WorldWideScience

Sample records for hollow silica nanocapsules

  1. Formation of Uniform Hollow Silica microcapsules

    Science.gov (United States)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  2. Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake.

    Science.gov (United States)

    Teng, Zhaogang; Wang, Chunyan; Tang, Yuxia; Li, Wei; Bao, Lei; Zhang, Xuehua; Su, Xiaodan; Zhang, Fan; Zhang, Junjie; Wang, Shouju; Zhao, Dongyuan; Lu, Guangming

    2018-01-31

    Mesoporous solids have been widely used in various biomedical areas such as drug delivery and tumor therapy. Although deformability has been recognized as a prime important characteristic influencing cellular uptake, the synthesis of deformable mesoporous solids is still a great challenge. Herein, deformable thioether-, benzene-, and ethane-bridged hollow periodic mesoporous organosilica (HPMO) nanocapsules have successfully been synthesized for the first time by a preferential etching approach. The prepared HPMO nanocapsules possess uniform diameters (240-310 nm), high surface areas (up to 878 m 2 ·g -1 ), well-defined mesopores (2.6-3.2 nm), and large pore volumes (0.33-0.75 m 3 ·g -1 ). Most importantly, the HPMO nanocapsules simultaneously have large hollow cavities (164-270 nm), thin shell thicknesses (20-38 nm), and abundant organic moiety in the shells, which endow a lower Young's modulus (E Y ) of 3.95 MPa than that of solid PMO nanoparticles (251 MPa). The HPMOs with low E Y are intrinsically flexible and deformable in the solution, which has been well-characterized by liquid cell electron microscopy. More interestingly, it is found that the deformable HPMOs can easily enter into human breast cancer MCF-7 cells via a spherical-to-oval morphology change, resulting in a 26-fold enhancement in cellular uptake (43.1% cells internalized with nanocapsules versus 1.65% cells with solid counterparts). The deformable HPMO nanocapsules were further loaded with anticancer drug doxorubicin (DOX), which shows high killing effects for MCF-7 cells, demonstrating the promise for biomedical applications.

  3. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  4. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  5. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  6. A novel synthesis of micrometer silica hollow sphere

    International Nuclear Information System (INIS)

    Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing

    2009-01-01

    Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented

  7. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  8. Synthesis and characterization of sulfur-functionalized silica nanocapsules as mercury adsorbents

    Science.gov (United States)

    Palaniappan, Thenappan; Saman, Norasikin; Mat, Hanapi; Johari, Khairiraihanna

    2017-12-01

    Sulfur functionalized silica nanocapsules (S-SiNC) was successfully synthesized and characterized as a potential adsorbent for industrial applications. The synthesis of S-SiNC was carried out using the mircoemulsion templating method using cetyltrimethylammonium bromide (CTAB) as cationic surfactant, toluene as co-solvent, ammonia solution as catalyst, and tetraethylorthosilicate (TEOS) as the silica base. The S-SiNC adsorbent was characterized using Transmission Electron Microscope, Fourier Transformed Infra Red spectroscopy and nitrogen adsorption/desorption analysis. The physical and chemical properties of the SiNC changed as a result of the functionalization, hence affecting the extent of Hg(II) adsorption. The S-SiNCs were also tested in mercury ion [Hg(II)] adsorption via batch adsorption process with variation in initial Hg (II) concentration. It was found that there is a significant improvement in Hg(II) adsorption performance after being functionalized with elemental sulfur. The highest Hg(II) adsorption capacity was obtained for S-SiNC (107.875 mg/g), which significantly outperformed the blank SiNC. The experimental data obtained was found to be fitting well to the Langmuir isotherm model (R2= 0.979) compared to Freundlich isotherm model. Thus, the results demonstrated the potential application of sulfur functionalized silica nanocapsules as adsorbent in industrial applications.

  9. Spray-drying nanocapsules in presence of colloidal silica as drying auxiliary agent: formulation and process variables optimization using experimental designs.

    Science.gov (United States)

    Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem

    2007-04-01

    Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.

  10. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2016-11-30

    Highlights: • Hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes were synthesized for the first time. • MgSNTs showed excellent prformance for the removal of low concentration methylene blue and high concentration rodamine B. • It could be easily discovered from solution. - Abstract: In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N{sub 2} adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m{sup 2}/g), average pore width (7.13 nm) and pore volume (1.05 cm{sup 3}/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe{sub 2}O{sub 3} in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  11. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    Science.gov (United States)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  12. Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle

    Science.gov (United States)

    Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang

    The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.

