analysis more easily than with stomacher treatment. The four-section spindle consists of four sample bag containers (A, B, C, and D) to economize time and effort by simultaneously processing four samples. The aerobic plate counts (APC) of 50 fresh vegetable samples were measured following spindle and stomacher treatment. Correlations between the two methods for each section of the spindle and stomacher were very high (R(2) = 0.9828 [spindle compartment A; Sp A], 0.9855 [Sp B], 0.9848 [Sp C], and 0.9851 [Sp D]). One-tenth milliliter of foodborne pathogens suspensions was inoculated onto surfaces of food samples, and ratios of spindle-to-stomacher enumerations were close to 1.00 log CFU/g between every section of the spindle and stomacher. One of the greatest features of the spindle is that it can treat large-sized samples that exceed 200 g. Uncut whole apples, green peppers, potatoes, and tomatoes were processed by the spindle and by hand massaging by 2 min. Large-sized samples were also assayed for aerobic plate count and recovery of the three foodborne pathogens, and the difference between each section of the spindle and hand massaging was not significant (P > 0.05). This study demonstrated that the spindle apparatus can be an alternative device for detaching microorganisms from all fresh vegetable samples for microbiological analysis by the food processing industry.

  17. Age-related Changes In Sleep Spindles Characteristics During Daytime Recovery Following a 25-Hour Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    Thaïna eRosinvil

    2015-06-01

    Full Text Available Objectives: The mechanisms underlying sleep spindles (~11-15Hz; >0.5s help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g. daytime, even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups.Methods: Twenty-nine young (15 women and 14 men; 27.3 ± 5.0 and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1 healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artefact-free NREM sleep epochs. Spindle density (nb/min, amplitude (μV, frequency (Hz and duration (s were analyzed on parasagittal (linked-ears derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects.Conclusion: These results suggest that the interaction between homeostatic and circadian pressure module spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep.

  18. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  19. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    Science.gov (United States)

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients. © 2015 European Sleep Research Society.

  20. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Directory of Open Access Journals (Sweden)

    Laura eRay

    2015-09-01

    Full Text Available A spindle detection method was developed that: 1 extracts the signal of interest (i.e., spindle-related phasic changes in sigma relative to ongoing background sigma activity using complex demodulation, 2 accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and 3 employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile. Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles.

  1. Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles.

    Science.gov (United States)

    Coelho, Paula A; Bury, Leah; Sharif, Bedra; Riparbelli, Maria G; Fu, Jingyan; Callaini, Giuliano; Glover, David M; Zernicka-Goetz, Magdalena

    2013-12-09

    During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  3. Life Cycle Characterization of Sulfolobus Monocaudavirus 1, an Extremophilic Spindle-Shaped Virus with Extracellular Tail Development.

    Science.gov (United States)

    Uldahl, Kristine B; Jensen, Signe B; Bhoobalan-Chitty, Yuvaraj; Martínez-Álvarez, Laura; Papathanasiou, Pavlos; Peng, Xu

    2016-06-15

    We provide here, for the first time, insights into the initial infection stages of a large spindle-shaped archaeal virus and explore the following life cycle events. Our observations suggest that Sulfolobus monocaudavirus 1 (SMV1) exhibits a high adsorption rate and that virions adsorb to the host cells via three distinct attachment modes: nosecone association, body association, and body/tail association. In the body/tail association mode, the entire virion, including the tail(s), aligns to the host cell surface and the main body is greatly flattened, suggesting a possible fusion entry mechanism. Upon infection, the intracellular replication cycle lasts about 8 h, at which point the virions are released as spindle-shaped tailless particles. Replication of the virus retarded host growth but did not cause lysis of the host cells. Once released from the host and at temperatures resembling that of its natural habitat, SMV1 starts developing one or two tails. This exceptional property of undergoing a major morphological development outside, and independently of, the host cell has been reported only once before for the related Acidianus two-tailed virus. Here, we show that SMV1 can develop tails of more than 900 nm in length, more than quadrupling the total virion length. Very little is known about the initial life cycle stages of viruses infecting hosts of the third domain of life, Archaea This work describes the first example of an archaeal virus employing three distinct association modes. The virus under study, Sulfolobus monocaudavirus 1, is a representative of the large spindle-shaped viruses that are frequently found in acidic hot springs. The results described here will add valuable knowledge about Archaea, the least studied domain in the virology field. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Different maturational changes of fast and slow sleep spindles in the first four years of life.

    Science.gov (United States)

    D'Atri, Aurora; Novelli, Luana; Ferrara, Michele; Bruni, Oliviero; De Gennaro, Luigi

    2018-02-01

    Massive changes in brain morphology and function in the first years of life reveal a postero-anterior trajectory of cortical maturation accompanied by regional modifications of NREM sleep. One of the most sensible marker of this maturation process is represented by electroencephalographic (EEG) activity within the frequency range of sleep spindles. However, direct evidence that these changes actually reflect maturational modifications of fast and slow spindles still lacks. Our study aimed at answering the following questions: 1. Do cortical changes at 11.50 Hz frequency correspond to slow spindles? 2. Do fast and slow spindles show different age trajectories and different topographical distributions? 3. Do changes in peak frequency explain age changes of slow and fast spindles? We measured the antero-posterior changes of slow and fast spindles in the first 60 min of nightly sleep of 39 infants and children (0-48 mo.). We found that (A) changes of slow spindles from birth to childhood mostly affect frontal areas (B) variations of fast and slow spindles across age groups go in opposite direction, the latter progressively increasing across ages; (C) this process is not merely reducible to changes of spindle frequency. As a main finding, our cross-sectional study shows that the first form of mature spindle (i.e., corresponding to the adult phasic event of NREM sleep) is marked by the emergence of slow spindles on anterior regions around the age of 12 months. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Nishida M

    2016-01-01

    Full Text Available Masaki Nishida,1 Yusaku Nakashima,2 Toru Nishikawa11Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo, 2Medical Technology Research Laboratory, Research and Development Division, Medical Business Unit, Sony Corporation, Tokyo, JapanIntroduction: Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process.Methods: Healthy control participants (n=17 and patients medicated for major depressive disorder (n=11 were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement. Participants' brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs. Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz and slow-frequency spindle activity (10.5–12.5 Hz.Result: Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups.Conclusion: Because the changes in slow

  6. Valve spindle gland

    International Nuclear Information System (INIS)

    Burda, Z.; Harazim, A.; Kerlin, K.

    1979-01-01

    A gland is proposed of the valve spindle designed for radioactive or otherwise harmful media, such as in nuclear power plant primary circuits. The gland is installed in the valve cover and consists of a primary and a secondary part and of a gland case partitioning the gland space into two chambers. The bottom face of the gland case is provided with a double-sided collar for controlling the elements of the bottom primary gland while the top face is provided with a removable flange. (M.S.)

  7. On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System

    Science.gov (United States)

    Wang, Joseph

    Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.

  8. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob

    2012-01-01

    the spindle between ParRC complexes on sister plasmids. Using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture...... of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles....

  9. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    International Nuclear Information System (INIS)

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; PETTEYS, REBECCA; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    1999-01-01

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller

  10. Afferent Innervation, Muscle Spindles, and Contractures Following Neonatal Brachial Plexus Injury in a Mouse Model.

    Science.gov (United States)

    Nikolaou, Sia; Hu, Liangjun; Cornwall, Roger

    2015-10-01

    We used an established mouse model of elbow flexion contracture after neonatal brachial plexus injury (NBPI) to test the hypothesis that preservation of afferent innervation protects against contractures and is associated with preservation of muscle spindles and ErbB signaling. A model of preganglionic C5 through C7 NBPI was first tested in mice with fluorescent axons using confocal imaging to confirm preserved afferent innervation of spindles despite motor end plate denervation. Preganglionic and postganglionic injuries were then created in wild-type mice. Four weeks later, we assessed total and afferent denervation of the elbow flexors by musculocutaneous nerve immunohistochemistry. Biceps muscle volume and cross-sectional area were measured by micro computed tomography. An observer who was blinded to the study protocol measured elbow flexion contractures. Biceps spindle and muscle fiber morphology and ErbB signaling pathway activity were assessed histologically and immunohistochemically. Preganglionic and postganglionic injuries caused similar total denervation and biceps muscle atrophy. However, after preganglionic injuries, afferent innervation was partially preserved and elbow flexion contractures were significantly less severe. Spindles degenerated after postganglionic injury but were preserved after preganglionic injury. ErbB signaling was inactivated in denervated spindles after postganglionic injury but ErbB signaling activity was preserved in spindles after preganglionic injury with retained afferent innervation. Preganglionic and postganglionic injuries were associated with upregulation of ErbB signaling in extrafusal muscle fibers. Contractures after NBPI are associated with muscle spindle degeneration and loss of spindle ErbB signaling activity. Preservation of afferent innervation maintained spindle development and ErbB signaling activity, and protected against contractures. Pharmacologic modulation of ErbB signaling, which is being investigated as a

  11. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    Science.gov (United States)

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  12. Sequential activities of Dynein, Mud and Asp in centrosome-spindle coupling maintain centrosome number upon mitosis.

    Science.gov (United States)

    Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns

    2017-10-15

    Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.

  13. Spindle Cell Carcinoma of the hypopharynx: a case report

    Directory of Open Access Journals (Sweden)

    Dillu Ram Kandel

    2018-03-01

    Full Text Available Spindle cell carcinoma of hpopharynx is a rare pathology. It is a poorly differentiated variant of squamous cell carcinoma and morphologically resembles sarcoma. This is a disease of old age. It is usually associated with smoking and alcohol abuse. When it is associated with radiation exposure history it behaves more aggressively. Surgery is considered as the main modality of treatment and adjuvant radiotherapy if necessary. Here we present a case of 79 year old male with spindle cell carcinomaof right piriform fossa with 2-month history of progressive dysphasia and hoarseness that has been affecting his ability to speak and swallow with history of weight loss and past history of radiotherapy. So possibility of spindle cell carcinoma of the hypopharynx should beconsidered in an old patient with rapidly developing swelling of the hypopharynx with past history of radiation exposure. As it is a highly aggressive disease it should be treated timely and more aggressively to prolong the survival of the patient.   

  14. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    Science.gov (United States)

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  15. The spindle assembly checkpoint: More than just keeping track of the spindle.

    OpenAIRE

    Lawrence, KS; Engebrecht, J

    2015-01-01

    Genome stability is essential for cell proliferation and survival. Consequently, genome integrity is monitored by two major checkpoints, the DNA damage response (DDR) and the spindle assembly checkpoint (SAC). The DDR monitors DNA lesions in G1, S, and G2 stages of the cell cycle and the SAC ensures proper chromosome segregation in M phase. There have been extensive studies characterizing the roles of these checkpoints in response to the processes for which they are named; however, emerging e...

  16. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Min-Yin Liu

    2017-05-01

    Full Text Available Sleep spindles are brief bursts of brain activity in the sigma frequency range (11–16 Hz measured by electroencephalography (EEG mostly during non-rapid eye movement (NREM stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Conventionally, sleep spindles are identified by expert sleep clinicians via visual inspection of EEG signals. The process is laborious and the results are inconsistent among different experts. To resolve the problem, numerous computerized methods have been developed to automate the process of sleep spindle identification. Still, the performance of these automated sleep spindle detection methods varies inconsistently from study to study. There are two reasons: (1 the lack of common benchmark databases, and (2 the lack of commonly accepted evaluation metrics. In this study, we focus on tackling the second problem by proposing to evaluate the performance of a spindle detector in a multi-objective optimization context and hypothesize that using the resultant Pareto fronts for deriving evaluation metrics will improve automatic sleep spindle detection. We use a popular multi-objective evolutionary algorithm (MOEA, the Strength Pareto Evolutionary Algorithm (SPEA2, to optimize six existing frequency-based sleep spindle detection algorithms. They include three Fourier, one continuous wavelet transform (CWT, and two Hilbert-Huang transform (HHT based algorithms. We also explore three hybrid approaches. Trained and tested on open-access DREAMS and MASS databases, two new hybrid methods of combining Fourier with HHT algorithms show significant performance improvement with F1-scores of 0.726–0.737.

  17. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  18. Experimental study on bearing preload optimum of machine tool spindle

    International Nuclear Information System (INIS)

    Xu Tao; Xu Guanghua; Zhang Qin; Hua Cheng; Zhang Hu; Jiang Kuosheng

    2012-01-01

    An experimental study is conducted to investigate the possibility and the effect of temperature rise and vibration level of bearing by adjusting axial preloads and radial loads in spindle bearing test rig. The shaft of the test rig is driven by a motorized high speed spindle at the range of 0∼20000 rpm. The axial preloads and radial loads on bearings are controlled by using hydraulic pressure which can be adjusted automatically. Temperature rise and radial vibration of test bearings are measured by thermocouples and Polytec portable laser vibrometer PDV100. Experiment shows that the temperature rise of bearings is nonlinear varying with the increase of radial loads, but temperature rise almost increases linearly with the increase of axial preload and rotating speed. In this paper, an alternate axial preload is used for bearings. When the rotating speed passes through the critical speed of the shaft, axial preload of bearings will have a remarkable effect. The low preload could reduce bearing vibration and temperature rise for bearings as well. At the others speed, the high preload could improve the vibration performance of high speed spindle and the bearing temperature was lower than that of the constant pressure preload spindle.

  19. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  20. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles.

    Science.gov (United States)

    Decker, Franziska; Oriola, David; Dalton, Benjamin; Brugués, Jan

    2018-01-11

    Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting. © 2018, Decker et al.

  1. Investigation of the rolling motion of a hollow cylinder using a smartphone’s digital compass

    Science.gov (United States)

    Wattanayotin, Phattara; Puttharugsa, Chokchai; Khemmani, Supitch

    2017-07-01

    This study used a smartphone’s digital compass to observe the rolling motion of a hollow cylinder on an inclined plane. The smartphone (an iPhone 4s) was attached to the end of one side of a hollow cylinder to record the experimental data using the SensorLog application. In the experiment, the change of angular position was measured by the smartphone’s digital compass. The obtained results were then analyzed and calculated to determine various parameters of the motion, such as the angular velocity, angular acceleration, critical angle, and coefficient of static friction. The experimental results obtained from using the digital compass were compared with those obtained from using a gyroscope sensor. Moreover, the results obtained from both sensors were consistent with the calculations for the rolling motion. We expect that this experiment will be valuable for use in physics laboratories.

  2. A SUMOylation Motif in Aurora-A: Implications for Spindle Dynamics and Oncogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pérez de Castro, Ignacio; Aguirre-Portolés, Cristina [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Martin, Benedicte [CNRS-UMR 6061, Institut de Génétique et Développement de Rennes, IFR 140 GFAS, Faculté de Médecine, Université Rennes 1, Rennes (France); Fernández-Miranda, Gonzalo [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Klotzbucher, Andrea; Kubbutat, Michael H. G. [ProQinase GmBH, Freiburg (Germany); Megías, Diego [Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain); Arlot-Bonnemains, Yannick [CNRS-UMR 6061, Institut de Génétique et Développement de Rennes, IFR 140 GFAS, Faculté de Médecine, Université Rennes 1, Rennes (France); Malumbres, Marcos, E-mail: mmm@cnio.es, E-mail: iperez@cnio.es [Molecular Oncology Programme, Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid (Spain)

    2011-12-14

    Aurora-A is a serine/threonine kinase that plays critical roles in centrosome maturation, spindle dynamics, and chromosome orientation and it is frequently over-expressed in human cancers. In this work, we show that Aurora-A interacts with the SUMO-conjugating enzyme UBC9 and co-localizes with SUMO1 in mitotic cells. Aurora-A can be SUMOylated in vitro and in vivo. Mutation of the highly conserved SUMOylation residue lysine 249 significantly disrupts Aurora-A SUMOylation and mitotic defects characterized by defective and multipolar spindles ensue. The Aurora-A{sup K249R} mutant has normal kinase activity but displays altered dynamics at the mitotic spindle. In addition, ectopic expression of the Aurora-A{sup K249R} mutant results in a significant increase in susceptibility to malignant transformation induced by the Ras oncogene. These data suggest that modification by SUMO residues may control Aurora-A function at the spindle and that deficiency of SUMOylation of this kinase may have important implications for tumor development.

  3. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  4. Clathrin is spindle-associated but not essential for mitosis.

    Directory of Open Access Journals (Sweden)

    Joana Borlido

    Full Text Available Clathrin is a multimeric protein involved in vesicle coat assembly. Recently clathrin distribution was reported to change during the cell cycle and was found to associate with the mitotic spindle. Here we test whether the recruitment of clathrin to the spindle is indicative of a critical functional contribution to mitosis.Previously a chicken pre-B lymphoma cell line (DKO-R was developed in which the endogenous clathrin heavy chain alleles were replaced with the human clathrin heavy chain under the control of a tetracycline-regulatable promoter. Receptor-mediated and fluid-phase endocytosis were significantly inhibited in this line following clathrin knockout, and we used this to explore the significance of clathrin heavy chain expression for cell cycle progression. We confirmed using confocal microscopy that clathrin colocalised with tubulin at mitotic spindles. Using a propidium iodide flow cytometric assay we found no statistical difference in the cell cycle distribution of the knockout cells versus the wild-type. Additionally, we showed that the ploidy and the recovery kinetics following cell cycle arrest with nocodazole were unchanged by repressing clathrin heavy chain expression.We conclude that the association of clathrin with the mitotic spindle and the contribution of clathrin to endocytosis are evolutionarily conserved. However we find that the contribution of clathrin to mitosis is less robust and dependent on cellular context. In other cell-lines silencing RNA has been used by others to knockdown clathrin expression resulting in an increase in the mitotic index of the cells. We show an effect on the G2/M phase population of clathrin knockdown in HEK293 cells but show that repressing clathrin expression in the DKO-R cell-line has no effect on the size of this population. Consequently this work highlights the need for a more detailed molecular understanding of the recruitment and function of clathrin at the spindle, since the

  5. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations.

    Science.gov (United States)

    Yordanova, Juliana; Kolev, Vasil; Bruns, Eike; Kirov, Roumen; Verleger, Rolf

    2017-11-01

    The present study explored the sleep mechanisms which may support awareness of hidden regularities. Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  6. Warts phosphorylates mud to promote pins-mediated mitotic spindle orientation in Drosophila, independent of Yorkie.

    Science.gov (United States)

    Dewey, Evan B; Sanchez, Desiree; Johnston, Christopher A

    2015-11-02

    Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here, we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily conserved cell proliferation pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    Science.gov (United States)

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  8. Modulation of jaw muscle spindle afferent activity following intramuscular injections with hypertonic saline.

    Science.gov (United States)

    Ro, J Y; Capra, N F

    2001-05-01

    Transient noxious chemical stimulation of small diameter muscle afferents modulates jaw movement-related responses of caudal brainstem neurons. While it is likely that the effect is mediated from the spindle afferents in the mesencephalic nucleus (Vmes) via the caudally projecting Probst's tract, the mechanisms of pain induced modulations of jaw muscle spindle afferents is not known. In the present study, we tested the hypothesis that jaw muscle nociceptors gain access to muscle spindle afferents in the same muscle via central mechanisms and alter their sensitivity. Thirty-five neurons recorded from the Vmes were characterized as muscle spindle afferents based on their responses to passive jaw movements, muscle palpation, and electrical stimulation of the masseter nerve. Each cell was tested by injecting a small volume (250 microl) of either 5% hypertonic and/or isotonic saline into the receptor-bearing muscle. Twenty-nine units were tested with 5% hypertonic saline, of which 79% (23/29) showed significant modulation of mean firing rates (MFRs) during one or more phases of ramp-and-hold movements. Among the muscle spindle primary-like units (n = 12), MFRs of 4 units were facilitated, five reduced, two showed mixed responses and one unchanged. In secondary-like units (n = 17), MFRs of 9 were facilitated, three reduced and five unchanged. Thirteen units were tested with isotonic saline, of which 77% showed no significant changes of MFRs. Further analysis revealed that the hypertonic saline not only affected the overall output of muscle spindle afferents, but also increased the variability of firing and altered the relationship between afferent signal and muscle length. These results demonstrated that activation of muscle nociceptors significantly affects proprioceptive properties of jaw muscle spindles via central neural mechanisms. The changes can have deleterious effects on oral motor function as well as kinesthetic sensibility.

  9. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects

    DEFF Research Database (Denmark)

    Wendt, Sabrina Lyngbye; Christensen, Julie A. E.; Kempfner, Jacob

    2012-01-01

    Many of the automatic sleep spindle detectors currently used to analyze sleep EEG are either validated on young subjects or not validated thoroughly. The purpose of this study is to develop and validate a fast and reliable sleep spindle detector with high performance in middle aged subjects....... An automatic sleep spindle detector using a bandpass filtering approach and a time varying threshold was developed. The validation was done on sleep epochs from EEG recordings with manually scored sleep spindles from 13 healthy subjects with a mean age of 57.9 ± 9.7 years. The sleep spindle detector reached...

  10. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  11. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  12. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  13. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  14. Spindle frequency activity in the sleep EEG: individual differences and topographic distribution.

    Science.gov (United States)

    Werth, E; Achermann, P; Dijk, D J; Borbély, A A

    1997-11-01

    The brain topography of EEG power spectra in the frequency range of sleep spindles was investigated in 34 sleep recordings from 20 healthy young men. Referential (F3-A2, C3-A2, P3-A2 and O1-A2) and bipolar derivations (F3-C3, C3-P3 and P3-O1) along the anteroposterior axis were used. Sleep spindles gave rise to a distinct peak in the EEG power spectrum. The distribution of the peak frequencies pooled over subjects and derivations showed a bimodal pattern with modes at 11.5 and 13.0 Hz, and a trough at 12.25 Hz. The large inter-subject variation in peak frequency (range: 1.25 Hz) contrasted with the small intra-subject variation between derivations, non-REM sleep episodes and different nights. In some individuals and/or some derivations, only a single spindle peak was present. The topographic distributions from referential and bipolar recordings showed differences. The power showed a declining trend over consecutive non-REM sleep episodes in the low range of spindle frequency activity and a rising trend in the high range. The functional and topographic heterogeneity of sleep spindles in conjunction with the intra-subject stability of their frequency are important characteristics for the analysis of sleep regulation on the basis of the EEG.

  15. Left atrial spindle cell sarcoma – Case report

    Directory of Open Access Journals (Sweden)

    Nihar Mehta

    2012-07-01

    Full Text Available Primary spindle cell sarcoma of the left atrium is an extremely rare tumour. Surgical excision is the mainstay of treatment since it responds poorly to chemotherapy or radiotherapy. In spite of all the treatment, the prognosis remains poor due to inadvertent delay in diagnosis, few therapeutic options and propensity to metastasize. We present a 47-year-old male who underwent a surgical excision of a left atrial mass in February 2010. It was proved to be a high-grade spindle cell sarcoma on histopathology. He presented again in October 2010 with recurrence of the tumour for which he was re-operated. However, the tumour recurred again within one month, to which the patient succumbed.

