WorldWideScience

Sample records for hollow silver spheres

  1. Fabrication of porous silver/titania composite hollow spheres with enhanced photocatalytic performance

    Li, Sa; Halperin, Shakked O.; Wang, Chang-An

    2015-01-01

    Silver/titania composite hollow spheres were first synthesized through an in-situ chemical reaction using functional-grouped carbon spheres as the template in this study. The prepared samples were characterized through an X-ray diffraction, N 2 adsorption–desorption, scanning electron microscopy, transmission electron microscopy and UV–Vis spectrophotometer. The photocatalytic activity of as-prepared samples was evaluated by photocatalytic decolorization of Methyl orange (MO) aqueous solution at ambient temperature under UV light. We found a structure with an optimal Ag:TiO 2 composition that exhibited a photodecomposition rate constant more than twice as high as titania hollow spheres lacking silver, and over three times higher than a commercial photocatalyst. - Highlights: • Ag/silver composites. • Hollow spheres. • Photocatalysis enhancement

  2. Synthesis of Hollow Silver Spheres using Spherical Vaterite-type Calcium Carbonate as Template

    Park, Minyoung; Go, Hani; Kim, Jae-Hyun; Rhee, Seog Woo [Kongju National University, Kongju (Korea, Republic of)

    2016-03-15

    In this work, we describe the synthesis of hollow silver spheres using vaterite-type CaCO{sub 3} as template. The spherical vaterite-type CaCO{sub 3} was selectively precipitated d reaction of aqueous CaCl{sub 2} and Na{sub 2}CO{sub 3} in the presence of the polyelectrolyte poly(4-styrenesulfonate). Aqueous AgNO{sub 3} solution containing NH{sub 2}-functionalized CaCO{sub 3} particles was treated with reducing agents such as ascorbic acid, NaBH{sub 4}, and acetaldehyde, and the reduced silver particles were deposited on the surface of CaCO{sub 3}particles to form uniform silvershells. The CaCO{sub 3} used as template was removed from the CaCO{sub 3}/Ag composite by treatment with acid. Finally, the hollow silver sphere was obtained. The morphologies of product were investigated using electron microscopy, the chemical composition of the composite was analyzed using energy-dispersive X-ray spectroscopy, the vibration modes of the carbonate ion were investigated by Fourier transform infrared spectroscopy, the thermal mass change was measured using the thermogravimetric analysis, and the solid phases were confirmed by powder X-ray diffraction.

  3. Facile Synthesis of Micron-Sized Hollow Silver Spheres as Substrates for Surface-Enhanced Raman Scattering

    Lixin Xia

    2014-01-01

    Full Text Available A well-designed type of micron-sized hollow silver sphere was successfully synthesized by a simple hard-template method to be used as substrates for surface-enhanced Raman scattering. 4 Å molecular sieves were employed as a removable solid template. [Ag(NH32]+ was absorbed as the precursor on the surface of the molecular sieve. Formaldehyde was selected as a reducing agent to reduce [Ag(NH32]+, resulting in the formation of a micron-sized silver shell on the surface of the 4 Å molecular sieves. The micron-sized hollow silver spheres were obtained by removing the molecular sieve template. SEM and XRD were used to characterize the structure of the micron-sized hollow silver spheres. The as-prepared micro-silver spheres exhibited robust SERS activity in the presence of adsorbed 4-mercaptobenzoic acid (4-MBA with excitation at 632.8 nm, and the enhancement factor reached ~1.5 × 106. This synthetic process represents a promising method for preparing various hollow metal nanoparticles.

  4. Method for producing small hollow spheres

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  5. TEACHING PHYSICS: Biking around a hollow sphere

    Mak, Se-yuen; Yip, Din-yan

    1999-11-01

    The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.

  6. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  7. Mesoporous hollow spheres from soap bubbling.

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  9. A novel synthesis of micrometer silica hollow sphere

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  10. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  11. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  12. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  13. Method and apparatus for producing small hollow spheres

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  14. Characterization of silane coated hollow sphere alumina-reinforced

    Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...

  15. Electrodepositing of Au on hollow PS micro-spheres

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  16. Determination of corrosion potential of coated hollow spheres

    Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek

    2008-01-01

    Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )

  17. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  18. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  19. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  20. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  1. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  2. Stress in piezoelectric hollow sphere with thermal gradient

    Saadatfar, M.; Rastgoo, A.

    2008-01-01

    The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a radially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezoceramics

  3. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  4. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  5. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  6. Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres

    Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang

    2007-01-01

    In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results

  7. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    Lee, K. -P.; Gopalan, A. I.; Philips, M. F.; Jeong, K.M., E-mail: kplee@knu.ac.kr [Department of Chemistry Education, Teacher' s College, Kyungpook National University 1370, Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2010-07-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics.

  8. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    Lee, K.-P.; Gopalan, A.I.; Philips, M.F.; Jeong, K.M.

    2010-01-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  9. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance

    Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng

    2015-01-01

    Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.

  10. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    Zheng Jie; Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-01

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia

  11. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  12. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Methodology for construction of hollow spheres for use in physical phantoms

    Oliveira, A.C.H.; Lima, F.R.A.; Oliveira, F.; Vieira, J.W.

    2015-01-01

    In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)

  14. Catalyst-Free Synthesis of Hollow-Sphere-Like ZnO and Its Photoluminescence Property

    Junye Cheng

    2014-01-01

    Full Text Available Hollow-sphere-like ZnO was successfully prepared by a facile combustion route at 950°C, and no external catalysts or additives were introduced. The morphology and structure of the hollow-sphere-like ZnO were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, high-resolution transmission electron microscopy (HRTEM, and energy dispersive spectrometer (EDS. The possible growth mechanism was discussed in detail. In addition, the as-obtained hollow-sphere-like ZnO exhibited a strong green emission at 518 nm and a weak UV emission at 385 nm. We believe that the hollow-sphere-like ZnO material may be a good candidate for application in optical devices and catalyst systems.

  15. Self-assembly of calcium phosphate nanoparticles into hollow spheres induced by dissolved amino acids

    Hagmeyer, D.; Ganesan, K.; Ruesing, J.; Schunk, D.; Mayer, C.; Dey, A.; Sommerdijk, N.A.J.M.; Epple, M.

    2011-01-01

    Nanoparticles of calcium phosphate assemble spontaneously within a few seconds into hollow spheres with a diameter around 200–300 nm in the presence of dissolved amino acids and dipeptides. The process of formation was followed by cryo-transmission electron microscopy (cryoTEM), proving their hollow

  16. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  17. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  18. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture

    Xu Jiasheng; Xue Dongfeng

    2007-01-01

    Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface. Two factors are important for the formation of hollow and prickly architecture in the present process. One is the general phenomenon of Ostwald ripening in solution, which can be responsible for the hollow structure; the other is that lindgrenite crystals have a rhombic growth habit, which plays an important role in the formation of prickly surface. Furthermore, Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a simple thermal treatment of the as-prepared lindgrenite in air atmosphere. - Graphical abstract: Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a hydrothermal route. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous crystal strips that are aligned perpendicularly to the spherical surface. Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite

  19. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  20. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  1. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  2. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  3. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  4. MoS2 coated hollow carbon spheres for anodes of lithium ion batteries

    Zhang, Yufei; Wang, Ye; Shi, Wenhui; Yang, Huiying; Yang, Jun; Huang, Wei; Dong, Xiaochen

    2016-01-01

    With the assistance of resorcinol–formaldehyde, MoS 2 coated hollow carbon spheres (C@MoS 2 ) were synthesized through a facile hydrothermal route followed by heat and alkali treatments. The measurements indicate that the hollow carbon spheres with an average diameter of 300 nm and shell thickness of 20 nm. And the hollow core are uniformly covered by ultrathin MoS 2 nanosheets with a length increased to 400 nm. The unique hollow structure and the synergistic effect between carbon layer and MoS 2 nanosheets significantly enhance the rate capability and electrochemical stability of C@MoS 2 spheres as anode material of lithium-ion battery. The synthesized C@MoS 2 delivered a capacity of 750 mAh g −1 at a current density of 100 mA g −1 . More importantly, the C@MoS 2 maintained a reversible capacity of 533 mAh g −1 even at a high current density of 1000 mA g −1 . The study indicated that MoS 2 coated hollow carbon spheres can be promising anode material for next generation high-performance lithium-ion batteries. (paper)

  5. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  6. Influence of dielectric polarization upon PD transients: Use of hollow dielectric spheres

    McAllister, Iain Wilson

    1997-01-01

    Hollow glass spheres have recently been employed to provide a reproducible source of partial discharges. The influence of the shell permittivity upon the PD transients is examined. It is shown that, relative to the non-shell situation, the magnitude of such transients may be increased or decrease......, depending on the ratio of the shell-to-bulk dielectric permittivities....

  7. Synthesis of Br-doped TiO{sub 2} hollow spheres with enhanced photocatalytic activity

    Wang, Qianqian; Zhu, Shengli, E-mail: slzhu@tju.edu.cn; Liang, Yanqin; Cui, Zhenduo; Yang, Xianjin [Tianjin University, School of Materials Science and Engineering (China); Liang, Chunyong [Hebei University of Technology, Research Institute for Energy Equipment Materials (China); Inoue, Akihisa [Tianjin University, School of Materials Science and Engineering (China)

    2017-02-15

    The Br-doped hollow TiO{sub 2} photocatalysts were prepared by a simple hydrothermal process on the carbon sphere template following with calcination at 400 °C. The structure and properties of photocatalysts were characterized by X-ray diffraction, Raman spectrum, scanning electron microscope, transmission electron microscopy, N{sub 2} desorption–adsorption, UV–Vis spectroscopy, and X-ray photoelectron spectroscopy. The TiO{sub 2} hollow spheres are in diameter of 500 nm with shell thickness of 50 nm. The shell is composed of small anatase nanoparticles with size of about 10 nm. The TiO{sub 2} hollow spheres exhibit high crystalline and high surface area of 89.208 m{sup 2}/g. With increasing content of Br doping, the band gap of TiO{sub 2} hollow spheres decreased from 2.85 to 1.75 eV. The formation of impurity band in the band gap would narrow the band gap and result in the red shift of absorption edge from 395 to 517 nm, which further enhances the photocatalytic activity. The appropriate Br doping improves the photocatlytic activity significantly. The TiO{sub 2} hollow spheres with 1.55% Br doping (0.5Br-TiO{sub 2}) exhibit the highest photocatalytic activity under full light. More than 98% of RhB, MO, and MB can be photodegraded using 0.5Br-TiO{sub 2} with concentration of 10 mg/L in 40, 30, and 30 min, respectively. The degradation rate of Br-doped photocatalysts was 40% faster than undoped ones.

  8. Hierarchical Ag/AgCl-TiO{sub 2} hollow spheres with enhanced visible-light photocatalytic activity

    Wang, Xu Long; Yin, Hao Yong [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Nie, Qiu Lin, E-mail: nieqiulin@hdu.edu.cn [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Wei Wei [College of Materials Environment Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Yang; LiYuan, Qiu [College of Science, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2017-01-01

    The hierarchical Ag/AgCl-TiO{sub 2} hollow spheres were synthesized by depositing Ag/AgCl nanoparticles on TiO{sub 2} hollow spheres via a precipitation photoreduction method, and they were further characterized using TGA, SEM, TEM, XRD, XPS, UV–vis DRS and photoelectric chemical analysis. The analysis showed that the hierarchical Ag/AgCl-TiO{sub 2} hollow spheres exhibited the highest photocatalytic activity, which was approximately 13 times higher than that of TiO{sub 2} hollow spheres. The high photocatalytic activity of the composites is due to efficient electron-hole pairs separation at the photocatalyst interfaces, and localized surface plasmon resonance of Ag nanoparticles formed on AgCl particles in the degradation reaction. - Highlights: • TiO{sub 2} hollow spheres were prepared by a sacrificial template method. • The hollow spheres were modified with Ag/AgCl to form the heterojunctions. • The modification may produce synergistic effect of LSPR and hollow structure. • Visible light photocatalytic activity was enhanced on this hollow catalyst. • The mechanism of the improved photocatalytic performance was discussed.

  9. Experimental Investigation and Discrete Element Modelling of Composite Hollow Spheres Subjected to Dynamic Fracture

    Arthur Coré

    2017-01-01

    Full Text Available This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow spheres (ϕ=2–30 mm made of epoxy resin and mineral powder. First of all, quasi-static and dynamic (v=5 mm·min−1 to v=2 m·s−1 compression tests are conducted at room temperature on a single sphere to study energy dissipation mechanisms. Fracture of the material appears to be predominant. A numerical model based on the discrete element method is investigated to simulate the single sphere crushing. The stress-strain-time relationship of the material based on the Ree-Eyring law is numerically implemented. The DEM modelling takes naturally into account the dynamic fracture and the crack path computed is close to the one observed experimentally in uniaxial compression. Eventually, high velocity impacts (v>100 m·s−1 of a hollow sphere on a rigid surface are conducted with an air cannon. The numerical results are in good agreement with the experimental data and demonstrate the ability of the present model to correctly describe the mechanical behavior of brittle materials at high strain rate.

  10. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  11. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

    Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li

    2014-07-01

    The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.

  12. Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong

    2015-09-01

    Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.

  13. Influence of nano-fiber membranes on the silver ions released from hollow fibers containing silver particles

    Li Huigai

    2016-01-01

    Full Text Available Polyether sulfone was dissolved into dimethylacetamide with the concentration of 20% to prepare a uniform solution for fabrication of nanofiber membranes by bubble electrospinning technique. Morphologies of the nanofiber film were carried out with a scanning electron microscope. The influence on the silver ions escaped from hollow fiber loaded with silver particles was exerted by using different release liquid. The water molecular clusters obtained from the nanofiber membranes filter can slow down the release of silver ions. However, the effect of slowing was weakened with the time increasing. In the end, the trend of change is gradually consistent with the trend of release of silver ions in the deionized water.

  14. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  15. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  16. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Heydari, Hamid [Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Moosavifard, Seyyed Ebrahim, E-mail: info_seyyed@yahoo.com [Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Elyasi, Saeed [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

    2017-02-01

    Highlights: • Nanoporous CuS nano-hollow spheres were synthesized by a facile method. • Nano-hollow spheres have a large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). • Such unique structures exhibit excellent electrochemical properties for high-performance SCs. - Abstract: Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m{sup 2} g{sup −1}) and nanoscale shell thickness (<20 nm). This interesting electrode structure plays a key role in providing more active sites for electrochemical reactions, short ion and electron diffusion pathways and facilitated ion transport. The CuS nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g{sup −1} at 1 A g{sup −1}, significant rate capability of 46% capacitance retention at a high current density of 50 A g{sup −1}, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  18. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  19. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  20. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process

    Mao Baodong; Kang Zhenhui; Wang Enbo; Tian Chungui; Zhang Zhiming; Wang Chunlei; Song Yanli; Li Meiye

    2007-01-01

    Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres are composed of robust shells with small nanoparticles standing out of the surface and present a high-surface area and a weak ferromagnetic behavior at room temperature. The effect of concentration of H 3 PW 12 O 40 , reaction time and temperature for the formation of the hollow spheres are investigated in series of experiments. The formation of the hollow spheres may be ascribed to a polyoxometalte-assisted forced hydrolysis and dissolution process. - Graphical abstract: Uniform hollow hematite (α-Fe 2 O 3 ) spheres with diameter of about 600-700 nm and shell thickness lower than 100 nm are obtained by direct hydrothermal treatment of dilute FeCl 3 and tungstophosphoric acid H 3 PW 12 O 40 solution at 180 deg. C. The hollow spheres present a high surface area and weak ferromagnetic behavior at room temperature

  1. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres

    Xia Wei; Grandfield, Kathryn; Schwenke, Almut; Engqvist, Haakan

    2011-01-01

    It is known that organic species regulate fabrication of hierarchical biological forms via solution methods. However, in this study, we observed that the presence of inorganic ions plays an important role in the formation and regulation of biological spherical hydroxyapatite formation. We present a mineralization method to prepare ion-doped hydroxyapatite spheres with a hierarchical structure that is free of organic surfactants and biological additives. Porous and hollow strontium-doped hydroxyapatite spheres were synthesized via controlling the concentration of strontium ions in a calcium and phosphate buffer solution. Similarly, fluoride and silicon-doped hydroxyapatite spheres were synthesized. While spherical particle formation was attainable at low and high temperature for Sr-doped hydroxyapatite, it was only possible at high temperature in the F/Si-doped system. The presence of inorganic ions not only plays an important role in the formation and regulation of biological spherical hydroxyapatite, but also could introduce pharmaceutical effects as a result of trace element release. Such ion release results showed a sustained release with pH responsive behavior, and significantly influenced the hydroxyapatite re-precipitation. These ion-doped hydroxyapatite spheres with hollow and porous structure could have promising applications as bone/tooth materials, drug delivery systems, and chromatography supports.

  2. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  4. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    Wu, Hongjing; Wu, Guanglei; Wu, Qiaofeng; Wang, Liuding

    2014-01-01

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H 2 or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that the defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H 2 and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H 2 , an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H 2 and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated

  5. Synthesis and characterization of Mg-doped ZnO hollow spheres

    Hammad, Talaat M.; Salem, Jamil K.

    2011-01-01

    Mg-doped ZnO nanoparticles were synthesized by a simple chemical method at low temperature with Mg:Zn atomic ratio from 0 to 7%. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and magnesium acetate tetrahydrate were heated under refluxing at 65 °C using methanol as a solvent. X-ray diffraction analysis reveals that the Mg-doped ZnO crystallizes in a wurtzite structure with crystal size of 5–12 nm. These nanocrystals self-aggregated themselves into hollow spheres of size of 800–1100 nm. High resolution transmission electron microscopy images show that each sphere is made up of numerous nanoparticles of average diameter 5–11 nm. The XRD patterns, SEM and TEM micrographs of doping of Mg in ZnO confirmed the formation of hollow spheres indicating that the Mg 2+ is successfully substituted into the ZnO host structure of the Zn 2+ site. Furthermore, the UV–Vis spectra and photoluminescence (PL) spectra of the ZnO nanoparticles were also investigated. The band gap of the nanoparticles can be tuned in the range of 3.36–3.55 eV by the use of the dopants.

  6. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  7. Self-Assembled Hollow Spheres of β-Ni(OH) 2 and Their Derived Nanomaterials

    Zhang, Shengmao

    2009-03-10

    This paper describes a novel solution-based chemical process to architect hollow spheres of β-Ni(OH) 2 with controllable sizes in submicrometer and micrometer regimes. In the synthesis, starting nickel salt (nitrate) is first converted to 6-coordinated nickel ion complex [Ni(EDA) 3] 2+ (bidentate ligand EDA = C 2H 4(NH 2) 2) to avoid rapid solid formation. Hollow and core - shell β-Ni(OH) 2 spheres can be obtained with this template-free approach under one-pot conditions. The β-Ni(OH) 2 spheres are constructed from petal-like nanobuilding units which in turn are formed from even smaller nanocrystallites. The obtained porous β-Ni(OH) 2 spheres have a large specific surface area and show a unimodal pore-size distribution. Several preparative parameters have been examined and optimized. In particular, the concentration of divalent nickel in the starting solutions plays an important role in controlling thickness of the petal-like β-Ni(OH) 2 flakes and diameter of spheres. The β-Ni(OH) 2 flakes self-assemble into final spherical products through a donut-like structural intermediate. Furthermore, the β-Ni(OH) 2 hollow spheres can be used as solid precursors to synthesize other nanostructured derivatives. In this work, phase pure inorganic nanostructures, carbon nanotube (CNT) - inorganic nanocomposites, and inorganic - inorganic nanocom-posites (e.g., NiO, Ni, NiO/Ni, Ni/β-Ni(OH) 2, CNTs/NiO, CNTs/Ni, Ni@CNTs, Fe(OH) 3/β-Ni(OH) 2, Co(OH) 2/β-Ni(OH) 2, and Mg(OH) 2/β-Ni(OH) 2) have been prepared via solid-state thermal decomposition, gas-phase reduction, solution-based reduction, surface oxidation, chemical vapor deposition, and liquid-phase deposition. A greater picture for general synthesis of Ni-containing nanomaterials is thus obtained. © 2009 American Chemical Society.

  8. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Jiye Zhan

    2016-06-01

    Full Text Available Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g−1 at 2 A g−1, and stable high-rate cycling life (70 mAh g−1 after 12,500 cycles at 2 A g−1. The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  9. Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity

    Li Xiaofang; Lv Kangle; Deng Kejian; Tang Junfeng; Su Rong; Sun Jie; Chen Lianqing

    2009-01-01

    To study the relationship between the morphology and the photoreactivity of the catalyst, hollow spheres of two semiconductors of ZnO and TiO 2 were synthesized by using sulfonated polystyrene (PS) as template. The catalyst samples were then characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), diffuse reflectance spectra (DRS), transmission electron microscopy (TEM) and N 2 sorption. Reactive brilliant red X3B, an anionic organic dye, was used in this study as a model chemical with the aim of organic pollutants control. The results show that, whatever the catalyst was, both the adsorptive ability and photoreactivity of the hollow spheres were much higher than that of nanoparticles. The adsorption and photoreactivity of ZnO hollow spheres increased by a factor of 7.36 and 4.66, respectively compared with ZnO nanoparticles, while 3.74 times increased in adsorption and 3.41 times increased in photoreactivity for TiO 2 hollow spheres compared with TiO 2 nanoparticles. Correlations between adsorption and photoreactivity reflected the importance of adsorption in the enhanced photoreactivity of ZnO and TiO 2 hollow spheres

  10. JOINT-INDUSTRY PARTNERSHIP TO DEVELOP A HOLLOW SPHERE DUAL-GRADIENT DRILLING SYSTEM

    William C. Maurer; Colin Ruan; Greg Deskins

    2003-05-01

    Maurer Technology Inc. (MTI) formed a joint-industry partnership to fund the development of a hollow sphere dual-gradient drilling (DGD) system. Phase I consisted of collecting, compiling, analyzing, and distributing information and data regarding a new DGD system for use by the oil and gas industry. Near the end of Phase I, DOE provided funding to the project that was used to conduct a series of critical follow-on tests investigating sphere separation in weighted waterbase and oilbase muds. Drilling costs in deep water are high because seawater pressure on the ocean floor creates a situation where many strings of casing are required due to the relatively close spacing between fracture and pore pressure curves. Approximately $100 million have been spent during the past five years on DGD systems that place pumps on the seafloor to reduce these drilling problems by reducing the annulus fluid pressure at the bottom of the riser. BP estimates that a DGD system can save $9 million per well in the Thunderhorse Field and Conoco estimates it can save $5 to $15 million per well in its deepwater operations. Unfortunately, previous DGD development projects have been unsuccessful due to the high costs ($20 to $50 million) and reliability problems with seafloor pump systems. MTI has been developing a simple DGD system concept that would pump hollow glass spheres into the bottom of the riser to reduce density of the mud in the riser. This eliminates the requirement for seafloor pumps and replaces them with low cost mud pumps, shale shakers, and other oilfield equipment that can be operated on the rig by conventional crews. A $1.8 million Phase I joint-industry project funded by five service companies and three operators showed that hollow spheres could be pumped well, but difficulties were encountered in separating the spheres from a polymer mud supplied by Halliburton due to the high viscosity of this mud at the low shear rates encountered on oilfield shale shaker screens. As a

  11. Novel syntactic foams made of ceramic hollow micro-spheres and starch: theory, structure and properties

    Islam, M.M.; Kim, H.S. [University of Newcastle, Callaghan, NSW (Australia). Faculty of Engineering & Built Environments

    2007-08-15

    Novel syntactic foams for potential building material applications were developed using starch as binder and ceramic hollow micro-spheres available as waste from coal-fired power stations. Foams of four different micro-sphere size groups were manufactured with either pre- or post-mould gelatinization process. They were of ternary system including voids with a foam density range of approximately 0.33-0.44 g/cc. Compressive failure behaviour and mechanical properties of the manufactured foams were evaluated. Not much difference in failure behaviour or in mechanical properties between the two different processes (pre- and post-mould gels) was found for a given binder content. Compressive failure of all syntactic foams was of shear on plane inclined 45 degrees to compressive loading direction. Failure surfaces of most syntactic foams were characterized by debonded micro-spheres. Compressive strength and modulus of syntactic foams were found to be dependant mainly on binder content but mostly independent of micro-sphere size. Some conditions of relativity arising from properties of constituents leading to the rule of mixtures relationships for compressive strength and to understanding of compressive/transitional failure behaviour were developed. The developed relationships based on the rule of mixtures were partially verified. Some formation of starch webs on failure surfaces was discussed.