  13. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    Science.gov (United States)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  14. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Junjie, E-mail: yuanjunjie@tongji.edu.c [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433 (China); Zhang Xiong; Qian He [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China)

    2010-08-15

    We described a method for synthesizing hollow silica/magnetic composite spheres using sulfonic acid functionalized hollow silica spheres (SAFHSS) as templates. The Fe{sub 3}O{sub 4} nanoparticles were deposited on or imbedded in the hollow silica shell by a precipitation reaction. The morphologies, composition and properties of the hollow composite spheres were characterized by transmission electron microscopy, Fourier transform infrared analysis, X-ray diffraction measurement and vibrating-sample magnetometry measurement. The results indicated crystal sizes and amount of the Fe{sub 3}O{sub 4} nanoparticles on the SAFHSS. The magnetic properties of the hollow composite spheres were controlled by adjusting the proportion between Fe{sup 2+} and Fe{sup 3+} and iron ion total concentration. When appropriate loading species were added into the system, superparamagnetite hollow composite spheres were obtained. The method also could be applicable to prepare other superparamagnetite hollow silica/ferrite composite spheres.

  15. Silica needle template fabrication of metal hollow microneedle arrays

    International Nuclear Information System (INIS)

    Zhu, M W; Li, H W; Chen, X L; Tang, Y F; Lu, M H; Chen, Y F

    2009-01-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices

  16. Silica needle template fabrication of metal hollow microneedle arrays

    Science.gov (United States)

    Zhu, M. W.; Li, H. W.; Chen, X. L.; Tang, Y. F.; Lu, M. H.; Chen, Y. F.

    2009-11-01

    Drug delivery through hollow microneedle (HMN) arrays has now been recognized as one of the most promising techniques because it minimizes the shortcomings of the traditional drug delivery methods and has many exciting advantages—pain free and tunable release rates, for example. However, this drug delivery method has been hindered greatly from mass clinical application because of the high fabrication cost of HMN arrays. Hence, we developed a simple and cost-effective procedure using silica needles as templates to massively fabricate HMN arrays by using popular materials and industrially applicable processes of micro- imprint, hot embossing, electroplating and polishing. Metal HMN arrays with high quality are prepared with great flexibility with tunable parameters of area, length of needle, size of hollow and array dimension. This efficient and cost-effective fabrication method can also be applied to other applications after minor alterations, such as preparation of optic, acoustic and solar harvesting materials and devices.

  17. Process for manufacturing hollow fused-silica insulator cylinder

    Science.gov (United States)

    Sampayan, Stephen E.; Krogh, Michael L.; Davis, Steven C.; Decker, Derek E.; Rosenblum, Ben Z.; Sanders, David M.; Elizondo-Decanini, Juan M.

    2001-01-01

    A method for building hollow insulator cylinders that can have each end closed off with a high voltage electrode to contain a vacuum. A series of fused-silica round flat plates are fabricated with a large central hole and equal inside and outside diameters. The thickness of each is related to the electron orbit diameter of electrons that escape the material surface, loop, and return back. Electrons in such electron orbits can support avalanche mechanisms that result in surface flashover. For example, the thickness of each of the fused-silica round flat plates is about 0.5 millimeter. In general, the thinner the better. Metal, such as gold, is deposited onto each top and bottom surface of the fused-silica round flat plates using chemical vapor deposition (CVD). Eutectic metals can also be used with one alloy constituent on the top and the other on the bottom. The CVD, or a separate diffusion step, can be used to defuse the deposited metal deep into each fused-silica round flat plate. The conductive layer may also be applied by ion implantation or gas diffusion into the surface. The resulting structure may then be fused together into an insulator stack. The coated plates are aligned and then stacked, head-to-toe. Such stack is heated and pressed together enough to cause the metal interfaces to fuse, e.g., by welding, brazing or eutectic bonding. Such fusing is preferably complete enough to maintain a vacuum within the inner core of the assembled structure. A hollow cylinder structure results that can be used as a core liner in a dielectric wall accelerator and as a vacuum envelope for a vacuum tube device where the voltage gradients exceed 150 kV/cm.

  18. Synthesis of Hollow Silica by Stober Method with Double Polymers as Templates

    International Nuclear Information System (INIS)

    Nguyen, Anhthu; Park, Chang Woo; Kim, Sang Hern

    2014-01-01

    The hollow SiO 2 spheres with uniform size were synthesized by a modified stoeber method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail

  19. Silica Bridge Impact on Hollow-core Bragg Fiber Transmission Properties

    DEFF Research Database (Denmark)

    Poli, F.; Foroni, M.; Giovanelli, D.