  16. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods

    DEFF Research Database (Denmark)

    Warby, Simon C.; Wendt, Sabrina Lyngbye; Welinder, Peter

    2014-01-01

    to crowdsource spindle identification by human experts and non-experts, and we compared their performance with that of automated detection algorithms in data from middle- to older-aged subjects from the general population. We also refined methods for forming group consensus and evaluating the performance...... of event detectors in physiological data such as electroencephalographic recordings from polysomnography. Compared to the expert group consensus gold standard, the highest performance was by individual experts and the non-expert group consensus, followed by automated spindle detectors. This analysis showed...... that crowdsourcing the scoring of sleep data is an efficient method to collect large data sets, even for difficult tasks such as spindle identification. Further refinements to spindle detection algorithms are needed for middle- to older-aged subjects....

  17. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing.

    Science.gov (United States)

    Tsanas, Athanasios; Clifford, Gari D

    2015-01-01

    Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG) signal(s) by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g., Fourier transform-based approaches) which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g., more than one EEG channels, or prior hypnogram assessment). This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means toward probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT) with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz) is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts' sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%), outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts' assessment of detected spindles.

  18. Stage-independent, single lead EEG sleep spindle detection using the continuous wavelet transform and local weighted smoothing

    Directory of Open Access Journals (Sweden)

    Athanasios eTsanas

    2015-04-01

    Full Text Available Sleep spindles are critical in characterizing sleep and have been associated with cognitive function and pathophysiological assessment. Typically, their detection relies on the subjective and time-consuming visual examination of electroencephalogram (EEG signal(s by experts, and has led to large inter-rater variability as a result of poor definition of sleep spindle characteristics. Hitherto, many algorithmic spindle detectors inherently make signal stationarity assumptions (e.g. Fourier transform-based approaches which are inappropriate for EEG signals, and frequently rely on additional information which may not be readily available in many practical settings (e.g. more than one EEG channels, or prior hypnogram assessment. This study proposes a novel signal processing methodology relying solely on a single EEG channel, and provides objective, accurate means towards probabilistically assessing the presence of sleep spindles in EEG signals. We use the intuitively appealing continuous wavelet transform (CWT with a Morlet basis function, identifying regions of interest where the power of the CWT coefficients corresponding to the frequencies of spindles (11-16 Hz is large. The potential for assessing the signal segment as a spindle is refined using local weighted smoothing techniques. We evaluate our findings on two databases: the MASS database comprising 19 healthy controls and the DREAMS sleep spindle database comprising eight participants diagnosed with various sleep pathologies. We demonstrate that we can replicate the experts’ sleep spindles assessment accurately in both databases (MASS database: sensitivity: 84%, specificity: 90%, false discovery rate 83%, DREAMS database: sensitivity: 76%, specificity: 92%, false discovery rate: 67%, outperforming six competing automatic sleep spindle detection algorithms in terms of correctly replicating the experts’ assessment of detected spindles.

  19. Synthesis and surface modification of spindle-type magnetic nanoparticles: gold coating and PEG functionalization

    OpenAIRE

    Mendez-Garza , Juan; Wang , Biran; Madeira , Alexandra; Di-Giorgio , Christophe; Bossis , Georges

    2013-01-01

    International audience; In this paper, we describe the synthesis of gold coated spindle-type iron nanoparticles and its surface modification by a thiolated fluorescently-labelled polyethylene glycol (PEG) polymer. A forced hydrolysis of ferric salts in the presence of phosphate ions was used to produce α-Fe2O3 spindle-type particles. The oxide powders were first reduced to α-iron under high temperature and controlled dihydrogen atmosphere. Then, the resulting magnetic spindle-type particles w...

  20. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  1. White Matter Structure in Older Adults Moderates the Benefit of Sleep Spindles on Motor Memory Consolidation.

    Science.gov (United States)

    Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P

    2017-11-29

    Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of

  2. Aesthethic and masticatory rehabilitation on post mandibular resection with combination of hollow obturator and hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Arif Rachman

    2009-06-01

    Full Text Available Background: Replacing tooth lost caused by caries, periodontal disease, trauma and neoplasm including ameloblastoma which requires mandibular resection is important. Purpose: The aim of the study to rehabilitation of post mandibular resection with combination of hollow obturator and hybrid prosthesis. Case: A patient 25 years old, male, for having prosthesis to cover defect due to post right mandibular resection. Case Management: In this presented case, mandibular plate was applied due to spreading defect with losing almost a half body of mandible (class II modification 2 according to cantor and curtis classification. The design of therapy was mandibular obturator using hybrid prosthesis (removable partial denture metal frame and fixed splint crown with precision attachment with hollow obturator. The application was based on several advantages: good aesthetic performance, retention, stability, lighter weight and equal share of vertical load for teeth on non surgical site. The result of control I, II, III, showed that aesthetic performance, masticatory function, speech and swallowing were in good condition. Conclusion: The design of mandibular obturator using hybrid denture with hollow obturator could rehabilitate aesthetic performance, masticatory function, speech and swallowing for patient with post mandibular resection.

  3. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles.

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE→TC→Cortex. Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 →TC 1 →Cortex 1 and Cortex 1 →Cortex 2 →Cortex 3

  4. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2

  5. Online Dynamic Balance Technology for High Speed Spindle Based on Gain Parameter Adaption and Scheduling Control

    Directory of Open Access Journals (Sweden)

    Shihai Zhang

    2018-06-01

    Full Text Available Unbalance vibration is one of the main vibration forms of a high speed machine tool spindle. The overlarge unbalance vibration will have some adverse effects on the working life of the spindle system and the surface quality of the work-piece. In order to reduce the unbalance of a high speed spindle system, a pneumatic online dynamic balance device and its control system are presented in the paper. To improve the balance accuracy and adaptation of the balance system, the gain parameter adaption and scheduling control method are proposed first, and then the different balance effects of the influence coefficient method and the gain scheduling control method are compared through many dynamic balance experiments of the high speed spindle. The experimental results indicate that the gain parameters can be changed timely according to the transformation of the speed and kinetic parameters of the spindle system. The balance accuracy can be improved for a high speed spindle with time-varying characteristics, based on the adaptive gain scheduling control method.

  6. The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial.

    Science.gov (United States)

    Wamsley, Erin J; Shinn, Ann K; Tucker, Matthew A; Ono, Kim E; McKinley, Sophia K; Ely, Alice V; Goff, Donald C; Stickgold, Robert; Manoach, Dara S

    2013-09-01

    In schizophrenia there is a dramatic reduction of sleep spindles that predicts deficient sleep-dependent memory consolidation. Eszopiclone (Lunesta), a non-benzodiazepine hypnotic, acts on γ-aminobutyric acid (GABA) neurons in the thalamic reticular nucleus where spindles are generated. We investigated whether eszopiclone could increase spindles and thereby improve memory consolidation in schizophrenia. In a double-blind design, patients were randomly assigned to receive either placebo or 3 mg of eszopiclone. Patients completed Baseline and Treatment visits, each consisting of two consecutive nights of polysomnography. On the second night of each visit, patients were trained on the motor sequence task (MST) at bedtime and tested the following morning. Academic research center. Twenty-one chronic, medicated schizophrenia outpatients. We compared the effects of two nights of eszopiclone vs. placebo on stage 2 sleep spindles and overnight changes in MST performance. Eszopiclone increased the number and density of spindles over baseline levels significantly more than placebo, but did not significantly enhance overnight MST improvement. In the combined eszopiclone and placebo groups, spindle number and density predicted overnight MST improvement. Eszopiclone significantly increased sleep spindles, which correlated with overnight motor sequence task improvement. These findings provide partial support for the hypothesis that the spindle deficit in schizophrenia impairs sleep-dependent memory consolidation and may be ameliorated by eszopiclone. Larger samples may be needed to detect a significant effect on memory. Given the general role of sleep spindles in cognition, they offer a promising novel potential target for treating cognitive deficits in schizophrenia.

  7. CD30+ lymphoproliferative disorder with spindle-cell morphology.

    Science.gov (United States)

    Martires, Kathryn J; Cohen, Brandon E; Cassarino, David S

    2016-11-01

    Lymphomatoid papulosis (LyP) is classified as a CD30+ primary cutaneous lymphoproliferative disease. The phenotypic variability along the spectrum of CD30+ lymphoproliferative diseases is highlighted by the distinct histologic subtypes of LyP types A, B, C, and the more recently described types D, E, and F. We report the case of an elderly woman with a clinical presentation and histopathologic findings consistent with LyP, whose atypical CD30+ infiltrate uniquely demonstrated a spindle-cell morphology. To our knowledge, this is the first reported case of LyP characterized by CD30+ spindle-shaped cells, and may represent a new and distinct histologic variant of LyP. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Clathrin heavy chain 1 is required for spindle assembly and chromosome congression in mouse oocytes.

    Science.gov (United States)

    Zhao, Jie; Wang, Lu; Zhou, Hong-Xia; Liu, Li; Lu, Angeleem; Li, Guang-Peng; Schatten, Heide; Liang, Cheng-Guang

    2013-10-01

    Clathrin heavy chain 1 (CLTC) has been considered a “moonlighting protein” which acts in membrane trafficking during interphase and in stabilizing spindle fibers during mitosis. However, its roles in meiosis, especially in mammalian oocyte maturation, remain unclear. This study investigated CLTC expression and function in spindle formation and chromosome congression during mouse oocyte meiotic maturation. Our results showed that the expression level of CLTC increased after germinal vesicle breakdown (GVBD) and peaked in the M phase. Immunostaining results showed CLTC distribution throughout the cytoplasm in a cell cycle-dependent manner. Appearance and disappearance of CLTC along with β-tubulin (TUBB) could be observed during spindle dynamic changes. To explore the relationship between CLTC and microtubule dynamics, oocytes at metaphase were treated with taxol or nocodazole. CLTC colocalized with TUBB at the enlarged spindle and with cytoplasmic asters after taxol treatment; it disassembled and distributed into the cytoplasm along with TUBB after nocodazole treatment. Disruption of CLTC function using stealth siRNA caused a decreased first polar body extrusion rate and extensive spindle formation and chromosome congression defects. Taken together, these results show that CLTC plays an important role in spindle assembly and chromosome congression through a microtubule correlation mechanism during mouse oocyte maturation.

  9. Spindle Cell Metaplastic Breast Cancer: Case Report

    Directory of Open Access Journals (Sweden)

    Dursun Ozgur Karakas

    2013-08-01

    Conclusion: Spindle cell metaplastic breast cancer must be considered in differential diagnosis of breast cancers, and preoperative immunohistochemical examination, including cytokeratin and vimentin, must be added to pathological examination in intervening cases. [Arch Clin Exp Surg 2013; 2(4.000: 259-262

  10. Thermal Error Modelling of the Spindle Using Data Transformation and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Yanlei Li

    2015-01-01

    Full Text Available This paper proposes a new method for predicting spindle deformation based on temperature data. The method introduces the adaptive neurofuzzy inference system (ANFIS, which is a neurofuzzy modeling approach that integrates the kernel and geometrical transformations. By utilizing data transformation, the number of ANFIS rules can be effectively reduced and the predictive model structure can be simplified. To build the predictive model, we first map the original temperature data to a feature space with Gaussian kernels. We then process the mapped data with the geometrical transformation and make the data gather in the square region. Finally, the transformed data are used as input to train the ANFIS. A verification experiment is conducted to evaluate the performance of the proposed method. Six Pt100 thermal resistances are used to monitor the spindle temperature, and a laser displacement sensor is used to detect the spindle deformation. Experimental results show that the proposed method can precisely predict the spindle deformation and greatly improve the thermal performance of the spindle. Compared with back propagation (BP networks, the proposed method is more suitable for complex working conditions in practical applications.

  11. ANALYSIS OF HOLLOW COIL HELICAL EXTENSION SPRING AND THE STUDY OF OPTIMIZING THE WEIGHT

    OpenAIRE

    Naman Gupta*1, Manas purohit2 & Deepika potghan3

    2017-01-01

    This paper shows the study which deals with the weight reduction for tensile extension spring by changing the solid spring to hollow one. The springs which are generally used are in solid form due to which the weight of entire body in which the spring is attached gets increased. The forces which can be act on spring may be linear push or linear pull or radial type. This spring deflect by pulling and regain its shape when pulling is neglect. The weight of tensile spring is reduced by changing ...

  12. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  13. Cytokeratin: a Shortcut to Diagnose Spindle Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Dehghani Nazhvani A

    2017-09-01

    Full Text Available A relatively rare subtype of squamous cell carcinoma (SCC is spindle cell carcinoma (SPCC. It is composed of epithelium-derived spindle cells arranged in sheets with mesenchymal properties and small, hard-ly detectable regions of SCC, challenging its definite diagnosis. We encountered five cases of SPCC. In case one, chronic inflammation and subepithelial blister with leukoplakia was found 5 years before our examination. And later, exophytic features, keratotic papules and scar with elevated margins was seen on lateral border of the tongue. In case two, three and four, an abnormal soft tissue elevations were examined, and in the fifth case we examined the soft and bony speci-men from the posterior aspect of maxillary ridge. We evaluated all of them histologically and immunohistochemically for cytokeratin to reach final diagnosis.

  14. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.

    Science.gov (United States)

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji

    2018-03-27

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.

  15. Declarative memory performance is associated with the number of sleep spindles in elderly women.

    Science.gov (United States)

    Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert

    2012-09-01

    Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.

  16. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading...... to severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  18. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    DEFF Research Database (Denmark)

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J

    2013-01-01

    instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...

  19. Radiation-induced spindle cell sarcoma: A rare case report

    Directory of Open Access Journals (Sweden)

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  20. Method for automated building of spindle thermal model with use of CAE system

    Science.gov (United States)

    Kamenev, S. V.

    2018-03-01

    The spindle is one of the most important units of the metal-cutting machine tool. Its performance is critical to minimize the machining error, especially the thermal error. Various methods are applied to improve the thermal behaviour of spindle units. One of the most important methods is mathematical modelling based on the finite element analysis. The most common approach for its realization is the use of CAE systems. This approach, however, is not capable to address the number of important effects that need to be taken into consideration for proper simulation. In the present article, the authors propose the solution to overcome these disadvantages using automated thermal model building for the spindle unit utilizing the CAE system ANSYS.

  1. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  2. Hollow bunches production

    CERN Document Server

    Hancock, S

    2017-01-01

    Hollow bunches address the issue of high-brightnessbeams suffering from transverse emittance growth in a strongspace charge regime. During the Proton Synchrotron (PS)injection plateau, the negative space charge tune shift canpush the beam onto theQy=6integer resonance. Modify-ing the longitudinal bunch profile in order to reduce the peakline charge density alleviates the detrimental impact of spacecharge. To this end we first produce longitudinally hollowphase space distributions in the PS Booster by exciting aparametric resonance with the phase loop feedback system.These inherently flat bunches are then transferred to the PS,where the beam becomes less prone to the emittance growthcaused by the integer resonance.During the late 2016 machine development sessions inthe PS Booster we profited from solved issues from 2015and managed to reliably extract hollow bunches of1.3eVsmatched longitudinal area. Furthermore, first results to cre-ate hollow bunches with larger longitudinal emittances to-wards the LHC Inject...

  3. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    Science.gov (United States)

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  5. Combining time-frequency and spatial information for the detection of sleep spindles

    Directory of Open Access Journals (Sweden)

    Christian eO'Reilly

    2015-02-01

    Full Text Available EEG sleep spindles are short (0.5-2.0 s bursts of activity in the 11-16 Hz band occurring during non-rapid eye movement (NREM sleep. This sporadic activity is thought to play a role in memory consolidation, brain plasticity, and protection of sleep integrity. Many automatic detectors have been proposed to assist or replace experts for sleep spindle scoring. However, these algorithms usually detect too many events making it difficult to achieve a good tradeoff between sensitivity (Se and false detection rate (FDr. In this work, we propose a semi-automatic detector comprising a sensitivity phase based on well-established criteria followed by a specificity phase using spatial and spectral criteria.In the sensitivity phase, selected events are those which amplitude in the 10 – 16 Hz band and spectral ratio characteristics both reject a null hypothesis (p <0.1 stating that the considered event is not a spindle. This null hypothesis is constructed from events occurring during rapid eye movement (REM sleep epochs. In the specificity phase, a hierarchical clustering of the selected candidates is done based on events’ frequency and spatial position along the anterior-posterior axis. Only events from the classes grouping most (at least 80% spindles scored by an expert are kept. We obtain Se = 93.2% and FDr = 93.0% in the first phase and Se = 85.4% and FDr = 86.2% in the second phase. For these two phases, Matthew’s correlation coefficients are respectively 0.228 and 0.324. Results suggest that spindles are defined by specific spatio-spectral properties and that automatic detection methods can be improved by considering these features.

  6. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    Science.gov (United States)

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  7. Experimental Analysis and Full Prediction Model of a 5-DOF Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Weiyu Zhang

    2017-01-01

    Full Text Available The cost and power consumption of DC power amplifiers are much greater than that of AC power converters. Compared to a motorized spindle supported with DC magnetic bearings, a motorized spindle supported with AC magnetic bearings is inexpensive and more efficient. This paper studies a five-degrees-of-freedom (5-DOF motorized spindle supported with AC hybrid magnetic bearings (HMBs. Most models of suspension forces, except a “switching model”, are quite accurate, but only in a particular operating area and not in regional coverage. If a “switching model” is applied to a 5-DOF motorized spindle, the real-time performance of the control system can be significantly decreased due to the large amount of data processing for both displacement and current. In order to solve this defect, experiments based on the “switching model” are performed, and the resulting data are analyzed. Using the data analysis results, a “full prediction model” based on the operating state is proposed to improve real-time performance and precision. Finally, comparative, verification and stiffness tests are conducted to verify the improvement of the proposed model. Results of the tests indicate that the rotor has excellent characteristics, such as good real-time performance, superior anti-interference performance with load and the accuracy of the model in full zone. The satisfactory experimental results demonstrate the effectiveness of the “full prediction model” applied to the control system under different operating stages. Therefore, the results of the experimental analysis and the proposed full prediction model can provide a control system of a 5-DOF motorized spindle with the most suitable mathematical models of the suspension force.

  8. Error Correction of Radial Displacement in Grinding Machine Tool Spindle by Optimizing Shape and Bearing Tuning

    OpenAIRE

    Khairul Jauhari; Achmad Widodo; Ismoyo Haryanto

    2015-01-01

    In this article, the radial displacement error correction capability of a high precision spindle grinding caused by unbalance force was investigated. The spindle shaft is considered as a flexible rotor mounted on two sets of angular contact ball bearing. Finite element methods (FEM) have been adopted for obtaining the equation of motion of the spindle. In this paper, firstly, natural frequencies, critical frequencies, and amplitude of the unbalance response caused by resi...

  9. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  10. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  11. Hollow fiber membrane lumen modified by polyzwitterionic grafting

    KAUST Repository

    Le, Ngoc Lieu

    2016-08-24

    In this study, we demonstrate an effective way to modify the lumen of polyetherimide hollow fibers by grafting zwitterionic poly(sulfobetaine) to increase the membrane resistance to fouling. Surface-selective grafting of the protective hydrogel layers has been achieved in a facile two-step process. The first step is the adsorption of a macromolecular redox co-initiator on the lumen-side surface of the membrane, which in the second step, after flushing the lumen of the membrane with a solution comprising monomers and a complementary redox initiator, triggers the in situ cross-linking copolymerization at room temperature. The success of grafting reaction has been verified by the surface elemental analyses using X-ray photoelectron spectroscopy (XPS) and the surface charge evaluation using zeta potential measurements. The hydrophilicity of the grafted porous substrate is improved as indicated by the change of contact angle value from 44° to 30°, due to the hydration layer on the surface produced by the zwitterionic poly(sulfobetaine). Compared to the pristine polyetherimide (PEI) substrate, the poly(sulfobetaine) grafted substrates exhibit high fouling resistance against bovine serum albumin (BSA) adsorption, E. coli attachment and cell growth on the surface. Fouling minimization in the lumen is important for the use of hollow fibers in different processes. For instance, it is needed to preserve power density of pressure-retarded osmosis (PRO). In high-pressure PRO tests, a control membrane based on PEI with an external polyamide selective layer was seriously fouled by BSA, leading to a high water flux drop of 37%. In comparison, the analogous membrane, whose lumen was modified with poly(sulfobetaine), not only had a less water flux decline but also had better flux recovery, up to 87% after cleaning and hydraulic pressure impulsion. Clearly, grafting PRO hollow fiber membranes with zwitterionic polymeric hydrogels as a protective layer potentially sustains PRO

  12. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation.

    Science.gov (United States)

    Fogel, Stuart M; Smith, Carlyle T

    2011-04-01

    Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. TFG-MET fusion in an infantile spindle cell sarcoma with neural features.

    Science.gov (United States)

    Flucke, Uta; van Noesel, Max M; Wijnen, Marc; Zhang, Lei; Chen, Chun-Liang; Sung, Yun-Shao; Antonescu, Cristina R

    2017-09-01

    An increasing number of congenital and infantile sarcomas displaying a primitive, monomorphic spindle cell phenotype have been characterized to harbor recurrent gene fusions, including infantile fibrosarcoma and congenital spindle cell rhabdomyosarcoma. Here, we report an unusual spindle cell sarcoma presenting as a large and infiltrative pelvic soft tissue mass in a 4-month-old girl, which revealed a novel TFG-MET gene fusion by whole transcriptome RNA sequencing. The tumor resembled the morphology of an infantile fibrosarcoma with both fascicular and patternless growth, however, it expressed strong S100 protein immunoreactivity, while lacking SOX10 staining and retaining H3K27me3 expression. Although this immunoprofile suggested partial neural/neuroectodermal differentiation, overall features were unusual and did not fit into any known tumor types (cellular schwannoma, MPNST), raising the possibility of a novel pathologic entity. The TFG-MET gene fusion expands the genetic spectrum implicated in the pathogenesis of congenital spindle cell sarcomas, with yet another example of kinase oncogenic activation through chromosomal translocation. The discovery of this new fusion is significant since the resulting MET activation can potentially be inhibited by targeted therapy, as MET inhibitors are presently available in clinical trials. © 2017 Wiley Periodicals, Inc.