  12. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  13. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hollow carbon sphere/metal oxide nanocomposites anodes for lithium-ion batteries

    Wenelska, K.; Ottmann, A.; Schneider, P.; Thauer, E.; Klingeler, R.; Mijowska, E.

    2016-01-01

    HCS (Hollow carbon spheres) covered with metal oxide nanoparticles (SnO_2 and MnO_2, respectively) were successfully synthesized and investigated regarding their potential as anode materials for lithium-ion batteries. Raman spectroscopy shows a high degree of graphitization for the HCS host structure. The mesoporous nature of the nanocomposites is confirmed by Brunauer–Emmett–Teller analysis. For both metal oxides under study, the metal oxide functionalization of HCS yields a significant increase of electrochemical performance. The charge capacity of HCS/SnO_2 is 370 mA hg"−"1 after 45 cycles (266 mA hg"−"1 in HCS/MnO_2) which clearly exceeds the value of 188 mA hg"−"1 in pristine HCS. Remarkably, the data imply excellent long term cycling stability after 100 cycles in both cases. The results hence show that mesoporous HCS/metal oxide nanocomposites enable exploiting the potential of metal oxide anode materials in Lithium-ion batteries by providing a HCS host structure which is both conductive and stable enough to accommodate big volume change effects. - Highlights: • Strategy to synthesize hollow carbon spheres decorated by metal oxides nanoparticles. • High-performance of HCS/MOx storage as mesoporous hybrid material. • The results hence demonstrate high electrochemical activity of the HCS/MOx.

  15. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    Francis, Lijo

    2014-12-01

    Poly(vinylidine fluoride) (PVDF) asymmetric hydrophobic hollow fibers were fabricated successfully using dryjet wet spinning. Hydrophobic silver nanoparticles were synthesized and impregnated into the PVDF polymer matrix and functionally graded PVDF-silver nanocomposite hollow fibers are fabricated and tested in the direct contact membrane distillation (DCMD) process. The as-synthesized silver nanoparticles were characterized for Transmission Electron Microscopy (TEM), particle size distribution (PSD) and Ultra Violet (UV) visible spectroscopy. Both the PVDF and PVDF-silver nanocomposite asymmetric hollow fibers were characterized for their morphology, water contact angle and mechanical strength. Addition of hydrophobic silver nanoparticles was found to enhance the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules fabricated using PVDF hollow fibers; the water vapor flux was found to be increased by about 8% and to reach 34.6kg m-2 h-1 for the hollow fiber membrane modules fabricated from the PVDF-silver nanocomposite hollow fibers at the same operating conditions with 99.99% salt rejection.

  16. Electrochemical performance of Ni/TiO{sub 2} hollow sphere in proton exchange membrane water electrolyzers system

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar [Birla Institute of Technology, Jharkhand (India)

    2013-08-15

    This work presents the electrocatalytic evaluation of Ni/TiO{sub 2} hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm{sup −2} peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO{sub 2} electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm{sup −2}. In the anodic polarization curves, the performance of 15 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst was evaluated up to 140 mA cm{sup −2} at comparatively lower over-potential value. 20 wt% Ni/TiO{sub 2} hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.

  17. Electrochemical performance of Ni/TiO_2 hollow sphere in proton exchange membrane water electrolyzers system

    Chattopadhyay, Jayeeta; Srivastava, Rohit; Srivastava, Prem Kumar

    2013-01-01

    This work presents the electrocatalytic evaluation of Ni/TiO_2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm"−"2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO_2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm"−"2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO_2 hollow sphere electrocatalyst was evaluated up to 140 mA cm"−"2 at comparatively lower over-potential value. 20 wt% Ni/TiO_2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer

  18. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  19. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  20. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Li Siheng; Wang Enbo; Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-01-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe 2 O 4 ) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe 2 O 4 (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters

  1. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  2. Synthesis of nano grade hollow silica sphere via a soft template method.

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  3. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  4. New Strategies for Constructing Polymeric Micelles and Hollow Spheres Via Self-Assembly

    Ming Jiang

    2005-01-01

    @@ 1Introduction In recent years, self-assembly of block copolymers leading to micelles in selective solvents, which dissolve only one of the blocks, has developed rapidly because the micelles are very strong candidates for potential applications in advanced technologies. The micelles usually have core-shell structure which are connected by covalent bonds. Based on our long-term research on interpolymer complexation due to hydrogen bonding, where we noticed that the complexation often led to the formation of irregular aggregates, we succeeded recently in developing a series of new approaches to polymeric micelles and hollow spheres via specific intermolecular interactions. As in these approaches, a variety of polymers with interacting groups i.e. homopolymers, random copolymers, graft copolymers as well as low mass compounds (LMC), can be used as building blocks, our research strategies have substantially extended the field of self-assembly.

  5. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  6. A hollow sphere soft lithography approach for long-term hanging drop methods.

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  7. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  8. Influence of preparation conditions of hollow titania–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Ohashi, Takato [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-04-01

    Highlights: • We study influence of preparation conditions on activity of hollow titania–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Ti + Ni content. • The activity depends on the amount of PS residue in the hollow spheres. - Abstract: The present work reports influence of preparation conditions of hollow titania–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}). The as-prepared hollow titania–nickel composite spheres were characterized by transmission electron microscopy (TEM). Catalytic activities of the hollow spheres for hydrolytic dehydrogenation of aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution improve with the decrease of Ti + Ni content. From the results of FTIR spectra and elemental analysis, the amount of residual polystyrene (PS) templates is able to be reduced by increasing aging time for the preparation, and the catalytic activity of the hollow spheres increases when the amount of residual PS templates decreases. The carbon content in the hollow spheres prepared with aging time = 24 h is 17.3 wt.%, and the evolution of 62 mL hydrogen is finished in about 22 min in the presence of the hollow spheres from aqueous NaBH{sub 4}/NH{sub 3}BH{sub 3} solution. The molar ratio of the hydrolytically generated hydrogen to the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres is 2.7.

  9. Influence of preparation conditions of hollow silica–nickel composite spheres on their catalytic activity for hydrolytic dehydrogenation of ammonia borane

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Seki, Ayano [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-03-05

    Highlights: • We study influence of preparation conditions on activity of hollow silica–nickel composite spheres. • The activity for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} increases with increase of Si+Ni content. • The particle size distribution affects the activity and reducibility of active nickel species. • The amount of PS residue in the hollow spheres decreases by treatment of as-prepared sample in toluene. -- Abstract: In this paper, we investigated influence of preparation conditions of hollow silica–nickel composite spheres on their morphology and catalytic activity for hydrolytic dehydrogenation of ammonia borane. In the preparation method of this study, when silica–nickel composite shells were coated on polystyrene templates by the sol–gel method using L(+)-arginine as the promoter for the reaction to form silica–nickel composite shell, the polystyrene templates were dissolved subsequently, even synchronously, in the same medium to form hollow spheres. The as-prepared silica–nickel composite spheres were characterized by transmission electron microscopy and scanning electron microscopy. The effects of Si+Ni content on the morphology were systematically evaluated. All the as-prepared hollow silica–nickel composite spheres have the similar morphology as identified by SEM and TEM measurement. Homogeneity of the hollow silica–nickel composite spheres increases with the increase in the Si+Ni content as shown by the laser diffraction particle size analysis. The catalytic activities of the hollow silica–nickel composite spheres for hydrolytic dehydrogenation of ammonia borane prepared with different Si+Ni contents were compared. The catalytic activity for the hydrogen evolution in the presence of the hollow spheres increases with the increase of Si+Ni content. The results of FTIR spectra of the hollow silica–nickel composite spheres indicate that a certain amount of residual PS templates exists in hollow silica

  10. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  11. Synthesis and characterization of hollow α-Fe2O3 sub-micron spheres prepared by sol–gel

    León, Lizbet; Bustamante, Angel; Osorio, Ana; Olarte, G. S.; Santos Valladares, Luis De Los; Barnes, Crispin H. W.; Majima, Yutaka

    2011-01-01

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres (α-Fe 2 O 3 ) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO 3 ) 3 ·9H 2 O) particles in citric acid solution by following the sol–gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180°C resulted in an amorphous phase, without iron oxide formation. Annealing at 250°C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400°C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600°C. The characterization was performed by X-ray diffraction (XRD), Mössbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  12. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  13. Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor

    Luo, Jing; Ma, Qiang; Gu, Huahao; Zheng, Yuan; Liu, Xiaoya

    2015-01-01

    Highlights: •A graphene-polyaniline (GR-PANI) hybrid hollow sphere is fabricated by layer-by-layer (LBL) assembly technique. •The GR-PANI hollow sphere has higher specific capacitance than stacked GR-PANI LBL film. •64% of its initial capacitance is maintained with the current density increased from 0.5 to 20 A g −1 . •A high capacity retention rate of 83% after 1000 cycles can be achieved. -- Abstract: A novel kind of three-dimensional graphene-polyaniline hybrid hollow sphere (RGO-PANI HS) has been prepared via layer-by-layer (LBL) assembly of negatively-charged reduced graphene oxide (RGO) and positively charged polyaniline (PANI) on polystyrene (PS) microsphere, followed by the removal of the PS template. The hollow structure of the obtained RGO-PANI HS is confirmed by transmission electron microscopy (TEM). When used as the electrode materials for supercapacitor, the specific capacitance of the RGO-PANI HS reaches 381 F/g at a current density of 4.0 A/g, which is much higher than 251 F/g of the stacked RGO-PANI LBL film. The higher specific capacitance of RGO-PANI HS should be attributed to its unique hollow structure which provides a larger accessible surface area and facilitate the charge and ion transport. In addition, its specific capacitance can be facilely tailored by changing the assembly cycle number. Furthermore, good cycling stability is also demonstrated with 83% of the original capacitance value maintained after 1000 charging/discharging cycles

  14. Designed fabrication of fluorine-doped carbon coated mesoporous TiO2 hollow spheres for improved lithium storage

    Geng, Hongbo; Ming, Hai; Ge, Danhua; Zheng, Junwei; Gu, Hongwei

    2015-01-01

    Graphical abstract: Hollow TiO 2 with mesoporous shell (MHTO) was successfully fabricated by a novel and controllable route, followed by fluorine-doped carbon coating the MHTO (MHTO-C/F), with the aim of enhancing the conductivity and stability of structures. - Highlights: • Anatase TiO 2 hollow spheres with mesoporous shells (MHTO) was fabricated via a facile and controllable route, to improve the lithium ion mobility as well as the stability of the architecture. • Fluorine-doped carbon derived from polyvinylidene difluoride was further encapsulated onto TiO 2 hollow spheres to improve the conductivity. • The composites could provide excellent electrochemical performance, which was desirable for the application of TiO 2 as an anode material in lithium ion batteries. - Abstract: In this manuscript, we demonstrated a facile route for the controllable design of “Fluorine (F)-doped carbon” (C/F)-treated TiO 2 hollow spheres with mesoporous shells (MHTO-C/F). The fabrication of this distinct mesoporous hollow structures and the C/F coating could effectively improve the electrolyte permeability and architectural stability, as well as electrical conductivity and lithium ion mobility. As anticipated, MHTO-C/F has several remarkable electrochemical properties, such as a high specific reversible capacity of 252 mA h g −1 , outstanding cycling stability of more than 210 mA h g −1 after 100 cycles at 0.5 C, and good rate performance of around 123 mA h g −1 at 5 C (1 C = 168 mA g −1 ). These properties are highly beneficial for lithium storage

  15. Broadband micro-Michelson interferometer with multi-optical-path beating using a sphered-end hollow fiber.

    Chen, Nan-Kuang; Lu, Kuan-Yi; Shy, Jow-Tsong; Lin, Chinlon

    2011-06-01

    We demonstrate a high-sensitivity broadband (1250-1650 nm) fiber micro-Michelson interferometer using a single-mode fiber end-spliced with a sphered-end hollow-core fiber. The hollow core is slightly smaller than the solid core of a single-mode fiber, so the fractional power of the core mode is converted into cladding modes. The excited cladding modes propagate at distinct optical paths along the hollow-core fiber and have individual foci outside the spherical lens. The reflected core mode, generated at the solid core-air interface, and the reflected cladding modes, generated at external material, interfere with each other to produce beating in the interference signals. © 2011 Optical Society of America

  16. Fabrication of hollow-sphere films of wurtzite CuInS{sub 2} on copper substrate

    Lei, Shuijin, E-mail: shjlei@ncu.edu.cn [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Wang, Chunying [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Qiang [School of Electromechanical Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China); Liu, Lei; Ge, Yang; Tang, Qingliu; Cheng, Baochang; Xiao, Yanhe; Zhou, Lang [School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031 (China)

    2013-12-16

    As important semiconductors, I–III–VI{sub 2} compounds have attracted wide attention, among which the wurtzite structured CuInS{sub 2} has been the research focus due to its metastable phase. In this paper, the wurtzite CuInS{sub 2} hollow-sphere films have been successfully prepared on copper substrate in a self-designed solvothermal detached system. The films of Cu(OH){sub 2} one-dimensional nanostructure arrays and thioacetamide were used as the precursors and triethylene glycol was used as the solvent. Experiments showed that the amount of indium trichloride played a determinative role in the final morphology of the products. Meanwhile, the one-dimensional nanostructure arrays and the detached solvothermal system have great influences on the crystal shape as well. Based on the experimental results, a possible formation mechanism for the CuInS{sub 2} hollow spheres was also proposed. The UV–Vis absorption spectrum showed a broad absorption over the entire visible light and extending into the near-infrared region and presented the band gap of 1.53 eV for the as-prepared wurtzite CuInS{sub 2}, which indicates the potential applications in solar cells. - Highlights: • A self-designed detached system along with solvothermal treatment was developed. • Wurtzite CuInS{sub 2} hollow-sphere films were successfully fabricated on Cu substrate. • The detached system and InCl{sub 3} usage were crucial for the hollow spheres. • The broadband absorption and 1.53 eV band-gap indicates its potentials in PV.

  17. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hol...

  18. Lithium-ion storage capacitors achieved by CVD graphene/TaC/Ta-wires and carbon hollow spheres

    Zhao, Liwei; Li, Hongji; Li, Mingji; Xu, Sheng; Li, Cuiping; Qu, Changqing; Zhang, Lijun; Yang, Baohe

    2016-01-01

    Highlights: • Graphene/TaC/Ta wire electrode was prepared by CVD. • Carbon hollow spheres as a solid electrolyte were prepared by hydrothermal. • Specific capacitance of assembled capacitor reached 593 F g −1 at 10 A g −1 . • The capacitor provided high energy and power densities (132 W h kg −1 /3.17 kW kg −1 ). • The hybrid capacitor also exhibited a high stability during long endurance tests. - Abstract: Lithium-ion storage capacitors were assembled using graphene/tantalum carbide/tantalum wire electrodes and carbon hollow spheres as electrolyte. The graphene/tantalum carbide layers were prepared by electron-assisted hot filament chemical vapor deposition; the carbon hollow spheres were synthesized by hydrothermal reaction and pyrolysis treatment. The specific capacitance of the capacitor was 593 F g −1 at a current density of 10 A g −1 . The capacitor showed excellent cycling stability, retaining 91.2% of its initial capacitance after 8000 cycles. Moreover, the capacitor provided a high specific energy density of 132 W h kg −1 at a high power density of 3.17 kW kg −1 . The high energy density is attributed to the widened operation window ranging from 0 to 3.0 V. The graphene layer of the electrode and carbon hollow spheres in electrolyte synergistic affect influence on the electrochemical performance of the capacitor are discussed. In addition, the use of a low-cost lithium salt, lithium chloride, is also featured in this paper.

  19. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    Song, Jinliang; Sun, Quansheng; Yang, Zhenning; Luo, Shengmin; Xiao, Xianghui; Arwade, Sanjay R.; Zhang, Guoping

    2017-01-01

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  1. Effects of microporosity on the elasticity and yielding of thin-walled metallic hollow spheres

    Song, Jinliang [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Sun, Quansheng [Department of Civil Engineering, Northeast Forestry University, Harbin 150040 (China); Yang, Zhenning; Luo, Shengmin [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Xiao, Xianghui [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Arwade, Sanjay R. [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States); Zhang, Guoping, E-mail: zhangg@umass.edu [Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA 01003 (United States)

    2017-03-14

    Knowledge of the mechanical properties of porous metallic hollow spheres (MHS) thin wall is of key importance for understanding the engineering performance of both individual ultralight MHS and the innovative MHS-based bulk foams. This paper presents the first integrated experimental and numerical study to determine the elasticity and yielding of the porous MHS wall and their dependence on its microporosity. Nanoindentation was used to probe the Young's modulus and hardness of the nonporous MHS wall material, and synchrotron X-ray computed tomography (XCT) conducted to obtain its porous microstructure and pore morphology. Three-dimensional finite element modeling was performed to obtain the mechanical response of microcubes with varying porosity trimmed from the XCT-derived real digital model of the porous MHS wall. Results show that both the Young's modulus and yield strength of the porous wall decrease nonlinearly with increasing porosity, and their relationships follow the same format of a power law function and agree well with prior experimental results. The empirical relations also reflect certain features of pore morphology, such as pore connectivity and shape. These findings can shed lights on the design, manufacturing, and modeling of individual MHS and MHS-based foams.

  2. Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries

    Zhan Liang; Wang Yanli; Qiao Wenming; Ling, Licheng; Yang Shubin

    2012-01-01

    Graphical abstract: Hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles were synthesized. As anode materials for lithium ion battery, the reversible capacity of obtained electrode is as high as 732 mAh g −1 at 74 mA g −1 and 500 mAh g −1 at 744 mA g −1 . - Abstract: Based on the high theoretical capacity of Co 3 O 4 for lithium storage, a noval type of monodisperse hollow carbon spheres with encapsulation of Co 3 O 4 nanoparticles (HCSE-Co 3 O 4 ) were designed and synthesized. The monodisperse hollow carbon spheres not only can provide enough void volume to accommodate the volume change of encapsulated Co 3 O 4 nanoparicles, but also can prevent the formation of solid electrolyte interface (SEI) films on the surface of Co 3 O 4 nanoparticles and following direct contact of Co and SEI films upon lithium extraction. The HCSE-Co 3 O 4 electrode exhibit highly reversible capacity, excellent cycle performance and rate capability attributed to the unique structure. The reversible capacity of HCSE-Co 3 O 4 electrode is as high as 500 mAh g −1 at a current density of 744 mA g −1 , while that of bare Co 3 O 4 electrode is only around 80 mAh g −1 .

  3. Synthesis of silver hollow nanoparticles and observation of photoluminescence emission properties

    Desarkar, H.S.; Kumbhakar, P.; Mitra, A.K.

    2013-01-01

    Preparation of hollow silver nanoparticles (HSNs) along-with solid silver nanoparticles are reported by Nd:YAG laser ablation of solid silver target immersed in water medium with a laser ablation time (LAT) duration of 50 min and with the incident laser fluence of 151 J/cm 2 . It is found that only solid silver nanoparticles are produced when the experiment is carried out with smaller values of LAT duration. The synthesized samples are characterized by using transmission electron microscopy and UV–Visible absorption spectroscopy. The UV–Visible absorption spectra of the samples show sharp absorptions in the ultraviolet and in visible regions due to interband transition and surface plasmon resonance oscillations in Ag nanoparticles, respectively. It is found that all samples exhibit photoluminescence (PL) emission, at room temperature, in the UV–Visible region peaked at ∼346 nm, due to the recombination of electrons with holes from sp conduction band to d band of Ag. The sample containing HSNs exhibits strong PL emission and the value of peak PL emission intensity is enhanced by the factor of 2.4 in comparison to that obtained from the sample synthesized with LAT duration of 20 min. The synthesized HSNs may find applications in catalysis and in chemical sensing. - Highlights: ►Hollow silver nanoparticles of 15–60 nm particle sizes are prepared by laser ablation. ►Prepared Ag nanoparticles show sharp absorptions in the UV and visible regions. ►Strong interband transition along-with SPR oscillations is reported. ►Enhancement (2.4 times) in photoluminescence emission in the UV region is reported.

  4. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong

    2016-01-01

    Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m 2 /g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.

  5. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong, E-mail: dszhang@shu.edu.cn

    2016-04-30

    Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m{sup 2}/g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.

  6. Low temperature synthesis and photocatalytic property of perovskite-type LaCoO{sub 3} hollow spheres

    Fu, Shasha [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Niu, Helin, E-mail: niuhelin@ahu.edu.cn [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Tao, Zhiyin; Song, Jiming; Mao, Changjie; Zhang, Shengyi [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Chen, Changle, E-mail: changle@ustc.edu.cn [CAS Key Laboratory of Soft Matter Chemistry and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Wang, Dong [Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of)

    2013-11-05

    Highlights: •Hollow perovskite-type LaCoO{sub 3} is fabricated by green colloidal template method. •Carbonaceous colloids acted as templates and offered internal heat source. •The calcination temperature to form perovskite-type LaCoO{sub 3} was dropped to 550 °C. •The photocatalytic properties were studied upon UV irradiation. •Hollow perovskite-type LaCoO{sub 3} shows excellent photocatalytic activity on dyes. -- Abstract: Hollow perovskite-type LaCoO{sub 3} was successfully fabricated by surface-ion adsorption method utilizing the carbonaceous colloids as template under relatively low calcination temperature. Carbonaceous colloids not only acted as templates but also offered internal heat source during calcination process. The impact of calcined temperature and time on the structure and morphology of the product were studied and the possible formation process of perovskite-type LaCoO{sub 3} hollow spheres was illustrated. The obtained product was characterized by SEM, TEM, XRD, TG-DSC, ICP-OES, BET and UV–visible absorption spectra. The photocatalytic activities for degradation of methylene blue, methyl orange and neutral red were tested. The good photocatalytic degradation activity of the three different dyes and the band gap of 2.07 eV make it a promising candidate material for photocatalytic applications.