    2007-01-01

    The silica bridges impact on the hollow-core Bragg fiber guiding properties is investigated. Results demonstrate that silica nanosupports are responsible for the surface mode presence, which causes the peaks experimentally measured in the transmission spectrum. © 2006 Optical Society of America....

  20. All-Silica Hollow-Core Microstructured Bragg Fibers for Biosensor Application

    DEFF Research Database (Denmark)

    Passaro, Davide; Foroni, Matteo; Poli, Federica

    2008-01-01

    The possibility to exploit all-silica hollow-core-microstructured Bragg fibers to realize a biosensor useful to detect the DNA hybridization process has been investigated. A Bragg fiber recently fabricated has been considered for the analysis performed by means of a full-vector modal solver based...... layer on the inner surface of the fiber holes can modify the fundamental mode properties. The numerical analysis results have successfully demonstrated the DNA bio-sensor feasibility in hollow-core Bragg fibers....

  1. Guiding Properties of Silica/Air Hollow-Core Bragg Fibers

    DEFF Research Database (Denmark)

    Foroni, Matteo; Passaro, Davide; Poli, Federica

    2008-01-01

    The guiding properties of realistic silica/air hollow-core Bragg fibers have been investigated by calculating the dispersion curves, the confinement loss spectrum and the field distribution of the guided modes through a full-vector modal solver based on the finite element method. In particular, t...... the different possible applications, the feasibility of a DNA bio-sensor based on a hollow-core Bragg fiber has been demonstrated....

  2. Fabrication of silica hollow particles using yeast cells as a template

    Science.gov (United States)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  3. Properties and shaping of lightweight ceramics based on phosphate-bonded hollow silica microspheres

    NARCIS (Netherlands)

    With, de G.; Verweij, H.

    1986-01-01

    The values for the Young's modulus, strength, fracture toughness and thermal conductivity of lightweight ceramics based on phosphate-bonded hollow silica microspheres are reported as a function of the processing conditions. They are compared with the relevant data for other lightweight ceramic

  4. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  5. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    Science.gov (United States)

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  6. Effect of Synthesis Time on Morphology of Hollow Porous Silica Microspheres

    Directory of Open Access Journals (Sweden)

    Qian CHEN

    2012-03-01

    Full Text Available Hollow porous silica microspheres may be applicable as containers for the controlled release in drug delivery systems (DDS, foods, cosmetics, agrochemical, textile industry, and in other technological encapsulation use. In order to control the surface morphological properties of the silica microspheres, the effect of synthesis time on their formation was studied by a method of water-in-oil (W/O emulsion mediated sol-gel techniques. An aqueous phase of water, ammonium hydroxide and a surfactant Tween 20 was emulsified in an oil phase of 1-octanol with a stabilizer, hydroxypropyl cellulose (HPC, and a surfactant, sorbitan monooleate (Span 80 with low hydrophile-lipophile balance (HLB value. Tetraethyl orthosilicate (TEOS as a silica precursor was added to the emulsion. The resulting silica particles at different synthesis time 24, 48, and 72 hours were air-dried at room temperature and calcinated at 773 K for 3 hours. The morphology of the particles was characterized by scanning electron microscopy and the particle size distribution was measured by laser diffraction. The specific surface areas were studied by 1-point BET method, and pore sizes were measured by Image Tool Software. Both dense and porous silica microspheres were observed after all three syntheses. Hollow porous silica microspheres were formed at 24 and 48 hours synthesis time. Under base catalyzed sol-gel solution, the size of silica particles was in the range of 5.4 μm to 8.2 μm, and the particles had surface area of 111 m2/g – 380 m2/g. The longer synthesis time produced denser silica spheres with decreased pore sizes.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1344

  7. Synthesis of magnetic hollow silica using polystyrene bead as a template

    International Nuclear Information System (INIS)

    Wu, W.; Caruntu, D.; Martin, A.; Yu, M.H.; O'Connor, C.J.; Zhou, W.L.; Chen, J.-F.

    2007-01-01

    In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe 3 O 4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe 3 O 4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe 3 O 4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe 3 O 4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine

  8. Silica hollow bottle resonators for use as whispering gallery mode based chemical sensors

    Science.gov (United States)

    Stoian, Razvan-Ionut; Bui, Khoa V.; Rosenberger, A. T.

    2015-12-01

    A simple three-step method for making silica hollow bottle resonators (HBRs) was developed. This procedure is advantageous because it uses commercially available materials, is cost effective, and is easy to implement. Additionally, the use of these HBRs as whispering gallery mode based chemical sensors is demonstrated by preliminary absorption sensing results in the near infrared (1580-1660 nm) using a trace gas (CH4) in air at atmospheric pressure and a dye (SDA2072) in methanol solution.