  14. Time-frequency dynamics during sleep spindles on the EEG in rodents with a genetic predisposition to absence epilepsy (WAG/Rij rats)

    Science.gov (United States)

    Hramov, Alexander E.; Sitnikova, Evgenija Y.; Pavlov, Alexey N.; Grubov, Vadim V.; Koronovskii, Alexey A.; Khramova, Marina V.

    2015-03-01

    Sleep spindles are known to appear spontaneously in the thalamocortical neuronal network of the brain during slow-wave sleep; pathological processes in the thalamocortical network may be the reason of the absence epilepsy. The aim of the present work is to study developed changes in the time-frequency structure of sleep spindles during the progressive development of the absence epilepsy in WAG/Rij rats. EEG recordings were made at age 7 and 9 months. Automatic recognition and subsequent analysis of sleep spindles on the EEG were performed using the continuous wavelet transform. The duration of epileptic discharges and the total duration of epileptic activity were found to increase with age, while the duration of sleep spindles, conversely, decreased. In terms of the mean frequency, sleep spindles could be divided into three classes: `slow' (mean frequency 9.3Hz), `medium' (11.4Hz), and `fast' (13.5Hz). Slow and medium (transitional) spindles in five-month-old animals showed increased frequency from the beginning to the end of the spindle. The more intense the epilepsy is, the shorter are the durations of spindles of all types. The mean frequencies of `medium' and `fast' spindles were higher in rats with more intense signs of epilepsy. Overall, high epileptic activity in WAG/Rij rats was linked with significant changes in spindles of the transitional type, with less marked changes in the two traditionally identified types of spindle, slow and fast.

  15. Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects.

    Science.gov (United States)

    Lustenberger, Caroline; O'Gorman, Ruth L; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto

    2015-03-01

    Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Sleep spindle density was negatively correlated with magical ideation (r = -.64, P .1). The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Facile one-step template-free synthesis of uniform hollow microstructures of cryptomelane-type manganese oxide K-OMS-2.

    Science.gov (United States)

    Galindo, Hugo M; Carvajal, Yadira; Njagi, Eric; Ristau, Roger A; Suib, Steven L

    2010-08-17

    Hollow microstructures of cryptomelane-type manganese oxide were produced in a template-free one-step process based on the fine-tuning of the oxidation rate of manganese species during the synthesis. The tuning of the reaction rate brought about by a mixture of the oxidants oxone and potassium nitrate becomes apparent from the gradual physical changes taking place in the reaction medium at early times of the synthesis. The successful synthesis of the hollow uniform structures could be performed in the ranges 120-160 degrees C and 8.2-10.7 for temperature and mass ratio oxone/potassium nitrate, respectively. Independent of the conditions of the synthesis, all of the complex microstructures showed the same pattern for the array of very long nanofibers in which some of these elongated around the surface confining the cavity and the other fibers grew normal to the surface created by the previous arrangement. A mechanism based on the heterogeneous nucleation of the cryptomelane phase on the surface of an amorphous precursor and the growth of the nanoscale fibers by processes such as dissolution-crystallization and lateral attachment of primary nanocrystalline fibers is proposed to explain the formation of the hollow structures.

  17. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  18. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  19. The Effect of the Rotor Static Eccentricity on the Electro-Mechanical Coupled Characteristics of the Motorized Spindle

    Directory of Open Access Journals (Sweden)

    Wu Zaixin

    2016-01-01

    Full Text Available High-speed motorized spindle is a multi-variable, non-linear and strong coupling system. The rotor static eccentricity is inevitable because of machining or assembling error. The rotor static eccentricities have an important effect on the electromechanical coupled characteristics of the motorized spindle. In this paper, the electromechanical coupled mathematical model of the motorized spindle was set up. The mathematical model includes mechanical and electrical equation. The mechanical and electrical equation is built up by the variational principle. Furthermore, the inductance parameters without the rotor static eccentricity and the inductance parameters with rotor static eccentricity have been calculated by the winding function method and the high speed motorized spindle was simulated. The result show that the rotor static eccentricity can delay the starting process of the motorized spindle, and at steady state, the rotor circuit currents are still large because of the rotor static eccentricity.

  20. Analysis of radial runout for symmetric and asymmetric HDD spindle motors with rotor eccentricity

    International Nuclear Information System (INIS)

    Kim, T.-J.; Kim, K.-T.; Hwang, S.-M.; Lee, S.-B.; Park, N.-G.

    2001-01-01

    Radial runout of disk drive spindle is one of the major limiting factors in achieving higher track densities in hard disk drives. Mechanical, magnetic and their coupled origins, such as unbalanced mass, reaction forces and magnetic forces, introduce radial runout of spindle motors. In this paper, radial magnetic forces are calculated with respect to the various rotor eccentricities using analytic method. Based on the results of the radial magnetic forces, the radial runout of the spindle motor is analyzed using finite element and transfer matrices. Results show that an asymmetric motor has a worse performance on unbalanced magnetic forces and radial runout when mechanical and magnetic coupling exists

  1. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  2. Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.

    Science.gov (United States)

    Pettorossi, V E; Filippi, G M

    1981-09-01

    The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.

  3. Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2007-01-01

    Full Text Available Abstract Background The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. Results Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. Conclusion We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.

  4. Sleep spindle activity in double cortex syndrome: a case report.

    Science.gov (United States)

    Sforza, Emilia; Marcoz, Jean-Pierre; Foletti, Giovanni

    2010-09-01

    Cortical dysgenesis is increasingly recognised as a cause of epilepsy. We report a case with double cortex heterotopia and secondarily generalized seizures with a generalised spike wave pattern. During the course of the disease, the child developed electrical status epilepticus in slow wave sleep. From the first examination, sleep pattern revealed increased frequency and amplitude of spindle activity, more evident in anterior areas. The role of the thalamocortical pathway in increased sleep spindle activity is discussed with emphasis on the possible role of altered thalamocortical pathways in abnormal cortical migration. A strong suspicion of cortical dysgenesis may therefore be based on specific EEG sleep patterns.

  5. Dishevelled binds the Discs large 'Hook' domain to activate GukHolder-dependent spindle positioning in Drosophila.

    Directory of Open Access Journals (Sweden)

    Joshua D Garcia

    Full Text Available Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh, a key regulator of planar cell polarity, and Discs large (Dlg, a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH. These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.

  6. The role of p53 in the response to mitotic spindle damage

    International Nuclear Information System (INIS)

    Meek, D.W.

    2000-01-01

    The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoint in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have de-condensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation. (authors)

  7. The Making of SPINdle

    Science.gov (United States)

    Lam, Ho-Pun; Governatori, Guido

    We present the design and implementation of SPINdle - an open source Java based defeasible logic reasoner capable to perform efficient and scalable reasoning on defeasible logic theories (including theories with over 1 million rules). The implementation covers both the standard and modal extensions to defeasible logics. It can be used as a standalone theory prover and can be embedded into any applications as a defeasible logic rule engine. It allows users or agents to issues queries, on a given knowledge base or a theory generated on the fly by other applications, and automatically produces the conclusions of its consequences. The theory can also be represented using XML.

  8. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  9. Abnormal spindles in second meiosis in canola (Brassica napus and Brassica campestris

    Directory of Open Access Journals (Sweden)

    Alice Maria de Souza

    1999-01-01

    Full Text Available Studies were carried out on the occurrence of abnormal spindles in the second meiotic division in some canola cultivars recently introduced in Brazil. Fusion of spindles was observed in metaphase II rejoining the two sets of chromosomes segregated in anaphase I and also sequential and tripolar spindles were discovered rejoining two sets of chromatids segregated in anaphase II. The frequency of cells with abnormal spindles ranged from 3.18 to 8.10%. The results suggested that this abnormality was caused by environmental stress that affected the plants during the blooming period.O presente estudo descreve a ocorrência de fusos anormais na segunda divisão meiótica em algumas cultivares da canola recentemente introduzidas no Brasil. Fusão de fusos foi observada em metáfase II reunindo os dois conjuntos cromossômicos segregados na anáfase I; fusos sequenciais e tripolares reunindo cromátides segregadas na anáfase II também foram observados. A frequência de células com fusos anormais variou de 3,18 a 8,10% entre as variedades. Os resultados sugerem que estas anormalidades foram causadas por condições climáticas adversas que afetaram as plantas no período de florescimento. As implicações genéticas destas anormalidades são descritas.

  10. Discrimination between micronuclei induced by spindle poisons and ...

    African Journals Online (AJOL)

    Discrimination between micronuclei induced by spindle poisons and clastogens by using toad bone marrow polychromatic erythrocytes. ... Egyptian Journal of Biology ... The used chemicals induced high percentages of micronuclei with variable sizes, which clarify the sensitivity of bone marrow cells of Bufo regularis to ...

  11. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  12. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  13. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts

    Directory of Open Access Journals (Sweden)

    Takashi Katagiri

    2018-03-01

    Full Text Available A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO2 measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO2 standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL light source is built using a gas cell with a hollow optical fiber for monitoring CO2 concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO2 concentration in human airways.

  14. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    Science.gov (United States)

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3 complex-driven cytoplasmic streaming in mouse oocytes

    Science.gov (United States)

    Yi, Kexi; Unruh, Jay R.; Deng, Manqi; Slaughter, Brian D.; Rubinstein, Boris; Li, Rong

    2012-01-01

    Mature mammalian oocytes are poised for the completion of second polar body extrusion upon fertilization by positioning the metaphase spindle in close proximity to an actomyosin-rich cortical cap. Loss of this spindle position asymmetry is often associated with poor oocyte quality and infertility 1–3. Here, we report a novel role for the Arp2/3 actin nucleation complex in the maintenance of asymmetric spindle position in mature mouse oocytes. The Arp2/3 complex localizes to the cortical cap in a Ran GTPase-dependent manner and accounts for the nucleation of the majority of actin filaments in both the cortical cap and a cytoplasmic actin network. Inhibition of Arp2/3 complex activity or localization leads to rapid dissociation of the spindle from the cortex. High resolution live imaging and spatiotemporal image correlation spectroscopy (STICS) analysis reveal that in normal oocytes actin filaments flow continuously away from the Arp2/3-rich cortex, generating a cytoplamic streaming that results in a net pushing force on the spindle toward the actomyosin cap. Arp2/3 inhibition not only diminishes this actin flow and cytoplamic streaming but also enables a reverse streaming driven by myosin-II-based cortical contraction, leading to spindle movement away from the cortex. We conclude that the Arp2/3 complex maintains asymmetric meiotic spindle position by generating an actin polymerization-driven cytoplamic streaming and by suppressing a counteracting force from myosin-II-based contractility. PMID:21874009

  16. A Modeling approach for analysis and improvement of spindle-holder-tool assembly dynamics

    OpenAIRE

    Budak, Erhan; Ertürk, A.; Erturk, A.; Özgüven, H. N.; Ozguven, H. N.

    2006-01-01

    The most important information required for chatter stability analysis is the dynamics of the involved structures, i.e. the frequency response functions (FRFs) which are usually determined experimentally. In this study, the tool point FRF of a spindle-holder-tool assembly is analytically determined by using the receptance coupling and structural modification techniques. Timoshenko’s beam model is used for increased accuracy. The spindle is also modeled analytically with elastic supports repre...

  17. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals.

    Science.gov (United States)

    Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst

    2008-12-01

    The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.

  18. SPINDLE: A 2-Stage Nuclear-Powered Cryobot for Ocean World Exploration

    Science.gov (United States)

    Stone, W.; Hogan, B.; Siegel, V. L.; Howe, T.; Howe, S.; Harman, J.; Richmond, K.; Flesher, C.; Clark, E.; Lelievre, S.; Moor, J.; Rothhammer, B.

    2016-12-01

    SPINDLE (Sub-glacial Polar Ice Navigation, Descent, and Lake Exploration) is a 2-stage autonomous vehicle system consisting of a robotic ice-penetrating carrier vehicle (cryobot) and a marsupial, hovering autonomous underwater vehicle (HAUV). The cryobot will descend through an ice body into a sub-ice aqueous environment and deploy the HAUV to conduct long range reconnaissance, life search, and sample collection. The HAUV will return to, and auto-dock with, the cryobot at the conclusion of the mission for subsequent data uplink and sample return to the surface. The SPINDLE cryobot has been currently designed for a 1.5 kilometer penetration through a terrestrial ice sheet and the HAUV has been designed for persistent exploration and science presence in for deployments up to a kilometer radius from the cryobot. Importantly, the cryobot is bi-directional and vertically controllable both in an ice sheet as well as following breakthrough into a subglacial water cavity / ocean. The vehicle has been designed for long-duration persistent science in subglacial cavities and to allow for subsequent return-to-surface at a much later date or subsequent season. Engineering designs for the current SPINDLE cryobot will be presented in addition to current designs for autonomous rendezvous, docking, and storing of the HAUV system into the cryobot for subsequent recovery of the entire system to the surface. Taken to completion in a three-phase program, SPINDLE will deliver an integrated and field-tested system that will be directly transferable into a Flagship-class mission to either the hypothesized shallow lakes of Europa, the sub-surface ocean of Ganymede, or the geyser/plume sources on both Europa and Enceladus. We present the results of several parallel laboratory investigations into advanced power transmission systems (laser, high voltage) as well as onboard systems that enable the SPINDLE vehicle to access any subglacial lake on earth while using non-nuclear surrogate, surface

  19. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Midori [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Yamamoto, Ayumu [Department of Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka 422-8529 (Japan); Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aiba, Hirofumi [Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan); Murakami, Hiroshi, E-mail: hmura@med.nagoya-cu.ac.jp [Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  20. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    International Nuclear Information System (INIS)

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-01-01

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2 + . The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  1. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  2. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  3. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  4. Phosphatase-regulated recruitment of the spindle- and kinetochore-associated (Ska complex to kinetochores

    Directory of Open Access Journals (Sweden)

    Sushama Sivakumar

    2017-11-01

    Full Text Available Kinetochores move chromosomes on dynamic spindle microtubules and regulate signaling of the spindle checkpoint. The spindle- and kinetochore-associated (Ska complex, a hexamer composed of two copies of Ska1, Ska2 and Ska3, has been implicated in both roles. Phosphorylation of kinetochore components by the well-studied mitotic kinases Cdk1, Aurora B, Plk1, Mps1, and Bub1 regulate chromosome movement and checkpoint signaling. Roles for the opposing phosphatases are more poorly defined. Recently, we showed that the C terminus of Ska1 recruits protein phosphatase 1 (PP1 to kinetochores. Here we show that PP1 and protein phosphatase 2A (PP2A both promote accumulation of Ska at kinetochores. Depletion of PP1 or PP2A by siRNA reduces Ska binding at kinetochores, impairs alignment of chromosomes to the spindle midplane, and causes metaphase delay or arrest, phenotypes that are also seen after depletion of Ska. Artificial tethering of PP1 to the outer kinetochore protein Nuf2 promotes Ska recruitment to kinetochores, and it reduces but does not fully rescue chromosome alignment and metaphase arrest defects seen after Ska depletion. We propose that Ska has multiple functions in promoting mitotic progression and that kinetochore-associated phosphatases function in a positive feedback cycle to reinforce Ska complex accumulation at kinetochores.

  5. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  6. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  7. In vivo FRET imaging revealed a regulatory role of RanGTP in kinetochore-microtubule attachments via Aurora B kinase.

    Directory of Open Access Journals (Sweden)

    Yoke-Peng Lee

    Full Text Available Under the fluctuating circumstances provided by the innate dynamics of microtubules and opposing tensions resulted from microtubule-associated motors, it is vital to ensure stable kinetochore-microtubule attachments for accurate segregation. However, a comprehensive understanding of how this regulation is mechanistically achieved remains elusive. Using our newly designed live cell FRET time-lapse imaging, we found that post-metaphase RanGTP is crucial in the maintenance of stable kinetochore-microtubule attachments by regulating Aurora B kinase via the NES-bearing Mst1. More importantly, our study demonstrates that by ensuring stable alignment of metaphase chromosomes prior to segregation, RanGTP is indispensible in governing the genomic integrity and the fidelity of cell cycle progression. Our findings suggest an additional role of RanGTP beyond its known function in mitotic spindle assembly during the prometaphase-metaphase transition.

  8. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  9. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  10. Development of tree hollows in pedunculate oak (Quercus robur)

    OpenAIRE

    Ranius, Thomas; Niklasson, Mats; Berg, Niclas

    2009-01-01

    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree-ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) ...

  11. Relations between ultrastructure of mitotic spindle and chromosome translocation

    Directory of Open Access Journals (Sweden)

    Jadwiga A. Tarkowska

    2014-01-01

    Full Text Available Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spindle are described: fragmentatiun of all microtubules (MTs starting from the poles, disappearance of non-kinetachore MTs and further the external MTs of the kineto,chore bundle. The central (internal parallel ones remain the longest at the kinerf,ochares. Oleander glycosides cause disintegration of the existing MTs and prevent formation of new ones. The causes of restitution transformations in the successive phases of mitosis are discussed.

  12. The Thermohydrodynamic Analysis of Sliding Bearing High-Speed Motorized Spindle by Rotor Dynamic

    Directory of Open Access Journals (Sweden)

    Li Songsheng

    2017-01-01

    Full Text Available This is paper presents thermohydrodynamic characteristics of high speed motorized spindle sliding bearing rotor system. The dynamic characteristic of the oil film bearing is affected by temperature increment, thereby affecting the high-speed spindle rotor system dynamics. This study applied the hydrodynamic lubrication theory, the influence of temperature on the viscosity of lubricating oil, associated with the bearing stiffness, oil film damping and other performance parameters, is considered in generalized Reynolds equation of oil film bearing. The theoretical model of the sliding bearing rotor system is established by using the transfer matrix method to analyze the dynamic characteristic and verified by experiments. The results show the high temperature environment in the motorized spindle and the friction of the bearing lead to oil temperature rise and viscosity reduction, which influences the bearing capacity, stiffness and damping, hence impact on the critical speeds and modal shapes of the sliding bearing rotor system.

  13. Sleep spindle alterations in patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Warby, Simon C.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score...

  14. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  15. Combined classical spindle cell/pleomorphic lipoma spectrum imaging and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Younan, Yara; Gonzalez, Felix; Umpierrez, Monica; Singer, Adam D. [Emory University Hospital, Department of Radiology and Imaging Sciences Section of Musculoskeletal Imaging, Atlanta, GA (United States); Martinez, Anthony; Edgar, Mark [Emory University Hospital, Department of Pathology, Atlanta, GA (United States); Reimer, Nickolas [Emory University Hospital, Department of Orthopedic Surgery, Atlanta, GA (United States); Subhawong, Ty [University of Miami, Department of Radiology, Miami, FL (United States)

    2018-01-15

    Compile the largest study to date on the imaging and clinical features of the classic spindle cell/pleomorphic lipoma spectrum and suggest this diagnosis be included in the differential for benign and malignant macroscopic fat-containing soft tissue masses regardless of the mass location or patient demographics. An institutional search was performed to identify all available classic-type spindle cell/pleomorphic lipomas with available demographic and imaging data. Images and reports were analyzed by one MSK-trained radiologist and radiographic, anatomic and clinical data were recorded. Additionally, a literature search was performed to identify studies describing the spindle cell lipoma spectrum imaging features and were combined with institutional data. Forty-two institutional cases were identified, 37 of which had MRIs performed among which 21 had images available (T1- and T2-weighted pulse sequences) for review while the remainder had outside reports detailing the mass imaging features. There was a mean age of 57 with 79% of cases occurring in males. Contrary to prior reports, 57% of masses were subcutaneous, and the neck and back region accounted for 26% of cases. When the institutional cases were combined with available data in the literature, there was a new sample size of 91 masses, 74 of which had MRI and/or CT data. Eighty-seven percent of masses were heterogeneous, 51% were composed of less than 75% fat, 65% were in the back, neck or shoulder region, 27% of masses were deep and 91% demonstrated enhancement. Eighty-two percent of patients were males with a mean age of 58 at excision. Imaging features, patient demographics and tumor location alone are not enough to differentiate tumors of the spindle cell lipoma spectrum from other macroscopic fat-containing benign and malignant tumors, and these entities should be included in the same imaging differential diagnosis. (orig.)

  16. Lateralised sleep spindles relate to false memory generation.

    Science.gov (United States)

    Shaw, John J; Monaghan, Padraic

    2017-12-01

    Sleep is known to enhance false memories: After presenting participants with lists of semantically related words, sleeping before recalling these words results in a greater acceptance of unseen "lure" words related in theme to previously seen words. Furthermore, the right hemisphere (RH) seems to be more prone to false memories than the left hemisphere (LH). In the current study, we investigated the sleep architecture associated with these false memory and lateralisation effects in a nap study. Participants viewed lists of related words, then stayed awake or slept for approximately 90min, and were then tested for recognition of previously seen-old, unseen-new, or unseen-lure words presented either to the LH or RH. Sleep increased acceptance of unseen-lure words as previously seen compared to the wake group, particularly for RH presentations of word lists. RH lateralised stage 2 sleep spindle density relative to the LH correlated with this increase in false memories, suggesting that RH sleep spindles enhanced false memories in the RH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In-situ hot corrosion testing of candidate materials for exhaust valve spindles

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Hoeg, Harro A.; Dahl, Kristian Vinter

    2011-01-01

    The two stroke diesel engine has been continually optimized since its invention more than a century ago. One of the ways to increase fuel efficiency further is to increase the compression ratio, and thereby the temperature in the combustion chamber. Because of this, and the composition of the fuel...... used, exhaust valve spindles in marine diesel engines are subjected to high temperatures and stresses as well as molten salt induced corrosion. To investigate candidate materials for future designs which will involve the HIP process, a spindle with Ni superalloy material samples inserted in a HIPd Ni49...