  7. Low temperature synthesis and photocatalytic property of perovskite-type LaCoO3 hollow spheres

    Fu, Shasha; Niu, Helin; Tao, Zhiyin; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Chen, Changle; Wang, Dong

    2013-01-01

    Highlights: •Hollow perovskite-type LaCoO 3 is fabricated by green colloidal template method. •Carbonaceous colloids acted as templates and offered internal heat source. •The calcination temperature to form perovskite-type LaCoO 3 was dropped to 550 °C. •The photocatalytic properties were studied upon UV irradiation. •Hollow perovskite-type LaCoO 3 shows excellent photocatalytic activity on dyes. -- Abstract: Hollow perovskite-type LaCoO 3 was successfully fabricated by surface-ion adsorption method utilizing the carbonaceous colloids as template under relatively low calcination temperature. Carbonaceous colloids not only acted as templates but also offered internal heat source during calcination process. The impact of calcined temperature and time on the structure and morphology of the product were studied and the possible formation process of perovskite-type LaCoO 3 hollow spheres was illustrated. The obtained product was characterized by SEM, TEM, XRD, TG-DSC, ICP-OES, BET and UV–visible absorption spectra. The photocatalytic activities for degradation of methylene blue, methyl orange and neutral red were tested. The good photocatalytic degradation activity of the three different dyes and the band gap of 2.07 eV make it a promising candidate material for photocatalytic applications

  8. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  9. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  10. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  11. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  12. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  13. Uniform hollow Fe3O4 spheres prepared by template-free solvothermal method as anode material for lithium-ion batteries

    Zhang Jingjing; Yao Yu; Huang Tao; Yu Aishui

    2012-01-01

    Graphical abstract: Unique hollow Fe 3 O 4 spheres assembled by Fe 3 O 4 nanoparticles prepared by a simple template-free solvothermal reaction are tested as anode material for lithium-ion batteries. The results show that the material delivers reversible specific capacities of 870 mA h g −1 even after 50 cycles at 100 mA g −1 and 836 mA h g −1 at 500 mA g −1 . The excellent electrochemical performance can be attributed to their hollow nanostructure and excellent structural stability. Highlights: ► Uniform hollow Fe 3 O 4 spheres were prepared by a template-free solvothermal method. ► The hollow Fe 3 O 4 spheres have the capacity of 870 mA h g −1 at 50th cycle. ► The specific capacity can be well maintained at a large current density. ► The hollow Fe 3 O 4 spheres exhibit enhanced rate capability. ► Electrochemical performance of hollow Fe 3 O 4 spheres is better than Fe 3 O 4 powders. - Abstract: Unique hollow Fe 3 O 4 spheres are prepared by a simple template-free solvothermal reaction. In the reaction, ethylene glycol (EG) and polyvinylpyrrolidone (PVP) serve as the reducing agent and surface stabilizer, respectively. NH 4 Ac plays the role of the structure-directing agent, which combines with the Ostwald ripening process, resulting in the favored formation of hollow structures. The morphologies and structures are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The hollow Fe 3 O 4 spheres exhibit excellent cycling and rate performance as anode material for lithium-ion batteries, delivering reversible specific capacities of 870 mA h g −1 even after 50 cycles at 100 mA g −1 and 836 mA h g −1 at 500 mA g −1 . The excellent electrochemical performance can be attributed to their hollow nanostructure and excellent structural stability.

  14. Preparation of graphene oxide-wrapped carbon sphere@silver spheres for high performance chlorinated phenols sensor

    Gan, Tian, E-mail: gantsjy@163.com [College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000 (China); State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Lv, Zhen; Sun, Junyong; Shi, Zhaoxia; Liu, Yanming [College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000 (China)

    2016-01-25

    Highlights: • Hierarchical CS@Ag@GO composite was obtained by a simple solution route. • Signal amplification is achieved for sensitive detection of chlorinated phenols. • The low-cost method exhibits wide concentration range and acceptable accuracy. • The method can be successfully applied to detect chlorinated phenols in waters. - Abstract: A template-activated strategy was developed to construct core/shell structured carbon sphere@silver composite based on one-pot hydrothermal treatment. The CS@Ag possessed a uniform three-dimensional interconnected microstructure with an enlarged surface area and catalytic activity, which was further mechanically protected by graphene oxide (GO) nanolayers to fabricate intriguing configuration, which was beneficial for efficiently preventing the aggregation and oxidation of AgNPs and improving the electrical conductivity through intimate contact. By immobilizing this special material on electrode surface, the CS@Ag@GO was further used for sensitive determination of chlorinated phenols including 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol. The tailored structure, fast electron transfer ability and facile preparation of CS@Ag@GO made it a promising electrode material for practical applications in phenols sensing.

  15. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  16. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction.

    Yu, Dabin; Yam, Vivian Wing-Wah

    2005-03-31

    Small colloidal silver spheres (diameter synthesis process. Adjustment of the synthesis parameters, in particular the concentrations of HTAB and [Ag(NH3)2]+, led to an obvious shape evolution of silver nanoparticles, thus resulting in the shape-selective formation of the silver nanoparticles. The monodisperse nanocubes with a well-defined crystallographical structure (a single crystal bounded by six {200} facets) have a strong tendency to assemble into two-dimensional arrays on substrates. The nanowires with uniform diameter usually existed in the form of two-dimensional alignments. The findings suggested that hydrothermal-induced assembly of small silver colloidal particles should be a convenient and effective approach to the preparation of various silver nanoparticles.

  18. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  19. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting...

  20. Ultrasonic/surfactant assisted of CdS nano hollow sphere synthesis and characterization

    Rafati, Amir Abbas; Borujeni, Ahmad Reza Afraz; Najafi, Mojgan; Bagheri, Ahmad

    2011-01-01

    CdS hollow nanospheres with diameters ranging from 40 to 150 nm have been synthesized by a surfactant-assisted sonochemical route. The successful vesicle templating indicates that the outer leaflet of the bilayer is the receptive surface in the controlled growth of CdS nanoparticles which provide the unique reactor for the nucleation and mineralization growth of CdS nanoparticles. The CdS nanostructures obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Structural characterization of hollow CdS nanospheres indicates that these products packed with square subunits having sizes between 5 and 7 nm in diameter. The formation of the hollow nanostructure was explained by a vesicle template mechanism, in which sonication and surfactant play important roles. The band-edge emission and surface luminescence of the CdS nanoparticles were observed. -Research Highlights: → CdS hollow nanospheres with diameters of 40-150 nm were synthesized. → Nanoparticles were characterized by UV/Vis and photoluminescence. → Nanospheres are composed of smaller nanocrystals with the average size of 6.8 nm. → The band gap energy of the CdS nanoparticles is higher than its bulk value.

  1. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  2. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  3. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  4. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Yang Liu

    2017-11-01

    Full Text Available To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG as the solvent medium and cetyltrimethylammonium bromide (CTAB as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C, good high-rate discharge capacity (118 mAh g−1 at 10 C, and fine cycling stability (99.2% after 200 cycles at 0.1 C. The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure.

  5. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  6. Facile synthesis and enhanced visible-light photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres

    Liu, Jin [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China); The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001 (China); Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070 (China)

    2015-03-15

    Graphical abstract: - Highlights: • Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were synthesized by a facile method. • The formation mechanism for the Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated. • The catalyst exhibited an enhanced visible-light photocatalytic activity. • The reactive species in the photocatalytic process were studied. - Abstract: Micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres were successfully synthesized by a one-step and low-temperature route under ambient pressure. The micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres have a diameter of 1–2 μm and their shells are composed of numerous nanoparticles and nanorods. The growth process of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres was investigated in detail. The results indicated that the morphologies and composition of Ag{sub 2}ZnGeO{sub 4} samples were strongly dependent on the dose of the AgNO{sub 3} and reaction time. Excessive AgNO{sub 3} was favorable for the nucleation and growth rate of Ag{sub 2}ZnGeO{sub 4} crystals and the formation of pure Ag{sub 2}ZnGeO{sub 4}. Moreover, the formation mechanism of the micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is related to the Ostwald ripening. Under the same conditions, the photocatalytic activity of micro/nanostructured Ag{sub 2}ZnGeO{sub 4} hollow spheres is about 1.7 times and 11 times higher than that of bulk Ag{sub 2}ZnGeO{sub 4} and Degussa P25, respectively. These interesting findings could provide new insight on the synthesis of micro/nanostructured ternary-metal oxides with enhanced photocatalytic activity.

  7. Double hollow MoS{sub 2} nano-spheres: Synthesis, tribological properties, and functional conversion from lubrication to photocatalysis

    Liu, Yueru [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Kunhong, E-mail: hukunhong@163.com [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Enzhu; Guo, Jianhua; Han, Chengliang [Department of Chemical and Materials Engineering, Hefei University, Hefei 230601 (China); Hu, Xianguo [Institute of Tribology, Hefei University of Technology, Hefei 230009 (China)

    2017-01-15

    Highlights: • Novel double-hollow-sphere MoS{sub 2} nanoparticles were synthesized on sericite. • Friction and wear decreased by 22.4 and 63.5% by the novel MoS{sub 2}/sericite. • Friction induced conversion of MoS{sub 2}/sericite from lubricant to catalyst. • MoS{sub 2}/sericite can be used as a photocatalyst after lubricating service life. • A possible approach was proposed for designing a novel green lubricant. - Abstract: Molybdenum disulfide (MoS{sub 2}) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS{sub 2}, novel double-hollow-sphere MoS{sub 2} (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.

  8. Nanometric onion-like hollow spheres in laser synthesized boron nitride ultrafine powder

    Boulanger, L; Willaime, F [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Cauchetier, M [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l` Etat Condense, les Atomes et les Molecules

    1994-12-31

    TEM observations of ultra-fine B Cl{sub 3}-N H{sub 3} powders elaborated by an innovative method, laser pyrolysis, are presented. The resulting microstructures in the as received state and after thermal treatments show small nanometric scale configurations close to the ones met with carbon, such as an hollowed configuration of onions but at a much smaller scale than with carbon. 3 figs., 3 refs.

  9. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  10. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  11. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  12. Micelles driven magnetite (Fe{sub 3}O{sub 4}) hollow spheres and a study on AC magnetic properties for hyperthermia application

    Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106 (India); Dey, Chaitali [Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106 (India); CRNN, University of Calcutta, Block JD, Sector III, Salt Lake, Kolkata 700106 (India); Bandyopadhyay, Ayan [CRNN, University of Calcutta, Block JD, Sector III, Salt Lake, Kolkata 700106 (India); Sarkar, Debasish [Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106 (India); Ahir, Manisha [CRNN, University of Calcutta, Block JD, Sector III, Salt Lake, Kolkata 700106 (India)

    2016-11-01

    Here we have discussed about designing the magnetic particles for hyperthermia therapy and done some studies in this direction. We have used oleylamine micelles as template to synthesize hollow–nanospheres (HNS) of magnetite by solvo-thermal technique. We have shown that oleylamine plays an important role to generate hollow particles. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM was performed to confirm the shape and size of hollow sphere particles. The detail magnetic measurements give an idea about the application of these HNS for magnetic heating in hyperthermia therapy. In vitro cytotoxicity studies reveal that tolerable dose rate for these particles can be significantly high and particles are non-toxic in nature. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, drug release, arsenic and heavy metal removal by adsorption technique, magnetic separation etc. - Graphical abstract: Oleylamine micelles driven easy synthesis of hollow nanosphere (HNS) magnetite for hyperthermia therapy. - Highlights: • We have reported a new method of synthesis of hollow spheres of magnetite using micelles as model core and removal of micelles evolve the hollow like structure by relocating the core particles to the edge one. • Size can be controlled by varying the micellar concentration. • The detail magnetic measurements give an idea of applicability of these nano hollow spheres (NHS) in hyperthermia therapy. • Cyto-toxicity study reveals that these particles are highly biofriendly and dose rate can be increased upto a significant amount.

  13. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    Saoud, Khaled [Virginia Commonwealth University-Qatar, Doha (Qatar); Alsoubaihi, Rola [Virginia Commonwealth University, Richmond, VA (United States); Bensalah, Nasr [Qatar University, Doha (Qatar); Bora, Tanujjal [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman); Bertino, Massimo [Virginia Commonwealth University, Richmond, VA (United States); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh-123 (Oman)

    2015-03-15

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescence and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.

  14. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  15. Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries

    Dou, Peng; Cao, Zhenzhen; Wang, Chao; Zheng, Jiao [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Xu, Xinhua, E-mail: xhxutju@gmail.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-05-15

    Highlights: • Dynamic covalent bond in polymeric nanoparticles is used to induce hollow Sn{sup 4+}-MOPs. • Ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn{sup 4+}-MOPs precursor. • The composite exhibits superior cycle stability and rate capacity. - Abstract: A novel reversible interaction in polymeric nanoparticles is used to induce hollow Sn{sup 4+}-MOPs. Then ultrafine Sn nanoparticles uniformly embedded in shell of N-doped hollow carbon spheres is successfully synthesized by pyrolysis of the Sn{sup 4+}-MOPs precursor. In this architecture, the N-doped carbon shells can effectively avoid the direct exposure of embedded Sn nanoparticles to the electrolyte and efficiently accommodate the volume change of Sn nanoparticles. Furthermore, the hollow structure of carbon sphere can prevent Sn nanoparticles aggregation over repeated cycling and shorten the diffusion path of both electrons and ions. As a consequence, this N-doped hollow Sn/C anode delivers a reversible capacity of 606 mA h g{sup −1} at a current density of 0.2 A g{sup −1} after 250 cycles and a reversible capacity of 221 mA h g{sup −1} even at a much higher current density of 10 A g{sup −1}, which are much better than those of pure Sn nanoparticles. The desirable cyclic stability and rate capability were attributed to the unique architecture that provided fast pathway for electron transport and simultaneously solved the major issues of Sn-based anodes, such as pulverization, aggregation and loss of electrical contact.

  16. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  17. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  18. Remarkable activity of nitrogen-doped hollow carbon spheres encapsulated Cu on synthesis of dimethyl carbonate: Role of effective nitrogen

    Li, Haixia; Zhao, Jinxian; Shi, Ruina; Hao, Panpan; Liu, Shusen; Li, Zhong; Ren, Jun

    2018-04-01

    A critical aspect in the improvement of the catalytic performance of Cu-based catalysts for the synthesis of dimethyl carbonate (DMC) is the development of an appropriate support. In this work, nitrogen-doped hollow carbon spheres (NHCSs), with 240 nm average diameter, 17 nm shell thickness, uniform mesoporous structure and a specific surface area of 611 m2 g-1, were prepared via a two-step Stӧber method. By varying the quantity of nitrogen-containing phenols used in the preparation it has been possible to control the nitrogen content and, consequently, the sphericity of the NHCSs. It was found that perfect spheres were obtained for nitrogen contents below 5.4 wt.%. The catalysts (Cu@NHCSs) were prepared by the hydrothermal impregnation method. The catalytic activity towards DMC synthesis was notably enhanced due to the immobilization effect on Cu particles and the enhanced electron transfer effect exercised by the effective nitrogen species, including pyridinic-N and graphitic-N. When the average size of the copper nanoparticles was 7.4 nm and the nitrogen content was 4.0 wt.%, the values of space-time yield of DMC and of turnover frequency (TOF) reached 1528 mg/(g h) and 11.0 h-1, respectively. The TOF value of Cu@NHCSs was 6 times higher than non-doped Cu@Carbon (2.1 h-1). The present work introduces the potential application of nitrogen-doped carbon materials and presents a novel procedure for the preparation of catalysts for DMC synthesis.

  19. Synthesis and characterization of hollow {alpha}-Fe{sub 2}O{sub 3} sub-micron spheres prepared by sol-gel

    Leon, Lizbet, E-mail: lizbetlf@gmail.com; Bustamante, Angel; Osorio, Ana; Olarte, G. S. [Universidad Nacional Mayor de San Marcos (Peru); Santos Valladares, Luis De Los, E-mail: ld301@cam.ac.uk; Barnes, Crispin H. W. [University of Cambridge, Cavendish Laboratory (United Kingdom); Majima, Yutaka [Tokyo Institute of Technology, Materials and Structures Laboratory (Japan)

    2011-11-15

    In this work we report the preparation of magnetic hematite hollow sub-micron spheres ({alpha}-Fe{sub 2}O{sub 3}) by colloidal suspensions of ferric nitrate nine-hydrate (Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O) particles in citric acid solution by following the sol-gel method. After the gel formation, the samples were annealed at different temperatures in an oxidizing atmosphere. Annealing at 180 Degree-Sign C resulted in an amorphous phase, without iron oxide formation. Annealing at 250 Degree-Sign C resulted in coexisting phases of hematite, maghemite and magnetite, whereas at 400 Degree-Sign C, only hematite and maghemite were found. Pure hematite hollow sub-micron spheres with porous shells were formed after annealing at 600 Degree-Sign C. The characterization was performed by X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and scanning electron microscopy (SEM).

  20. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-06-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H+ or Fe3+) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H2-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H2-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  1. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation

    Shi, Jinwen; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin

    2015-01-01

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO 2 was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H + or Fe 3+ ) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H 2 -production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H 2 -production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption

  2. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  3. A one-step carbonization route towards nitrogen-doped porous carbon hollow spheres with ultrahigh nitrogen content for CO 2 adsorption

    Wang, Yu

    2015-01-01

    © The Royal Society of Chemistry 2015. Nitrogen doped porous carbon hollow spheres (N-PCHSs) with an ultrahigh nitrogen content of 15.9 wt% and a high surface area of 775 m2 g-1 were prepared using Melamine-formaldehyde nanospheres as hard templates and nitrogen sources. The N-PCHSs were completely characterized and were found to exhibit considerable CO2 adsorption performance (4.42 mmol g-1).

  4. One step process of decomposition and polymerization to fabricate SiO{sub 2} hollow spheres/polyimide composite for foldable OLEDs

    Kim, Min Kyu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Dong Won; Moon, Soo Hyun [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Dong-Wook [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); College of Engineering, Mathematics and Physical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Oh, Tae Sik [School of Mechanical and ICT Convergence Engineering, Sunmoon University, Asan 336-708 (Korea, Republic of); Yoo, Ji Beom, E-mail: jbyoo@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-03-15

    Graphical abstract: The SiO{sub 2} hollow spheres and polyimide hybrid synthesized using one step process, simultaneous occurrence of decomposition and polymerization (SODP) is useful with a ultra-low dielectric constant and high thermal stability for flexible OLED. - Highlights: • We fabricated hybrid films of SHS/PI by using a one step process with SODP. • The film has ultralow dielectric constant (50 vol% at k = 1.67). • There is no collapse of SiO{sub 2} hollow spheres in the PI matrix after bending test for 50,000 cycles. - Abstract: The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) requires flexible materials with a low dielectric constant as well as materials with excellent electrical, thermal, and mechanical properties for optimal device performance. Hybrid films of SiO{sub 2} hollow spheres (SHS)/polyimide (PI) were prepared using a one-step process, with simultaneous occurrence of decomposition (polystyrene, PS) and polymerization (PI) (SODP). No collapse of SiO{sub 2} hollow spheres in PI was observed from 10 vol% to 60 vol% SHS in hybrid films. The dielectric constant of hybrid films was reduced from 3.45 to 1.67 and was saturated at above 50 vol% of SHS due to the maximum fill factor of SHS in the PI matrix. The thermal stability was excellent up to 500 °C due to the inherent thermal property of PI. After a bending test for 50,000 cycles at a bending radius of 1 mm, the SHS/PI hybrid films retained their dielectric constant and current density. These results indicate the hybrid film to be the most promising candidate for flexible ILDs with a low dielectric constant and high thermal stability for foldable OLEDs.

  5. One step process of decomposition and polymerization to fabricate SiO_2 hollow spheres/polyimide composite for foldable OLEDs

    Kim, Min Kyu; Kim, Dong Won; Moon, Soo Hyun; Shin, Dong-Wook; Oh, Tae Sik; Yoo, Ji Beom

    2017-01-01

    Graphical abstract: The SiO_2 hollow spheres and polyimide hybrid synthesized using one step process, simultaneous occurrence of decomposition and polymerization (SODP) is useful with a ultra-low dielectric constant and high thermal stability for flexible OLED. - Highlights: • We fabricated hybrid films of SHS/PI by using a one step process with SODP. • The film has ultralow dielectric constant (50 vol% at k = 1.67). • There is no collapse of SiO_2 hollow spheres in the PI matrix after bending test for 50,000 cycles. - Abstract: The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) requires flexible materials with a low dielectric constant as well as materials with excellent electrical, thermal, and mechanical properties for optimal device performance. Hybrid films of SiO_2 hollow spheres (SHS)/polyimide (PI) were prepared using a one-step process, with simultaneous occurrence of decomposition (polystyrene, PS) and polymerization (PI) (SODP). No collapse of SiO_2 hollow spheres in PI was observed from 10 vol% to 60 vol% SHS in hybrid films. The dielectric constant of hybrid films was reduced from 3.45 to 1.67 and was saturated at above 50 vol% of SHS due to the maximum fill factor of SHS in the PI matrix. The thermal stability was excellent up to 500 °C due to the inherent thermal property of PI. After a bending test for 50,000 cycles at a bending radius of 1 mm, the SHS/PI hybrid films retained their dielectric constant and current density. These results indicate the hybrid film to be the most promising candidate for flexible ILDs with a low dielectric constant and high thermal stability for foldable OLEDs.

  6. Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures

    Jin-Feng Jiao

    2018-01-01

    Full Text Available The fatigue stress amplitude of the welded cross plate-hollow sphere joint (WCPHSJ in a grid structure varies due to the random loading produced by suspending cranes. A total of 14 specimens considering three different types of WCPHSJs were prepared and tested using a specially designed test rig. Four typical loading conditions, “low-high,” “high-low,” “low-high-low,” and “high-low-high,” were first considered in the tests to investigate the fatigue behavior under variable load amplitudes, followed by metallographic analyses. The experimental and metallographic analysis results provide a fundamental understanding on the fatigue fracture form and fatigue mechanism of WCPHSJs. Based on the available data from constant-amplitude fatigue tests, the variable-amplitude fatigue life of the three types of WCPHSJs was estimated using the Miner rule and Corten-Dolan theory. Since both accumulative damage theories yield virtually same damaging results, the Miner rule is hence suggested to estimate the fatigue life of WCPHSJs.

  7. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    Sarawade, Pradip; Tan, Hua; Anjum, Dalaver H.; Cha, Dong Kyu; Polshettiwar, Vivek

    2013-01-01

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons.

    Hu, Xingru; Liu, Chao; Li, Jiansheng; Luo, Rui; Jiang, Hui; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-10-20

    In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20-1.15ngL -1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    Sarawade, Pradip

    2013-11-25

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of Gram-Positive Bacteria

    Wang, Hongsu; Luo, Ruiping; Chen, Yang; Si, Qi; Niu, Xiaodi

    2018-05-01

    A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL-1 to 2.5 × 102 CFU mL-1, with detection limit as low as 9.0 CFU mL-1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA.

  11. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  12. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction

    Ruohao Xing

    2018-02-01

    Full Text Available Transition metal (Fe, Co, Ni complexes on carbon nanomaterials are promising candidates as electrocatalysts towards the oxygen reduction reaction (ORR. In this paper, nitrogen-doped hollow carbon spheres with embedded Co nanoparticles were successfully prepared via a controllable synthesis strategy. The morphology characterization shows that the hollow carbon spheres possess an average diameter of ~150 nm with a narrow size distribution and a shell thickness of ~14.5 nm. The content of N doping ranges from 2.1 to 6.6 at.% depending on the calcination temperature from 900 to 1050 °C. Compared with commercial Pt/C, the Co-containing nitrogen-doped hollow carbon spheres prepared at 900 °C (CoNHCS-900 as an ORR electrocatalyst shows a half-wave potential shift of only ∆E1/2 = 55 mV, but a superior stability of about 90.2% maintenance after 20,000 s in the O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm. This could be ascribed to the synergistic effects of N-containing moieties, Co-Nx species, and Co nanoparticles, which significantly increase the density of active sites and promote the charge transfer during the ORR process.