  9. Silica hollow bottle resonators for use as whispering gallery mode based chemical sensors

    International Nuclear Information System (INIS)

    Stoian, Razvan-Ionut; Bui, Khoa V; Rosenberger, A T

    2015-01-01

    A simple three-step method for making silica hollow bottle resonators (HBRs) was developed. This procedure is advantageous because it uses commercially available materials, is cost effective, and is easy to implement. Additionally, the use of these HBRs as whispering gallery mode based chemical sensors is demonstrated by preliminary absorption sensing results in the near infrared (1580–1660 nm) using a trace gas (CH 4 ) in air at atmospheric pressure and a dye (SDA2072) in methanol solution. (paper)

  10. Ultra-large bandwidth hollow-core guiding in all-silica bragg fibers with nano-supports

    DEFF Research Database (Denmark)

    Vienne, Guillaume; Xu, Yong; Jakobsen, Christian

    2004-01-01

    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in t...... in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m....

  11. Manageable cytotoxicity of nanocapsules immobilizing D-amino acid oxidase via exogenous administration of nontoxic prodrug

    Science.gov (United States)

    Zhao, Yang; Zhu, Yingchun; Fu, Jingke

    2014-02-01

    D-Amino acid oxidase (DAO), which could catalyze generation of hydrogen peroxide with strong oxidbility and cytotoxicity, has become of interest as a biocatalyst for therapeutic treatments. Herein we report that amino-functional hollow mesoporous silica with large pore size (10.27 nm) and positively charged surface effectively immobilize DAO with negative charge. The adsorption, activity and stability of DAO are demonstrated to depend mainly on the amino-functionalization of surface. Significant cancer cell killing effect is observed when the cells are treated by the nanocapsules entrapping DAO together with D-alanine, showing distinct dose-dependency on concentration of the nanocapsules entrapping DAO or D-alanine. Nevertheless, the toxicity is completely neutralized by the addition of catalase, and anti-tumor effect is not observed when either the nanocapsules entrapping DAO or D-alanine is applied alone. The results indicate that cytotoxicity of the nanocapsules entrapping DAO could be managed by exogenous administration of nontoxic prodrug to tumor tissue, due to the stereoselectivity of DAO and the scarcity of its substrates in mammalian organisms. Thus, the method might be exploited as a potential treatment for cancer therapy.

  12. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    Science.gov (United States)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  13. Silica hollow core microstructured fibers for beam delivery in industrial and medical applications

    Directory of Open Access Journals (Sweden)

    Jonathan Dale Shephard

    2015-04-01

    Full Text Available The focus of this review is our recent work to develop microstructured hollow core fibers for two applications where the flexible delivery of a single mode beam is desired. Also, a review of other fiber based solutions is included.High power, short-pulsed lasers are widely used for micro-machining, providing high precision and high quality. However, the lack of truly flexible beam delivery systems limits their application to the processing of relatively small planar components. To address this, we developed hollow-core optical fibers for the 1 μm and green wavelength ranges. The hollow core overcomes the power delivery limitations of conventional silica fibers arising from nonlinear effects and material damage in the solid core. We have characterized such fibers in terms of power handling capability, damage threshold, bend loss and dispersion, and practically demonstrated delivery of high peak power pulses from the nanosecond to the femtosecond regime. Such fibers are ideal candidates for industrial laser machining applications.In laser surgical applications, meanwhile, an Er:YAG laser (2.94 μm is frequently the laser of choice because the water contained in tissue strongly absorbs this wavelength. If this laser beam is precisely delivered damage to surrounding tissue can be minimized. A common delivery method of surgical lasers, for use in the operating theatre, is articulated arms that are bulky, cumbersome and unsuitable for endoscopic procedures. To address this need for flexible mid-IR delivery we developed silica based hollow core fibers. By minimizing the overlap of the light with glass it is possible to overcome the material absorption limits of silica and achieve low attenuation. Additionally, it is possible to deliver pulse energies suitable for the ablation of both hard and soft tissue even with very small bend radii. The flexibility and small physical size of systems based on these fibers will enable new minimally invasive surgical

  14. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    Science.gov (United States)

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin; Hou, Yuanfang; Beaujuge, Pierre

    2015-01-01

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Storage and sustained release of volatile substances from a hollow silica matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiexin [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Ding Haomin [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Tao Xia [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China); Chen Jianfeng [Key Lab for Nanomaterials, Ministry of Education, Beijing 100029 (China)