  18. Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction

    International Nuclear Information System (INIS)

    Matsson, Leif

    2014-01-01

    The control mechanism in mitosis and meiosis by which cells decide to inhibit or allow segregation, the so-called spindle assembly checkpoint (SAC), increases the fidelity of chromosome segregation. It acts like a clockwork mechanism which measures time in units of stable attachments of microtubules (MTs) to kinetochores (the order parameter). Stable MT–kinetochore attachments mediate poleward forces and ‘unstable’ attachments, acting alone or together with motor proteins on kinetochores via chromosomes, antipoleward forces. Stable and unstable attachments could be separated, and the non-equilibrium integrated MT mediated force acting on stably attached kinetochores was derived in a collective interaction (Matsson 2009 J. Phys.: Condens. Matter 21 502101), in which kinetochores were treated as rigid protein complexes. As forces and tension in that model became equally distributed in all bioriented sister chromatid (SC) pairs, segregation was inhibited without need of a ‘wait-anaphase’ signal. In this generalization, the kinetochore is divided into an inner chromatin proximal complex and an outer MT proximal complex, and the integrated MT mediated force is divided into an integrated poleward and an integrated antipoleward force. The model also describes the collective interaction of condensin I with chromatin, which together with the MT mediated dynamics yields the putative in vivo tension in kinetochores and centromeric and pericentromeric chromatin, as a non-linear function of the order parameter. Supported by the compaction force and an increased stiffness in chromatin towards the end of metaphase, the two opposing integrated MT mediated poleward forces, together with metaphase oscillations, induce a swift and synchronized anaphase onset by first increasing the intra-kinetochore stretch. This increase lowers the SAC energy threshold, making a cleavage by separase of all cohesin tethering SC pairs in anaphase energetically possible, thereby reducing the

  19. Abnormal spindle orientation during microsporogenesis in an interspecific Brachiaria (Gramineae hybrid

    Directory of Open Access Journals (Sweden)

    Andréa Beatriz Mendes-Bonato

    2006-01-01

    Full Text Available This paper reports a case of abnormal spindle orientation during microsporogenesis in an interspecific hybrid of the tropical grass Brachiaria. In the affected plant, prophase I was normal. In metaphase I, bivalents were regularly co-oriented but distantly positioned and spread over the equatorial plate. In anaphase I, chromosomes failed to converge into focused poles due to parallel spindle fibers. As a consequence, in telophase I, an elongated nucleus or several micronuclei were observed in each pole. In the second division, the behavior was the same, leading to polyads with several micronuclei. A total of 40% of meiotic products were affected. The use of this hybrid in production systems needing good-quality seeds is discussed.

  20. The Riddle of the Apparently Hollow Himalaya

    Indian Academy of Sciences (India)

    The Riddle of the Apparently Hollow Himalaya. Ramesh .... It was as if the Himalayas were hollow inside. ... block would be consistent with the ground elevation in such a ... Alternative models and possible preference: Many refinements of.

  1. Dynamics modeling and modal experimental study of high speed motorized spindle

    International Nuclear Information System (INIS)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming

    2017-01-01

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles

  2. Dynamics modeling and modal experimental study of high speed motorized spindle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming [Chongqing Univ., Chongqing (China)

    2017-03-15

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles.

  3. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been...

  4. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  5. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  6. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  7. IL-6 and mouse oocyte spindle.

    Directory of Open Access Journals (Sweden)

    Jashoman Banerjee

    Full Text Available Interleukin 6 (IL-6 is considered a major indicator of the acute-phase inflammatory response. Endometriosis and pelvic inflammation, diseases that manifest elevated levels of IL-6, are commonly associated with higher infertility. However, the mechanistic link between elevated levels of IL-6 and poor oocyte quality is still unclear. In this work, we explored the direct role of this cytokine as a possible mediator for impaired oocyte spindle and chromosomal structure, which is a critical hurdle in the management of infertility. Metaphase-II mouse oocytes were exposed to recombinant mouse IL-6 (50, 100 and 200 ng/mL for 30 minutes and subjected to indirect immunofluorescent staining to identify alterations in the microtubule and chromosomal alignment compared to untreated controls. The deterioration in microtubule and chromosomal alignment were evaluated utilizing both fluorescence and confocal microscopy, and were quantitated with a previously reported scoring system. Our results showed that IL-6 caused a dose-dependent deterioration in microtubule and chromosomal alignment in the treated oocytes as compared to the untreated group. Indeed, IL-6 at a concentration as low as 50 ng/mL caused deterioration in the spindle structure in 60% of the oocytes, which increased significantly (P<0.0001 as IL-6 concentration was increased. In conclusion, elevated levels of IL-6 associated with endometriosis and pelvic inflammation may reduce the fertilizing capacity of human oocyte through a mechanism that involves impairment of the microtubule and chromosomal structure.

  8. Gas flow through the clearances of screw spindle vacuum pumps; Gasspaltstroemungen in Schraubenspindel-Vakuumpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Wenderott, D. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The documentation `Schraubenmaschinen` deals with the subject `screw spindle vacuum pump` for the first time. Therefore, this paper presents the type of maschine `screw spindle vacuum pump`, fixes its limits to the better known screw type compressor and finally classifies it in the crossover of vacuum-technology, characteristic geometry and the numerical simulation. The suggested reflections to choose a proper model of flow are based on the geometry of the screw spindle vacuum pump and fundamentals concerning the vacuum-technology and the state of flow. (orig.) [Deutsch] Die Schriftenreihe `Schraubenmaschinen` behandelt erstmals das Thema `Schraubenspindel-Vakuumpumpe`. Aus diesem Grund stellt der vorliegende Beitrag den Maschinentyp Schraubenspindel-Vakuumpumpe vor, grenzt ihn zur bekannteren Schraubenmaschine ab und ordnet ihn in der Schnittmenge aus Vakuumtechnik, charakteristischer Maschinengeometrie und der Simulation ein. Auf den vakuumtechnischen und stroemungstechnischen Grundlagen sowie geometrischen Betrachtungen basieren die genannten Ueberlegungen zur Auswahl geeigneter Stroemungsmodelle. (orig.)

  9. Research on a power management system for thermoelectric generators to drive wireless sensors on a spindle unit.

    Science.gov (United States)

    Li, Sheng; Yao, Xinhua; Fu, Jianzhong

    2014-07-16

    Thermoelectric energy harvesting is emerging as a promising alternative energy source to drive wireless sensors in mechanical systems. Typically, the waste heat from spindle units in machine tools creates potential for thermoelectric generation. However, the problem of low and fluctuant ambient temperature differences in spindle units limits the application of thermoelectric generation to drive a wireless sensor. This study is devoted to presenting a transformer-based power management system and its associated control strategy to make the wireless sensor work stably at different speeds of the spindle. The charging/discharging time of capacitors is optimized through this energy-harvesting strategy. A rotating spindle platform is set up to test the performance of the power management system at different speeds. The experimental results show that a longer sampling cycle time will increase the stability of the wireless sensor. The experiments also prove that utilizing the optimal time can make the power management system work more effectively compared with other systems using the same sample cycle.

  10. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  11. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.

    Science.gov (United States)

    Carrasco, Dario I; Vincent, Jacob A; Cope, Timothy C

    2017-04-01

    Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV 1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV 1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV 1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV 1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV 1.1 , predominantly in sensory terminals together with NaV 1.6 and for NaV 1.7 , mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles. NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site

  12. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  13. Nek2A destruction marks APC/C activation at the prophase-to-prometaphase transition by spindle-checkpoint-restricted Cdc20.

    Science.gov (United States)

    Boekhout, Michiel; Wolthuis, Rob

    2015-04-15

    Nek2 isoform A (Nek2A) is a presumed substrate of the anaphase-promoting complex/cyclosome containing Cdc20 (APC/C(Cdc20)). Nek2A, like cyclin A, is degraded in mitosis while the spindle checkpoint is active. Cyclin A prevents spindle checkpoint proteins from binding to Cdc20 and is recruited to the APC/C in prometaphase. We found that Nek2A and cyclin A avoid being stabilized by the spindle checkpoint in different ways. First, enhancing mitotic checkpoint complex (MCC) formation by nocodazole treatment inhibited the degradation of geminin and cyclin A, whereas Nek2A disappeared at a normal rate. Second, depleting Cdc20 effectively stabilized cyclin A but not Nek2A. Nevertheless, Nek2A destruction crucially depended on Cdc20 binding to the APC/C. Third, in contrast to cyclin A, Nek2A was recruited to the APC/C before the start of mitosis. Interestingly, the spindle checkpoint very effectively stabilized an APC/C-binding mutant of Nek2A, which required the Nek2A KEN box. Apparently, in cells, the spindle checkpoint primarily prevents Cdc20 from binding destruction motifs. Nek2A disappearance marks the prophase-to-prometaphase transition, when Cdc20, regardless of the spindle checkpoint, activates the APC/C. However, Mad2 depletion accelerated Nek2A destruction, showing that spindle checkpoint release further increases APC/C(Cdc20) catalytic activity. © 2015. Published by The Company of Biologists Ltd.

  14. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    NARCIS (Netherlands)

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  15. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Zhang, Gang; Sedgwick, Garry G

    2014-01-01

    Improperly attached kinetochores activate the spindle assembly checkpoint (SAC) and by an unknown mechanism catalyse the binding of two checkpoint proteins, Mad2 and BubR1, to Cdc20 forming the mitotic checkpoint complex (MCC). Here, to address the functional role of Cdc20 kinetochore localization...... in the SAC, we delineate the molecular details of its interaction with kinetochores. We find that BubR1 recruits the bulk of Cdc20 to kinetochores through its internal Cdc20 binding domain (IC20BD). We show that preventing Cdc20 kinetochore localization by removal of the IC20BD has a limited effect...... on the SAC because the IC20BD is also required for efficient SAC silencing. Indeed, the IC20BD can disrupt the MCC providing a mechanism for its role in SAC silencing. We thus uncover an unexpected dual function of the second Cdc20 binding site in BubR1 in promoting both efficient SAC signalling and SAC...

  16. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

    Directory of Open Access Journals (Sweden)

    Smith Charlotte M

    2013-01-01

    Full Text Available Abstract Background During metaphase clathrin stabilises the mitotic spindle kinetochore(K-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. Results Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. Conclusions Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.

  17. Synthesis of barium-strontium titanate hollow tubes using Kirkendall effect

    Science.gov (United States)

    Chen, Xuncai; Im, SangHyuk; Kim, Jinsoo; Kim, Woo-Sik

    2018-02-01

    (BaSr)TiO3 hexagonal hollow tubes was fabricated by a solid-state interfacial reaction including a Kirkendall diffusion. Using a co-precipitation and sol-gel process, a core@shell structure of (BaSr)CO3@TiO2 rods were prepared, and then converted to (BaSr)TiO3 hollow tubes at 750 °C. This was a first achievement of single-phase crystal hollow tube. Here, the inner diameter and wall thickness of hollow tube were about 700 nm and 130 nm, respectively. The fabrication of (BaSr)TiO3 hollow tubes was monitored with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) to investigate their formation mechanism. The present synthetic approach would provide a new insight into the design and fabrication of hollow architectures of many perovskite oxides.

  18. God attachment, mother attachment, and father attachment in early and middle adolescence.

    Science.gov (United States)

    Sim, Tick Ngee; Yow, Amanda Shixian

    2011-06-01

    The present study examined the interplay of attachment to God, attachment to mother, and attachment to father with respect to adjustment (hope, self-esteem, depression) for 130 early and 106 middle adolescents in Singapore. Results showed that the parental attachments were generally linked (in expected directions) to adjustment. God attachment, however, had unique results. At the bivariate level, God attachment was only linked to early adolescents' self-esteem. When considered together with parental attachments (including interactions), God attachment did not emerge as the key moderator in attachment interactions and yielded some unexpected results (e.g., being positively linked to depression). These results are discussed viz-a-viz the secure base and safe haven functions that God and parental attachments may play during adolescence.

  19. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  20. Primary histiocytic sarcoma arising in the head and neck with predominant spindle cell component

    Directory of Open Access Journals (Sweden)

    Zhao XF

    2007-02-01

    Full Text Available Abstract This is the first case report of Histiocytic Sarcoma (HS with predominant spindle cell component occurring in the head and neck region of a 41-year-old man. The tumor was composed of sheets of large round to oval cells with pleomorphic vesicular nuclei, prominent nucleoli and abundant eosinophilic cytoplasm. Multinucleated forms, numerous mitoses, and tumor necrosis were also noted. Sheets, fascicles, and whorls of spindle cells with spindled to ovoid vesicular nuclei, small to medium-sized distinct nucleoli, and eosinophilic cytoplasm were frequently observed. Immunohistochemical staining in the tumor cells was positive for CD163, CD68, lysozyme, CD45, and NSE. Focal expression of CD4 and S-100 was also noted. Electron microscopy demonstrated an abundance of lysosomes in the cytoplasm of tumor cells. Chromosome study revealed a 57–80 hyperdiploid [7]/46, XY [13] karyotype, including 3 to 4 copies of various chromosomes. The immunohistochemical and ultrastructural findings confirmed the diagnosis of HS.

  1. Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors

    Directory of Open Access Journals (Sweden)

    Delphine Delaunay

    2014-01-01

    Full Text Available The regulation of asymmetric cell division (ACD during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.

  2. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores.

    Science.gov (United States)

    Zhang, Gang; Kelstrup, Christian D; Hu, Xiao-Wen; Kaas Hansen, Mathilde J; Singleton, Martin R; Olsen, Jesper V; Nilsson, Jakob

    2012-07-01

    The Ndc80 complex establishes end-on attachment of kinetochores to microtubules, which is essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 that generates a kink in the structure disrupts the long coiled-coil region but the exact function of this loop, has until now, not been clear. Here we show that this loop region is essential for end-on attachment of kinetochores to microtubules in human cells. Cells expressing loop mutants of Ndc80 are unable to align the chromosomes, and stable kinetochore fibers are absent. Through quantitative mass spectrometry and immunofluorescence we found that the binding of the spindle and kinetochore associated (Ska) complex depends on the loop region, explaining why end-on attachment is defective. This underscores the importance of the Ndc80 loop region in coordinating chromosome segregation through the recruitment of specific proteins to the kinetochore.

  3. Hollow proppants and a process for their manufacture

    Science.gov (United States)

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  4. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  5. Interplay between microtubule bundling and sorting factors ensures acentriolar spindle stability during C. elegans oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Timothy J Mullen

    2017-09-01

    Full Text Available In many species, oocyte meiosis is carried out in the absence of centrioles. As a result, microtubule organization, spindle assembly, and chromosome segregation proceed by unique mechanisms. Here, we report insights into the principles underlying this specialized form of cell division, through studies of C. elegans KLP-15 and KLP-16, two highly homologous members of the kinesin-14 family of minus-end-directed kinesins. These proteins localize to the acentriolar oocyte spindle and promote microtubule bundling during spindle assembly; following KLP-15/16 depletion, microtubule bundles form but then collapse into a disorganized array. Surprisingly, despite this defect we found that during anaphase, microtubules are able to reorganize into a bundled array that facilitates chromosome segregation. This phenotype therefore enabled us to identify factors promoting microtubule organization during anaphase, whose contributions are normally undetectable in wild-type worms; we found that SPD-1 (PRC1 bundles microtubules and KLP-18 (kinesin-12 likely sorts those bundles into a functional orientation capable of mediating chromosome segregation. Therefore, our studies have revealed an interplay between distinct mechanisms that together promote spindle formation and chromosome segregation in the absence of structural cues such as centrioles.

  6. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  7. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  8. Spindle-like thalamocortical synchronization in a rat brain slice preparation.

    Science.gov (United States)

    Tancredi, V; Biagini, G; D'Antuono, M; Louvel, J; Pumain, R; Avoli, M

    2000-08-01

    We obtained rat brain slices (550-650 microm) that contained part of the frontoparietal cortex along with a portion of the thalamic ventrobasal complex (VB) and of the reticular nucleus (RTN). Maintained reciprocal thalamocortical connectivity was demonstrated by VB stimulation, which elicited orthodromic and antidromic responses in the cortex, along with re-entry of thalamocortical firing originating in VB neurons excited by cortical output activity. In addition, orthodromic responses were recorded in VB and RTN following stimuli delivered in the cortex. Spontaneous and stimulus-induced coherent rhythmic oscillations (duration = 0.4-3.5 s; frequency = 9-16 Hz) occurred in cortex, VB, and RTN during application of medium containing low concentrations of the K(+) channel blocker 4-aminopyridine (0.5-1 microM). This activity, which resembled electroencephalograph (EEG) spindles recorded in vivo, disappeared in both cortex and thalamus during application of the excitatory amino acid receptor antagonist kynurenic acid in VB (n = 6). By contrast, cortical application of kynurenic acid (n = 4) abolished spindle-like oscillations at this site, but not those recorded in VB, where their frequency was higher than under control conditions. Our findings demonstrate the preservation of reciprocally interconnected cortical and thalamic neuron networks that generate thalamocortical spindle-like oscillations in an in vitro rat brain slice. As shown in intact animals, these oscillations originate in the thalamus where they are presumably caused by interactions between RTN and VB neurons. We propose that this preparation may help to analyze thalamocortical synchronization and to understand the physiopathogenesis of absence attacks.

  9. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis

    Directory of Open Access Journals (Sweden)

    Tarek eLajnef

    2015-07-01

    Full Text Available A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG signals are split into oscillatory (spindles and transient (K-complex components. This decomposition is conveniently achieved by applying morphological component analysis (MCA to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT. Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i the transient component to reveal K-complexes and (ii the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity versus FDR on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1, the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62% and 49.09% respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are

  10. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.

    Science.gov (United States)

    Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  11. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucia; Kovačovicová, Kristina; Dang-Nguyen, T.; Šodek, Martin; Škultéty, M.; Anger, Martin

    2016-01-01

    Roč. 11, č. 2 (2016), e0149535-e0149535 E-ISSN 1932-6203 R&D Projects: GA ČR GAP502/12/2201 Institutional support: RVO:67985904 Keywords : mitotoc spindle * size * cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.806, year: 2016

  12. Regulation of mitotic spindle formation by the RhoA guanine nucleotide exchange factor ARHGEF10

    Directory of Open Access Journals (Sweden)

    Satoh Takaya

    2009-07-01

    Full Text Available Abstract Background The Dbl family guanine nucleotide exchange factor ARHGEF10 was originally identified as the product of the gene associated with slowed nerve-conduction velocities of peripheral nerves. However, the function of ARHGEF10 in mammalian cells is totally unknown at a molecular level. ARHGEF10 contains no distinctive functional domains except for tandem Dbl homology-pleckstrin homology and putative transmembrane domains. Results Here we show that RhoA is a substrate for ARHGEF10. In both G1/S and M phases, ARHGEF10 was localized in the centrosome in adenocarcinoma HeLa cells. Furthermore, RNA interference-based knockdown of ARHGEF10 resulted in multipolar spindle formation in M phase. Each spindle pole seems to contain a centrosome consisting of two centrioles and the pericentriolar material. Downregulation of RhoA elicited similar phenotypes, and aberrant mitotic spindle formation following ARHGEF10 knockdown was rescued by ectopic expression of constitutively activated RhoA. Multinucleated cells were not increased upon ARHGEF10 knockdown in contrast to treatment with Y-27632, a specific pharmacological inhibitor for the RhoA effector kinase ROCK, which induced not only multipolar spindle formation, but also multinucleation. Therefore, unregulated centrosome duplication rather than aberration in cytokinesis may be responsible for ARHGEF10 knockdown-dependent multipolar spindle formation. We further isolated the kinesin-like motor protein KIF3B as a binding partner of ARHGEF10. Knockdown of KIF3B again caused multipolar spindle phenotypes. The supernumerary centrosome phenotype was also observed in S phase-arrested osteosarcoma U2OS cells when the expression of ARHGEF10, RhoA or KIF3B was abrogated by RNA interference. Conclusion Collectively, our results suggest that a novel RhoA-dependent signaling pathway under the control of ARHGEF10 has a pivotal role in the regulation of the cell division cycle. This pathway is not involved in

  13. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins.

    Science.gov (United States)

    Goshima, Gohta; Nédélec, François; Vale, Ronald D

    2005-10-24

    During the formation of the metaphase spindle in animal somatic cells, kinetochore microtubule bundles (K fibers) are often disconnected from centrosomes, because they are released from centrosomes or directly generated from chromosomes. To create the tightly focused, diamond-shaped appearance of the bipolar spindle, K fibers need to be interconnected with centrosomal microtubules (C-MTs) by minus end-directed motor proteins. Here, we have characterized the roles of two minus end-directed motors, dynein and Ncd, in such processes in Drosophila S2 cells using RNA interference and high resolution microscopy. Even though these two motors have overlapping functions, we show that Ncd is primarily responsible for focusing K fibers, whereas dynein has a dominant function in transporting K fibers to the centrosomes. We also report a novel localization of Ncd to the growing tips of C-MTs, which we show is mediated by the plus end-tracking protein, EB1. Computer modeling of the K fiber focusing process suggests that the plus end localization of Ncd could facilitate the capture and transport of K fibers along C-MTs. From these results and simulations, we propose a model on how two minus end-directed motors cooperate to ensure spindle pole coalescence during mitosis.

  14. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  15. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  16. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  17. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  18. v-Src causes delocalization of Mklp1, Aurora B, and INCENP from the spindle midzone during cytokinesis failure

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Shuhei [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nakayama, Yuji, E-mail: nakayama@mb.kyoto-phu.ac.jp [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414 (Japan); Honda, Takuya; Aoki, Azumi; Tamura, Naoki; Abe, Kohei; Fukumoto, Yasunori [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Yamaguchi, Naoto, E-mail: nyama@faculty.chiba-u.jp [Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan)

    2013-06-10

    Src-family tyrosine kinases are aberrantly activated in cancers, and this activation is associated with malignant tumor progression. v-Src, encoded by the v-src transforming gene of the Rous sarcoma virus, is a mutant variant of the cellular proto-oncogene c-Src. Although investigations with temperature sensitive mutants of v-Src have shown that v-Src induces many oncogenic processes, the effects on cell division are unknown. Here, we show that v-Src inhibits cellular proliferation of HCT116, HeLa S3 and NIH3T3 cells. Flow cytometry analysis indicated that inducible expression of v-Src results in an accumulation of 4N cells. Time-lapse analysis revealed that binucleation is induced through the inhibition of cytokinesis, a final step of cell division. The localization of Mklp1, which is essential for cytokinesis, to the spindle midzone is inhibited in v-Src-expressing cells. Intriguingly, Aurora B, which regulates Mklp1 localization at the midzone, is delocalized from the spindle midzone and the midbody but not from the metaphase chromosomes upon v-Src expression. Mklp2, which is responsible for the relocation of Aurora B from the metaphase chromosomes to the spindle midzone, is also lost from the spindle midzone. These results suggest that v-Src inhibits cytokinesis through the delocalization of Mklp1 and Aurora B from the spindle midzone, resulting in binucleation. -- Highlights: • v-Src inhibits cell proliferation of HCT116, HeLa S3 and NIH3T3 cells. • v-Src induces binucleation together with cytokinesis failure. • v-Src causes delocalization of Mklp1, Aurora B and INCENP from the spindle midzone.