  13. Biomolecule-assisted synthesis of defect-mediated Cd1-xZnxS/MoS2/graphene hollow spheres for highly efficient hydrogen evolution.

    Du, Ruifeng; Zhang, Yihe; Li, Baoying; Yu, Xuelian; Liu, Huijuan; An, Xiaoqiang; Qu, Jiuhui

    2016-06-28

    Moderate efficiency and the utilization of noble metal cocatalysts are the key factors that restrict the large-scale application of photocatalytic hydrogen production. To develop more efficient photocatalysts based on earth abundant elements, either a new material strategy or a fundamental understanding of the semiconductor/cocatalyst interfaces is highly desirable. In this paper, we studied the feasibility of in situ formation of defect-rich cocatalysts on graphene-based photocatalysts. A facile biomolecule-assisted strategy was used to self-assmble Cd1-xZnxS/MoS2/graphene hollow spheres. The defect-mediated cocatalyst and synergetic charge transfer around heterostructured interfaces exhibit a significant impact on the visible-light-driven photocatalytic activity of multicomponent solid solutions. With engineered interfacial defects, Cd0.8Zn0.2S/MoS2/graphene hollow spheres exhibited a 63-fold improved H2 production rate, which was even 2 and 3.8 times higher than those of CdS/MoS2/graphene hollow spheres and Cd0.8Zn0.2S/Pt. Therefore, our research provides a promising approach for the rational design of high-efficiency and low-cost photocatalysts for solar fuel production.

  14. Effect of Hollow Sphere Size and Distribution on the Quasi-Static and High Strain Rate Compressive Properties of Al-A380-Al2O3 Syntactic Foams

    2012-01-01

    heat exchangers, flotation devices, energy absorbers and as decorative building materials. A class of foam material, where the voids are contained...hollow spheres are presented in Table 1 (information provided by suppliers). The hollow spheres were supplied by C-E Minerals in standard size...through TACOM R&D Contract# W56HZV-08-C-0716. The authors would also like to acknowledge and thank C-E Minerals for providing the ALODUR alumina

  15. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  16. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  17. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  18. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation

    Chen, Dong; Cui, Penglei; Liu, Hui; Yang, Jun

    2015-01-01

    Highlights: • Core–shell Ag-Ag/Pd nanoparticles with an Ag core and an Ag/Pd alloy shell are prepared via galvanic replacement reaction. • Heterogeneous Ag2S-hollow Pd nanocomposites are fabricated by converting the Ag component into Ag2S using element sulfur. • The heterogeneous Ag2S-hollow Pd nanocomposites display enhanced activity for formic acid oxidation due to electronic coupling effect. • The methodology may find applications to produce the semiconductor-metal nanocomposites with interesting architectures and tailored functionalities. - Abstract: Nanocomposites consisting semiconductor and noble metal domains are of great interest for their synergistic effect-based enhanced properties in a given application. Herein, we demonstrate a facile approach for the synthesis of heterogeneous nanocomposites consisting of silver sulfide (Ag 2 S) and hollow structured Pd nanoparticles (hPd). It begins with the preparation of core–shell nanoparticles with an Ag core and an alloy Ag/Pd shell in an organic solvent via galvanic replacement reaction (GRR) between Ag seed particles pre-synthesized and Pd 2+ ion precursors. The Ag component is then removed from the core and shell regions of core–shell Ag-Ag/Pd nanoparticles, and converted into Ag 2 S by elemental sulfur (S). The Ag 2 S forms the semiconductor domain in the nanocomposite and shares the solid-state interface with the resultant hollow structured Pd nanoparticle. As demonstrated, the Ag 2 S-hPd nanocomposites exhibit superior catalytic activity and durability for formic acid oxidation, compared to the pure Pd nanoparticles prepared by oleylamine reduction of Pd ion precursors and commercial Pd/C catalyst, due to the electronic coupling between semiconductor and noble metal domains in the nanocomposites. In addition, the structural transformation from core–shell to heterogeneous nanocomposites may provide new opportunities to design and fabricate hybrid nanostructures with interesting

  19. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  20. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  1. L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime

    Zhu, Chengzhang; Jiang, Zhifeng; Chen, Linlin; Qian, Kun; Xie, Jimin

    2017-03-01

    Novel hierarchical NiS2 hollow spheres modified by graphite-like carbon nitride were prepared using a facile L-cysteine-assisted solvothermal route. The NiS2/g-C3N4 composites exhibited excellent photocatalytic efficiency in rhodamine B, methyl orange and ciprofloxacin degradation as compared to single g-C3N4 and NiS2, which could be due to the synergistic effects of the unique hollow sphere-like structure, strong visible-light absorption and increased separation rate of the photoinduced electron-hole pairs at the intimate interface of heterojunctions. A suitable combination of g-C3N4 with NiS2 showed the best photocatalytic performance. In addition, an electron spin resonance and trapping experiment demonstrated that the photogenerated hydroxyl radicals and superoxide radicals were the two main photoactive species in photocatalysis. A possible photocatalytic mechanism of NiS2/g-C3N4 composites under visible light irradiation is also proposed. The strategy presented here can be extended to a general strategy for constructing 3D/2D heterostructured photocatalysts for broad applications in photocatalysis.

  2. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO{sub 2} for efficient photocatalytic H{sub 2} production under visible-light irradiation

    Shi, Jinwen, E-mail: jinwen-shi@mail.xjtu.edu.cn; Guan, Xiangjiu; Zhou, Zhaohui; Liu, Haipei; Guo, Liejin [Xi’an Jiaotong University (XJTU), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy IRCRE (China)

    2015-06-15

    Nanosheet (with around 20 nm in thickness)-stacked hollow-sphere TiO{sub 2} was synthesized via a modified solvothermal reaction for different times followed by calcination treatment at different temperatures. After surface modification by different cations (H{sup +} or Fe{sup 3+}) and further sensitization by Eosin Y, the obtained photocatalysts achieved remarkably enhanced H{sub 2}-production activity (about 4.2 times of that for Eosin Y-sensitized P25) and stability under visible-light irradiation. The improved photocatalytic performance was synergistically caused by the enhanced Eosin Y sensitization (due to the enlarged surface area and electropositively modified surface), the optimized crystal structure (well-crystallized anatase phase), and the unique micro/nanostructure (nanosheet-stacked hollow spheres). This work presented an effective route to explore new visible-light-driven H{sub 2}-production photocatalysts by coupling nanomaterials with special morphologies and metal-free dyes with visible-light absorption.

  3. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  4. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  5. Classical molecular dynamics and quantum ab-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous silicon

    Bhowmik, A. [Atomic Scale Modelling and Materials, Department of Energy Conversion and Storage, Technical University of Denmark, Rios Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Malik, R. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302 (India); Prakash, S. [Defense Metallurgical Research Laboratory, Hyderabad (India); Sarkar, T.; Bharadwaj, M.D. [Center for Study of Science Technology and Policy, Bangalore 560094 (India); Aich, S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302 (India); Ghosh, S., E-mail: sudipto@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, 721302 (India)

    2016-04-25

    A high concentration of lithium, corresponding to charge capacity of ∼4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently interconnected hollow nano-spheres of amorphous silicon have been found to exhibit high cyclability. The absence of fracture upon lithiation and the high cyclability has been attributed to reduction in intercalation stress due to hollow spherical geometry of the silicon nano-particles. The present work argues that the hollow spherical geometry alone cannot ensure the absence of fracture. Using classical molecular dynamics and density functional theory based simulations; satisfactory explanation to the absence of fracture has been explored at the atomic scale. - Highlights: • Interconnected nanoshells of amorphous Si: best available lithium ion cell anode. • High cycle life not understood in the light of poor K{sub IC} of amorphous Si. • MD reveals: atomic density of interconnected structure is ∼16% less than bulk Si. • Leads to drastic reduction (DFT) in lithiation σ & metal like e{sup −} structure (high K{sub IC}). • Lowering of lithiation σ and increase in K{sub IC} result in high cycle life.

  6. Classical molecular dynamics and quantum abs-initio studies on lithium-intercalation in interconnected hollow spherical nano-spheres of amorphous Silicon

    Bhowmik, Arghya; Malik, R.; Prakash, S.

    2016-01-01

    A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently interconnec......A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But recently...... interconnected hollow nano-spheres of amorphous silicon have been found to exhibit high cyclability. The absence of fracture upon lithiation and the high cyclability has been attributed to reduction in intercalation stress due to hollow spherical geometry of the silicon nano-particles. The present work argues...... that the hollow spherical geometry alone cannot ensure the absence of fracture. Using classical molecular dynamics and density functional theory based simulations; satisfactory explanation to the absence of fracture has been explored at the atomic scale....

  7. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  8. A template-free solvothermal synthesis and photoluminescence properties of multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres

    Sang, Xiaotong; Xu, Guangxi; Lian, Jingbao; Wu, Nianchu; Zhang, Xue; He, Jiao

    2018-06-01

    The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D4→7F5 transitions of Tb3+ ions and 5D0→7F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.

  9. Multifunctional Roles of TiO 2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO 2 −TiO 2 −Polyaniline System

    Wang, Dan Ping; Zeng, Hua Chun

    2009-01-01

    to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2

  10. Enhanced microwave absorption performance of lightweight absorber based on reduced graphene oxide and Ag-coated hollow glass spheres/epoxy composite

    Wang, Junpeng; Sun, Yu; Chen, Wei; Wang, Tao; Xu, Renxin; Wang, Jun

    2015-01-01

    Using a combination of Ag-coated hollow glass spheres (HGS@Ag) and a small quantity of graphene sheets within the epoxy matrix, we have prepared a novel lightweight high efficiency microwave absorption composite. Compared with pure HGS@Ag and graphene composite, the −10 dB absorption bandwidth and the minimum reflection loss of the novel composite are improved. Reflection loss exceeding −20 dB is obtained for composites in a wide frequency range and the minimum reflection loss reaches −46 dB while bandwidth less than −10 dB can reach up to 4.1 GHz when an appropriate absorber thickness between 2 and 3.5 mm is chosen. The enhanced microwave absorption performance of the novel composite is due to the enhanced dielectric response, enhanced conductivity, and the trap of electromagnetic radiation with increased propagation paths by multiple reflections

  11. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  12. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries.

    Wei, Huaixin; Yang, Jun; Zhang, Yufei; Qian, Yong; Geng, Hongbo

    2018-03-29

    In this manuscript, the graphene-encapsulated MnMoO 4 hollow spheres (MnMoO 4 @G) synthesized by an effective strategy were reported. Benefiting from the intriguing hybrid architecture of hollow structure and conductive graphene network, the MnMoO 4 @G composite displays superior electrochemical performance with high specific capacity of 1142 mA h g -1 , high reversible cycling stability of 921 mA h g -1 at a current density of 100 mA g -1 after 70 cycles, and stable rate performance (around 513 mA h g -1 at a current density of 4.0 A g -1 ). The remarkable battery performance can be attributed to the rational design of the architecture, which not only ensures the fast transport of electrons and lithium ions within the electrode material, but also effectively relax the stress induced by the insertion/extraction of lithium ions. This facile synthetic method can extend to other transition metal oxides with large volume excursions and poor electric conductivity and promotes the development of transition metal oxides as high-performance LIB anode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  15. Shape Engineering of Biomass-Derived Nanoparticles from Hollow Spheres to Bowls via Solvent-Induced Buckling.

    Chen, Chunhong; Li, Xuefeng; Jiang, Deng; Wang, Zhe; Wang, Yong

    2018-06-19

    To realize the asymmetry for the hollow carbonaceous nanostructures remains to be a great challenge, especially when biomass is chosen as the carbon resource via hydrothermal carbonization (HTC). Herein, a simple and straightforward solvent induced buckling strategy is demonstrated for the synthesis of asymmetric spherical and bowllike carbonaceous nanomaterials. The formation of the bowllike morphology was attributed to the buckling of the spherical shells induced by the dissolution of the oligomers. The bowllike particles made by this solvent-driven approach demonstrated a well-controlled morphology and a uniform particle size of ~360 nm. The obtained nanospheres and nanobowls can be loaded with CoS2 nanoparticles to act as novel heterogeneous catalysts for the selective hydrogenation of aromatic nitro compounds. With the bowllike structure in hand, as expected, the CoS2/nanobowls catalyst showed good tolerance to a wide scope of reducible groups and afforded both high activity and selectivity in almost all the tested substrates (14). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Down-conversion emission of Ce3+-Tb3+ co-doped CaF2 hollow spheres and application for solar cells

    Cheng, Yufei; Wang, Yongbo; Teng, Feng; Dong, Hua; Chen, Lida; Mu, Jianglong; Sun, Qian; Fan, Jun; Hu, Xiaoyun; Miao, Hui

    2018-03-01

    Luminescent downconversion is a promising way to harvest ultraviolet sunlight and transform it into visible light that can be absorbed by solar cells, and has potential to improve their photoelectric conversion efficiency. In this work, the uniform hollow spheres and well dispersed CaF2 phosphors doped with rare-earth Ce3+ and Tb3+ ions are prepared by a one-step hydrothermal synthesis method. Benefiting from the stronger ability of absorption and emission and excellent transparency property, we demonstrate that the application of the doped nanocrystals can efficiently improve visible light transmittance. The chosen phosphors are added in the SiO2 sols so as to get the anti-reflection coatings with wavelength conversion bi-functional films, promoting the optical transmittance in the visible and near-infrared range which matches with the range of the band gap energy of silicon semiconductor. Optimized photoelectric conversion efficiency of 14.35% and the external quantum efficiency over 70% from 450 to 950 nm are obtained through the silicon solar cells with 0.10 g phosphors coating. Compared with the pure glass devices, the photoelectric conversion efficiency is enhanced by 0.69%. This work indicates that fluorescent downconversion not only can serve as proof of principles for improving photoelectric conversion efficiency of solar cells but also may be helpful to practical application in the future.

  17. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  18. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  19. Urchin-like cobalt incorporated manganese oxide OMS-2 hollow spheres: Synthesis, characterization and catalytic degradation of RhB dye

    Ahmed, Khalid Abdelazez Mohamed; Li, Buyi; Tan, Bien; Huang, Kaixun

    2013-01-01

    Urchin-like KxCoyMn8-yO16 hollow spheres assembled from nanoplate building blocks were successfully fabricated via a one-pot hydrothermal route using cobalt acetate and potassium permanganate as raw material. The products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectrometer, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) measurement. The thermal stability and surface areas of cobalt ion in the manganese sites of KMn8O16 structures were clearly evidenced by TGA and N2 adsorption-desorption isotherms curves. Based on time depended experiment results, a possible formation mechanism for this structures was proposed. The catalytic degradation of Rhodamine B (RhB) on KxCoyMn8-yO16 materials has, therefore been dependent for the molar precursor ratio and specific surface area of the as-fabricated products. UV-vis, LC-MS and barium hydroxide methods were utilized to monitor the temporal course of the catalytic reaction.

  20. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  1. Fabrication and characterization of functionally graded poly(vinylidine fluoride)-silver nanocomposite hollow fibers for sustainable water recovery

    Francis, Lijo; Ghaffour, NorEddine; Amy, Gary L.

    2014-01-01

    the hydrophobicity and ~ 2.5 fold increase the mechanical strength of the hollow fibers. A water vapor flux of 31.9kg m-2 h-1 was observed at a feed inlet temperature of 80 °C and at a permeate temperature of 20 °C in the case of hollow fiber membrane modules

  2. Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres

    Marandi, Maziar; Rahmani, Elham; Ahangarani Farahani, Farzaneh

    2017-12-01

    CdS quantum dot-sensitized solar cells (QDSCs) have been fabricated and their photoanode optimized by altering the thickness of the photoelectrode and CdS deposition conditions and applying a ZnS electron-blocking layer and TiO2 hollow spheres. Hydrothermally grown TiO2 nanocrystals (NCs) with dominant size of 20 nm were deposited as a sublayer in the photoanode with thickness in the range from 5 μm to 10 μm using a successive ionic layer adsorption and reaction (SILAR) method. The number of deposition cycles was altered over a wide range to obtain optimized sensitization. Photoanode thickness and number of CdS sensitization cycles around the optimum values were selected and used for ZnS deposition. ZnS overlayers were also deposited on the surface of the photoanodes using different numbers of cycles of the SILAR process. The best QDSC with the optimized photoelectrode demonstrated a 153% increase in efficiency compared with a similar cell with ZnS-free photoanode. Such bilayer photoelectrodes were also fabricated with different thicknesses of TiO2 sublayers and one overlayer of TiO2 hollow spheres (HSs) with external diameter of 500 nm fabricated by liquid-phase deposition with carbon spheres as template. The optimization was performed by changing the photoanode thickness using a wide range of CdS sensitizing cycles. The maximum energy conversion efficiency was increased by about 77% compared with a similar cell with HS-free photoelectrode. The reason was considered to be the longer path length of the incident light inside the photoanode and greater light absorption. A ZnS blocking layer was overcoated on the surface of the bilayer photoanode with optimized thickness. The number of CdS sensitization cycles was also changed around the optimized value to obtain the best QDSC performance. The number of ZnS deposition cycles was also altered in a wide range for optimization of the photovoltaic performance. It was shown that the maximum efficiency was increased by

  3. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  4. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  5. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  6. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  8. Enhanced electrochemical performance of different morphological C/LiMnPO4 nanoparticles from hollow-sphere Li3PO4 precursor via a delicate polyol-assisted hydrothermal method

    Cui, Yu-Ting; Xu, Ning; Kou, Li-Qin; Wu, Meng-Tao; Chen, Li

    2014-03-01

    With the hollow-sphere Li3PO4 as precursor, a delicate polyol-assisted hydrothermal method is devised to synthesize high-performance LiMnPO4. Orthorhombic shaped, irregular flaky shaped and sphere-like LiMnPO4 are sequentially prepared by decreasing the water-diethylene glycol (DEG) ratio. The capacity, cycling stability and rate performance of all samples prepared by the new synthesis method are improved significantly. And the C/LiMnPO4 with irregular flaky shape exhibits a capacity of 154.1 mA h g-1 at C/20, 147.4 mA h g-1 at C/10 and 102.5 mA h g-1 at 2 C, which is the best performance ever reported for LiMnPO4 active material with similar carbon additives.

  9. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  10. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  11. Multifunctional Roles of TiO 2 Nanoparticles for Architecture of Complex Core−Shells and Hollow Spheres of SiO 2 −TiO 2 −Polyaniline System

    Wang, Dan Ping

    2009-10-27

    Nanoparticles are often used as seeds to grow one-dimensional nanomaterials or as core materials to prepare core-shell nanostructures. On the other hand, the presynthesized inorganic nanoparticles can also be used as starting building blocks to prepare inorganic-polymer nanocomposites. In this work, we explore the roles of metal-oxide nanoparticles (anatase TiO2) in the area of constructional synthesis of highly complex core-shell and hollow sphere nanostructures comprising SiO2, TiO2, and polyaniline (PAN). In particular, multifunctional roles of oleate-surfactant-protected TiO2 nanoparticles have been revealed in this study: they provide starting sites for polymerization of aniline on the surface of SiO2 mesospheres; they land on the inner surface of polyaniline shell to form a secondary material phase; they work as initial crystalline seeds for homogeneous growth of interior TiO2 shell; and they serve as primary nanobuilding blocks to form exterior TiO2 shell on the polyaniline via self-assembly. With the assistance of the TiO2 nanoparticles, a total of six complex core-shell and hollow sphere nanocomposites (SiO 2/TiO2, SiO2/TiO2/PAN, SiO 2/TiO2/PAN/TiO2, TiO2/PAN, TiO 2/PAN/TiO2, and TiO2/TiO2) have been made in this work through controlled self-assembly, templating growth, polymerization, and homogeneous seeded growth. Applicability of these nanostructures in photocatalytic applications has also been demonstrated by our preliminary investigations. The easy separation of used catalysts after reaction seems to be advantageous because of relatively large external diameters of the lightweight nanocomposites. © 2009 American Chemical Society.

  12. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  13. Combined use of lightweight magnetic Fe{sub 3}O{sub 4}-coated hollow glass spheres and electrically conductive reduced graphene oxide in an epoxy matrix for microwave absorption

    Wang, Junpeng; Wang, Jun, E-mail: wgdfrp@whut.edu.cn; Zhang, Bin; Sun, Yu; Chen, Wei; Wang, Tao

    2016-03-01

    Epoxy resin based lightweight composites comprising Fe{sub 3}O{sub 4}-coated hollow glass spheres (HGS@Fe{sub 3}O{sub 4}) and reduced graphene oxide (RGO) were prepared. Impedance matching condition and electromagnetic wave attenuation characteristic are used for analysis of the reflection loss (RL) performance of the composites. Compared with pure HGS@Fe{sub 3}O{sub 4} and RGO composite, the −10 dB absorption bandwidth and the minimum RL of the hybrid composites are enhanced. RL values less than −10 dB are obtained in a wide frequency range and the corresponding bandwidth can reach up to 3.6 GHz when an appropriate absorber thickness is chosen. The density of the hybrid composite is in the range of 0.57–0.72 g/cm{sup 3}, which is attractive candidate for a new type of lightweight microwave absorber. - Highlights: • Lightweight composites comprising HGS@Fe{sub 3}O{sub 4} and RGO were prepared. • The RL less than −10 dB can reach up to 3.6 GHz with layer thickness of 2.5 mm. • The density of the composites is in the range of 0.57−0.72 g/cm{sup 3}.

  14. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers

    Pang, Maolin

    2010-08-11

    Ag2S and Ag are important functional materials that have received considerable research interest in recent years. In this work, we develop a solution-based synthetic method to combine these two materials into hollow/solid Ag2S/Ag heterodimers at room temperature. Starting from monodisperse Cu2O solid spheres, CuS hollow spheres can be converted from Cu2O through a modified Kirkendall process, and the obtained CuS can then be used as a solid precursor for preparation of the Ag2S/Ag heterodimers through ion exchange and photo-assisted reduction. We have found that formation of the Ag2S/Ag heterodimers is instantaneous, and the size of Ag nanocrystals on the hollow spheres of Ag2S can be controlled by changing the concentration and power of reducing agents in the synthesis. The growth of Ag nanoparticles on hollow spheres of Ag2S in the dimers is along the [111] direction of the silver crystal; the light absorption properties have also been investigated. Furthermore, coupling or tripling of Ag2S/Ag heterodimers into dumbbell-like trimers ((Ag 2S)2/Ag, linear) and triangular tetramers ((Ag 2S)3/Ag, coplanar) can also be attained at 60°C by adding the bidentate ligand ethylenediamine as a cross-linking agent. To test the applicability of this highly asymmetric dipolar composite, photocatalytic inactivation of Escherichia coli K-12 in the presence of the as-prepared Ag 2S/Ag heterodimers has been carried out under UV irradiation. The added Ag2S/Ag heterodimers show good chemical stability under prolonged UV irradiation, and no appreciable solid dissolution is found. Possible mechanisms regarding the enhanced antibacterial activity have also been addressed. © 2010 American Chemical Society.

  15. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  16. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.