  19. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    Science.gov (United States)

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  20. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  1. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  2. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  3. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  4. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  5. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  6. One-pot synthesis and electrochemical reactivity of carbon coated LiFePO4 spindles

    International Nuclear Information System (INIS)

    Yu Juanjuan; Hu Juncheng; Li Jinlin

    2012-01-01

    Highlights: ► Carbon coated LiFePO 4 spindles have been successfully synthesized via a novel supercritical method. ► The concentrations of lithium have an effect on the morphology of carbon coated LiFePO 4 . ► Amorphous carbon layer formed on the surface of LiFePO 4 by adding glucose. ► The carbon coating is responsible for the enhanced electrochemical performance. - Abstract: Spindle-like carbon coated LiFePO 4 (LiFePO 4 /C) composites have been successfully synthesized via a novel one-pot supercritical methanol method. The products were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The particle size, morphology and electrochemical reactivity changed with the concentration of lithium and carbon source. A possible morphology evolution process was also proposed. The glucose not only facilitates the formation of single crystalline LiFePO 4 , but also gives an amorphous carbon layer on the surface LiFePO 4 spindles.

  7. High performance methanol-oxygen fuel cell with hollow fiber electrode

    Science.gov (United States)

    Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)

    1983-01-01

    A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.

  8. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning.

    Science.gov (United States)

    Miao, Yue-E; Fan, Wei; Chen, Dan; Liu, Tianxi

    2013-05-22

    Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g(-1) has been achieved at 1 A g(-1), suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

  9. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  10. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  11. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  12. Hollow density profile on electron cyclotron resonance heating JFT-2M plasma

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Hoshino, Katsumichi; Kawashima, Hisato; Ogawa, Toshihide; Kawakami, Tomohide; Shiina, Tomio; Ishige, Youichi

    1998-01-01

    The first hollow electron density profile in the central region on the JAERI Fusion Torus-2M (JFT-2M) is measured during electron cyclotron resonance heating (ECRH) with a TV Thomson scattering system (TVTS). The peripheral region is not hollow but is accumulated due to pump-out from the central region. The hollowness increases with time but is saturated at ∼40 ms and maintains a constant hollow ratio. The hollowness is strongly related to the steep temperature gradient of the heated zone. (author)

  13. Pengaturan Kecepatan Motor Spindle pada Retrofit Mesin Bubut CNC Menggunakan Kontroler PID Gain Scheduling

    Directory of Open Access Journals (Sweden)

    Fikri Yoga Permana

    2013-03-01

    Full Text Available Pada mesin bubut Computerized Numerical Control (CNC, proses pemahatan benda kerja memerlukan kecepatan potong yang tetap agar hasil kerja memiliki tingkat presisi tinggi. Dalam prakteknya, ketika terjadi pemotongan, diameter benda kerja akan selalu berkurang dan tingkat kedalaman pahat berubah-ubah sesuai dengan proses yang dilakukan sehingga mempengaruhi kecepatan putar motor spindle sehingga mengakibatkan tingkat presisi hasil kerja menjadi berkurang. Pada penelitian ini, digunakan kontroler PI Gain Scheduling untuk mengatur kecapatan motor spindle. Hasil yang didapatkan berupa simulasi kontroler PI Gain Scheduling. Dari hasil simulasi didapatkan kontroler PI Gain Scheduling mampu membuat respon sistem sesuai dengan yang diinginkan.

  14. "Fast" and "slow" skeleto-fusimotor innervation in cat tenuissimus spindles; a study with the glycogen-depletion method.

    Science.gov (United States)

    Jami, L; Lan-Couton, D; Malmgren, K; Petit, J

    1978-07-01

    The glycogen-depletion method was used to investigate the motor supply to tenuissimus with respect to the presence of fast beta axons and to assess the total proportion of both fast and slow beta-innervated spindles in this muscle. In a first series of 5 expts., groups of motor axons with conduction velocities higher than 85 m/s were repetitively stimulated so as to produce glycogen depletion in the muscle fibres they innervated. The whole muscle was then quick-frozen, serially cut, stained to demonstrate glycogen and examined for intrafusal glycogen depletion. Zones of glycogen depletion were found in 16 of the 46 examined spindles; they were most frequently located in the longest of the chain intrafusal muscle fibres. Since it is known that there are no purely fusimotor axons to tenuissimus with conduction velocities above 50 m/s, it was concluded that beta axons are present among the fastest axons to this muscle. In a second series of 5 expts. as many motor axons as possible with conduction velocities above 60 m/s were stimulated. Zones of glycogen depletion were found in 19 of the 47 examined spindles. They affected chain fibres in about half of the instances and bag1 fibers in the others. As this latter location is characteristic of slow dynamic beta axons, it was concluded that both slow and fast beta axons occur regularly in the motor supply to tenuissimus. beta-innervation is present in at least 40% of tenuissimus spindles with almost no convergence of fast and slow beta axons onto the same spindle.

  15. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  16. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  17. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  18. Inhibition of muscle spindle afferent activity during masseter muscle fatigue in the rat.

    Science.gov (United States)

    Brunetti, Orazio; Della Torre, Giovannella; Lucchi, Maria Luisa; Chiocchetti, Roberto; Bortolami, Ruggero; Pettorossi, Vito Enrico

    2003-09-01

    The influence of muscle fatigue on the jaw-closing muscle spindle activity has been investigated by analyzing: (1) the field potentials evoked in the trigeminal motor nucleus (Vmot) by trigeminal mesencephalic nucleus (Vmes) stimulation, (2) the orthodromic and antidromic responses evoked in the Vmes by stimulation of the peripheral and central axons of the muscle proprioceptive afferents, and (3) the extracellular unitary discharge of masseter muscle spindles recorded in the Vmes. The masseter muscle was fatigued by prolonged tetanic masseter nerve electrical stimulation. Pre- and postsynaptic components of the potentials evoked in the Vmot showed a significant reduction in amplitude following muscle fatigue. Orthodromic and antidromic potentials recorded in the Vmes also showed a similar amplitude decrease. Furthermore, muscle fatigue caused a decrease of the discharge frequency of masseter muscle spindle afferents in most of the examined units. The inhibition of the potential amplitude and discharge frequency was strictly correlated with the extent of muscle fatigue and was mediated by the group III and IV afferent muscle fibers activated by fatigue. In fact, the inhibitory effect was abolished by capsaicin injection in the masseter muscle that provokes selective degeneration of small afferent muscle fibers containing neurokinins. We concluded that fatigue signals originating from the muscle and traveling through capsaicin-sensitive fibers are able to diminish the proprioceptive input by a central presynaptic influence. In the second part of the study, we examined the central projection of the masseter small afferents sensitive to capsaicin at the electron-microscopic level. Fiber degeneration was induced by injecting capsaicin into the masseter muscle. Degenerating terminals were found on the soma and stem process in Vmes and on the dendritic tree of neurons in Vmot. This suggests that small muscle afferents may influence the muscle spindle activity through

  19. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  20. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  1. Spindle Cell Carcinoma of Nasal Cavity- A Case Report

    Science.gov (United States)

    Mittal, Abhishek; Nagpal, Tapan

    2016-01-01

    Spindle Cell Carcinoma (SpCC), also known as Sarcomatoid Carcinoma, is a rare and peculiar biphasic malignant neoplasm that occurs mainly in the upper aero-digestive tract, mostly in larynx. SCC accounts for 3% of all squamous cell carcinomas (SCCs) in the head and neck region. It is a rare variant of SCC which shows spindled or pleomorphic tumour cells simulating a true sarcoma. We present a case report of SpCC nasal cavity in a 50-year-old female patient, presented with intermittent epistaxis from left nasal cavity. On physical examination, the patient had an ulcero-exophytic type of mass in the left nasal cavity and a smooth bulge on the left side of anterior hard palate. Patient underwent excision of nasal mass along with partial palatectomy by facial degloving approach and reconstruction of palate with naso-labial flap. The postoperative histopathological report showed SCC. Surgery forms the mainstay of treatment. Radiotherapy and Chemotherapy is warranted in order to improve treatment results. As only few cases have been reported, we report a case of this rare entity to contribute for better understanding and awareness of this rare malignancy. PMID:27190843

  2. Spindle-cell squamous carcinoma of the esophagus: a tumor with biphasic morphology

    International Nuclear Information System (INIS)

    Agha, F.P.; Keren, D.F.

    1985-01-01

    Spindle-cell squamous carcinoma of the esophagus is a rare malignant tumor. It is characterized by a large bulky mass in the middle third of the esophagus with a lobulated surface and local expansion of the esophagus. This lesion may be pedunculated and cause relatively little obstruction despite its bulk. The current view, based on ultrastructure and immunohistochemical evidence, has confirmed that the sarcomatous component of the squamous cell carcinoma originates from mesenchymal metaplasia of squamous cells. On the basis of this evidence and clinical behavior, it seems appropriate to consider carcinosarcoma and pseudosarcoma as equivalents and as variants of squamous cell carcinoma. Four patients with spindle-cell squamous carcinoma, an unusual subset of squamous carcinoma, are described, and the salient radiographic and pathologic features of this disorder's distinctive biphasic morphology are discussed

  3. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  4. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  5. Methodology for construction of hollow spheres for use in physical phantoms

    International Nuclear Information System (INIS)

    Oliveira, A.C.H.; Lima, F.R.A.; Oliveira, F.; Vieira, J.W.

    2015-01-01

    In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)

  6. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2016-05-01

    Full Text Available A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe, compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ∼14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  7. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  8. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  9. Merotelic kinetochore attachment in oocyte meiosis II causes sister chromatids segregation errors in aged mice.

    Science.gov (United States)

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Hao, Xiao-Xia; Wang, Zhi-Peng; Sun, Tie-Cheng; Wang, Xiu-Xia; Zhang, Yan; Chen, Su-Ren; Liu, Yi-Xun

    2017-08-03

    Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.

  10. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  12. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  13. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  14. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Directory of Open Access Journals (Sweden)

    Bo Kyun Sim

    2017-01-01

    Full Text Available The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.

  15. Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System

    Science.gov (United States)

    Kim, Bongju; Shin, Yoo Jin

    2017-01-01

    The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610

  16. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle

    Science.gov (United States)

    Tlalolini, David; Ritou, Mathieu; Rabréau, Clément; Le Loch, Sébastien; Furet, Benoit

    2018-05-01

    The paper presents an electromagnetic system that has been developed to measure the quasi-static and dynamic behavior of machine-tool spindle, at different spindle speeds. This system consists in four Pulse Width Modulation amplifiers and four electromagnets to produce magnetic forces of ± 190 N for the static mode and ± 80 N for the dynamic mode up to 5 kHz. In order to measure the Frequency Response Function (FRF) of spindle, the applied force is required, which is a key issue. A dynamic force model is proposed in order to obtain the load from the measured current in the amplifiers. The model depends on the exciting frequency and on the magnetic characteristics of the system. The predicted force at high speed is validated with a specific experiment and the performance limits of the experimental device are investigated. The FRF obtained with the electromagnetic system is compared to a classical tap test measurement.

  17. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    Science.gov (United States)

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0 ) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  18. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    Science.gov (United States)

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  20. A hollow definitive obturator fabrication technique for management of partial maxillectomy.

    Science.gov (United States)

    Patil, Pravinkumar Gajanan; Patil, Smita Pravinkumar

    2012-11-01

    Maxillary obturator prosthesis is the most frequent treatment option for management of partial or total maxillectomy. Heavy weight of the obturators is often a dislocating factor. Hollowing the prosthesis to reduce its weight is the well established fact. The alternate technique to hollow-out the prosthesis has been described in this article which is a variation of previously described processing techniques. A pre-shaped wax-bolus was incorporated inside the flasks during packing of the heat-polymerized acrylic resin to automatically create the hollow space. The processing technique described is a single step flasking procedure to construct a closed-hollow-obturator prosthesis as a single unit. To best understand the technique, this article describes management of a patient who had undergone partial maxillectomy secondary to squamous cell carcinoma rehabilitated with a hollow-obturator prosthesis.

  1. LOX is a novel mitotic spindle-associated protein essential for mitosis.

    Science.gov (United States)

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-05-17

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.

  2. Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer

    Directory of Open Access Journals (Sweden)

    Marco R. Cosenza

    2017-08-01

    Full Text Available Chromosomal instability is a hallmark of cancer and correlates with the presence of extra centrosomes, which originate from centriole overduplication. Overduplicated centrioles lead to the formation of centriole rosettes, which mature into supernumerary centrosomes in the subsequent cell cycle. While extra centrosomes promote chromosome missegregation by clustering into pseudo-bipolar spindles, the contribution of centriole rosettes to chromosome missegregation is unknown. We used multi-modal imaging of cells with conditional centriole overduplication to show that mitotic rosettes in bipolar spindles frequently harbor unequal centriole numbers, leading to biased chromosome capture that favors binding to the prominent pole. This results in chromosome missegregation and aneuploidy. Rosette mitoses lead to viable offspring and significantly contribute to progeny production. We further show that centrosome abnormalities in primary human malignancies frequently consist of centriole rosettes. As asymmetric centriole rosettes generate mitotic errors that can be propagated, rosette mitoses are sufficient to cause chromosome missegregation in cancer.

  3. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  4. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Science.gov (United States)

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  5. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  6. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  7. Application of a probabilistic model of rainfall-induced shallow landslides to complex hollows

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2008-07-01

    Full Text Available Recently, D'Odorico and Fagherazzi (2003 proposed "A probabilistic model of rainfall-triggered shallow landslides in hollows" (Water Resour. Res., 39, 2003. Their model describes the long-term evolution of colluvial deposits through a probabilistic soil mass balance at a point. Further building blocks of the model are: an infinite-slope stability analysis; a steady-state kinematic wave model (KW of hollow groundwater hydrology; and a statistical model relating intensity, duration, and frequency of extreme precipitation. Here we extend the work of D'Odorico and Fagherazzi (2003 by incorporating a more realistic description of hollow hydrology (hillslope storage Boussinesq model, HSB such that this model can also be applied to more gentle slopes and hollows with different plan shapes. We show that results obtained using the KW and HSB models are significantly different as in the KW model the diffusion term is ignored. We generalize our results by examining the stability of several hollow types with different plan shapes (different convergence degree. For each hollow type, the minimum value of the landslide-triggering saturated depth corresponding to the triggering precipitation (critical recharge rate is computed for steep and gentle hollows. Long term analysis of shallow landslides by the presented model illustrates that all hollows show a quite different behavior from the stability view point. In hollows with more convergence, landslide occurrence is limited by the supply of deposits (supply limited regime or rainfall events (event limited regime while hollows with low convergence degree are unconditionally stable regardless of the soil thickness or rainfall intensity. Overall, our results show that in addition to the effect of slope angle, plan shape (convergence degree also controls the subsurface flow and this process affects the probability distribution of landslide occurrence in different hollows. Finally, we conclude that

  8. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  9. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  10. Mercury's Hollows: New Information on Distribution and Morphology from MESSENGER Observations at Low Altitude

    Science.gov (United States)

    Blewett, D. T.; Stadermann, A. C.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.; Peplowski, P. N.

    2014-12-01

    MESSENGER's orbital mission at Mercury led to the discovery of an unusual landform not known from other airless rocky bodies of the Solar System. Hollows are irregularly shaped, shallow, rimless depressions, often occurring in clusters and with high-reflectance interiors and halos. The fresh appearance of hollows suggests that they are relatively young features. For example, hollows are uncratered, and talus aprons downslope of hollows in certain cases appear to be covering small impact craters (100-200 in diameter). Hence, some hollows may be actively forming at present. The characteristics of hollows are suggestive of formation via destruction of a volatile-bearing phase (possibly one or more sulfides) through solar heating, micrometeoroid bombardment, and/or ion impact. Previous analysis showed that hollows are associated with low-reflectance material (LRM), a color unit identified from global color images. The material hosting hollows has often been excavated from depth by basin or crater impacts. Hollows are small features (tens of meters to several kilometers), so their detection and characterization with MESSENGER's global maps have been limited. MESSENGER's low-altitude orbits provide opportunities for collection of images at high spatial resolutions, which reveal new occurrences of hollows and offer views of hollows with unprecedented detail. As of this writing, we have examined more than 21,000 images with pixel sizes Shadow-length measurements were made on 280 images, yielding the depths of 1343 individual hollows. The mean depth is 30 m, with a standard deviation of 17 m. We also explored correlations between the geographic locations of hollows and maps provided by the MESSENGER geochemical sensors (X-Ray, Gamma-Ray, and Neutron Spectrometers), including the abundances of Al/Si, Ca/Si, Fe/Si, K, Mg/Si, and S/Si, as well as total neutron cross-section. No clear compositional trends emerged; it is likely that any true compositional preference for terrain

  11. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus

    International Nuclear Information System (INIS)

    Nijs, Laurence de; Lakaye, Bernard; Coumans, Bernard; Leon, Christine; Ikeda, Takashi; Delgado-Escueta, Antonio V.; Grisar, Thierry; Chanas, Grazyna

    2006-01-01

    A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1 is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division

  12. Parameter Estimation of the Thermal Network Model of a Machine Tool Spindle by Self-made Bluetooth Temperature Sensor Module

    Directory of Open Access Journals (Sweden)

    Yuan-Chieh Lo

    2018-02-01

    Full Text Available Thermal characteristic analysis is essential for machine tool spindles because sudden failures may occur due to unexpected thermal issue. This article presents a lumped-parameter Thermal Network Model (TNM and its parameter estimation scheme, including hardware and software, in order to characterize both the steady-state and transient thermal behavior of machine tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe. Its specification, through experimental test, achieves to the precision ±(0.1 + 0.0029|t| °C, resolution 0.00489 °C, power consumption 7 mW, and size Ø40 mm × 27 mm. For the software, the heat transfer characteristics of the machine tool spindle correlative to rotating speed are derived based on the theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by grey-box estimation and experimental results. Even under such complicated operating conditions as various speeds and different initial conditions, the experiments validate that the present modeling methodology provides a robust and reliable tool for the temperature prediction with normalized mean square error of 99.5% agreement, and the present approach is transferable to the other spindles with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order TNM is constructed by Model Order Reduction (MOR technique and implemented into the real-time embedded system.

  13. Methodology and guidelines for evaluation of welded attachments on ASME Class 1,2, or 3 piping

    International Nuclear Information System (INIS)

    Chang, K.C.; Adams, T.M.; Rodabaugh, E.C.

    1985-01-01

    The ASME Boiler and Pressure Vessel Code, Section III Subsection NB/NC/ND-3600 provides simplified rules for the evaluation and qualification of piping components. The use of rectangular and hollow, circular welded attachments (hereafter called lugs and trunions) is sometimes necessary in order to provide support for piping systems. The Code provides a set of simple and conservative equations, the associated stress indicies, and specified limitations on their applicability for lugs on Class 1 and Class 2/3 piping in Code Cases N-122 and N-318 respectively. Two new ASME Section III Code Cases, N-391 and N-392, have been prepared to provide the corresponding design guidelines for specific trunion configurations. This paper presents the background on the major concepts involved in the development of these Code Cases and provides some general guidelines to the analysts and designers for the qualification of the attachments not covered by the Code Cases

  14. Spindle epithelial tumor with thymus-like differentiation of thyroid gland: Report of two cases with follow-up

    Directory of Open Access Journals (Sweden)

    Nisa Azizun

    2010-10-01

    Full Text Available Spindle epithelial tumor with thymus-like differentiation (SETTLE is a rare malignant thyroid tumor showing thymic or related branchial pouch differentiation. The tumors are composed predominantly of spindle cells along with focal epithelial component and ductular formations. SETTLE occurs in young patients, with indolent growth and a tendency to develop delayed blood-borne metastases. We herein report two cases of SETTLE with a follow-up period of 64 months and 30 months, respectively.

  15. Ketamine increases the frequency of electroencephalographic bicoherence peak on the alpha spindle area induced with propofol.

    Science.gov (United States)

    Hayashi, K; Tsuda, N; Sawa, T; Hagihira, S

    2007-09-01

    The reticular and thalamocortical system is known to play a prominent role in spindle wave activity, and the spindle wave is related to the sedative effects of anaesthetics. Recently, bispectral analysis of the EEG has been developed as a better method to indicate nonlinear regulation including the thalamocortical system linking to the cortical area. In the present study, in order to explore the interference of ketamine with the nonlinear regulation of the sub-cortical system, we examined the effect of ketamine on spindle alpha waves through the bispectral analysis. The study included 21 patients. Anaesthesia was induced and maintained using a propofol-TCI system (target-controlled infusion, with target concentration 3.5 microg ml(-1)). An A-2000 BIS monitor was used and the raw EEG signals were collected via an RS232 interface on a personal computer. Bicoherence, the normalized bispectrum, and power spectrum were analysed before and after i.v. administration of 1 mg kg(-1) racemic ketamine. Propofol caused alpha peaks in both power and bicoherence spectra, with average frequencies of 10.6 (SD 0.9) Hz and 10.7 (1.0) Hz, respectively. The addition of ketamine significantly shifted each peak to frequencies of 14.4 (1.4) Hz and 13.6 (1.5) Hz, respectively [P < 0.05, mean (SD)]. Ketamine shifted the alpha peaks of bicoherence induced by propofol to higher frequencies. This suggests that ketamine changes the alpha spindle rhythms through the modulation of the nonlinear sub-cortical reverberating network.

  16. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  17. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    Science.gov (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  18. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney.

    Science.gov (United States)

    Fine, Samson W; Argani, Pedram; DeMarzo, Angelo M; Delahunt, Brett; Sebo, Thomas J; Reuter, Victor E; Epstein, Jonathan I

    2006-12-01

    Mucinous tubular and spindle cell carcinomas (MTSCs) are polymorphic neoplasms characterized by small, elongated tubules lined by cuboidal cells and/or cords of spindled cells separated by pale mucinous stroma. Nonclassic morphologic variants and features of MTSC have not been well studied. We identified 17 previously unreported MTSCs from Surgical Pathology and consultative files of the authors and their respective institutions and studied their morphologic features. A total of 10/17 cases were considered "classic," as described above, with 5/10 showing at least focal (20% to 50%) tubular predominance without apparent mucinous matrix. Alcian blue staining revealed abundant (>50%) mucin in all classic cases. Seven of 17 MTSCs were classified as "mucin-poor," with little to no extracellular mucin appreciable by hematoxylin and eosin. Four of these cases showed equal tubular and spindled morphology, 2 cases showed spindle cell predominance (70%; 95%), and 1 case showed tubular predominance (90%). In 5/7 mucin-poor cases, staining for Alcian blue revealed scant (<10%) mucin in cellular areas with the other 2 cases having 30% mucin. Unusual histologic features identified in the 17 cases were: foamy macrophages (n=8), papillations/well formed papillae (n=6/n=1), focal clear cells in tubules (n=3), necrosis (n=3), oncocytic tubules (n=2; 40%, 5%), numerous small vacuoles (n=2), heterotopic bone (n=1), psammomatous calcification (n=1), and nodular growth with lymphocytic cuffing (n=1). An exceptional case contained a well-circumscribed, HMB45-positive angiomyolipoma within the MTSC. MTSCs may be "mucin-poor" and show a marked predominance of either of its principal morphologic components, which coupled with the presence of other unusual features such as clear cells, papillations, foamy macrophages, and necrosis, may mimic other forms of renal cell carcinoma. Pathologists must be aware of the spectrum of histologic findings within MTSCs to ensure their accurate diagnosis.