    Marassi, Valentina; Casolari, Sonia; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Panzavolta, Silvia; Tofail, Syed A M; Ortelli, Simona; Delpivo, Camilla; Blosi, Magda; Costa, Anna Luisa

    2015-03-15

    Due to the increased use of silver nanoparticles in industrial scale manufacturing, consumer products and nanomedicine reliable measurements of properties such as the size, shape and distribution of these nano particles in aqueous medium is critical. These properties indeed affect both functional properties and biological impacts especially in quantifying associated risks and identifying suitable risk-mediation strategies. The feasibility of on-line coupling of a fractionation technique such as hollow-fiber flow field flow fractionation (HF5) with a light scattering technique such as MALS (multi-angle light scattering) is investigated here for this purpose. Data obtained from such a fractionation technique and its combination thereof with MALS have been compared with those from more conventional but often complementary techniques e.g. transmission electron microscopy, dynamic light scattering, atomic absorption spectroscopy, and X-ray fluorescence. The combination of fractionation and multi angle light scattering techniques have been found to offer an ideal, hyphenated methodology for a simultaneous size-separation and characterization of silver nanoparticles. The hydrodynamic radii determined by fractionation techniques can be conveniently correlated to the mean average diameters determined by multi angle light scattering and reliable information on particle morphology in aqueous dispersion has been obtained. The ability to separate silver (Ag(+)) ions from silver nanoparticles (AgNPs) via membrane filtration during size analysis is an added advantage in obtaining quantitative insights to its risk potential. Most importantly, the methodology developed in this article can potentially be extended to similar characterization of metal-based nanoparticles when studying their functional effectiveness and hazard potential. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Assembly of cerium(III)-stabilized polyoxotungstate nanoclusters with SeO{sub 3}{sup 2-}/TeO{sub 3}{sup 2-} templates. From single polyoxoanions to inorganic hollow spheres in dilute solution

    Chen, Wei-Chao; Wang, Xin-Long; Shao, Kui-Zhan; Su, Zhong-Min; Wang, En-Bo [Institute of Functional Materials Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun (China); Li, Hao-Long [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University. Changchun (China)

    2013-08-12

    A versatile one-pot strategy was employed to synthesize three cerium(III)-stabilized polyoxotungstates nanoclusters by combining cerium linkers and SeO{sub 3}{sup 2-}/TeO{sub 3}{sup 2-} heteroanion templates: K{sub 32}Na{sub 16}[{(XO_3)W_1_0O_3_4}{sub 8}{Ce_8(H_2O)_2_0}(WO{sub 2}){sub 4}-(W{sub 4}O{sub 12})].n H{sub 2}O [X=Se, n=81 (1); X=Te, n=114 (2)] and K{sub 12}Na{sub 22}[{(SeO_3)W_1_0O_3_4}{sub 8}{Ce_8(H_2O)_2_0}(WO{sub 2}){sub 4}-{(W_4O_6)Ce_4(H_2O)_1_4(SeO_3)_4(NO_3)_2}] . 79 H{sub 2}O (3), which are the first lanthanide-containing polyoxotungstates with selenium or tellurium heteroatoms. The three clusters were characterized by single-crystal X-ray structure analysis, IR spectroscopy, thermogravimetric/differential thermal analysis, UV/Vis spectroscopy, ESI-MS, and X-ray photoelectron spectroscopy. Their electrochemical, photoluminescence, and magnetic properties were investigated. Their behavior in solution was studied by transmission electron microscopy, which showed that their single polyoxoanions assemble into intact, uniform-sized, purely inorganic hollow spheres in dilute water/acetone solution. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 3D hollow sphere Co3O4/MnO2-CNTs: Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery

    Xuemei Li

    2017-07-01

    Full Text Available There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO2 nanotube-supported Co3O4 nanoparticles and its carbon nanotubes hybrid material (Co3O4/MnO2-CNTs have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co3O4/MnO2, bare MnO2 nanotubes and CNTs, the hybrid Co3O4/MnO2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition (0.1 M KOH. Therefore, high cell performances are achieved which result in an appropriate open circuit voltage (∼1.47 V, a high discharge peak power density (340 mW cm−2 and a large specific capacity (775 mAh g−1 at 10 mA cm−2 for the primary Zn-air battery, a small charge–discharge voltage gap and a high cycle-life (504 cycles at 10 mA cm−2 with 10 min per cycle for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. Keywords: Bi-functional catalyst, Oxygen reduction reaction, Oxygen evolution reaction, Activity and stability, Rechargeable zinc-air battery

  19. Y2O3:Yb,Er@mSiO2-CuxS double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-01

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small CuxS nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-CuxS composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached CuxS nanoparticles and the enhanced chemotherapy promoted by the heat from the CuxS-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large

  20. A Review on Preparation Techniques of TiO2 Hollow Spheres and Their Applications in Dye-sensitized Solar Cell and Lithium Ion Battery%TiO2空心球制备及在染料敏化太阳能电池和锂离子电池中应用的研究进展∗

    刘作花; 许秀玲; 周国伟

    2016-01-01

    空心球结构的半导体氧化物具有密度低、比表面积大、机械和热稳定性好等优点。空心球结构对 TiO2纳米材料的电化学性能有着显著的优化作用,TiO2空心球作为一种重要的半导体氧化物具有良好的物理和化学性质,在多种领域均表现出潜在的应用价值,制备大小和壳层数均可控的半导体TiO2空心球已引起了研究者的广泛关注。主要综述了在硬模板、软模板和无模板条件下TiO2空心球的制备方法;同时还介绍了其在染料敏化太阳能电池和锂离子电池方面的最新研究进展;最后,对TiO2空心球的可控合成前景进行了展望。%Semiconductor oxide materials with hollow spherical structures have attracted enormous attention due to their low density,large specific area,mechanical and thermal stability.As one of the important semiconductor oxide materials,TiO2 hollow spheres have excellent electrochemical properties.Owing to the excellent physical and chemical properties for potential application in multiple fields,design and synthesis of semiconductor TiO2 with tuna-ble size,shells and interior architecture have attracted great research interest.In this paper,the synthesis of TiO2 hol-low spheres in different methods,such as hard template,soft template and template-free methods are summarized. The progress of the applications of these materials in dye-sensitized solar cell and lithium ion battery are also dis-cussed.Finally,the future development of the controllable fabrication of TiO2 hollow spheres is looked forward.

  1. Geometrical Dynamics in a Transitioning Superconducting Sphere

    Claycomb J. R.

    2006-10-01

    Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.

  2. Problems in the Identification of Application Areas of Hollow Spheres and Hollow Sphere Structures

    Augustin, Christian

    Victor Hugo (1802-1865) is attributed the verifiably false quotation that nothing is as powerful as an idea, whose time has come. Be that as it may, this quotation is at first a causality statement, which combines the presence of a certain idea in connection with specific basic conditions (time) as almost inevitable for a certain successful development. At first thought this linkage, that if an idea finds its perfect timing it will be successful, seems to be evident. By “time” we not only mean the chronological period, but as an abstract category of environmental conditions that occur at this time at a specific place.

  3. Public Sphere

    Trenz, Hans-Jörg

    2015-01-01

    In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....

  4. The thermal conductivity of beds of spheres

    McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.

    1987-01-01

    The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs

  5. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

    Li, Jingfa; Xiong, Shenglin; Li, Xiaowei; Qian, Yitai

    2013-02-01

    A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g-1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g-1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g-1 even at a higher current density of 400 mA g-1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co

  6. Synthesis of Hollow Silica by Stober Method with Double Polymers as Templates

    Nguyen, Anhthu; Park, Chang Woo; Kim, Sang Hern

    2014-01-01

    The hollow SiO 2 spheres with uniform size were synthesized by a modified stoeber method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail

  7. Hollow MEMS

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior...... of these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  8. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

    Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan

    2009-06-01

    Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent

  9. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  11. Superconducting Sphere in an External Magnetic Field Revisited

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  12. Biosynthesis of Silver and Gold Crystals Using Grapefruit Extract

    Chen Long; Wang Jianli; Wang Hongfeng; Qi Zhaopeng; Zheng Yuchuan; Wang Junbo; Pan Le; Chang Guanru; Yang Yongmei

    2016-01-01

    In this paper, biological synthesis of silver and gold crystals using grapefruit extract is reported. On treatment of aqueous solutions of silver nitrate and chloroauric acid with grapefruit extract, the formation of stable silver and gold particles at high concentrations is observed to occur. The silver particles formed are quasi-spherical or irregular with sizes ranging from several hundred nanometers to several microns. The gold quasi-spheres with holes on surfaces and with diameters rangi...

  13. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  14. The Processing of Titanium Hydride Powders into Uniform Hollow Spheres

    Hurysz, Kevin

    1998-01-01

    .... Slurry suitability is dictated by the solids loading and degree of dispersion, the influence of polymer additives on rheology and the evaporation of acetone, and the minimization of impurities...

  15. Characterization of silane coated hollow sphere alumina-reinforced ...

    Unknown

    in clinical practice, which depends on the magnitude of the applied load, the ... component design for its excellent wear and corrosion resistance (Chandra et al ... The nearly uniform distribution of particles in the com- posite was checked using ...

  16. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  17. Radioactive spheres without inactive wall for lesion simulation in PET

    Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.

    2008-01-01

    With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)

  18. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  19. Thermal and mechanical stresses in a functionally graded thick sphere

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  20. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-01-01

    In this paper, we demonstrated a simple approach for preparing α-Fe 2 O 3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe 2 O 3 hollow spheres formation. Ag/α-Fe 2 O 3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe 2 O 3 hollow composites exhibited remarkable catalytic performance toward H 2 O 2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe 2 O 3 /GCE were discussed toward the reduction of H 2 O 2 in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO 3 ) 3 is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe 3+ to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe 2 O 3 hollow spheres.

  1. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  2. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    Seisno, Satoshi, E-mail: seino@mit.eng.osaka-u.ac.jp; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO{sub 2} nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO{sub 2} templates were fully coated with magnetite nanoparticles. Dissolution of the SiO{sub 2} core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe{sub 3}O{sub 4} grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO{sub 2} templates contributed to the adsorption of the Fe ion precursor and/or Fe{sub 3}O{sub 4} seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere. - Highlights: • A procedure to synthesize hollow magnetic nanospheres with Au inside was reported. • The Au nanoparticles inside the hollow showed high Au-S binding affinity. • The nanospheres are expected to be suitable as a new magnetic carrier for DDS.

  3. A Powerful Public Sphere?

    Fiig, Christina

    The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...

  4. Template-free synthesis and luminescent properties of hollow Ln:YOF (Ln = Eu or Er + Yb) microspheres

    Martinez-Castro, E. [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Americo Vespucio 49, Isla de La Cartuja, 41092 Sevilla (Spain); García-Sevillano, J.; Cussó, F. [Dpto. Física de Materiales, C-04, Universidad Autónoma de Madrid, Avda. Francisco Tomás y Valiente, 7, 28049 Madrid (Spain); Ocaña, M., E-mail: mjurado@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Americo Vespucio 49, Isla de La Cartuja, 41092 Sevilla (Spain)

    2015-01-15

    Highlights: • Hollow lanthanide doped YOF spheres have been synthesised through a template-free procedure. • Strong red emissions are observed for Eu-doped spheres under UV illumination. • Concentration quenching of luminescence takes place in the spheres at very high Eu doping levels. • Bright red emission is observed for Er, Yb codoped spheres, making this matrix advantageous for biomedical imaging. - Abstract: A method for the synthesis of hollow lanthanide doped yttrium oxyfluoride (YOF) spheres in the micrometer size range with cubic structure based on the pyrolysis at 600 °C of liquid aerosols generated from aqueous solutions containing the corresponding rare earth chlorides and trifluoroacetic acid has been developed. This procedure, which has been used for the first time for the synthesis of YFO based materials, is simpler and advantageous when compared with other methods usually employed for the production of hollow spheres since it does not require the use of sacrificial templates. In addition, it is continuous, which is desirable because of practical reasons. The procedure is also suitable for doping the YOF spheres with europium cations resulting in down converting red phosphors when activated with UV light, or for co-doping with both Er{sup 3+} and Yb{sup 3+} giving rise to up-converting phosphors, which emit intense red light under near infrared (NIR) irradiation. Because of their optical properties and hollow architecture, the developed materials may find applications in optoelectronic devices and biotechnology.

  5. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.

    Min, Jianzhong; Wang, Fei; Cai, Yunliang; Liang, Shuai; Zhang, Zhenwei; Jiang, Xingmao

    2015-01-14

    Monodisperse silver nanocages (AgNCs) with specific interiors were successfully synthesized by an azeotropic distillation (AD) assisted method and exhibited excellent catalytic activities for reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) due to the unique hollow morphology and small thickness of the silver shell.

  6. Hollow-Core Fiber Lamp

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  7. Silver niobates

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  8. A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties

    Feng Xuan; Yang Ling; Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.c [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China)

    2010-09-17

    Research highlights: {yields} The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band of TiO{sub 2} hollow spheres crystal and then the energy is relaxed to the defect states of TiO{sub 2} host. The energy can transfer to the crystal states of Eu{sup 3+} ions ({sup 7}F{sub j}, j = 0, 1, 2, 3 and 4), which results in efficient photoluminescence. The fluorescent intensity of TiO{sub 2}:Eu{sub 0.2} hollow spheres was 2.2 times as strong as that of TiO{sub 2}:Eu{sub 0.2} bulk material. - Abstract: Monodisperse europium-activated titania hollow phosphors had been synthesized by a facile one-pot hydrothermal method using carbon spheres as hard templates. Samples were characterized by X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive spectrometer and photoluminescence spectrum. The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band

  9. HOLLOW FIBRE MEMBRANE

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  10. HOLLOW FIBRE MEMBRANE

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  11. Experiment SPHERE status 2008

    Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-01-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.

  12. Experiment SPHERE status 2008

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)

    2009-12-15

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.

  13. Scattering characteristics of relativistically moving concentrically layered spheres

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  14. The sphere-PAC fuel code 'SPHERE-3'

    Wallin, H.

    2000-01-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  15. The sphere-pac fuel code 'SPHERE-3'

    Wallin, H.; Nordstroem, L.A.; Hellwig, C.

    2001-01-01

    Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  16. Synthesis of CdS hollow/solid nanospheres and their chain-structures by membrane technique

    Duan Shumin; Wu Qingsheng; Jia Runping; Liu Xinbo

    2008-01-01

    CdS hollow/solid nanospheres and their chain-structures were successfully synthesized through supporting liquid membrane (SLM) system with bio-membrane. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, and photoluminescence (PL) spectroscopy have been used for the characterization of the products. The average diameters of CdS solid/hollow spheres are about 10, 40 nm, respectively. The wall of the hollow spheres is about 5 nm. CdS products are all cubic face-centered structure with the cell constant a = 5.830 A. We also explore the morphology, structure and possible synthesis mechanism. A possible template mechanism has been proposed for the production of the hollow CdS nanocrystals, that is, CdS nanoparticles grow along the non-soakage interface between CHCl3 and reactant solution. During this process, the organic functional groups were crucial to the control of crystal morphologies

  17. Graphs with Eulerian unit spheres

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  18. Hollow bunches production

    Hancock, S

    2017-01-01

    Hollow bunches address the issue of high-brightnessbeams suffering from transverse emittance growth in a strongspace charge regime. During the Proton Synchrotron (PS)injection plateau, the negative space charge tune shift canpush the beam onto theQy=6integer resonance. Modify-ing the longitudinal bunch profile in order to reduce the peakline charge density alleviates the detrimental impact of spacecharge. To this end we first produce longitudinally hollowphase space distributions in the PS Booster by exciting aparametric resonance with the phase loop feedback system.These inherently flat bunches are then transferred to the PS,where the beam becomes less prone to the emittance growthcaused by the integer resonance.During the late 2016 machine development sessions inthe PS Booster we profited from solved issues from 2015and managed to reliably extract hollow bunches of1.3eVsmatched longitudinal area. Furthermore, first results to cre-ate hollow bunches with larger longitudinal emittances to-wards the LHC Inject...

  19. Spinning the fuzzy sphere

    Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin

    2015-01-01

    We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.

  20. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  1. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  2. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS Derivatives

    Xiong Cao

    2018-05-01

    Full Text Available The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM, transmission electron microscope (TEM, and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.

  3. Mercury - the hollow planet

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  4. Silver linings.

    Bultas, Margaret W; Pohlman, Shawn

    2014-01-01

    The purpose of this interpretive phenomenological study was to gain a better understanding of the experiences of 11 mothers of preschool children with autism spectrum disorder (ASD). Mothers were interviewed three times over a 6 week period. Interviews were analyzed using interpretive methods. This manuscript highlights one particular theme-a positive perspective mothers described as the "silver lining." This "silver lining" represents optimism despite the adversities associated with parenting a child with ASD. A deeper understanding of this side of mothering children with ASD may help health care providers improve rapport, communication, and result in more authentic family centered care. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

    Mahmoud, M A; El-Sayed, M A

    2012-03-06

    Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.

  6. ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE

    Rosemarie HAINES

    2013-12-01

    Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.

  7. Hollow magnetic nano-CO3O4/polystyrene microspheres synthesized through radiation induced interfacial polymerization

    Zhang Wei; Wang Mozhen; Wang Shufeng; Zhang Zhicheng

    2010-01-01

    Co 3 O 4 nanoparticles (around 8 nm) were synthesized hydrothermally by dissolving Co 2+ in the mixture of ethanol and water, and then decorated with oleic acid to endow them with hydrophobic surface nature. After that, nano-particles were added into emulsion which consisted by sodium dodecyl sulfate, water, styrene and cetyl alcohol. Hollow magnetic composite spheres were prepared by irradiated the emulsion with γ-rays. The final products are thoroughly characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques, which showed the formation of hollow magnetic composite spheres. The influence of addition dosage of nano-particles, sodium dodecyl sulfate and the types of nano-particles on the average size and shape of hollow composites were studied. The effects of nano-particles to the polymerization of styrene were studied by kinetics. Nano-particles are capsulated by polystyrene to form hollow composites, which confirmed by XPS results. Finally, magnetic property of hollow composites is compared with pure nano-Co 3 O 4 . (authors)

  8. Fabrication of silica hollow particles using yeast cells as a template

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  9. Birefringent hollow core fibers

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  10. VMware vSphere Design

    Guthrie, Forbes; Saidel-Keesing, Maish

    2011-01-01

    The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late

  11. Russell-Silver syndrome

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  12. Silica artificial opal incorporated with silver nanoparticles

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  13. Silica artificial opal incorporated with silver nanoparticles

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  14. Method for sizing hollow microspheres

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  15. Beyond fuzzy spheres

    Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T

    2010-01-01

    We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.

  16. Falling-sphere radioactive viscometry

    Souza, R. de.

    1987-01-01

    In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt

  17. Simultaneous chemical modification and structural transformation of Stöber silica spheres for integration of nanocatalysts

    Yao, Kexin; Zeng, Huachun

    2012-01-01

    ) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2

  18. Fabrication of α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures and their application in water treatment

    Li, Yinhui, E-mail: lillian09281@hotmail.com; Zhang, Na; Chen, Jianxin, E-mail: chjx2000@126.com; Li, Ruijuan; Li, Liang; Li, Kunyu [Hebei University of Technology, School of Marine Science and Engineering, Engineering Research Center of Seawater Utilization Technology, Ministry of Education (China)

    2016-02-15

    The α-Fe{sub 2}O{sub 3}/TiO{sub 2} bi-functional composites with hierarchical and hollow structures are fabricated through a hydrothermal route. The adsorption performance and photocatalytic activity of the composites towards Pb{sup 2+} are investigated in this work. Different adsorption kinetics models and equilibrium models are used to explore the adsorption behavior of hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres. Experimental data show that adsorption kinetics of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres can be fitted well by the pseudo-second-order model, while the isothermal data can be perfectly described by the Langmuir adsorption model. The maximum adsorption capacity of the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres is 32.36 mg g{sup −1}. Moreover, the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres possess photocatalytic oxidation character under simulated solar light irradiation. The results demonstrate that the hierarchical α-Fe{sub 2}O{sub 3}/TiO{sub 2} hollow spheres, as effective and cheap materials, can be applied to the removal of heavy metal ions from wastewater.

  19. Effect of Sphere Properties on Microstructure and Mechanical Performance of Cast Composite Metal Foams

    Matias Garcia-Avila

    2015-05-01

    Full Text Available Aluminum-steel composite metal foams (Al-S CMF are manufactured using steel hollow spheres, with a variety of sphere carbon content, surface roughness, and wall porosity, embedded in an Aluminum matrix through gravity casting technique. The microstructural and mechanical properties of the material were studied using scanning electron microscopy, energy dispersive spectroscopy, and quasi-static compressive testing. Higher carbon content and surface roughness in the sphere wall were responsible for an increase in formation of intermetallic phases which had a strengthening effect at lower strain levels, increasing the yield strength of the material by a factor of 2, while higher sphere wall porosity resulted in a decrease on the density of the material and improving its cushioning and ductility maintaining its energy absorption capabilities.

  20. Analytic functionals on the sphere

    Morimoto, Mitsuo

    1998-01-01

    This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.

  1. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage performance

    Guan Xiangfeng; Li Liping; Li Guangshe; Fu Zhengwei; Zheng Jing; Yan Tingjiang

    2011-01-01

    Graphical abstract: Hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and these microspheres showed excellent cycle performance and enhanced lithium storage capacity. Display Omitted Research highlights: → Hierarchical CuO hollow microspheres were prepared by a hydrothermal method. → The CuO hollow microspheres were assembled from radically oriented nanorods. → The growth mechanism was proposed to proceed via self-assembly and Ostwald's ripening. → The microspheres showed good cycle performance and enhanced lithium storage capacity. → Hierarchical microstructures with hollow interiors promote electrochemical property. - Abstract: In this work, hierarchical CuO hollow microspheres were hydrothermally prepared without use of any surfactants or templates. By controlling the formation reaction conditions and monitoring the relevant reaction processes using time-dependent experiments, it is demonstrated that hierarchical CuO microspheres with hollow interiors were formed through self-wrapping of a single layer of radically oriented CuO nanorods, and that hierarchical spheres could be tuned to show different morphologies and microstructures. As a consequence, the formation mechanism was proposed to proceed via a combined process of self-assembly and Ostwald's ripening. Further, these hollow microspheres were initiated as the anode material in lithium ion batteries, which showed excellent cycle performance and enhanced lithium storage capacity, most likely because of the synergetic effect of small diffusion lengths in building blocks of nanorods and proper void space that buffers the volume expansion. The strategy reported in this work is reproducible, which may help to significantly improve the electrochemical performance of transition metal oxide-based anode materials via designing the hollow structures necessary for developing lithium ion batteries and the relevant

  2. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  3. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-01-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors. PMID:27114165

  4. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    Xueliang Jiang

    2016-04-01

    Full Text Available Uniform rare-earth gadolinium oxide (Gd2O3 hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications.

  5. Surfactant-assisted solvothermal preparation of submicrometer-sized hollow hematite particles and their photocatalytic activity

    Lian Suoyuan; Wang Enbo; Gao Lei; Wu Di; Song Yanli; Xu Lin

    2006-01-01

    Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl 3 .H 2 O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 μm with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products' crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe 2 O 3 for the destruction of diethyl phthalate in water was carried out. The result proved that Fe 2 O 3 hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min

  6. Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

    Yao, Yan

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g-1 with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure. © 2011 American Chemical Society.

  7. Pele's tears and spheres

    Porritt, L. A.; Quane, S.; Russell, K.

    2011-12-01

    Pele's tears are a well known curiosity commonly associated with low viscosity basaltic explosive eruptions. However, these pyroclasts are rarely studied in detail and there is no full explanation for their formation. These intriguing pyroclasts have smooth glassy surfaces, vesiculated interiors, and fluidal morphologies tending towards droplets and then spheres as they decrease in size to Pele's tears from the 1959 fire-fountaining eruption of Kilauea Iki involving size and density measurements. Using thin section and SEM analysis we also consider their internal and external morphologies, porosity and bubble size distributions, and surface textures. Finally we consider the mechanisms of magma fragmentation, timescales of relaxation, and cooling rates that are responsible for their formation.

  8. Panoramic stereo sphere vision

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  9. Switching a Nanocluster Core from Hollow to Non-hollow

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  10. The Electrospun Ceramic Hollow Nanofibers

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  11. Antibacterial properties and mechanisms of gold-silver nanocages

    Wang, Yulan; Wan, Jiangshan; Miron, Richard J.; Zhao, Yanbin; Zhang, Yufeng

    2016-05-01

    Despite the number of antibiotics used in routine clinical practice, bacterial infections continue to be one of the most important challenges faced in humans. The main concerns arise from the continuing emergence of antibiotic-resistant bacteria and the difficulties faced with the pharmaceutical development of new antibiotics. Thus, advancements in the avenue of novel antibacterial agents are essential. In this study, gold (Au) was combined with silver (Ag), a well-known antibacterial material, to form silver nanoparticles producing a gold-silver alloy structure with hollow interiors and porous walls (gold-silver nanocage). This novel material was promising in antibacterial applications due to its better biocompatibility than Ag nanoparticles, potential in photothermal effects and drug delivery ability. The gold-silver nanocage was then tested for its antibacterial properties and the mechanism involved leading to its antibacterial properties. This study confirms that this novel gold-silver nanocage has broad-spectrum antibacterial properties exerting its effects through the destruction of the cell membrane, production of reactive oxygen species (ROS) and induction of cell apoptosis. Therefore, we introduce a novel gold-silver nanocage that serves as a potential nanocarrier for the future delivery of antibiotics.

  12. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  13. The Riddle of the Apparently Hollow Himalaya

    The Riddle of the Apparently Hollow Himalaya. Ramesh .... It was as if the Himalayas were hollow inside. ... block would be consistent with the ground elevation in such a ... Alternative models and possible preference: Many refinements of.

  14. Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-04-15

    Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.

  15. Spherical Approximation on Unit Sphere

    Eman Samir Bhaya

    2018-01-01

    Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of  functions in  spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in    spaces for  by modulus of smoothness of functions.

  16. Hollow nanotubular toroidal polymer microrings.

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  17. Preconcentration of silver as silver xanthate on activated carbon

    Ramadevi, P.; Naidu, U.V.; Naidu, G.R.K.

    1988-01-01

    Silver from aqueous solution was preconcentrated by adsorption on activated carbon as silver xanthate. Factors influencing the adsorption of silver were studied. Optimum conditions for the preconcentration of silver were established. (author) 9 refs.; 3 tabs

  18. Hollow fiber liquid supported membranes

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  19. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  20. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  1. Hollow waveguide cavity ringdown spectroscopy

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  2. Hollow core plasma channel generation

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  3. The Legend of Sleepy Hollow

    Washington; Irving

    1987-01-01

    Part Ⅰ On the Eastern shore of the Hudson River there was a little valley, among high hills, which was one of the quietest places in the whole world. This little valley had long been known by the name of SIeepy Hollow. Many strange stories about ghosts were told and retold in the village situated there.

  4. Microstructured hollow fibers for ultrafiltration

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  5. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang, E-mail: liaozhang2003@163.com; Zhang, Tingting; Guo, Tingting

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucose is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.

  6. Public Sphere as Digital Assemblage

    Salovaara-Moring, Inka

    the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...

  7. Differential Calculus on Quantum Spheres

    Welk, Martin

    1998-01-01

    We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.

  8. Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries

    Qiao, Yu; Yu, Yan; Jin, Yi; Guan, Yi-Biao; Chen, Chun-Hua

    2014-01-01

    Highlights: • Double-shelled Mn 2 O 3 hollow microspheres are prepared by a multi-step. • synthesis procedure. • Solid, hollow and yolk-structured Mn 2 O 3 spheres are prepared for comparison. • The double-shelled hollow Mn 2 O 3 is superior in electrochemical properties. - Abstract: By means of a specially designed multi-step synthesis procedure involving steps of precipitation, controlled oxidation, selective etching and calcination, porous double-shelled Mn 2 O 3 hollow microspheres are synthesized. Solid, hollow and yolk-structured Mn 2 O 3 are also similarly synthesized for comparison. X-ray diffraction, scanning and transmission electron microscopies, IR spectroscopy, thermogravimetry, and Brunauer-Emmett-Teller measurements are employed to investigate their structures and compositions. Galvanostatic cell cycling and impedance spectroscopy are used to characterize the electrochemical properties of Mn 2 O 3 /Li cells. The results show that the hierarchical hollow structured (double-shelled, hollow and yolk-structured) Mn 2 O 3 anode materials deliver higher reversible capacities and excellent cycling stabilities than the solid Mn 2 O 3 . Moreover, among the three hierarchical hollow structured samples, the double shelled sample possesses the best cycling performance, especially at a high current density

  9. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  10. Design and fabrication of Ni nanowires having periodically hollow nanostructures.

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-10-07

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag 'barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 ± 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni(2+) for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.

  11. Fabrication of Metallic Hollow Nanoparticles

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  12. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  13. Space Charge Mitigation With Longitudinally Hollow Bunches

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  14. Method to fabricate hollow microneedle arrays

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  15. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  16. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  17. Synthesis and characterizations of spherical hollow composed of AgI nanoparticle using AgBr as the precursor

    Yang Ming; Zhou Kui

    2011-01-01

    Hollow spheres of AgI with an average radius of 100-200 nm have been prepared by a simple reaction between AgBr suspension and KI in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of I - ions to AgBr surfaces and coagulation of the growing AgI in producing the spherical AgI particles. The products were characterized by X-ray powder diffraction, transmission electron microscopy, UV-vis absorption spectroscopy and X-ray photoelectron spectra techniques. The band gaps are estimated to be 2.95 eV according to the results of optical measurements of the hollow spheres of AgI.

  18. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  19. Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

    Xu, Wangwang; Xie, Zhiqiang; Cui, Xiaodan; Zhao, Kangning; Zhang, Lei; Dietrich, Grant; Dooley, Kerry M; Wang, Ying

    2015-10-14

    Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-prepared hierarchical SnO2@SnS2@rGO nanocomposite can be used as anode material in lithium ion batteries, exhibiting excellent cyclability with a capacity of 583 mAh/g after 100 electrochemical cycles at a specific current of 200 mA/g. This material shows a very low capacity fading of only 0.273% per cycle from the second to the 100th cycle, lower than the capacity degradation of bare SnO2 hollow spheres (0.830%) and single SnS2 nanosheets (0.393%). Even after being cycled at a range of specific currents varied from 100 mA/g to 2000 mA/g, hierarchical SnO2@SnS2@rGO nanocomposites maintain a reversible capacity of 664 mAh/g, which is much higher than single SnS2 nanosheets (374 mAh/g) and bare SnO2 hollow spheres (177 mAh/g). Such significantly improved electrochemical performance can be attributed to the unique hierarchical hollow structure, which not only effectively alleviates the stress resulting from the lithiation/delithiation process and maintaining structural stability during cycling but also reduces aggregation and facilitates ion transport. This work thus demonstrates the great potential of hierarchical SnO2@SnS2@rGO nanocomposites for applications as a high-performance anode material in next-generation lithium ion battery technology.

  20. Troubleshooting vSphere storage

    Preston, Mike

    2013-01-01

    This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge

  1. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature

    Yao, Aihua; Ai, Fanrong; Liu, Xin; Wang, Deping; Huang, Wenhai; Xu, Wei

    2010-01-01

    Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li 2 O-CaO-B 2 O 3 glass microspheres in dilute phosphate solution at 37 o C. The results confirmed that Li 2 O-CaO-B 2 O 3 glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate, which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li 2 O-CaO-B 2 O 3 glass microspheres reacted in low-concentration K 2 HPO 4 solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.

  2. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  3. Size-dependent structure of silver nanoparticles under high pressure

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  4. Facile synthesis of Co3O4 nanowires grown on hollow NiO microspheres with superior electrochemical performance

    Fan, Meiqing; Ren, Bo; Yu, Lei; Song, Dalei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Jing, Xiaoyan; Liu, Lianhe

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The NiO hollow spheres were decorated by Co 3 O 4 nanowires. • The NiO hollow spheres were comprised of many NiO particles. • The Co 3 O 4 nanowires were composed of nanoparticles. • The NiO/Co 3 O 4 core/shell nanocomposites have good electrochemical properties. - Abstract: The NiO/Co 3 O 4 core/shell composites as a promising supercapacitor material have been fabricated by facile hydrothermal process. The structure and morphology of the NiO/Co 3 O 4 core/shell composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that the NiO hollow spheres were decorated by Co 3 O 4 nanowires, and the nanowires were composed of nanoparticles. Electrochemical properties were characterized by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The results suggested that the NiO/Co 3 O 4 core/shell composites had good electrochemical reversibility and displayed superior capacitive performance with large capacitance (510 F g −1 ). Moreover, NiO/Co 3 O 4 core/shell composites showed excellent cyclic performanceafter 1000 cycles

  5. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  6. Spheres of discharge of springs

    Springer, Abraham E.; Stevens, Lawrence E.

    2009-02-01

    Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

  7. Neuroscience in the public sphere.

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Neuroscience in the Public Sphere

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-01-01

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere.

  9. Hollow nanocrystals and method of making

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  10. Hollow rods for the oil producing industry

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  11. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  12. Tessellating the Sphere with Regular Polygons

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  13. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  14. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-11-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters.

  16. Preparation and properties of hollow glass microspheres for use in laser fusion experiments

    Campbell, J.H.; Grens, J.Z.; Poco, J.F.

    1983-01-01

    We review the preparation of high quality, hollow-glass microspheres for use in laser driven fusion experiments at LLNL. The primary focus of this paper is on the liquid-droplet method for making glass spheres, which has been in use at LLNL for over six years. We have combined the results from previous studies with our current results to present a detailed description of the preparation and the composition and physical properties of the glass microspheres. We also present a mathematical model that simulates the microsphere formation process. Examples are given of the application of the model to study the effects of various process parameters

  17. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  18. Capillary holdup between vertical spheres

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  19. Archaic artifacts resembling celestial spheres

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  20. Spheres of Justice within Schools

    Sabbagh, Clara; Resh, Nura; Mor, Michal

    2006-01-01

    This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do not correspond...

  1. Copper and silver halates

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  2. Hollow Micro-/Nanostructures: Synthesis and Applications

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  3. A novel method for preparation of hollow and solid carbon spheres

    Wintec

    strength (Li et al 2006), which make them appropriate materials to be used in lithium-ion ... efficient and low cost method to prepare HCSs and SCSs by the reaction of .... Li L C, Song H H and Chen X H 2006 Carbon 44 596. Wang P et al 2007 ...

  4. The Universe is Like a Hollowed Sphere. The Wave Concept of Time

    Andrzej W. Głuszak

    2015-07-01

    Full Text Available There is space for new ideas of the essence and the entity of time. The article refers to our time concept as a special wave type and presents results of our investigations on this subject. Thus, time defined as waves and an energy carrier could give explanation to multiple unclear phenomena. It could explicate gravity, organization in the planetary systems and light speed limit. A hypothesis that matter exists due to time wave motion would emerge from the elementary particle mass generation by the waves. Time becomes the main driving force in the Universe. The discussed thoughts need further analyses and verification but their confirmation may mean civilization changes.

  5. The optical levitation of spheres

    Roosen, G.

    1979-01-01

    In this article we are dealing with optical levitation, that is the possibility of maintaining particles in a stable equilibrium position in air or vacuum by means of laser beams. In the first part, we review the methods used to calculate the force exerted on a sphere by a laser beam. The axial and transverse force components could be obtained either by applying Debye theory to laser beams which have a non-uniform energy distribution or by using, in the case of large spheres, a geometrical optics approach. From the results achieved with the geometrical optics approach, we derive, in a second part, the required stable equilibrium conditions for a sphere placed either in a vertical beam or in two horizontal ones having the same axis but opposite direction. In the last part, we describe in detail the levitation experiments carried out using either a vertical or two horizontal beams. In conclusion, we point out some applications of optical levitation, emphasizing especially the suspension by optical levitation of the targets used in laser fusion experiments. (author) [fr

  6. From silver currency to the gold standard in the Philippine Islands

    Wolters, W.G.

    2003-01-01

    In 1903, the United States government introduced a gold standard monetary system in the Philippines, with a theoretical gold peso and a token silver peso in circulation. This currency reform was part of a wider American diplomatic offensive to expand the sphere of gold-based currencies in the world,

  7. Design and fabrication of Ni nanowires having periodically hollow nanostructures

    Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2014-09-01

    We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the interior surfaces of AAO. The Ni shell layer allows the Ni segments to remain even after dissolution of the Ag segments. Because the electroplating conditions can be easily controlled, we could carefully adjust the size and pitch of the periodically hollow nanospaces. We also describe a method for the fabrication of Ni nanorods by forming an Ag shell instead of a Ni shell on the Ni-Ag barcode nanowire, in which the interior of the AAO surfaces was modified with a compound bearing a thiol group prior to electroplating.We propose a concept for the design and fabrication of metal nanowires having periodically hollow nanostructures inside the pores of an anodic aluminum oxide (AAO) membrane using a sacrificial metal. In this study, nickel (Ni) and silver (Ag) were used as the base metal and the sacrificial metal, respectively. Alternating an applied potential between -0.4 and -1.0 V provided alternatively deposited Ni and Ag segments in a Ni-Ag `barcode' nanowire with a diameter of 18 or 35 nm. After etching away the Ag segments, we fabricated Ni nanowires with nanopores of 12 +/- 5.3 nm. Such nanostructure formation is explained by the formation of a Ni shell layer over the surface of the Ag segments due to the strong affinity of Ni2+ for the

  8. Mastering VMware vSphere 5

    Lowe, Scott

    2011-01-01

    A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the

  9. Formation of Uniform Hollow Silica microcapsules

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  10. Microring embedded hollow polymer fiber laser

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  11. The sphere-PAC fuel code 'SPHERE-3'

    Wallin, H

    2000-07-01

    Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)

  12. Mineral commodity profiles: Silver

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  13. A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS

    Bota Anton Florin

    2009-01-01

    The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou

  14. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Lu, Yanqi; Liu, Mingda; Nie, Huagui; Gu, Cancan; Liu, Ming; Yang, Zhi; Yang, Keqin; Chen, Xi’an; Huang, Shaoming

    2016-01-01

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO_2 spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO_2 spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction

  15. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Lu, Yanqi; Liu, Mingda; Nie, Huagui, E-mail: huaguinie@126.com; Gu, Cancan; Liu, Ming; Yang, Zhi, E-mail: yang201079@126.com; Yang, Keqin; Chen, Xi’an; Huang, Shaoming, E-mail: smhuang@wzu.edu.cn [Wenzhou University, Nanomaterials and Chemistry Key Laboratory (China)

    2016-06-15

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO{sub 2} spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO{sub 2} spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction.

  16. Generating perfect fluid spheres in general relativity

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  17. Generating perfect fluid spheres in general relativity

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-01-01

    Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres

  18. SURFACES OF HARD-SPHERE SYSTEMS

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  19. Fusion breeder sphere - PAC blanket design

    Sullivan, J.D.; Palmer, B.J.F.

    1987-11-01

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  20. Study of the spectra of silica colloidal crystals with assembled silver obtained from a photolysis method

    Li, Wenjiang; He, Jinglong; He, Sailing

    2005-02-01

    The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.

  1. Modeling High Pressure Micro Hollow Cathode Discharges

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  2. optimizing compressive strength characteristics of hollow building

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  3. Hollow Micro-/Nanostructures: Synthesis and Applications

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  4. Solvothermal synthesis and characterization of ceria with solid and hollow spherical and multilayered morphologies

    He, Lei; Li, Junping; Feng, Zhihai; Sun, Dongfeng; Wang, Tingyu; Li, Ruixing; Xu, Yaohui

    2014-01-01

    Highlights: • Various morphologies of CeO 2 are gotten by controlling the solvothermal conditions. • The various morphologies are synthesized without any template or surfactant. • The chemical mechanisms for the formation of the products in the solvothermal process are discussed. • The morphology evolution from solid spheres to multilayered structures is supposed. • The as-synthesized CeO 2 samples possess excellent adsorption capacities. - Abstract: Ceria powders with different morphologies were synthesized using a facile template-free solvothermal process combined with calcination. The influence of solvothermal temperature and time on the powder was studied. Solid spheres, hollow spheres, and multilayered structures were controlled by adjusting the solvothermal conditions. The possible mechanisms for the formation of the precursors under the solvothermal conditions employed and the evolution of the powder from solid spherical to multilayered structures were discussed. Ethylene glycol played a key role in the morphology evolution of the powder. Cerium catalyzed the Guerbet-like reaction and reacted with ethylene glycol to produce ceria (CeO 2 ), Ce(HCOO) 3 , and Ce(OH)CO 3 . The redox-assisted dissolution–recrystallization process significantly contributed to the morphology transformation from solid spheres to multilayered structures. Moreover, the samples synthesized at different temperatures for 24 h possessed excellent adsorption capacities towards the removal of acid orange 7 when compared with commercial ceria

  5. Removal of silver from wastewater using cross flow microfiltration

    Zanain M.

    2013-04-01

    Full Text Available Removal of silver from wastewater was investigated using continuous cross flow microfiltration (MF technique hollow fiber membranes with a pore size 0.2μm, with sorbent coated material Al2O3/SDSH2Dz particle size (8 μm. The coating investigated was dithizone (Diphenylthiocarbazone in 0.005M ammonia solution. In the filtration of silver ion solutions, the effects of the permeate flow rate and cross flow velocity on the absorption of silver ion solutions, and since the pore size of membrane (=0.2 μm is smaller then that of the (Al2O3, no need to consider the variation of (Al2O3.rejection as it can be considered to be 100%. The amount of silver absorbed into sorbent material Al2O3/SDSH2Dz was (25.35, 39.68 ppm for the cross flown velocity of 5, 2.5 L/hr respectively, and were the results as function of permeate flow was (25.35, 39.68 ppm for the velocity of 5, 2.5 L/hr respectively.

  6. Plasma generation using the hollow cathod

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  7. Adsorption characteristics of activated carbon hollow fibers

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  8. Hollow cathode for positive ion sources

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  9. Hollow-duct radiation delivery system investigation

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  10. VMware vSphere design

    Guthrie, Forbes

    2013-01-01

    Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v

  11. Green synthesis of silver nanoparticles and silver colloidal solutions

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  12. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    An Jing; Wang Desong; Luo Qingzhi; Yuan Xiaoyan

    2009-01-01

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF 4 ). [BMIM].BF 4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  13. Benzoate-Induced High-Nuclearity Silver Thiolate Clusters.

    Su, Yan-Min; Liu, Wei; Wang, Zhi; Wang, Shu-Ao; Li, Yan-An; Yu, Fei; Zhao, Quan-Qin; Wang, Xing-Po; Tung, Chen-Ho; Sun, Di

    2018-04-03

    Compared with the well-known anion-templated effects in shaping silver thiolate clusters, the influence from the organic ligands in the outer shell is still poorly understood. Herein, three new benzoate-functionalized high-nuclearity silver(I) thiolate clusters are isolated and characterized for the first time in the presence of diverse anion templates such as S 2- , α-[Mo 5 O 18 ] 6- , and MoO 4 2- . Single-crystal X-ray analysis reveals that the nuclearities of the three silver clusters (SD/Ag28, SD/Ag29, SD/Ag30) vary from 32 to 38 to 78 with co-capped tBuS - and benzoate ligands on the surface. SD/Ag28 is a turtle-like cluster comprising a Ag 29 shell caging a Ag 3 S 3 trigon in the center, whereas SD/Ag29 is a prolate Ag 38 sphere templated by the α-[Mo 5 O 18 ] 6- anion. Upon changing from benzoate to methoxyl-substituted benzoate, SD/Ag30 is isolated as a very complicated core-shell spherical cluster composed of a Ag 57 shell and a vase-like Ag 21 S 13 core. Four MoO 4 2- anions are arranged in a supertetrahedron and located in the interstice between the core and shell. Introduction of the bulky benzoate changes elaborately the nuclearity and arrangements of silver polygons on the shell of silver clusters, which is exemplified by comparing SD/Ag28 and a known similar silver thiolate cluster. The three new clusters emit luminescence in the near-infrared (NIR) region and show different thermochromic luminescence properties. This work presents a flexible approach to synthetic studies of high-nuclearity silver clusters decorated by different benzoates, and structural modulations are also achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Poisson denoising on the sphere

    Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.

    2009-08-01

    In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.

  15. Kerr Hollow Quarry Remediation Project

    Walker, K.L.

    1993-01-01

    The Kerr Hollow Quarry is a 3-acre flooded limestone quarry located near the Y-12 Facility on the Oak Ridge Reservation. The quarry was used in the 1940s as a source of construction material for the Department of Energy in Oak Ridge, Tennessee. Its use was discontinued in the early 1950s, and it was allowed to flood with water. The quarry presently has a maximum water depth of approximately 55 ft. During the period between the early 1950s until about 1988, the quarry was used for the treatment and disposal of a variety of materials including water-reactive, alkali metals, shock-sensitive chemicals, and compressed gas cylinders. For some of these materials, the treatment consisted of dropping the vessels containing the materials into the quarry from a high bluff located on one side of the quarry. The vessels were then punctured by gun shot, and the materials were allowed to react with the water and sink to the bottom of the quarry. Very few disposal records exist for the period from 1952 to 1962. The records after that time, from 1962 until 1988, indicate some 50 t of hazardous and nonhazardous materials were disposed of in the quarry. This report documents remediation efforts that have taken place at the quarry beginning in September 1990

  16. The Positive Freedom of the Public Sphere

    Hansen, Ejvind

    2015-01-01

    calls for new reflections on the possible relationship between media, public sphere and democracy. This paper argues that we should change the questions that are raised when we try to assess the public sphere. It is argued that the traditional (Enlightenment) focus upon negative liberties and the truth-value......The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...

  17. Enhanced microwave absorption properties of MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons synthesized by a facile hydrothermal method

    Wang, Yan; Han, Bingqian; Chen, Nan; Deng, Dongyang; Guan, Hongtao [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Wang, Yude, E-mail: ydwang@ynu.edu.cn [Department of Materials Science and Engineering, Yunnan University, 650091, Kunming (China); Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming (China)

    2016-08-15

    MnO{sub 2} hollow microspheres consisted of nanoribbons were successfully fabricated via a facile hydrothermal method with SiO{sub 2} sphere templates. The crystal structure, morphology and microwave absorption properties in X and Ku band of the as-synthesized samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a vector network analyzer. The results show that the three-dimensional (3D) hollow microspheres are assembled by ultra thin and narrow one-dimensional (1D) nanoribbons. A rational process for the formation of hollow microspheres is proposed. The 3D MnO{sub 2} hollow microspheres possess improved dielectric and magnetic properties than the 1D nanoribbons prepared by the same procedures with the absence of SiO{sub 2} hard templates, which are closely related to their special nanostructures. The MnO{sub 2} microspheres also show much better microwave absorption properties in X (8–12 GHz) and Ku (12–18 GHz) microwave band compared with 1D MnO{sub 2} nanoribbons. The minimum reflection loss of −40 dB for hollow microsphere can be observed at 14.2 GHz and reflection loss below −10 dB is 3.5 GHz with a thickness of only 4 mm. The possible mechanism for the enhanced microwave absorption properties is also discussed. - Graphical abstract: MnO{sub 2} hollow microspheres composed of nanoribbons show the excellent microwave absorption properties in X and Ku band. - Highlights: • MnO{sub 2} hollow microspheres consisted of MnO{sub 2} nanoribbons were successfully prepared. • MnO{sub 2} hollow microspheres possess good microwave absorption performances. • The excellent microwave absorption properties are in X and Ku microwave band. • Electromagnetic impedance matching is great contribution to absorption properties.