  19. Topological defects in confined populations of spindle-shaped cells

    Science.gov (United States)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  20. Vibration of rotating-shaft design spindles with flexible bases

    Science.gov (United States)

    Tseng, Chaw-Wu

    The purpose of this study is to demonstrate an accurate mathematical model predicting forced vibration of rotating-shaft HDD spindle motors with flexible stationary parts. The mathematical model consists of three parts: a rotating part, a stationary part, and bearings. The rotating part includes a flexible hub, a flexible shaft press-fit into the hub, and N elastic disks mounted on the hub. The stationary part can include motor bracket (stator), base casting, and top cover. The bearings under consideration can be ball bearings or hydrodynamic bearings (HDB). The rotating disks are modelled through the classical plate theory. The rotating part (except the disks) and the stationary part are modelled through finite element analyses (FEA). With mode shapes and natural frequencies obtained from FEA, the kinetic and potential energies of the rotating and stationary parts are formulated and discretized to compensate for the gyroscopic effects from rotation. Finally, use of Lagrange equation results in the equations of motion. To verify the mathematical model, frequency response functions are measured experimentally for an HDB spindle carrying two identical disks at motor and drive levels. Experimental measurements agree very well with theoretical predictions not only in resonance frequency but also in resonance amplitude.

  1. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    Science.gov (United States)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  2. Generation and propagation characteristics of a localized hollow beam

    Science.gov (United States)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  3. Hydroxyapatite nanorod-assembled porous hollow polyhedra as drug/protein carriers.

    Science.gov (United States)

    Yu, Ya-Dong; Zhu, Ying-Jie; Qi, Chao; Jiang, Ying-Ying; Li, Heng; Wu, Jin

    2017-06-15

    Hydroxyapatite (HAP) with a porous hollow structure is an ideal biomaterial owing to its excellent biocompatibility and unique architecture. In this study, HAP nanorod-assembled porous hollow polyhedra, consisting of nanorod building blocks, have been successfully prepared at room temperature or under hydrothermal circumstances using a self-sacrificing Ca(OH) 2 template strategy. The hydrothermal treatment (at 180°C for 1h) can promote the HAP nanorods to be arranged with their axial direction normal to the polyhedron surface. The HAP nanorod-assembled porous hollow polyhedra have been explored for the potential application in drug/protein delivery, using ibuprofen (IBU) as a model drug and hemoglobin (Hb) as a model protein. The experimental results indicate that the HAP nanorod-assembled porous hollow polyhedra have a relatively high drug loading capacity and protein adsorption ability, and sustained drug and protein release. The HAP nanorod-assembled porous hollow polyhedra have promising applications in various biomedical fields such as the drug and protein delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. CAISSON TYPE HOLLOW FLOOR SLABS OF MONOLITHIC MULTI-STOREYED BUILDINGS

    Directory of Open Access Journals (Sweden)

    Malakhova Anna Nikolaevna

    2016-06-01

    Full Text Available One of the disadvantages of building structures made of reinforced concrete is their considerable weight. One of the trends to decrease the weight of concrete structures, including floor slabs, is the arrangement of voids in the cross-sectional building structures. In Russian and foreign practice paper, cardboard and plastic tubes has been used for creation of voids in the construction of monolithic floor slabs. Lightweight concretes were also used for production of precast hollow core floor slabs. The article provides constructive solutions of precast hollow core floor slabs and solid monolithic slabs that were used in the construction of buildings before wide use of large precast hollow core floor slabs. The article considers the application of caisson hollow core floor slabs for modern monolithic multi-storeyed buildings. The design solutions of such floor slabs, experimental investigations and computer modeling of their operation under load were described in this article. The comparative analysis of the calculation results of computer models of a hollow slabs formed of rod or plastic elements showed the similarity of calculation results.

  5. The crazy hollow formation (Eocene) of central Utah

    Science.gov (United States)

    Weiss, M.P.; Warner, K.N.

    2001-01-01

    The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys

  6. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    Science.gov (United States)

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  8. Evolution of ESR Technology and Equipment for Long Hollow Ingots Manufacture

    Science.gov (United States)

    Medovar, Lev; Stovpchenko, Ganna; Dudka, Grigory; Kozminskiy, Alexander; Fedorovskii, Borys; Lebid, Vitalii; Gusiev, Iaroslav

    In this paper development of both ESR technology and equipment for hollow ingot manufacture review and analysis are presented. The real complications of hollow ingot manufacture and some tendentious issues which restrict process dissemination are discussed. An actual data of modern manufacture of as-cast pipes for heat and power engineering by traditional ESR with consumable electrode are given. Results of microstructure and nonmetal inclusion investigations have shown the high quality of as-cast ESR pipes. On the basis of these results the possibility to produce huge ESR hollows (up 5000 mm in dia) with final goal drastically to reduce setting ratio on forged shells and rings or even replace it by ESR hollows as-cast is grounded. Two new ESR technologies — consumable electrodes change and liquid metal usage — have passed pilot tests for heavy hollow production and shown very prospective results to be presented.

  9. Hollow-core photonic band gap fibers for particle acceleration

    Directory of Open Access Journals (Sweden)

    Robert J. Noble

    2011-12-01

    Full Text Available Photonic band gap (PBG dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency passbands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially made fibers, we perform a simulation analysis of prototype PBG fibers with dimensions appropriate for speed-of-light TM modes.

  10. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    Science.gov (United States)

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation.

  11. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  12. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  13. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis.

    Science.gov (United States)

    Ali, Aamir; Veeranki, Sailaja Naga; Chinchole, Akash; Tyagi, Shweta

    2017-06-19

    Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    Science.gov (United States)

    Cao, Hongrui; Niu, Linkai; He, Zhengjia

    2012-01-01

    Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE) model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones' bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko's beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response. PMID:23012514

  15. Bubble template synthesis of hollow gold nanoparticles and their applications as theranostic agents

    Science.gov (United States)

    Huang, Chienwen

    Hollow gold nanoparticle with a sub-30nm polycrystalline shell and a 50 nm hollow core has been successfully synthesized through the reduction of sodium gold sulfite by electrochemically evolved hydrogen. Such hollow gold nanoparticles exhibit unique plasmonic properties. They strongly scatter and absorb near infrared light. In this thesis we seek to understand the formation mechanism of hollow gold nanoparticles in this new synthesis process and their plasmonic properties. Also, we explore their biomedical applications as theranostic agents (therapeutic and diagnostic imaging). A lithographically patterned electrode consisting of Ag stripes on a glass substrate was used to investigate the formation process of hollow gold nanoparticles. Ag stripes served as working electrode for electrochemically evolution of hydrogen, and adjacent glass areas provided supporting surface for hydrogen nanobubbles nucleation and growth. Hydrogen nanobubbles served as both templates and reducing agents to trigger the autocatalytic disproportionation reaction of sodium gold sulfite. The effects of applied potential and the additives in the electrolyte have been studied. It has been found that the size and size distribution of hollow gold nanoparticle are directly relative to the applied potential, i.e. the hydrogen evolution rate. It has also been found the addition of Ni2+ ions can greatly improve the size distribution of hollow gold nanoparticles that can be contributed to that the newly electrodeposited nickel metal can enhance the hydrogen evolution efficiency. Another additive, ethylenediamine (EDA) can suppress the autocatalytic reaction of gold sulfite to increase the stability of sodium gold sulfite electrolyte. To capture such electrochemically evolved hydrogen nanobubbles, and subsequently to generate hollow gold nanoparticles in large numbers, alumina membranes were placed on the top of the working electrode. Anodic alumina membrane consists of ~200 nm pores, which provides

  16. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  17. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis.

    Science.gov (United States)

    Amin, Mohammed A; McKenney, Richard J; Varma, Dileep

    2018-04-20

    Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  19. Muscle spindles in elongation of the extremity: proprioceptive conflict or activity deficit?

    Science.gov (United States)

    Shevtsov, V I; Saifutdinov, M S; Chikorina, N K

    2008-07-01

    Comparison of electrophysiological and morphological parameters of shin muscles of experimental animals during shin elongation by Ilizarov's method indicates involvement of muscle spindles into reconstruction of the skeletal muscular tissue in response to its dosed distraction, which results in temporary deficit of specific somatosensory afferentation.

  20. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    Energy Technology Data Exchange (ETDEWEB)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2017-04-18

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  1. Sleep spindle density in narcolepsy

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias

    2017-01-01

    BACKGROUND: Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether...... the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). METHODS: All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin...... levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2...

  2. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  3. Free Vibration Analysis of a Spinning Flexible DISK-SPINDLE System Supported by Ball Bearing and Flexible Shaft Using the Finite Element Method and Substructure Synthesis

    Science.gov (United States)

    JANG, G. H.; LEE, S. H.; JUNG, M. S.

    2002-03-01

    Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.

  4. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  5. Piezoelectric self-sensing actuator for active vibration control of motorized spindle based on adaptive signal separation

    Science.gov (United States)

    He, Ye; Chen, Xiaoan; Liu, Zhi; Qin, Yi

    2018-06-01

    The motorized spindle is the core component of CNC machine tools, and the vibration of it reduces the machining precision and service life of the machine tools. Owing to the fast response, large output force, and displacement of the piezoelectric stack, it is often used as the actuator in the active vibration control of the spindle. A piezoelectric self-sensing actuator (SSA) can reduce the cost of the active vibration control system and simplify the structure by eliminating the use of a sensor, because a SSA can have both actuating and sensing functions at the same time. The signal separation method of a SSA based on a bridge circuit is widely applied because of its simple principle and easy implementation. However, it is difficult to maintain dynamic balance of the circuit. Prior research has used adaptive algorithm to balance of the bridge circuit on the flexible beam dynamically, but those algorithms need no correlation between sensing and control voltage, which limit the applications of SSA in the vibration control of the rotor-bearing system. Here, the electromechanical coupling model of the piezoelectric stack is established, followed by establishment of the dynamic model of the spindle system. Next, a new adaptive signal separation method based on the bridge circuit is proposed, which can separate relative small sensing voltage from related mixed voltage adaptively. The experimental results show that when the self-sensing signal obtained from the proposed method is used as a displacement signal, the vibration of the motorized spindle can be suppressed effectively through a linear quadratic Gaussian (LQG) algorithm.

  6. A Foil Thrust Bearing Test Rig for Evaluation of High Temperature Performance and Durability

    Science.gov (United States)

    2008-04-01

    composed of similar elements used in journal bearings, but are designed to support a shaft axially. Often, discrete compliant pads are attached... shaft designed to mate with a test thrust runner. The runner is mounted to the shaft with four high strength bolts, and an interference fit ensures...attached to the drive is able to stop the spindle quickly through dynamic braking of the shaft rotational energy. This spindle arrangement has

  7. Slow Freezing or Vitrification of Oocytes: Their Effects on Survival and Meiotic Spindles, and the Time Schedule for Clinical Practice

    Directory of Open Access Journals (Sweden)

    Shee-Uan Chen

    2009-03-01

    Full Text Available Both the slow-freezing method with increased sucrose concentration and new vitrification techniques significantly improve the results of cryopreservation of human oocytes. The recent perfection for vitrification includes the concepts of increase of cooling and warming rates using minimum volume methods, and decrease of toxicity by reducing the concentration of cryoprotectants. In the recent literature, the survival of cryopreserved oocytes ranged from 74% to 90% using the slow-freezing method and from 84% to 99% by vitrification. Overall, the survival rate of oocytes from vitrification (95%, 899/948 appeared higher than that of the slow-freezing method (75%, 1,275/1,683. The microtubules of meiotic spindles are vulnerable to the thermal changes and will depolymerize. After incubation, the microtubules repolymerize. Spindle recovery is faster after vitrification than slow freezing. Even so, after 3 hours of incubation, spindle recuperation is similar between vitrification and slow freezing. Considering both aspects of spindle recovery and oocyte aging, the time schedule for oocyte cryopreservation program makes fertilization in the optimal time. Intracytoplasmic sperm injection is performed for oocytes at 3 hours of post-thaw incubation from the slow-freezing method and 2 hours from vitrification, with restoration of meiotic spindles. The pregnancy potential of cryopreserved oocytes is comparable to that of fresh oocytes or frozen embryos. Cryopreservation of oocytes would importantly contribute to oocyte donation and preservation of fertility for cancer patients.

  8. Relations between ultrastructure of mitotic spindle and chromosome translocation

    OpenAIRE

    Jadwiga A. Tarkowska

    2014-01-01

    Dividing endosperm cells of Haemanthus katherinae Bak. treated with an 0.25 per cent mixture of water-soluble glycosides from Nerium oleander were insepected in a light microscope (LM) and severe disturbances were found in all phases of mitosis. The same cells were observed in the electron microscope (EM) and relations were noted and analysed between the chromosome arrangement and the submicroscopic structure of the mitotuc spindle. The successive steps in the disintegration of the formed spi...

  9. Plane of vertebral movement eliciting muscle lengthening history in the low back influences the decrease in muscle spindle responsiveness of the cat.

    Science.gov (United States)

    Ge, Weiqing; Cao, Dong-Yuan; Long, Cynthia R; Pickar, Joel G

    2011-12-01

    Proprioceptive feedback is thought to play a significant role in controlling both lumbopelvic and intervertebral orientations. In the lumbar spine, a vertebra's positional history along the dorsal-ventral axis has been shown to alter the position, movement, and velocity sensitivity of muscle spindles in the multifidus and longissimus muscles. These effects appear due to muscle history. Because spinal motion segments have up to 6 degrees of freedom for movement, we were interested in whether the axis along which the history is applied differentially affects paraspinal muscle spindles. We tested the null hypothesis that the loading axis, which creates a vertebra's positional history, has no effect on a lumbar muscle spindle's subsequent response to vertebral position or movement. Identical displacements were applied along three orthogonal axes directly at the L(6) spinous process using a feedback motor system under displacement control. Single-unit nerve activity was recorded from 60 muscle spindle afferents in teased filaments from L(6) dorsal rootlets innervating intact longissimus or multifidus muscles of deeply anesthetized cats. Muscle lengthening histories along the caudal-cranial and dorsal-ventral axis, compared with the left-right axis, produced significantly greater reductions in spindle responses to vertebral position and movement. The spinal anatomy suggested that the effect of a lengthening history is greatest when that history had occurred along an axis lying within the anatomical plane of the facet joint. Speculation is made that the interaction between normal spinal mechanics and the inherent thixotropic property of muscle spindles poses a challenge for feedback and feedforward motor control of the lumbar spine.

  10. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  11. Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems

    Science.gov (United States)

    LIM, SEUNGCHUL

    2000-06-01

    This paper is concerned with the flexural vibration analysis of the hard disk drive (HDD) spindle system by means of the finite element method. In contrast to previous research, every system component is here analytically modelled taking into account its structural flexibility and also the centrifugal effect particularly on the disk. To prove the effectiveness and accuracy of the formulated models, commercial HDD systems with two and three identical disks are selected as examples. Then their major natural modes are computed with only a small number of element meshes as the shaft rotational speed is varied, and subsequently compared with the existing numerical results obtained using other methods and newly acquired experimental ones. Based on such a series of studies, the proposed method can be concluded as a very promising tool for the design of HDDs and various other high-performance computer disk drives such as floppy disk drives, CD ROM drives, and their variations having spindle mechanisms similar to those of HDDs.

  12. p600 regulates spindle orientation in apical neural progenitors and contributes to neurogenesis in the developing neocortex

    Directory of Open Access Journals (Sweden)

    Camille Belzil

    2014-05-01

    Full Text Available Apical neural progenitors (aNPs drive neurogenesis by means of a program consisting of self-proliferative and neurogenic divisions. The balance between these two manners of division sustains the pool of apical progenitors into late neurogenesis, thereby ensuring their availability to populate the brain with terminal cell types. Using knockout and in utero electroporation mouse models, we report a key role for the microtubule-associated protein 600 (p600 in the regulation of spindle orientation in aNPs, a cellular event that has been associated with cell fate and neurogenesis. We find that p600 interacts directly with the neurogenic protein Ndel1 and that aNPs knockout for p600, depleted of p600 by shRNA or expressing a Ndel1-binding p600 fragment all display randomized spindle orientation. Depletion of p600 by shRNA or expression of the Ndel1-binding p600 fragment also results in a decreased number of Pax6-positive aNPs and an increased number of Tbr2-positive basal progenitors destined to become neurons. These Pax6-positive aNPs display a tilted mitotic spindle. In mice wherein p600 is ablated in progenitors, the production of neurons is significantly impaired and this defect is associated with microcephaly. We propose a working model in which p600 controls spindle orientation in aNPs and discuss its implication for neurogenesis.

  13. Evolution of radiation resistant hollow fibers membranes for nuclear

    International Nuclear Information System (INIS)

    Neelam Kumari; Raut, D.R.; Bhardwaj, Y.K.; Mohapatra, P.K.

    2014-01-01

    We have evaluated hollow fiber supported liquid membrane (HFSLM) technique for the separation of actinides, fission products and other valuables from the nuclear waste solutions. In this technique, ligand responsible for separation of metal ion is held in tiny pores of membrane. Any drastic change as a consequence of irradiation, like change in pore size, change in hydrophobicity of polymeric material can be fatal for separation process as it may lead dislodging of carrier ligands from the pores. It was therefore needed to study the irradiation stability of hollow fibers. We have earlier showed that polypropylene fibers were stable up to 500 radiation dose and we therefore need to look into other options. In the present work, hollow fiber membranes made from polyether ether ketone (PEEK), polysulphone (PS). Polymers were evaluated for their radiation stability after exposing to varying absorbed dose of gamma radiation. The hollow fibers were irradiated to 100 KGy, 200 KGy, 500 KGy and 1000 KGy and its changes in hydrophobicity were measured using contact angle measurement studies

  14. A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia

    Energy Technology Data Exchange (ETDEWEB)

    Burland, T.G.; Paul, E.C.A.; Oetliker, M.; Dove, W.F.

    1988-03-01

    The multinucleate plasmodium of Physarum polycephalum is unusual among eucaryotic cells in that it uses tubulins only in mitotic-spindle microtubules; cytoskeletal, flagellar, and centriolar microtubules are absent in this cell type. The authors identified a ..beta..-tubulin cDNA clone, ..beta..105, which is shown to correspond to the transcript of the betC ..beta..-tubulin locus and to encode ..beta..2 tubulin, the ..beta.. tubulin expressed specifically in the plasmodium and used exclusively in the mitotic spindle. Physarum amoebae utilize tubulins in the cytoskeleton, centrioles, and flagella, in addition to the mitotic spindle. Sequence analysis shows that ..beta..2 tubulin is only 83% identical to the two ..beta.. tubulins expressed in amoebae. This compares with 70 to 83% identity between Physarum ..beta..2 tubulin and the ..beta.. tubulins of yeasts, fungi, alga, trypanosome, fruit fly, chicken, and mouse. On the other hand, Physarum ..beta..2 tubulin is no more similar to, for example, Aspergillus ..beta.. tubulins than it is to those of Drosophila melanogaster or mammals. Several eucaryotes express at least one widely diverged ..beta.. tubulin as well as one or more ..beta.. tubulins that conform more closely to a consensus ..beta..-tubulin sequence. The authors suggest that ..beta..-tubulins diverge more when their expression pattern is restricted, especially when this restriction results in their use in fewer functions. This divergence among ..beta.. tubulins could have resulted through neutral drift. For example, exclusive use of Physarum ..beta..2 tubulin in the spindle may have allowed more amino acid substitutions than would be functionally tolerable in the ..beta.. tubulins that are utilized in multiple microtubular organelles. Alternatively, restricted use of ..beta.. tubulins may allow positive selection to operate more freely to refine ..beta..-tubulin function.

  15. Polymer blends used to develop felodipine-loaded hollow microspheres for improved oral bioavailability.

    Science.gov (United States)

    Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng

    2018-06-01

    Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  17. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  18. Paternal Attachment, Parenting Beliefs and Children's Attachment

    Science.gov (United States)

    Howard, Kimberly S.

    2010-01-01

    Relationships between fathers' romantic attachment style, parenting beliefs and father-child attachment security and dependence were examined in a diverse sample of 72 fathers of young children. Paternal romantic attachment style was coded based on fathers' endorsement of a particular style represented in the Hazan and Shaver Three-Category…

  19. FUSIMOTOR EFFECTS OF MIDBRAIN STIMULATION ON JAW MUSCLE-SPINDLES OF THE ANESTHETIZED CAT

    NARCIS (Netherlands)

    TAYLOR, A; JUCH, PJW

    The effects of electrical stimulation within the midbrain on fusimotor output to the jaw elevator muscles were studied in anaesthetized cats. Muscle spindle afferents recorded in the mesencephalic trigeminal nucleus were categorised as primary or secondary by their responses to succinylcholine

  20. Theoretical prediction of low-density hexagonal ZnO hollow structures

    Energy Technology Data Exchange (ETDEWEB)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Huan, Tran Doan [Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136 (United States); Thao, Nguyen Thi [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam); Tuan, Le Manh [Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam)

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

  1. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  2. Investigation the gas film in micro scale induced error on the performance of the aerostatic spindle in ultra-precision machining

    Science.gov (United States)

    Chen, Dongju; Huo, Chen; Cui, Xianxian; Pan, Ri; Fan, Jinwei; An, Chenhui

    2018-05-01

    The objective of this work is to study the influence of error induced by gas film in micro-scale on the static and dynamic behavior of a shaft supported by the aerostatic bearings. The static and dynamic balance models of the aerostatic bearing are presented by the calculated stiffness and damping in micro scale. The static simulation shows that the deformation of aerostatic spindle system in micro scale is decreased. For the dynamic behavior, both the stiffness and damping in axial and radial directions are increased in micro scale. The experiments of the stiffness and rotation error of the spindle show that the deflection of the shaft resulting from the calculating parameters in the micro scale is very close to the deviation of the spindle system. The frequency information in transient analysis is similar to the actual test, and they are also higher than the results from the traditional case without considering micro factor. Therefore, it can be concluded that the value considering micro factor is closer to the actual work case of the aerostatic spindle system. These can provide theoretical basis for the design and machining process of machine tools.

  3. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    Science.gov (United States)

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model

    Directory of Open Access Journals (Sweden)

    Lorenzo Vannucci

    2017-06-01

    Full Text Available Connecting biologically inspired neural simulations to physical or simulated embodiments can be useful both in robotics, for the development of a new kind of bio-inspired controllers, and in neuroscience, to test detailed brain models in complete action-perception loops. The aim of this work is to develop a fully spike-based, biologically inspired mechanism for the translation of proprioceptive feedback. The translation is achieved by implementing a computational model of neural activity of type Ia and type II afferent fibers of muscle spindles, the primary source of proprioceptive information, which, in mammals is regulated through fusimotor activation and provides necessary adjustments during voluntary muscle contractions. As such, both static and dynamic γ-motoneurons activities are taken into account in the proposed model. Information from the actual proprioceptive sensors (i.e., motor encoders is then used to simulate the spindle contraction and relaxation, and therefore drive the neural activity. To assess the feasibility of this approach, the model is implemented on the NEST spiking neural network simulator and on the SpiNNaker neuromorphic hardware platform and tested on simulated and physical robotic platforms. The results demonstrate that the model can be used in both simulated and real-time robotic applications to translate encoder values into a biologically plausible neural activity. Thus, this model provides a completely spike-based building block, suitable for neuromorphic platforms, that will enable the development of sensory-motor closed loops which could include neural simulations of areas of the central nervous system or of low-level reflexes.

  5. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  6. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  7. A revised design approach of the attachment system for the ITER EU-HCPB-TBM based on a central cylindrical connection element

    International Nuclear Information System (INIS)

    Zeile, Christian; Neuberger, Heiko

    2012-01-01

    Highlights: ► Design of an attachment system based on a cylinder to connect TBM and shield. ► Attachment system has to cope with high EM loads and different thermal expansions. ► Stiff design and central position fulfill these requirements. ► Transient thermal-structural analyses confirm compliance of design with design codes. - Abstract: The EU-Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM), which is located inside an equatorial port plug, is attached to the shield by an attachment system. The design of the attachment system has to fulfill two conflicting requirements. On the one hand, it has to transfer the high electromagnetic forces acting on the TBM to the shield and on the other hand, it has to compensate the different thermal expansions between the shield and the back plate of the TBM. The recent design approach of the attachment system consists of a hollow cylinder located at the center of the back plate. This design combines two advantages: a simple geometry and correspondingly low fabrication effort and the central location where the differential strain between back plate and shield is minimal. Static and transient thermal-structural analyses of the most demanding load cases, a fast vertical displacement event type II and the operation state tritium outgassing, have been performed to evaluate the design and confirm the compliance with the relevant design codes. A welded connection of the attachment system to the TBM back plate and a bolted connection in combination with a splined shaft is proposed for the shield side because of the dissimilar materials.

  8. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    International Nuclear Information System (INIS)

    Sayed, Fatima; Labaye, Yvan; Sayed Hassan, Rodaina; El Haj Hassan, Fouad; Yaacoub, Nader; Greneche, Jean-Marc

    2016-01-01

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  9. Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, Fatima; Labaye, Yvan, E-mail: yvan.labaye@univ-lemans.fr [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France); Sayed Hassan, Rodaina; El Haj Hassan, Fouad [Université Libanaise, Faculté des Sciences Section I, MPLAB (Lebanon); Yaacoub, Nader, E-mail: nader.yaacoub@univ-lemans.fr; Greneche, Jean-Marc [Université du Maine, Institut des Molécules et Matériaux du Mans CNRS UMR-6283 (France)

    2016-09-15

    The effect of surface anisotropy on the magnetic ground state of hollow maghemite nanoparticles is investigated using atomistic Monte Carlo simulation. The computer modeling is carried on hollow nanostructures as a function of size and shell thickness. It is found that the large contribution of the surface anisotropy imposes a “throttled” spin structure where the moments located at the outer surface tend to orient normal to the surface while those located at the inner surface appear to be more aligned. For increasing values of surface anisotropy in the frame of a radial model, the magnetic moments become radially oriented either inward or outward giving rise to a “hedgehog” configuration with nearly zero net magnetization. We also show the effect of the size of hollow nanoparticle on the spin behavior where the spin non-collinearity increases (for fixed value of surface anisotropy) as the diameter of the hollow nanoparticle increases due to the significant increase in surface-to-volume ratio, the thickness being constant. Moreover, the thickness of the hollow nanoparticle shell influences the spin configuration and thus the relation between surface anisotropy and the size or the thickness of the hollow nanoparticle is established.

  10. Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening

    International Nuclear Information System (INIS)

    Zhang Lihui; Yang Heqing; Xie Xiaoli; Zhang Fenghua; Li Li

    2009-01-01

    Hollow ZnSe microspheres were prepared via a facile hydrothermal reaction of Zn(AC) 2 .2H 2 O with Na 2 SeO 3 and ethylene glycol in NaOH solution at 180 deg. C for 12 h. The products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectrum. The hollow microspheres with the diameters of about 2 μm are constructed from ZnSe nanoparticles with the cubic zinc blende structure, the size of hollow interiors and constituent ZnSe nanodots can be tuned by changing the reaction time. The hollow microspheres are formed via an Ostwald ripening process. Photoluminescence and photocatalytic activity of the hollow ZnSe microspheres were studied at room temperature. The results indicate that the hollow microspheres constructed from ZnSe nanoparticles display a strong near-band edge emission at 479 nm and a very weak deep defect (DD) related emission at 556 nm and a high photocatalytic activity in the photodegradation of methyl orange. The photodegradation of methyl orange catalyzed by the ZnSe microspheres is a pseudo first-order reaction

  11. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  12. Impact of Maternal Attachment Style on Mother to Infant Attachment

    Directory of Open Access Journals (Sweden)

    Moghaddam Hoseini V

    2011-08-01

    Full Text Available Background and Objectives: Maternal attachment has the potential to affect both child development and parenting. As such, mother-infant attachment has been considered an important topic in recent years. The aim of this study was to determine the relationship between maternal adult attachment style, the maternal obstetric and demographic characteristics and mother-infant attachment.Methods: In this descriptive-correlational study, 102 women who had referred to health centers in Mashhad in 2008 and who had inclusion criteriawere selected using stratified cluster sampling. After interview about obstetric and demographic characteristics, they were asked to complete the "Revised Adult Attachment Scale" and "Mother to Infant Attachment Inventory" for assessment of maternal attachment style and mother-infant attachment 4-5 weeks after delivery. Data were analyzed by Pearson Correlation, Kruskal-wallis and Mann-whitney statistical tests.Results: In this study, themean of mother-infant attachment was found to be 97.486.12 and the mean of secure adult attachment was higher than that of other styles (16.893.97. Although, there were negative significant relationship between maternal avoidant style and mother-infant attachment (p=0.037,r=-0/20, there were no relationship between maternal age and education, parity, type of delivery and mother-infant attachment.Conclusion: The results of this research show that maternal attachment style is one of the factors of mother -infant attachment.

  13. A simple approach to hollow maxillary complete denture fabrication: An innovative technique

    Directory of Open Access Journals (Sweden)

    Kathleen Manuela D'souza

    2017-01-01

    Full Text Available A severely atrophic maxillary arch exhibits reduced denture bearing area and increased inter-ridge distance, thus, affecting retention of the complete denture. Such clinical situations necessitate the fabrication of a hollow complete denture to reduce the weight of the prosthesis and increase retention. This article describes a simple technique to fabricate a hollow maxillary complete denture using salt and thermoplastic poly (methyl methacrylate sheet. The vacuum-formed thermoplastic matrix regulates the quantity of salt and determines its placement in the unpolymerized denture base material during the denture packing stage. The matrix lining the hollow cavity also aids to reinforce the hollow denture base.

  14. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  15. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

    DEFF Research Database (Denmark)

    Bergmann, Til O; Mölle, Matthias; Diedrichs, Jens

    2012-01-01

    Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG......-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably......) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle...

  16. Synthesis and upconversion luminescence properties of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers derived from Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan; Dong Xiangting, E-mail: dongxiangting888@163.com; Yu Wensheng; Wang Jinxian; Liu Guixia [Changchun University of Science and Technology, Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province (China)

    2013-06-15

    YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were successfully fabricated via fluorination of the relevant Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO{sub 3}){sub 3} + Yb(NO{sub 3}){sub 3} + Er(NO{sub 3}){sub 3}] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with mean diameter of 174 {+-} 22 nm, and YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers are composed of nanoparticles with size in the range of 30-60 nm. Upconversion emission spectrum analysis manifested that YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers emitted strong green and weak red upconversion emissions centering at 523, 545, and 654 nm, respectively. The green and red emissions were, respectively, originated from {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} {yields} {sup 4}I{sub 15/2} and {sup 4}F{sub 9/2} {yields} {sup 4}I{sub l5/2} energy levels transitions of the Er{sup 3+} ions. Moreover, the emitting colors of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. This preparation technique could be applied to prepare other rare earth fluoride upconversion luminescence hollow nanofibers.Graphical AbstractYF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers with orthorhombic structure were synthesized by fluorination of the electrospun Y{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers via a double-crucible method using NH{sub 4}HF{sub 2} as fluorinating agent. The mean diameter of YF{sub 3}:Yb{sup 3+}/Er{sup 3+} hollow nanofibers was 174 {+-} 22 nm. The fluorination method we proposed here has been proved to be an important method, as it can not only

  17. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

    Science.gov (United States)

    Fuchs, Margit; Luthold, Carole; Guilbert, Solenn M; Varlet, Alice Anaïs; Lambert, Herman; Jetté, Alexandra; Elowe, Sabine; Landry, Jacques; Lavoie, Josée N

    2015-10-01

    The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.

  18. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.

    Directory of Open Access Journals (Sweden)

    Margit Fuchs

    2015-10-01

    Full Text Available The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.

  19. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Science.gov (United States)

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  1. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  2. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  3. Sharp tipped plastic hollow microneedle array by microinjection moulding

    Science.gov (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  4. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  5. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  6. Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2009-01-01

    Full Text Available Abstract A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display.

  7. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  8. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  9. Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets.

    Science.gov (United States)

    Wang, Meng; Li, Guangda; Xu, Huayun; Qian, Yitai; Yang, Jian

    2013-02-01

    MoS(2), because of its layered structure and high theoretical capacity, has been regarded as a potential candidate for electrode materials in lithium secondary batteries. But it suffers from the poor cycling stability and low rate capability. Here, hierarchical hollow nanoparticles of MoS(2) nanosheets with an increased interlayer distance are synthesized by a simple solvothermal reaction at a low temperature. The formation of hierarchical hollow nanoparticles is based on the intermediate, K(2)NaMoO(3)F(3), as a self-sacrificed template. These hollow nanoparticles exhibit a reversible capacity of 902 mA h g(-1) at 100 mA g(-1) after 80 cycles, much higher than the solid counterpart. At a current density of 1000 mA g(-1), the reversible capacity of the hierarchical hollow nanoparticles could be still maintained at 780 mAh g(-1). The enhanced lithium storage performances of the hierarchical hollow nanoparticles in reversible capacities, cycling stability and rate performances can be attributed to their hierarchical surface, hollow structure feature and increased layer distance of S-Mo-S. Hierarchical hollow nanoparticles as an ensemble of these features, could be applied to other electrode materials for the superior electrochemical performance.

  10. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin.

    Science.gov (United States)

    Baumann, Claudia; Wang, Xiaotian; Yang, Luhan; Viveiros, Maria M

    2017-04-01

    Mouse oocytes lack canonical centrosomes and instead contain unique acentriolar microtubule-organizing centers (aMTOCs). To test the function of these distinct aMTOCs in meiotic spindle formation, pericentrin (Pcnt), an essential centrosome/MTOC protein, was knocked down exclusively in oocytes by using a transgenic RNAi approach. Here, we provide evidence that disruption of aMTOC function in oocytes promotes spindle instability and severe meiotic errors that lead to pronounced female subfertility. Pcnt-depleted oocytes from transgenic (Tg) mice were ovulated at the metaphase-II stage, but show significant chromosome misalignment, aneuploidy and premature sister chromatid separation. These defects were associated with loss of key Pcnt-interacting proteins (γ-tubulin, Nedd1 and Cep215) from meiotic spindle poles, altered spindle structure and chromosome-microtubule attachment errors. Live-cell imaging revealed disruptions in the dynamics of spindle assembly and organization, together with chromosome attachment and congression defects. Notably, spindle formation was dependent on Ran GTPase activity in Pcnt-deficient oocytes. Our findings establish that meiotic division is highly error-prone in the absence of Pcnt and disrupted aMTOCs, similar to what reportedly occurs in human oocytes. Moreover, these data underscore crucial differences between MTOC-dependent and -independent meiotic spindle assembly. © 2017. Published by The Company of Biologists Ltd.

  11. STATUS OF WOOD PROCESSING AND STORAGE IN NIGERIA

    African Journals Online (AJOL)

    ES Obe

    [5] Dry wood has good insulating prop- erties against heat, sound, and electricity. It tends to absorb and ... Wood is primarily com- posed of hollow, elongate, spindle-shaped cells ... (F), a small core of tissue located at the cen- tre of tree stems, ...

  12. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    Science.gov (United States)

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  13. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    International Nuclear Information System (INIS)

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  14. Mucinous tubular and spindle cell carcinoma of kidney: A rare case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Geramizadeh Bita

    2009-10-01

    Full Text Available Low grade mucinous tubular and spindle cell carcinoma of kidney was newly established as a distinct renal cell carcinoma in the World Health Organization (WHO classification of 2004. Until now, less than 60 cases have been reported and the largest series represented approximately 15 patients with this type of tumor. Herein, we report a case of mucinous tubular and spindle cell carcinoma in a 63-year-old male presented with right flank pain which was diagnosed after nephrectomy. Pathologists should consider this diagnosis and its spectrum of histopathologic features in mind to ensure an accurate diagnosis.

  15. Critical Importance of Protein 4.1 in Centrosome and Mitiotic Spindle Aberrations in Breast Cancer Pathogenesis

    National Research Council Canada - National Science Library

    Krauss, Sharon W

    2005-01-01

    Important pathological hallmarks of many breast cancers include centrosome amplification, spindle pole defects leading to aberrant chromosome segregation, altered nucleoskeletal proteins and perturbed cytokinesis...

  16. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  17. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  18. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  19. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  20. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  1. Predicting hollow viscus injury in blunt abdominal trauma with computed tomography.

    Science.gov (United States)

    Bhagvan, Savitha; Turai, Matthew; Holden, Andrew; Ng, Alexander; Civil, Ian

    2013-01-01

    Evaluation of blunt abdominal trauma is controversial. Computed tomography (CT) of the abdomen is commonly used but has limitations, especially in excluding hollow viscus injury in the presence of solid organ injury. To determine whether CT reports alone could be used to direct operative treatment in abdominal trauma, this study was undertaken. The trauma database at Auckland City Hospital was accessed for patients who had abdominal CT and subsequent laparotomy during a five-year period. The CT scans were reevaluated by a consultant radiologist who was blinded to operative findings. The CT findings were correlated with the operative findings. Between January 2002 and December 2007, 1,250 patients were evaluated for blunt abdominal injury with CT. A subset of 78 patients underwent laparotomy, and this formed the study group. The sensitivity and specificity of CT scan in predicting hollow viscus injury was 55.33 and 92.06 % respectively. The positive and negative predictive values were 61.53 and 89.23 % respectively. Presence of free fluid in CT scan was sensitive in diagnosing hollow viscus injury (90 %). Specific findings for hollow viscus injuries on CT scan were free intraperitoneal air (93 %), retroperitoneal air (100 %), oral contrast extravasation (100 %), bowel wall defect (98 %), patchy bowel enhancement (97 %), and mesenteric abnormality (94 %). CT alone cannot be used as a screening tool for hollow viscus injury. The decision to operate in hollow viscus injury has to be based on mechanism of injury and clinical findings together with radiological evidence.

  2. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  3. Spindle cell oncocytoma of adenohypophysis: Cytogenetics and β-catenin findings with pathology differential diagnosis and review of the literature

    Directory of Open Access Journals (Sweden)

    Jianwu Xie

    2017-09-01

    Full Text Available Spindle cell oncocytoma (SCO is an extremely rare neoplasm arising in the anterior pituitary. We report comprehensive pathological description of a case of SCO in a 60 year-old male who presented with nausea, vomiting and severe hyponatremia, and pan hypopituitarism. Magnetic resonance imaging (MRI showed a 3.1 × 2.3 × 2.0 cm homogeneously enhancing bilobed mass within the sella turcica and suprasellar cistern. Intraoperative frozen section and touch imprint cytology showed cohesive spindle cells with abundant oncocytic cytoplasm. Histologic sections revealed the tumor was composed of interlacing fascicles of compact spindled cells with abundant dense oncocytic cytoplasm. There was no mitosis or necrosis present. Ki-67 index varied in areas, with an average of 3%. By immunohistochemistry (IHC, the tumor cells were negative for Cam5.2, AE1/3, neurofilament (NF, NeuN, glial fibrillary acidic protein (GFAP and synaptophysin, and strongly positive for vimentin, TTF-1 and EMA. S-100 showed focal weakly positivity. By electron microscopy (EM, the cytoplasm of the spindle cells contained numerous abundant, back-to-back, uniform, round, normal-sized mitochondria with long and lamellar cristae. Beta-catenin showed diffuse membranous and partial cytoplasmic positivity. Cytogenetic analysis showed extra copies of chromosome 1 (74%, up to 8 copies, and loss of chromosome 2 (35%. The histogenesis, classification and differential diagnosis are discussed.

  4. Mammalian neurogenesis requires Treacle-Plk1 for precise control of spindle orientation, mitotic progression, and maintenance of neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Sakai

    Full Text Available The cerebral cortex is a specialized region of the brain that processes cognitive, motor, somatosensory, auditory, and visual functions. Its characteristic architecture and size is dependent upon the number of neurons generated during embryogenesis and has been postulated to be governed by symmetric versus asymmetric cell divisions, which mediate the balance between progenitor cell maintenance and neuron differentiation, respectively. The mechanistic importance of spindle orientation remains controversial, hence there is considerable interest in understanding how neural progenitor cell mitosis is controlled during neurogenesis. We discovered that Treacle, which is encoded by the Tcof1 gene, is a novel centrosome- and kinetochore-associated protein that is critical for spindle fidelity and mitotic progression. Tcof1/Treacle loss-of-function disrupts spindle orientation and cell cycle progression, which perturbs the maintenance, proliferation, and localization of neural progenitors during cortical neurogenesis. Consistent with this, Tcof1(+/- mice exhibit reduced brain size as a consequence of defects in neural progenitor maintenance. We determined that Treacle elicits its effect via a direct interaction with Polo-like kinase1 (Plk1, and furthermore we discovered novel in vivo roles for Plk1 in governing mitotic progression and spindle orientation in the developing mammalian cortex. Increased asymmetric cell division, however, did not promote increased neuronal differentiation. Collectively our research has therefore identified Treacle and Plk1 as novel in vivo regulators of spindle fidelity, mitotic progression, and proliferation in the maintenance and localization of neural progenitor cells. Together, Treacle and Plk1 are critically required for proper cortical neurogenesis, which has important implications in the regulation of mammalian brain size and the pathogenesis of congenital neurodevelopmental disorders such as microcephaly.

  5. Synthesis of ZnS hollow nanoneedles via the nanoscale Kirkendall effect

    International Nuclear Information System (INIS)

    Sun Hongyu; Chen Yan; Wang Xiaoliang; Xie Yanwu; Li Wei; Zhang Xiangyi

    2011-01-01

    The facile synthesis of one-dimensional II–VI semiconductor hollow nanostructures with sharp tips is of particular interest for their applications in novel nanodevices. In this study, by employing ZnO nanoneedles with lower symmetry structures as self-sacrificed templates, ZnS hollow nanoneedles with homogeneous thickness have been synthesized by a low temperature hydrothermal route through in situ chemical conversion manner and the nanoscale Kirkendall effect. The hollow needlelike structures obtained in the present study can be used as starting materials to create fantastic nanoarchitectures and may have important applications in optoelectronic nanodevices.

  6. Impact of Maternal Attachment Style on Mother to Infant Attachment

    Directory of Open Access Journals (Sweden)

    V Moghaddam Hoseini

    2012-05-01

    Full Text Available

    Background and Objectives: Maternal attachment has the potential to affect both child development and parenting. As such, mother-infant attachment has been considered an important topic in recent years. The aim of this study was to determine the relationship between maternal adult attachment style, the maternal obstetric and demographic characteristics and mother-infant attachment.

     

    Methods: In this descriptive-correlational study, 102 women who had referred to health centers in Mashhad in 2008 and who had inclusion criteriawere selected using stratified cluster sampling. After interview about obstetric and demographic characteristics, they were asked to complete the "Revised Adult Attachment Scale" and "Mother to Infant Attachment Inventory" for assessment of maternal attachment style and mother-infant attachment 4-5 weeks after delivery. Data were analyzed by Pearson Correlation, Kruskal-wallis and Mann-whitney statistical tests.

     

    Results: In this study, themean of mother-infant attachment was found to be 97.48±6.12 and the mean of secure adult attachment was higher than that of other styles (16.89±3.97. Although, there were negative significant relationship between maternal avoidant style and mother-infant attachment (p=0.037,r=-0/20, there were no relationship between maternal age and education, parity, type of delivery and mother-infant attachment.

     

    Conclusion: The results of this research show that maternal attachment style is one of the factors of mother -infant attachment.

  7. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  8. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  9. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Science.gov (United States)

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis

    Science.gov (United States)

    Borek, Weronika E.; Groocock, Lynda M.; Samejima, Itaru; Zou, Juan; de Lima Alves, Flavia; Rappsilber, Juri; Sawin, Kenneth E.

    2015-01-01

    Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. PMID:26243668

  11. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  12. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  13. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  14. Recent progress on the fabrication of hollow microspheres

    International Nuclear Information System (INIS)

    Wang Aijuan; Lu Yupeng; Sun Ruixue

    2007-01-01

    Hollow microspheres represent a special class of materials, on which intense interest has been paid in the fields of material science, medicine, chemistry and chromatography. Several methods, including templating method, emulsion processing, high temperature smelting and layer-by-layer self-assembly technique, have been used to produce this kind of materials. However, most of the current needs for hollow microspheres are limited because of the disadvantages of these fabricating methods, such as time-consuming and relatively complex fabricating process. Spray drying method, as a simple and feasible technology, has also been used to fabricate this kind of materials. This method can improve the efficiency and save the time to some extent, and thus gains more and more interest recently. The factors of influencing the product morphology, including inlet air temperature, atomized pressure, feed rate, initial slurry concentration, primary powders size and additives, are reviewed in this paper. In addition, several kinds of typical hollow microspheres fabricated by this method are also listed particularly

  15. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress.