  18. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  19. Synthesis and characterization hollow spherical La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT for cathode of solid oxide fuel cell (SOFC

    H. H. Yu

    2016-10-01

    Full Text Available Hollow spheres structures of La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT have been synthesized via hydrothermal method using carbon spheres as template. The structure and electrical conductivity of obtained samples are characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and direct current (DC four-probe method respectively. The results show that hollow spheres structures of LSCCT with the mean particle size of 0,9 - 1,2 μm is single perovskite. The electrical conductivity of the samples is higher than 100 S/cm from 600 to 800 ℃ and can meet the demand of the electrical properties for the cathode materials.

  20. Sphere Rényi entropies

    Dowker, J S

    2013-01-01

    I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Rényi entropies are computed. Massive fields are also considered and a renormalization to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. From the deformation of the corresponding lune result, I conjecture that the effective action on all odd manifolds with a simple conical singularity has an extremum when the singularity disappears. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann ζ-functions (and log 2). (paper)

  1. Geocosmos: mapping outer space into a hollow earth

    Abdelkader, M.A. (Alexandria, Egypt)

    1983-04-01

    The authors regards the earth's surface as a sphere and applies a purely mathematical mapping taking outer space in the Copernican universe (C) into a hollow earth, Geocosmos (G). The enormous galaxies and other remote objects are mapped inside as microscopic objects, and the moon as by far the largest of the celestial objects, all of which revolve daily around the earth's axis. Straight rays of light are mapped as arcs of circles, so that all celestial phenomena appear to inside observers in G just as they do to outside observers in C. He next considers the hypothesis that, conversely, the actual universe is this finite G. Then there seems to be no way of testing this, except by drilling a hole right through the earth's centre. However, in C the origin of cosmic rays of super-high energies is very controversial, whereas in G it is unequivocal. The idea of G was first conceived qualitatively by Karl E. Neupert in 1900; this revival is somewhat different. The main appeal of G stems from the very grave difficulty of believing in the fantastic vastness of C, and the consequent reduction of the earth to an infinitesimal.

  2. A geocosmos: mapping outer space into a hollow earth

    Abdelkader, M.A.

    1983-01-01

    The authors regards the earth's surface as a sphere and applies a purely mathematical mapping taking outer space in the Copernican universe (C) into a hollow earth, Geocosmos (G). The enormous galaxies and other remote objects are mapped inside as microscopic objects, and the moon as by far the largest of the celestial objects, all of which revolve daily around the earth's axis. Straight rays of light are mapped as arcs of circles, so that all celestial phenomena appear to inside observers in G just as they do to outside observers in C. He next considers the hypothesis that, conversely, the actual universe is this finite G. Then there seems to be no way of testing this, except by drilling a hole right through the earth's centre. However, in C the origin of cosmic rays of super-high energies is very controversial, whereas in G it is unequivocal. The idea of G was first conceived qualitatively by Karl E. Neupert in 1900; this revival is somewhat different. The main appeal of G stems from the very grave difficulty of believing in the fantastic vastness of C, and the consequent reduction of the earth to an infinitesimal. (Auth.)

  3. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials

    Park, Keum Hwan; Park, O Ok [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Im, Sang Hyuk, E-mail: imromy@krict.re.kr, E-mail: ookpark@kaist.ac.kr [Korea Research Institute of Chemical Technology (KRICT), 19 Singsungno, Yuseong-gu, Daejeon 305-600 (Korea, Republic of)

    2011-01-28

    The size of silver nanocrystals in polyol synthesis can be simply controlled by tuning the viscosity of the reaction medium such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,5-pentanediol. We found that a higher viscose medium (1,5-pentanediol) led to monodispersed smaller particles thanks to the slow addition of silver atoms into the nuclei. Size-controlled silver nanocrystals of 30 nm were obtained in a viscosity controlled medium of 1,5-pentanediol to synthesize a low refractive index filler by coating with silica and subsequent etching of the silver core. The coated low-reflection layer from the hollow silica nanoparticles on polyethylene terephthalate (PET) film can greatly reduce the reflection of the PET film from 10% to 2% over the entire visible region.

  4. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  5. Silver deposition on polypyrrole films electrosynthesised onto Nitinol alloy. Corrosion protection and antibacterial activity.

    Saugo, M; Flamini, D O; Brugnoni, L I; Saidman, S B

    2015-11-01

    The electrosynthesis of polypyrrole films onto Nitinol from sodium salicylate solutions of different concentrations is reported. The morphology and corrosion protection properties of the resulting coatings were examined and they both depend on the sodium salicylate concentration. The immobilisation of silver species in PPy films constituted by hollow rectangular microtubes was studied as a function of the polymer oxidation degree. The highest amount of silver was deposited when the coated electrode was prepolarised at -1.00V (SCE) before silver deposition, suggesting an increase in the amount of non-oxidised segments in the polymer. Finally, the antibacterial activity of the coating against the Gram positive Staphylococcus aureus and Staphylococcus epidermidis bacteria was evaluated. Both strains resulted sensitive to the modified coatings, obtaining a slightly better result against S. aureus. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  7. Method for the production of fabricated hollow microspheroids

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  8. Assessment of the fate of silver nanoparticles in the A(2)O-MBR system.

    Yuan, Zhi-Hua; Yang, Xiaoyong; Hu, Anyi; Zheng, Yu-Ming; Yu, Chang-Ping

    2016-02-15

    In this study, we employed a bench scale A(2)O-MBR (anaerobic-anoxic-oxic membrane bioreactor) system to systematically investigate the behavior and distribution of silver nanoparticles (AgNPs) in the activated sludge. The results showed that AgNPs would aggregate and form Ag-sulfur complexes in the activated sludge, and the dissolved silver only reached 13.6 μg/L when AgNPs of 5mg/L was spiked into the A(2)O-MBR. The long-term mass balance analysis showed that most of the silver contents were accumulated in the bioreactor and wasted excess sludge. Only a small fraction (less than 0.5%) of silver could get across the hollow fiber membranes with 0.1 μm nominal pore size in the effluent. In addition, the comparison between total AgNP concentration in aerobic sludge supernatant and effluent suggested that the membrane modules played a role in controlling the discharge of AgNPs into the effluent, especially under a higher influent concentration of AgNPs. Our results also showed that the adsorbed AgNPs or silver complexes in activated sludge still could release dissolved silver at the ambient pH. Thus, since activated sludge could be a sink for AgNPs, the risks of AgNPs in wasted excess sludge during utilization and disposal should be further studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Electric dipoles on the Bloch sphere

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  10. Reversible thermal gelation in soft spheres

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  11. Electric dipoles on the Bloch sphere

    Vutha, Amar C

    2015-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)

  12. Development of tree hollows in pedunculate oak (Quercus robur)

    Ranius, Thomas; Niklasson, Mats; Berg, Niclas

    2009-01-01

    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree-ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) ...

  13. Transmission properties of hollow-core photonic bandgap fibers

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  14. Adiabatic Rearrangement of Hollow PV Towers

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  15. Studies on pulsed hollow cathode capillary discharges

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  16. Microfabricated hollow microneedle array using ICP etcher

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  17. Microfabricated hollow microneedle array using ICP etcher

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  18. Microfabricated hollow microneedle array using ICP etcher

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  19. Computational predictions of zinc oxide hollow structures

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  20. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method.

    Wani, Irshad A; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ahmad, Tokeer; Manzoor, Nikhat

    2013-01-01

    Silver nanoparticles have been synthesized in the inverse microemulsions formed using three different surfactants viz., cetyl-trimethyl ammonium bromide (CTAB), Tergitol and Triton X-100. We have done a systematic study of the effect of the surfactants on the particle size and properties of the silver nanoparticles. Microscopic studies show the formation of spheres, cubes and discs shaped silver nanostructures with the size in the range from 8 to 40 nm. Surface plasmon resonance (SPR) peak was observed around 400 nm and 500 nm. In addition to SPR some extra peaks have also been observed due to the formation of silver metal clusters. The surface area increases from 3.45 to 15.06 m(2)/g with decreasing the size of silver nanoparticles (40-8 nm). To investigate the antimicrobial activity of silver nanoparticles, the nanoparticles were tested against the yeast, Candida albicans and the bacterium, E. coli. The results suggest very good antimicrobial activity of the silver nanoparticles against the test microbes. The mode of action of the antimicrobial activity was also proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. One-step synthesis of in situ reduced metal Bi decorated bismuth molybdate hollow microspheres with enhancing photocatalytic activity

    Jin, Meng [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lu, Shiyu [Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715 (China); Ma, Li, E-mail: mlsys607@126.com [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China); Gan, Mengyu [College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2017-02-28

    Highlights: • Metal Bi decorated Bi{sub 2-x}MoOy was synthesised by a simple and one-step. • Bi{sup 3+} could be in situ reduced to Bi{sup 0} gradually and dispersed uniform in Bi{sub 2-x}MoOy. • It shows excellent photocatalytic activity due to special structure and composition. - Abstract: In this feature work, in situ metal Bi are successfully modified bismuth molybdate hollow spheres using an effective one-pot solvthermal reduction without any temple. In order to deeply understand the influence of reduction conditions on the texture, surface state, and photocatalytic performance of the resulting samples, a series of products were synthesized by tuning the temperatures. The similar morphology, surface area of photocatalysis (BMO-160 and BMO-170) were synthesized, only with the different composition. The detailed characterization and analysis distinctly suggested that increasing solvothermal reduction temperature led to Bi{sup 3+} was in situ reduced to elementary substance Bi{sup 0} by ethylene glycol gradually and dispersed very uniform in bismuth molybdate. Benefiting from the enhanced charge separation, transfer, and donor density resulting from the formation of Bi decorated bismuth molybdate where Bi as cocatalyst, the photocatalytic performance of the reductive Bi/Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-170) is higher than that of the untreated Bi{sub 2-x}MoO{sub y} hollow spheres (BMO-160) for Rh6G degradation under visible light irradiation. Additionally, the reductive BMO-170 has a superior stability after five cycles.

  2. Preparation of hollow microspheres of Ce{sup 3+} doped NiCo ferrite with high microwave absorbing performance

    Duan, Hong-zhen, E-mail: duanhz2000@163.com; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-15

    Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 µm and the particle size of the Ni{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was −18.8 dB at 5500 MHz. - Highlights: • Hollow microspheres of Ce{sup 3+} doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method. • The influence of rare earth Ce{sup 3+} on the magnetic and absorbing properties of sample was studied. • When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu• g{sup −1} and 789.88 Oe, respectively.

  3. Antibacterial activity of silver nanoparticles synthesized from serine

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  4. Silver-Russell syndrome

    Shohela Akhter

    2016-08-01

    Full Text Available Silver-Russell syndrome is clinically and genetically a heterogeneous disorder. In most of the cases, etiology is unknown, only in 10% cases defect in chromosome 7 is identified. It bas distinctive facial features and asymmetric limbs. Most predominant symptom is growth failure. A case of Silver-Russell syndrome reported here who presented with growth failure, hemihypertrophy ofleft side oftbe body, dysmorphic facial profile and difficulty in speech. Counseling was done with the parents regarding the etiology, progression and outcome of the disease.

  5. Anomalies, conformal manifolds, and spheres

    Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  6. Theorising Public and Private Spheres

    Sima Remina

    2016-12-01

    Full Text Available The 19th century saw an expression of women’s ardent desire for freedom, emancipation and assertion in the public space. Women hardly managed to assert themselves at all in the public sphere, as any deviation from their traditional role was seen as unnatural. The human soul knows no gender distinctions, so we can say that women face the same desire for fulfillment as men do. Today, women are more and more encouraged to develop their skills by undertaking activities within the public space that are different from those that form part of traditional domestic chores. The woman of the 19th century felt the need to be useful to society, to make her contribution visible in a variety of domains. A woman does not have to become masculine to get power. If she is successful in any important job, this does not mean that she thinks like a man, but that she thinks like a woman. Women have broken through the walls that cut them off from public life, activity and ambition. There are no hindrances that can prevent women from taking their place in society.

  7. TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD

    Yury A. Krasnitsky

    2018-01-01

    Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in  >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties. 

  8. Unsteady flow over a decelerating rotating sphere

    Turkyilmazoglu, M.

    2018-03-01

    Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

  9. Molecular motor transport through hollow nanowires

    Lard, Mercy; Ten Siethoff, Lasse; Generosi, Johanna

    2014-01-01

    -driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O 3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays...

  10. Hollow micro string based calorimeter device

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  11. Hollow fibre supported liquid membrane extraction of ...

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  12. Finding a source inside a sphere

    Tsitsas, N L; Martin, P A

    2012-01-01

    A sphere excited by an interior point source or a point dipole gives a simplified yet realistic model for studying a variety of applications in medical imaging. We suppose that there is an exterior field (transmission problem) and that the total field on the sphere is known. We give analytical inversion algorithms for determining the interior physical characteristics of the sphere as well as the location, strength and orientation of the source/dipole. We start with static problems (Laplace’s equation) and then proceed to acoustic problems (Helmholtz equation). (paper)

  13. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  14. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  15. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  16. Evidence of fire resistance of hollow-core slabs

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  17. Acoustic levitation of a large solid sphere

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  18. Acoustic levitation of a large solid sphere

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  19. Spheres of SA Government, responsibilities and delivery

    Oelofse, Suzanna HH

    2010-09-01

    Full Text Available The institutional framework for government in South Africa was established in 1996 with the adoption of the first democratic Constitution. National, provincial and local government was established as three elected spheres of government, each...

  20. Gender, Diversity and the European Public Sphere

    Pristed Nielsen, Helene

    2009-01-01

    This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....

  1. Hydrodynamic interaction between bacteria and passive sphere

    Zhang, Bokai; Ding, Yang; Xu, Xinliang

    2017-11-01

    Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.

  2. Acoustic levitation of a large solid sphere

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-01-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  3. 1-Public sphere Ambadiang.pmd

    \\376\\377\\000s\\000e\\000r\\000i\\000a\\000n\\000e\\000.\\000c\\000a\\000m\\000a\\000r\\000a

    2011-03-09

    Mar 9, 2011 ... Council for the Development of Social Science Research in Africa, 2010 .... Ambadiang: Public Sphere, Linguistic Sphericules and Discourse Communities in Africa ...... eds., Media, Ritual, Identity, London: Routledge, pp.

  4. Higher-dimensional relativistic-fluid spheres

    Patel, L. K.; Ahmedabad, Gujarat Univ.

    1997-01-01

    They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given

  5. Elastic spheres can walk on water.

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  6. which spheres of government are responsible

    XXX

    basic guidelines for a land use management system in the municipality. 38. The issue ... property in Linden to permit the establishment of a restaurant and gift shop. 40. The .... spheres of government do not operate in sealed compartments. 65.

  7. Scintillation forward spectrometer of the SPHERE setup

    Anisimov, Yu.S.; Afanas'ev, S.V.; Bondarev, V.K.

    1991-01-01

    The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab

  8. Simultaneous chemical modification and structural transformation of Stöber silica spheres for integration of nanocatalysts

    Yao, Kexin

    2012-01-10

    A synthetic approach has been devised to convert conventional Stöber silica (SiO 2) spheres into a new type of porous structural platform for supporting multicomponent catalysts. With this approach, we have first prepared zinc-doped SiO 2 (Zn-SiO 2) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2 supports after additional thermal treatment and reduction. To test their workability under harsh reactive environments, we have further evaluated the above prepared catalysts using arene hydrogenation as model reactions. These integrated nanocatalysts have shown superior activity, high robustness, and easy recovery in the studied heterogeneous catalysis. © 2011 American Chemical Society.

  9. New trends in the ICRU sphere

    Morstin, K.; Kawecka, B.; Booz, J.

    1985-01-01

    A space transformation has been applied that enables the transport equation to be efficiently solved for spheres exposed to radiations of almost arbitrary angular distribution. Depth dose distributions in the ICRU sphere have been calculated with the 1-D ANISN transport code for neutron energies from thermal up to 20 MeV and for photons up to 15 MeV. Several irradiation geometries are considered. For deep-penetrating radiations, maximum possible dose equivalent index significantly exceeds Hsub(10) star

  10. Hardy type inequalities on the sphere

    Xiaomei Sun

    2017-06-01

    Full Text Available Abstract In this paper, we consider the L p $L^{p}$ -Hardy inequalities on the sphere. By the divergence theorem, we establish the L p $L^{p}$ -Hardy inequalities on the sphere. Furthermore, we also obtain their best constants. Our results can be regarded as the extension of Xiao’s (J. Math. Inequal. 10:793-805, 2016.

  11. vSphere virtual machine management

    Fitzhugh, Rebecca

    2014-01-01

    This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.

  12. vSphere high performance cookbook

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  13. Characterization of Electrochemically Generated Silver

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  14. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables

  15. Silver matrix composites reinforced with galvanically silvered particles

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  16. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  17. The response of a Bonner Sphere spectrometer to charged hadrons

    Agosteo, S; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors wer...

  18. Study of the Hollow Waveguides Physical Parameters Determined the Beam Shape Conservation of the Delivered Radiation

    Ben-David, M.; Inberg, A.; Katzir, A.; Croitoru, N.

    1999-01-01

    The modification of the laser source beam quality is one of the important factors effect the delivery of laser radiation by a waveguide. In this paper the results of input radiation coupling, radius of bending, length, cross section diameter, waveguide internal wall roughness and coupling lens focal length influence on the beam shape delivered from the flexible hollow waveguides are presented. The conditions for which the beam shape is near to that of the source were found. A theoretical model for the radiation propagation gives quantitative representation of relation between attenuation, beam profile, divergence and above indicated parameters was developed. In this model was supposed that the guiding is produced by multiple incidences on a metal (silver) layer and a dielectric (silver iodine) over layer, by refraction and reflection. The propagation of the rays was calculated using the physical laws of the geometrical optics. For the scattering calculations a random distribution of roughness centers on dielectric layer surface was considered. It was also supposed that the value of the cross section internal diameter (ID=d) was much larger than the transmitted wavelength. The experimental results have shown that losses due to absorption of the propagated radiation in the guiding layers, mainly (AgI), generate satellites of the laser source delivered fundamental Gaussian beam. Increasing of the hollow waveguide internal diameter decreases the attenuation and increases the deviation of beam shape from Gaussian. Off center coupling produce decreasing of the fundamental mode height and generation of the coupled Gaussian beam satellites. The waveguide internal wall roughness produce losses of the coupled radiation and beam profile deviations from that of the laser source. A good correspondence between the theoretical and experimental results obtained

  19. Nucleic acid nanomaterials: Silver-wired DNA

    Auffinger, Pascal; Ennifar, Eric

    2017-10-01

    DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.

  20. Genetics Home Reference: Russell-Silver syndrome

    ... Other Names for This Condition RSS Silver-Russell dwarfism Silver-Russell syndrome SRS Related Information How are ... M, Begemann M, Elbracht M. Epigenetic and genetic diagnosis of Silver-Russell syndrome. Expert Rev Mol Diagn. ...

  1. Silver against Pseudomonas aeruginosa biofilms

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  2. Measurement of residual stress in a sphere by x-ray under the consideration of its penetration depth

    Doi, Osamu; Ukai, Takayoshi

    1981-01-01

    It was pointed out in the case of a plate that when stress gradient is large, the use of the X-ray with large penetration depth caused large measurement error. In this paper, the theoretical equations for measuring the residual stress in a sphere with X-ray, taking penetration depth into account, are proposed, and the example of application is shown. As the method of measuring the residual stress in a hollow sphere with X-ray, only the method of combining external surface removal and external surface irradiation is practically in use. It was assumed that a sphere is isotropic, and that the residual stress is a function of the radius only. First, the theory of measuring the residual stress in a sphere with X-ray taking penetration depth into account is explained, and the equations for calculating the residual stresses in tangential and radial directions are derived. As the example of applying this theory, the distribution of the residual stress in a steel ball for a ball bearing was measured with Cr characteristic X-ray. The ball of 30 mm diameter was made of high-carbon chromium bearing steel, grade 2, (JIS SUJ2) and quenched and tempered. The removal of the thin layer was made by chemical etching and electrolysis. The measured values and the calculated values are shown. (Kako, I.)

  3. A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS

    Bota Anton Florin

    2009-05-01

    Full Text Available The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou

  4. The Separate Spheres Model of Gendered Inequality.

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  5. The Separate Spheres Model of Gendered Inequality.

    Andrea L Miller

    Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  6. The Separate Spheres Model of Gendered Inequality

    Miller, Andrea L.; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  7. Gilded Silver Mask

    1998-01-01

    This gilded silver mask from the Liao Dynasty is 31 cm long and 22.2 cm wide. The plump oval face was designed with a protruding brow ridge, narrow eyes, high-bridged nose and closed mouth. The chin is slightly round against a thin neck, the ears are long and the hair can be clearly seen from the finely carved lines. The use of masks was recorded as

  8. Surface functionalized hollow silica particles and composites

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  9. Space Charge Mitigation by Hollow Bunches

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  10. Surface functionalized hollow silica particles and composites

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  11. Enhanced Electrochemical Performance of Electrospun Ag/Hollow Glassy Carbon Nanofibers as Free-standing Li-ion Battery Anode

    Shilpa; Sharma, Ashutosh

    2015-01-01

    Silver with a high theoretical capacity for lithium storage is an attractive alloy based anode for Li-ion batteries, but large volume changes associated with AgLi x alloy formation leads to electrode cracking, pulverization and rapid capacity fading. A buffer matrix, like the electrospun hollow carbon nanofibers, can reduce this problem to a great extent. Herein, we demonstrate the facile synthesis of a free-standing, binder free Ag-C hybrid electrode through co-axial electrospinning, where well dispersed Ag nanoparticles are embedded in hollow carbon nanofibers. Using this approach, the long cycle life of carbon is complemented with the high lithium storage capacity of Ag, resulting in a high performance anode. The Ag-C composite electrode delivers a capacity of 739 mAh g −1 (>conventional graphite anodes) at 50 mA g −1 , with ∼85% capacity retention after 100 cycles. In addition, the Ag-C composite nanofibers are highly porous and exhibit a large accessible surface area (∼726.9 m 2 g −1 ) with an average pore diameter of ∼6.07 nm. The encapsulation of Ag in the hollow interiors not only provides additional lithium storage sites but also enhances the electronic conductivity, which combined with the reduced lithium diffusion path lengths in the nanofibers result in faster charge-discharge kinetics and hence a high rate performance

  12. Biological synthesis of silver nanoparticles

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  13. MOD silver metallization for photovoltaics

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  14. Silver precipitation from electrolytic effluents

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  15. Chalcogenide glass hollow core microstructured optical fibers

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  16. Comparison of hollow cathode discharge plasma configurations

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  17. Formation of hollow atoms above a surface

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  18. Structural anomalies induced by the metal deposition methods in 2D silver nanoparticle arrays prepared by nanosphere lithography

    Huang, Shengli, E-mail: huangsl@xmu.edu.cn [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Yang, Qianqian [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China); State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Zhang, Chunjing; Kong, Lingqi; Li, Shuping; Kang, Junyong [Fujian Provincial Key Lab of Semiconductors and Applications, Department of Physics, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-06-01

    Silver nanoparticle arrays with 2-dimensional hexagonal arrangement were fabricated on the silicon substrates by nanosphere lithography. The silver film was deposited either by thermal evaporation or by magnetron sputtering under different conditions. The nanostructures of the achieved sphere template and the array units were characterized by scanning electron microscopy and atomic force microscopy, and were found to be anomalous under different deposition parameters. Comparative study indicated that the formation of the various 2-dimensional silver nanoparticle array structures was dominated by the thermal energy (temperature), kinetic energy and deposition direction of the deposited metal atoms as well as the size and nanocurvature of the colloidal particles and the metal clusters. - Highlights: • Silver nanoparticle arrays with different nanostructures on silicon substrates. • Various deposition parameters in arrays formation systematically examined. • Possible mechanisms and optimization of nanostructures formation addressed.