    Science.gov (United States)

    Komaki, Shinichiro; Schnittger, Arp

    2017-10-23

    The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Spindle cell carcinoma of the breast as complex cystic lesion: a case report

    International Nuclear Information System (INIS)

    Kitada, Masahiro; Hayashi, Satoshi; Matsuda, Yoshinari; Ishibashi, Kei; Oikawa, Keisuke; Miyokawa, Naoyuki

    2014-01-01

    Spindle cell carcinoma of the breast is a rare tumor. This tumor can proliferate rapidly and cause cystic changes because of internal tissue necrosis. We evaluated a 54-year-old woman with right breast lump. Mammography showed a category four mass with a diameter of 2.5 cm. Ultrasonography (US) revealed a complex cystic lesion, and fine-needle aspiration (FNA) cytology demonstrated bloody fluid and malignant cells. Partial breast resection and sentinel lymph node biopsy were performed. Immunohistology revealed spindle cells with positive results for cytokeratin (AE1/AE3) and vimentin, partially positive results for s-100, and negative results for desmin and α-actin. The pathological stage was IIA, and biochemical characterization showed that the tumor was triple negative. Six courses of FEC-100 chemotherapy (5-fluorouracil 500 mg/m 2 , epirubicin 100 mg/m 2 , and cyclophosphamide 500 mg/m 2 ) were administered. Radiotherapy was performed. This case is discussed with reference to the literature

  17. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  18. Synthesis, structural and optical properties of ZnO spindle/reduced graphene oxide composites with enhanced photocatalytic activity under visible light irradiation

    Science.gov (United States)

    Prabhu, S.; Pudukudy, M.; Sohila, S.; Harish, S.; Navaneethan, M.; Navaneethan, D.; Ramesh, R.; Hayakawa, Y.

    2018-05-01

    In the present work, spindle-shaped ZnO and reduced graphene oxide sheets were successfully synthesized by a hydrothermal method and then ZnO/r-GO composite was prepared by a direct solution mixing method. Various characterization results confirmed the interior and surface decoration of spindle-shaped ZnO on the reduced graphene oxide sheets. The phase formation, crystalline structure, morphology, surface states and optical properties were characterized using Powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The X-ray diffraction analysis showed the formation of the hexagonal wurtzite crystalline structure of ZnO with high crystalline quality. The band gap of the ZnO/r-GO composite was found to be low (3.03eV) compared to the band gap of spindle shaped ZnO (3.13 eV), as calculated from optical studies. The spindle-like morphology of the single crystalline ZnO was clearly shown in the electron microscopic images. The chemical bonding and surface states of the samples were studied using XPS measurement. Moreover, a possible growth mechanism for the ZnO spindle was proposed. The catalytic activity of the as-synthesized samples was evaluated for the photodegradation of methylene blue under visible light irradiation. Among the synthesized samples, the ZnO/r-GO composite showed higher degradation efficiency of 93% and successfully reused for four consecutive run without any activity loss.

  19. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity

    Directory of Open Access Journals (Sweden)

    Martin M. Möckel

    2017-04-01

    Full Text Available The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes.

  20. Wrap Spinning: Principles and Development

    CSIR Research Space (South Africa)

    Brydon, AG

    1986-02-01

    Full Text Available A wrap yarn is a composite structure comprising a core of twisted or twisted fibres bound by a yarn or continuous filament. The term wrap yarn therefore include yarns produced by the hollow spindle method as well as similar structure such as selfil...

  1. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  2. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  3. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  4. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  5. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    Energy Technology Data Exchange (ETDEWEB)

    Era, Saho [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Abe, Takuya; Arakawa, Hiroshi [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Kobayashi, Shunsuke [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Szakal, Barnabas [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Yoshikawa, Yusuke; Motegi, Akira; Takeda, Shunichi [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Branzei, Dana, E-mail: dana.branzei@ifom.eu [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  6. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  7. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  8. Synthesis of spindle-shaped AgI/TiO{sub 2} nanoparticles with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu; Gao, Minggang; Dai, Bin; Guo, Xuhong; Liu, Zhiyong; Peng, Banghua, E-mail: banghuapeng@hotmail.com

    2016-11-15

    Highlights: • Nanoporous spindle-shaped AgI/TiO{sub 2} was synthesized by the solvothermal approach. • The spindle-shaped TiO{sub 2} was an excellent support for loading nanoparticles, such as AgI, transferring electrons quickly from AgI, which is beneficial for stabilizing the AgI. • AgI/TiO{sub 2} nanoparticles showed enhanced absorption intensity in the visible region and exhibited excellent photocatalytic activity. - Abstract: A novel synthetic route has been developed to prepare silver iodide (AgI) loaded spindle-shaped TiO{sub 2} nanoparticles (NPs). The morphology and crystallinity characterization revealed that small AgI NPs, with an average diameter of 15 nm were dispersed on the surface and interior of nanoporous anatase TiO{sub 2} support. High-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area, Raman and X-ray photoelectron spectroscopy (XPS) were used to identify the nanoporous structure of TiO{sub 2} and the existence of AgI NPs. Diffuse reflectance spectra (DRS) showed that AgI/TiO{sub 2} composite exhibited a remarkable enhancement of visible light absorption, which is ascribed to the addition of AgI. For illustrating the superior property of this hybrid as photocatalyst, the degradation experiments were carried out for processing rhodamine B (RhB) solution under visible light irradiation and it was found that the photocatalytic activity was dramatically improved for AgI/TiO{sub 2} compared with nanoporous TiO{sub 2} and commercial P25 TiO{sub 2}. The enhanced photocatalytic properties could be attributed to the large surface area of porous TiO{sub 2}, good stability of AgI particles, and the effective charge separation due to the synergetic effect between AgI and TiO{sub 2} that can facilitate the separation of electron-hole pairs. Our novel composite based on nanoporous spindle-shaped TiO{sub 2} represents a promising new pathway for the design of high-performance photocatalysts for environmental

  9. The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation.

    Science.gov (United States)

    Yokoyama, Hideki; Koch, Birgit; Walczak, Rudolf; Ciray-Duygu, Fulya; González-Sánchez, Juan Carlos; Devos, Damien P; Mattaj, Iain W; Gruss, Oliver J

    2014-01-01

    The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.

  10. Attachment and Psychopathology

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Ustundag

    2011-06-01

    Full Text Available The type of attachment defined in the early stages of life and thought to be continuous, is a phenomenon that shapes the pattern of how a person makes contact with others. The clinical appearance of every type of attachment is different and each one has prospective and retrospective phenomenological reflections. In all stages of life and in close relationships, it can be observed if a person gets in close contact with someone else and if this relation bears supportive and protective qualities. According to attachment theorists, once it is defined as safe or unsafe during nursing period, it shows little change. Starting from Bowlby’s work, unsafe attachment type is considered as the determining factor of psychopathology in the later periods of life, while safe attachment is considered as in relation with healthy processes. The nature’s original model is safe attachment. Anxious/indecisive attachment, an unsafe attachment type, is associated with anxiety disorders and depressive disorder, while avoidant attachment is associated with behavior disorder and other extroverted pathologies. Disorganized/disoriented attachment is considered to be together with dissociative disorder. The aim of this paper is to review attachment theory and the relation between attachment and psychopathology.

  11. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture

    International Nuclear Information System (INIS)

    Xu Jiasheng; Xue Dongfeng

    2007-01-01

    Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface. Two factors are important for the formation of hollow and prickly architecture in the present process. One is the general phenomenon of Ostwald ripening in solution, which can be responsible for the hollow structure; the other is that lindgrenite crystals have a rhombic growth habit, which plays an important role in the formation of prickly surface. Furthermore, Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a simple thermal treatment of the as-prepared lindgrenite in air atmosphere. - Graphical abstract: Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a hydrothermal route. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous crystal strips that are aligned perpendicularly to the spherical surface. Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite

  12. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  13. High performance micro-engineered hollow fiber membranes by smart spinneret design

    NARCIS (Netherlands)

    de Jong, J.; Nijdam, W.; van Rijn, C.J.M.; Visser, Tymen; Bolhuis-Versteeg, Lydia A.M.; Kapantaidakis, G.; Koops, G.H.; Wessling, Matthias

    2005-01-01

    Can hollow fiber membranes be produced in other geometries than circular? If so, are membrane properties maintained and what could be the possible benefits of other geometries? This article gives answers and describes the fabrication of micro-structured hollow fiber membranes using micro-fabricated

  14. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-12-01

    To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.

  15. Attachment and prejudice.

    Science.gov (United States)

    Carnelley, Katherine B; Boag, Elle M

    2018-04-16

    There is a paucity of research that examines prejudice from an attachment theory perspective. Herein we make theoretical links between attachment patterns and levels of prejudice. Perceptions of outgroup threat, which activate the attachment system, are thought to lead to fear and prejudice for those high in attachment anxiety, and to distancing and prejudice for those high in attachment avoidance. We review the literature that examines the associations between attachment patterns and prejudice; evidence from attachment priming studies suggests a causal role of attachment security in reducing prejudice. We identify several mediators of these links: empathy, negative emotions, trust, social dominance orientation, romanticism, and contact quality. Future research should manipulate potential mediators and use psychophysiological assessments of threat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A method for manufacturing a hollow mems structure

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for manufacturing an at least partly hollow MEMS structure. In a first step one or more through-going openings is/are provided in core material. The one or more through-going openings is/are then covered by an etch-stop layer. After this step, a bottom...... further comprises the step of creating bottom and top conductors in the respective bottom and top layers. Finally, excess core material is removed in order to create the at least partly hollow MEMS structure which may include a MEMS inductor....

  17. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  18. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Seisno, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO{sub 2} nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO{sub 2} templates were fully coated with magnetite nanoparticles. Dissolution of the SiO{sub 2} core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe{sub 3}O{sub 4} grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO{sub 2} templates contributed to the adsorption of the Fe ion precursor and/or Fe{sub 3}O{sub 4} seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere. - Highlights: • A procedure to synthesize hollow magnetic nanospheres with Au inside was reported. • The Au nanoparticles inside the hollow showed high Au-S binding affinity. • The nanospheres are expected to be suitable as a new magnetic carrier for DDS.

  19. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    Science.gov (United States)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  20. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  1. Sequential multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores

    NARCIS (Netherlands)

    Vleugel, Mathijs; Omerzu, Manja; Groenewold, Vincent; Hadders, Michael A; Lens, Susanne M A; Kops, Geert J P L

    2015-01-01

    Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore

  2. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  3. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  4. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  5. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  6. Bir1 Deletion Causes Malfunction of the Spindle Assembly Checkpoint and Apoptosis in Yeast

    International Nuclear Information System (INIS)

    Ren, Qun; Liou, Liang-Chun; Gao, Qiuqiang; Bao, Xiaoming; Zhang, Zhaojie

    2012-01-01

    Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s) and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative stress, the budding yeast cohesin Mcd1, a homolog of human Rad21, was cleaved by the caspase-like protease Esp1. The cleaved Mcd1 C-terminal fragment was then translocated to mitochondria, causing apoptotic cell death. In the present study, we demonstrated that Bir1 plays an important role in spindle assembly checkpoint and cell death. Similar to H 2 O 2 treatment, deletion of BIR1 using a BIR1-degron strain caused degradation of the securin Pds1, which binds and inactivates Esp1 until metaphase-anaphase transition in a normal cell cycle. BIR1 deletion caused an increase level of ROS and mis-location of Bub1, a major protein for spindle assembly checkpoint. In wild type, Bub1 was located at the kinetochores, but was primarily in the cytoplasm in bir1 deletion strain. When BIR1 was deleted, addition of nocodazole was unable to retain the Bub1 localization on kinetochores, further suggesting that Bir1 is required to activate and maintain the spindle assembly checkpoint. Our study suggests that the BIR1 function in cell cycle regulation works in concert with its anti-apoptosis function.

  7. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    Science.gov (United States)

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  8. Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC

    Directory of Open Access Journals (Sweden)

    Richard F. Reschen

    2012-03-01

    Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD120 mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

  9. Controllable synthesis of spindle-like ZnO nanostructures by a simple low-temperature aqueous solution route

    International Nuclear Information System (INIS)

    Lu Hongxia; Zhao Yunlong; Yu Xiujun; Chen Deliang; Zhang Liwei; Xu Hongliang; Yang Daoyuan; Wang Hailong; Zhang Rui

    2011-01-01

    Spindle-like ZnO nanostructures were successfully synthesized through direct precipitation of zinc acetate aqueous solution at 60 deg. C. Phase structure, morphology and microstructure of the products were investigated by X-ray diffraction, TG-DTA, FTIR and field emission scanning electron microscopy (FESEM). Result showed that hexagonal wurtzite structure ZnO nanostructures with about 100 nm in diameter and 100-200 nm in length were obtained. HMTA acted as a soft template in the process and played an important role in the formation of spindle-like ZnO nanostructures. Meanwhile, different morphologies were also obtained by altering synthetic temperature, additional agents and the ratios of Zn 2+ /OH - . Possible mechanism for the variations of morphology with synthesis parameters was also discussed in this paper.

  10. Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools

    Science.gov (United States)

    Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu

    2018-03-01

    Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.

  11. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue

    NARCIS (Netherlands)

    Quyn, A.J.; Appleton, P.L.; Carey, F.A.; Steele, R.J.; Barker, N.; Clevers, H.; Ridgway, R.A.; Sansom, O.J.; Nathke, I.S.

    2010-01-01

    The importance of asymmetric divisions for stem cell function and maintenance is well established in the developing nervous system and the skin; however, its role in gut epithelium and its importance for tumorigenesis is still debated. We demonstrate alignment of mitotic spindles perpendicular to

  12. Mechanism of the formation of hollow spherical granules using a high shear granulator.

    Science.gov (United States)

    Asada, Takumi; Nishikawa, Mitsunori; Ochiai, Yasushi; Noguchi, Shuji; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-05-30

    Recently, we have developed a novel granulation technology to manufacture hollow spherical granules (HSGs) for controlled-release formulations; however, the mechanism of the granulation is still unclear. The aim of this study is to determine the mechanism of the formation of the HSGs using a high shear granulator. Samples of granulated material were collected at various times during granulation and were investigated using scanning electron microscope and X-ray computed tomography. It was observed that the granulation proceeded by drug layering to the polymer, followed by formation of a hollow in the granule. In addition, it was also found that generation of a crack in the adhered drug layer and air flow into the granules might be involved in forming the hollow in the structure. Observation of the granulation of formulations with different types of drugs and polymers indicated that negative pressure in the granules occurred and the granules caved in when the hollow was formed. The hollow-forming speed and the shell density of the hollow granules depended on the particular drug and polymer. Taken together, the granulation mechanism of HSGs was determined and this information will be valuable for HSGs technology development. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  14. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  15. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  16. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  17. Critical Importance of Protein 4.1 in Centrosome and Mitotic Spindle Aberrations in Breast Cancer Pathogenesis

    National Research Council Canada - National Science Library

    Krauss, Sharon W

    2006-01-01

    We proposed to test the novel hypothesis that protein 4.1 is of critical importance to centrosome and mitotic spindle aberrations that directly impact aspects of breast cancer pathogenesis. We characterized...

  18. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  19. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    Science.gov (United States)

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site

    DEFF Research Database (Denmark)

    Bolanos-Garcia, Victor M; Lischetti, Tiziana; Matak-Vinković, Dijana

    2011-01-01

    The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this proc...

  2. Hollow Electron Beam Collimation for HL-LHC - Effects on the Beam Core

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, M. [Fermilab; Stancari, G. [Fermilab; Valishev, A. [Fermilab; Bruce, R. [CERN; Papotti, G [CERN; Redaelli, S. [CERN; Valentino, G. [Malta U.; Valentino, G. [CERN; Valuch, D. [CERN; Xu, C. [CERN

    2017-06-13

    Collimation with hollow electron beams is currently one of the most promising concepts for active halo control in the High Luminosity Large Hadron Collider (HL-LHC). To ensure the successful operation of the hollow beam collimator the unwanted effects on the beam core, which might arise from the operation with a pulsed electron beam, must be minimized. This paper gives a summary of the effect of hollow electron lenses on the beam core in terms of sources, provides estimates for HL-LHC and discusses the possible mitigation methods.

  3. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  4. Localization of spindle checkpoint proteins in cells undergoing mitosis with unreplicated genomes.

    Science.gov (United States)

    Johnson, Mary Kathrine; Cooksey, Amanda M; Wise, Dwayne A

    2008-11-01

    CHO cells can be arrested with hydoxyurea at the beginning of the DNA synthesis phase of the cell cycle. Subsequent treatment with the xanthine, caffeine, induces cells to bypass the S-phase checkpoint and enter unscheduled mitosis [Schlegel and Pardee,1986, Science 232:1264-1266]. These treated cells build a normal spindle and distribute kinetochores, unattached to chromosomes, to their daughter cells [Brinkley et al.,1988, Nature 336:251-254; Zinkowski et al.,1991, J Cell Biol 113:1091-1110; Wise and Brinkley,1997, Cell Motil Cytoskeleton 36:291-302; Balczon et al.,2003, Chromosoma 112:96-102]. To investigate how these cells distribute kinetochores to daughter cells, we analyzed the spindle checkpoint components, Mad2, CENP-E, and the 3F3 phosphoepitope, using immunofluorescence and digital microscopy. Even though the kinetochores were unpaired and DNA was fragmented, the tension, alignment, and motor components of the checkpoint were found to be present and localized as predicted in prometaphase and metaphase. This unusual mitosis proves that a cell can successfully localize checkpoint proteins and divide even when kinetochores are unpaired and fragmented. (c) 2008 Wiley-Liss, Inc.

  5. Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning.

    Directory of Open Access Journals (Sweden)

    Caroline Lustenberger

    Full Text Available EEG sleep spindle activity (SpA during non-rapid eye movement (NREM sleep has been reported to be associated with measures of intelligence and overnight performance improvements. The reticular nucleus of the thalamus is generating sleep spindles in interaction with thalamocortical connections. The same system enables efficient encoding and processing during wakefulness. Thus, we examined if the triangular relationship between SpA, measures of intelligence and declarative learning reflect the efficiency of the thalamocortical system. As expected, SpA was associated with general cognitive ability, e.g. information processing speed. SpA was also associated with learning efficiency, however, not with overnight performance improvement in a declarative memory task. SpA might therefore reflect the efficiency of the thalamocortical network and can be seen as a marker for learning during encoding in wakefulness, i.e. learning efficiency.

  6. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  7. Tensile Strength of GFRP Reinforcing Bars with Hollow Section

    Directory of Open Access Journals (Sweden)

    Young-Jun You

    2015-01-01

    Full Text Available Fiber reinforced polymer (FRP has been proposed to replace steel as a reinforcing bar (rebar due to its high tensile strength and noncorrosive material properties. One obstacle in using FRP rebars is high price. Generally FRP is more expensive than conventional steel rebar. There are mainly two ways to reduce the cost. For example, one is making the price of each composition cost of FRP rebar (e.g., fibers, resin, etc. lower than steel rebar. Another is making an optimized design for cross section and reducing the material cost. The former approach is not easy because the steel price is very low in comparison with component materials of FRP. For the latter approach, the cost could be cut down by reducing the material cost. Therefore, an idea of making hollow section over the cross section of FRP rebar was proposed in this study by optimizing the cross section design with acceptable tensile performance in comparison with steel rebar. In this study, glass reinforced polymer (GFRP rebars with hollow section and 19 mm of outer diameter were manufactured and tested to evaluate the tensile performance in accordance with the hollowness ratio. From the test results, it was observed that the tensile strength decreased almost linearly with increase of hollowness ratio and the elastic modulus decreased nonlinearly.

  8. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  9. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  10. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  11. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  12. Catalyst-Free Synthesis of Hollow-Sphere-Like ZnO and Its Photoluminescence Property

    Directory of Open Access Journals (Sweden)

    Junye Cheng

    2014-01-01

    Full Text Available Hollow-sphere-like ZnO was successfully prepared by a facile combustion route at 950°C, and no external catalysts or additives were introduced. The morphology and structure of the hollow-sphere-like ZnO were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, and energy dispersive spectrometer (EDS. The possible growth mechanism was discussed in detail. In addition, the as-obtained hollow-sphere-like ZnO exhibited a strong green emission at 518 nm and a weak UV emission at 385 nm. We believe that the hollow-sphere-like ZnO material may be a good candidate for application in optical devices and catalyst systems.

  13. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    International Nuclear Information System (INIS)

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-01-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  14. A comparative study of using spindle motor power and eddy current for the detection of tool conditions in milling processes

    OpenAIRE

    Abbass, JK; Al-Habaibeh, A

    2015-01-01

    This paper investigates the use of the power of the driving motor of a CNC spindle in comparison to two perpendicular eddy current sensors for the detection of tool wear in milling processes. Monitoring the power through the current profile is a low cost system which has been utilised in this study as an attempt to detect the fluctuation in the motor load as a result of the conditions of the cutting tool. Eddy current sensors are dedicated sensors that are installed on the spindle to measure ...

  15. 'Adoption and attachment theory' the attachment models of adoptive mothers and the revision of attachment patterns of their late-adopted children.

    Science.gov (United States)

    Pace, C S; Zavattini, G C

    2011-01-01

    This study examined the attachment patterns of late-adopted children (aged 4-7) and their adoptive mothers during the first 7- to 8-month period after adoption and aimed to evaluate the effect of adoptive mothers' attachment security on the revision of the attachment patterns of their late-adopted children. We assessed attachment patterns in 20 adoptive dyads and 12 genetically related dyads at two different times: T1 (time 1) within 2 months of adoption and T2 (time 2) 6 months after T1. The children's behavioural attachment patterns were assessed using the Separation-Reunion Procedure and the children's representational (verbal) attachment patterns using the Manchester Child Attachment Story Task. The attachment models of the adoptive mothers were classified using the Adult Attachment Interview. We found that there was a significant enhancement of the late-adopted children's attachment security across the time period considered (P= 0.008). Moreover, all the late-adopted children who showed a change from insecurity to security had adoptive mothers with secure attachment models (P= 0.044). However, the matching between maternal attachment models and late-adopted children's attachment patterns (behaviours and representations) was not significant. Our data suggest that revision of the attachment patterns in the late-adopted children is possible but gradual, and that the adoptive mothers' attachment security makes it more likely to occur. © 2010 Blackwell Publishing Ltd.

  16. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    International Nuclear Information System (INIS)

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  17. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  18. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  19. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

    Science.gov (United States)

    Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li

    2014-07-01

    The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.

  20. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.