  19. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    Gao, Yangqin; Hou, Yuanfang; Beaujuge, Pierre

    2015-01-01

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    Gao, Yangqin

    2015-04-21

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Instability of extremal relativistic charged spheres

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  3. The rising motion of spheres in structured fluids with yield stress

    Mirzaagha, S.; Pasquino, R.; Iuliano, E.; D'Avino, G.; Zonfrilli, F.; Guida, V.; Grizzuti, N.

    2017-09-01

    The rising of spherical bodies in structured fluids with yield stress is studied. The system is a suspension of hydrogenated castor oil colloidal fibers in a surfactant micellar solution. The fiber network confers to the fluid a viscoelastic behavior, with a well-defined yield stress, which increases with increasing fiber concentration. Various fluids with different fiber contents are prepared and rheologically characterized. A home-made time-lapse photography setup is used to monitor the time evolution position of the spherical particles, and the rising motion of both hollow spheres and air bubbles, in the diameter range 65-550 μm, is measured. The experiments last as long as several weeks, corresponding to significantly low measured velocities. Finite element simulations are performed to support the experimental data, assuming both interfacial slip and no slip conditions. The fluid dynamic phenomenon is studied and discussed in terms of dimensionless numbers, such as yield ratio, Bingham number, and Stokes drag coefficient. The results are novel for the system (suspending medium and hollow spheres) and for the covered Bingham number range, which is extended over three orders of magnitude in comparison with already available literature results. Our values provide quantitative data of the mechanical properties (i.e., yield stress value) at very low shear rates, in a prohibitive range for a traditional rheometer, and agree with the macroscopic rheological response. Moreover, the important role of the power law index n of the Herschel-Bulkley model, used to fit the data, has been highlighted. Our results, based on a Bingham-like fluid, are compared with the experimental data already available with Carbopol, treated as a Herschel Bulkley fluid with n = 0.5. The results could have important implications in the fabric and personal care detergency, a technological area where many fluids have composition and show rheological properties similar to those considered in the

  4. Synthesis of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres via homogeneous precipitation route

    Peng-Fei Ai, Ying-Liang Liu, Li-Yuan Xiao, Hou-Jin Wang and Jian-Xin Meng

    2010-01-01

    Full Text Available A phosphorescent material in the form of Y2O2S:Eu3+, Mg2+, Ti4+ hollow microspheres was prepared by homogeneous precipitation using monodispersed carbon spheres as hard templates. Y2O3:Eu3+ hollow microspheres were first synthesized to serve as the precursor. Y2O2S:Eu3+, Mg2+, Ti4+ powders were obtained by calcinating the precursor in a CS2 atmosphere. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction measurements confirmed the purity of the Y2O2S phase. Electron microscopy observations revealed that the Y2O2S:Eu3+, Mg2+, Ti4+ particles inherited the hollow spherical shape from the precursor after being calcined in a CS2 atmosphere and that they had a diameter of 350–450 nm and a wall thickness of about 50–80 nm. After ultraviolet radiation at 265 or 325 nm for 5 min, the particles emitted strong red long-lifetime phosphorescence originating from Eu3+ ions. This phosphorescence is associated with the trapping of charge carriers by Ti4+ and Mg2+ ions.

  5. Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors.

    Jang, Ji-Soo; Choi, Seon-Jin; Koo, Won-Tae; Kim, Sang-Joon; Cheong, Jun Young; Kim, Il-Doo

    2017-07-26

    Room-temperature (RT) operation sensors are constantly in increasing demand because of their low power consumption, simple operation, and long lifetime. However, critical challenges such as low sensing performance, vulnerability under highly humid state, and poor recyclability hinder their commercialization. In this work, sub-10 nm hollow, bimetallic Pt-Ag nanoparticles (NPs) were successfully formed by galvanic replacement reaction in bioinspired hollow protein templates and sensitized on the multidimensional SnO 2 -WO 3 heterojunction nanofibers (HNFs). Formation of hollow, bimetallic NPs resulted in the double-side catalytic effect, rendering both surface and inner side chemical reactions. Subsequently, SnO 2 -WO 3 HNFs were synthesized by incorporating 2D WO 3 nanosheets (NSs) with 0D SnO 2 sphere by c-axis growth inhibition effect and fluid dynamics of liquid Sn during calcination. Hierarchically assembled HNFs effectively modulate surface depletion layer of 2D WO 3 NSs by electron transfers from WO 3 to SnO 2 stemming from creation of heterojunction. Careful combination of bimetallic catalyst NPs with HNFs provided an extreme recyclability under exhaled breath (95 RH%) with outstanding H 2 S sensitivity. Such sensing platform clearly distinguished between the breath of healthy people and simulated halitosis patients.

  6. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  7. Toxicity testing of four silver nanoparticle-coated dental castings in 3-D LO2 cell cultures.

    Zhao, Yi-Ying; Chu, Qiang; Shi, Xu-Er; Zheng, Xiao-Dong; Shen, Xiao-Ting; Zhang, Yan-Zhen

    To address the controversial issue of the toxicity of dental alloys and silver nanoparticles in medical applications, an in vivo-like LO2 3-D model was constructed within polyvinylidene fluoride hollow fiber materials to mimic the microenvironment of liver tissue. The use of microscopy methods and the measurement of liver-specific functions optimized the model for best cell performances and also proved the superiority of the 3-D LO2 model when compared with the traditional monolayer model. Toxicity tests were conducted using the newly constructed model, finding that four dental castings coated with silver nanoparticles were toxic to human hepatocytes after cell viability assays. In general, the toxicity of both the castings and the coated silver nanoparticles aggravated as time increased, yet the nanoparticles attenuated the general toxicity by preventing metal ion release, especially at high concentrations.

  8. MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    Zhang, Yuxin, E-mail: zhangyuxin@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China); Dong, Meng; Zhu, Shijin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Chuanpu, E-mail: liuchuanpu@163.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wen, Zhongquan [National Key Laboratory of Fundamental Science of Micro/Nano-Devices and System Technology, Chongqing University, Chongqing 400044 (China)

    2014-01-01

    Graphical abstract: - Highlights: • MnO{sub 2}@CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO{sub 2}@colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g{sup −1}) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO{sub 2} nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior.

  9. MnO2@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors

    Zhang, Yuxin; Dong, Meng; Zhu, Shijin; Liu, Chuanpu; Wen, Zhongquan

    2014-01-01

    Graphical abstract: - Highlights: • MnO 2 @CSs nanocomposites have been successfully synthesized in room temperature. • The composites exhibited three structures: core–shell, yolk–shell and hollow structure. • The yolk–shell structure exhibited a high specific capacitance and cycling stability. - Abstract: MnO 2 @colloid carbon spheres nanocomposites with tunable interior architecture have been synthesized by a facile and cost-effective strategy at room temperature. The structure and morphology of as-prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, focused ion beam scanning electron microscopy (FIB/SEM) and high-resolution transmission electron microscopy (HRTEM). The as-obtained composites exhibited a three-dimensional architecture with core–shell, yolk–shell and hollow interior structure. Furthermore, the electrochemical properties of composites were evaluated by cycle voltammetric (CV) and galvanostatic charge–discharge measurements. The yolk–shell structure exhibited the optimized pseudocapacitance performance, revealing a specific capacitance (273 F g −1 ) with a good rate and cycling stability, owing to its unique structure and the poor crystallinity of MnO 2 nanofilms. Therefore, this facile synthetic strategy could be useful to design and synthesis of tunable nanostructures with enhanced supercapacitor behavior

  10. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  11. Silo outflow of soft frictionless spheres

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  12. Fuzzy spheres from inequivalent coherent states quantizations

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  13. Glass transition in soft-sphere dispersions

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  14. Propagation properties of dielectric-lined hollow cylindrical metallic waveguides for THz waves

    Huang Binke; Zhao Chongfeng

    2013-01-01

    For the rigorous analysis of the propagation properties of dielectric-lined hollow cylindrical metallic waveguides operating in the THz range of frequencies, the characteristic equation for propagation constants is derived from the electromagnetic field equations and the boundary conditions of the dielectric-lined waveguides. The propagation constant of the dominant hybrid HE 11 mode can be obtained by solving the characteristic equation with the improved Muller method. The classical relaxation-effect model for the conductivity is adopted to describe the frequency dispersive behavior of normal metals for the metallic waveguide wall. For a 1.8 mm bore diameter silver waveguide with the inner surface coated with a 17 μm-thick layer of polystyrene(PS) film, the transmission losses of HE 11 mode can be reduced to the level below 1 dB/m at 1.5-3.0 THz, and the dispersion is relatively small for HE 11 mode. In addition, with the PS film thickness increasing, the transmission losses of HE 11 mode increase first and then decrease for a 2.2 mm bore diameter silver waveguide at 2.5 THz, and the minimum loss can be achieved by adopting the optimum dielectric layer thickness. (authors)

  15. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  16. Willmore energy estimates in conformal Berger spheres

    Barros, Manuel; Ferrandez, Angel

    2011-01-01

    Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.

  17. Does Negative Type Characterize the Round Sphere?

    Kokkendorff, Simon Lyngby

    2007-01-01

    We discuss the measure theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere, was put forward in a previous paper....... We resolve this conjecture in the class of Riemannian symmetric spaces by showing, that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres....

  18. Path integral representations on the complex sphere

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2007-08-15

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  19. Path integral representations on the complex sphere

    Grosche, C.

    2007-08-01

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)

  20. Scattering by two spheres: Theory and experiment

    Bjørnø, Irina; Jensen, Leif Bjørnø

    1998-01-01

    of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...

  1. vSphere design best practices

    Bolander, Brian

    2014-01-01

    An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.

  2. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties

    Chen, Jun Song

    2009-01-01

    In this work, uniform SnO2 hollow nanospheres with large void space have been synthesized by a modified facile method. The void space can be easily controlled by varying the reaction time. The formation of interior void space is based on an inside-out Ostwald ripening mechanism. More importantly, this facile one-pot process can be extended to fabricate rattle-type hollow structures using α-Fe2O3@SnO2 as an example. Furthermore, the electrochemical lithium storage properties have been investigated. It is found that α-Fe2O3@SnO 2 nanorattles manifest a much lower initial irreversible loss and higher reversible capacity compared to SnO2 hollow spheres. This interesting finding supports a general hypothesis that a synergistic effect between functional core and shell materials can lead to improved lithium storage capabilities. © The Royal Society of Chemistry 2009.

  3. Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding

    Yamashita, Kiyonobu.

    1995-01-01

    The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)

  4. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag(+) ions using D. bulbifera tuber extract. Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag(+) ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO(3) solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. This is the first report on

  5. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo{sub 2}O{sub 4} nanoparticles for high- performance lithium ion batteries

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu, E-mail: wangy@cqu.edu.cn

    2017-05-01

    Highlights: • Flower-like NiCo{sub 2}O{sub 4}@carbon nanosphere is firstly synthesized for Li-ion batteries. • The nanostructure exhibits the unique feature of hollow NiCo{sub 2}O{sub 4} nanoparticles embedded inside and graphitized carbon layers coating outside. • The sample reveals stable structure, large specific surface area and good electrical conductivity. • The composite exhibits superior rate capability, cycling capacity and excellent Coulombic efficiency. - Abstract: The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo{sub 2}O{sub 4} nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  6. Stacked spheres and lower bound theorem

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  7. New interior solution describing relativistic fluid sphere

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  8. 1/4-pinched contact sphere theorem

    Ge, Jian; Huang, Yang

    2016-01-01

    Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness...

  9. Performance and Politics in the Public Sphere

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  10. On the torus cobordant cohomology spheres

    Let a compact Lie group G act on a smooth integral cohomology sphere with G = .... is a compact connected Lie group, (X, A) is a G space and H. ∗ ..... [15] Hsiang W-Y, Cohomology theory of topological transformation groups (New York,.

  11. Performance and Politics in the Public Sphere

    Pia Wiegmink

    2011-12-01

    Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.

  12. Full sphere hydrodynamic and dynamo benchmarks

    Marti, P.; Schaeffer, N.; Hollerbach, R.; Cebron, D.; Nore, C.; Luddens, F.; Guermond, J.- L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.- Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A.

    2014-01-01

    of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions

  13. Structure of colloidal sphere-plate mixtures

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I

    2011-01-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  14. Structure of colloidal sphere-plate mixtures

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)

    2011-05-18

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  15. The Dirac operator on the Fuzzy sphere

    Grosse, H.

    1994-01-01

    We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)

  16. Institutional change and spheres of authority

    Aagaard, Peter

    institutioner. Denne tilgang bidrager til at udvikle global governance begrebet "spheres of authority" Det forklarer hvordan transnational lederskab kan bevares, selv om magten spredes i en globaliseret verden. Gennem en illustrativ case om microcredit, viser artiklen hvordan en tilgang baseret på institutional...

  17. Production of Liquid Metal Spheres by Molding

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  18. The Nationalisation of the Domestic Sphere

    Storm, H.J.

    2016-01-01

    Banal forms of nationalism permeate our everyday life. However, it is not very clear when all kinds of banal objects and practices became nationalised. In this article, I focus on the domestic sphere by analysing how around 1900 a small group of activists began to propagate the nationalisation of

  19. Spheres: from Ground Development to ISS Operations

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  20. Pious Entertainment: Hizbullah's Islamic Cultural Sphere

    Alagha, J.E.; Nieuwkerk, K. van

    2011-01-01

    Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and

  1. Hollow mandrin facilitates external ventricular drainage placement.

    Heese, O; Regelsberger, J; Kehler, U; Westphal, M

    2005-07-01

    Placement of ventricular catheters is a routine procedure in neurosurgery. Ventricle puncture is done using a flexible ventricular catheter stabilised by a solid steel mandrin in order to improve stability during brain penetration. A correct catheter placement is confirmed after removing the solid steel mandrin by observation of cerebrospinal fluid (CSF) flow out of the flexible catheter. Incorrect placement makes further punctures necessary. The newly developed device allows CSF flow observation during the puncture procedure and in addition precise intracranial pressure (ICP) measurement. The developed mandrin is hollow with a blunt tip. On one side 4-5 small holes with a diameter of 0.8 mm are drilled corresponding exactly with the holes in the ventricular catheter, allowing CSF to pass into the hollow mandrin as soon as the ventricle is reached. By connecting a small translucent tube at the distal portion of the hollow mandrin ICP can be measured without loss of CSF. The system has been used in 15 patients with subarachnoid haemorrhage (SAH) or intraventricular haemeorrhage (IVH) and subsequent hydrocephalus. The new system improved the external ventricular drainage implantation procedure. In all 15 patients catheter placement was correct. ICP measurement was easy to perform immediately at ventricle puncture. In 4 patients at puncture no spontaneous CSF flow was observed, therefore by connecting a syringe and gentle aspiration of CSF correct placement was confirmed in this unexpected low pressure hydrocephalus. Otherwise by using the conventional technique further punctures would have been necessary. Advantages of the new technique are less puncture procedures with a lower risk of damage to neural structures and reduced risk of intracranial haemorrhages. Implantation of the ventricular catheter to far into the brain can be monitored and this complication can be overcome. Using the connected pressure monitoring tube an exact measurement of the opening

  2. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  3. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin......, silver induces a blue-grey discoloration termed argyria. Excretion occurs via the bile and urine. The following dose-dependent animal toxicity findings have been reported: death, weight loss, hypoactivity, altered neurotransmitter levels, altered liver enzymes, altered blood values, enlarged hearts...... and immunological effects. Substantial evidence exists suggesting that the effects induced by particulate silver are mediated via silver ions that are released from the particle surface. With the current data regarding toxicity and average human dietary exposure, a Margin of Safety calculation indicates at least...

  4. Experimental evaluation of the drag coefficient for smooth spheres by free fall experiments in old mines

    Maroto, J. A.; Dueñas-Molina, J.; de Dios, J.

    2005-05-01

    Mines of Linares, Jaén, Spain, have been exploited from the age of the Phoenicians, Carthaginians and Romans. These silver and lead mines reached their maximum splendour at the end of the 19th century and at the beginning of the 20th century. Nevertheless, all the mining works finished in the 1970s and the diverse machinery was sold. Only the shafts remain since then which has now permitted carrying out interesting free fall experiments using smooth spheres of both cork and cast iron. The experiments were facilitated by the fact that the tubular shape of the shafts provides excellent transmission of sound, which made feasible the recording of the impact sound of the spheres with water at the bottom of the shafts at distances of up to 200 m. By using these experimental data, we have carried out an evaluation of the drag coefficient for the movement of smooth spheres through the air in the laminar regime with Reynolds number in the interval 103 to 2 × 105. This evaluation was in excellent agreement with the literature data. From the theoretical point of view, the analysis of the free fall movement includes a variety of concepts such as Newton's second law, the drag force, Archimedes principle and the velocity of sound, which makes these experiments very attractive for both physics teachers and physics students at university level. Finally, an easy experiment is proposed in this paper which has permitted an approximate evaluation of the drag coefficient for smooth spheres to be carried out in a laboratory environment.

  5. Functionalised Silver Nanowire Structures

    Andrew, Piers; Ilie, Adelina

    2007-01-01

    Crystalline silver nanowires 60-100 nm in diameter and tens of micrometres in length have been fabricated using a low temperature, solution synthesis technique. We explore the potential of this method to produce functional nanowire structures using two different strategies to attach active molecules to the nanowires: adsorption and displacement. Initially, as-produced silver nanowires capped with a uniaxial-growth-inducing polymer layer were functionalised by solution adsorption of a semiconducting conjugated polymer to generate fluorescent nanowire structures. The influence of nanowire surface chemistry was investigated by displacing the capping polymer with an alkanethiol self-assembled monolayer, followed by solution adsorption functionalisation. The success of molecular attachment was monitored by electron microscopy, absorption and fluorescence spectroscopy and confocal fluorescence microscopy. We examined how the optical properties of such adsorbed molecules are affected by the metallic nanowires, and observed transfer of excitation energy between dye molecules mediated by surface plasmons propagating on the nanowires. Non-contact dynamic force microscopy measurements were used to map the work-function of individual wires, revealing inhomogeneity of the polymer surface coverage

  6. Full sphere hydrodynamic and dynamo benchmarks

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  7. Porous-wall hollow glass microspheres as carriers for biomolecules

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  8. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  9. VMware vSphere PowerCLI Reference Automating vSphere Administration

    Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan

    2011-01-01

    Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and

  10. Generation of sphere and shell laser fusion targets. Final report, October 1, 1976--November 30, 1977. Report No. 1-78

    Kim, K.

    1978-01-01

    The objective of this research is to investigate methods of fabricating sphere and shell laser fusion targets. A hollow hydrogen pellet generator has been constructed, and experiments have been performed to study the effects of system parameters on the production of hollow droplets. Techniques for coating hydrogen pellets with high Z material have been studied, and a system has been constructed to coat spherical solid hydrogen pellets with neon. A preliminary experiment has been performed to freeze the deuterium gas inside a glass microsphere using cold He gas jet. Based on this, two systems have been designed and are under construction to investigate methods of obtaining and retaining uniform D-T layer on the inside surface of a microsphere using cold gas jets

  11. Photochemical Study of Silver Nanoparticles Formed from the Reduction of Silver Ions by Humic Acid

    Leslie, Renee M.

    This study focuses on the ability of silver ions and humic acid to form silver nanoparticles in the presence of UV and visible light. Silver nanoparticles have a number of industrial applications due primarily to their antimicrobial properties, but these properties pose an environmental threat. Silver nanoparticles can directly disrupt sensitive ecosystems by harming bacteria. Consumption of silver nanoparticles results in silver ions and silver nanoparticles entering waterways; the presence of silver ions raises the question of whether nanoparticles can reform in environmental waters. As our data show, silver nanoparticles can form from the reduction of silver ions by humic acid after irradiation with UV and visible light. In order to better understand the mechanism of these naturally synthesized silver nanoparticles, we investigated the effects of reactant concentration, experimental conditions and presence of ions/reactive species. We monitored silver nanoparticle growth with UV-visible spectroscopy. The evolution in time of nanoparticle size was monitored by dynamic light scattering (DLS).

  12. Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters

    Walton, O.R.; Braun, R.L.

    1993-11-01

    The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.

  13. The response of a Bonner sphere spectrometer to charged hadrons

    Agosteo, S.; Dimovasili, E.; Fasso, A.; Silari, M.

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN. (authors)

  14. The response of a bonner sphere spectrometer to charged hadrons.

    Agosteo, S; Dimovasili, E; Fassò, A; Silari, M

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.

  15. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection.

    Gu, Xuefang; Yan, Yuerong; Jiang, Guoqing; Adkins, Jason; Shi, Jian; Jiang, Guomin; Tian, Shu

    2014-03-01

    A simple and sensitive method, based on surface-enhanced Raman scattering (SERS), for immunoassay and label-free protein detection is reported. A series of bowl-shaped silver cavity arrays were fabricated by electrodeposition using a self-assembled polystyrene spheres template. The reflection spectra of these cavity arrays were recorded as a function of film thickness, and then correlated with SERS enhancement using sodium thiophenolate as the probe molecule. The results reveal that SERS enhancement can be maximized when the frequency of both the incident laser and the Raman scattering approach the frequency of the localized surface plasmon resonance. The optimized array was then used as the bottom layer of a silver nanoparticle-protein-bowl-shaped silver cavity array sandwich. The second layer of silver was introduced by the interactions between the proteins in the middle layer of the sandwich architecture and silver nanoparticles. Human IgG bound to the surface of this microcavity array can retain its recognition function. With the Raman reporter molecules labeled on the antibody, a detection limit down to 0.1 ng mL(-1) for human IgG is easily achieved. Furthermore, the SERS spectra of label-free proteins (catalase, cytochrome C, avidin and lysozyme) from the assembled sandwich have excellent reproducibility and high quality. The results reveal that the proposed approach has potential for use in qualitative and quantitative detection of biomolecules.

  16. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  17. Cavity formation by the impact of Leidenfrost spheres

    Marston, Jeremy

    2012-05-01

    We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.

  18. Innovation embedded in entrepreneurs’ networks in private and public spheres

    Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak

    2014-01-01

    societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation...

  19. Air Separation Using Hollow Fiber Membranes

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  20. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.