    2007-06-20

    Porous hollow silica nanospheres (PHSNSs) prepared by adopting a nanosized CaCO{sub 3} template were utilized for the first time as a novel carrier for the storage and sustained release of volatile substances. Two types of volatile substances, Indian pipal from perfumes and peroxyacetic acid from disinfectants, were selected and then tested by one simple adsorption process with two separate comparative carriers, i.e. activated carbon and solid porous silica. It was demonstrated that a high storage capacity (9.6 ml{sub perfume}/mg{sub carrier}) of perfume could be achieved in a PHSNS matrix, which was almost 14 times as much as that of activated carbon. The perfume release profiles showed that PHSNSs exhibited sustained multi-stage release behaviour, while the constant release of activated carbon at a low level was discerned. Further, a Higuchi model study proved that the release process of perfume in both carriers followed a Fickian diffusion mechanism. For peroxyacetic acid as a disinfectant model, PHSNSs also displayed a much better delayed-delivery process than a solid porous silica system owing to the existence of unique hollow frameworks. Therefore, the aforementioned excellent sustained-release behaviours would make PHSNSs a promising carrier for storage and sustained delivery applications of volatile substances.

  17. Arrays of Hollow Silica Half-Nanospheres Via the Breath Figure Approach

    KAUST Repository

    Gao, Yangqin

    2015-04-21

    Breath figures (BFs) are patterns of liquid droplets that usually form upon condensation on a cold surface. Earlier work has shown that BFs can be used to produce continuous films of porous honeycomb-structured patterns on various types of materials, paving the path to a number of important applications such as the manufacturing of highly ordered nano- and micron-sized templates, micro lenses, and superhydrophobic coatings. It is worth noting, however, that few new findings have been reported in this area in recent years, limiting pursuits of novel architectures and key applications. In this report, an alternative method is described by which arrays of hollow silica half-nanospheres can be produced via BF templates. In the present method, a chemical vapor deposition (CVD) protocol performed while the BF is formed on a glass substrate yields a nanostructured pattern of silica half-spheres, which size (100-700 nm) and density across the glass surface vary with substrate modification and with the relative rates of water condensation and hydrolysis from silica precursors (a process carried out at room temperature). This method of forming arrays of hollow half-nanospheres via the BF approach may be applicable to various other oxides and a broad range of substrates including large-area flexible plastics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  19. Synthesis of nano grade hollow silica sphere via a soft template method.

    Science.gov (United States)

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  20. Kinetically-controlled template-free synthesis of hollow silica micro-/nanostructures with unusual morphologies

    International Nuclear Information System (INIS)

    Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2014-01-01

    We report a kinetically-controlled template-free room-temperature production of hollow silica materials with various novel morphologies, including tubes, crutches, ribbons, bundles and bells. The obtained products, which grew in a well-controlled manner, were monodispersed in shape and size. The role of ammonia, sodium citrate, polyvinylpyrrolidone, chloroauric acid and NaCl in shape control is discussed in detail. The oriented growth of these micro-/nanostructures directed by reverse micelles followed a solution–solution–solid (SSS) mechanism, similar to the classic vapor–liquid–solid mechanism. The evolution processes of silica rods, tubes, crutches, bundles and bells were recorded using transmission electron microscopy to prove the SSS mechanism. (paper)

  1. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-05-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it

  2. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    OpenAIRE

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hol...

  3. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie; Labreche, Ying; Lively, Ryan P.; Lee, Jong Suk; Jones, Christopher W.; Koros, William J.

    2014-01-01

    -jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly

  4. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  5. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    Science.gov (United States)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  6. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Hollow Mesoporous Carbon Microparticles and Micromotors with Single Holes Templated by Colloidal Silica-Assisted Gas Bubbles.

    Science.gov (United States)

    Huang, Xiaoxi; Zhang, Tao; Asefa, Tewodros

    2017-07-01

    A simple, new synthetic method that produces hollow, mesoporous carbon microparticles, each with a single hole on its surface, is reported. The synthesis involves unique templates, which are composed of gaseous bubbles and colloidal silica, and poly(furfuryl alcohol) as a carbon precursor. The conditions that give these morphologically unique carbon microparticles are investigated, and the mechanisms that result in their unique structures are proposed. Notably, the amount of colloidal silica and the type of polymer are found to hugely dictate whether or not the synthesis results in hollow asymmetrical microparticles, each with a single hole. The potential application of the particles as self-propelled micromotors is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile and tunable synthesis of hierarchical mesoporous silica materials ranging from flower structure with wrinkled edges to hollow structure with coarse surface

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Nanjing, E-mail: nanjing.hao@dartmouth.edu [Dartmouth College, Thayer School of Engineering (United States); Li, Laifeng; Tang, Fangqiong, E-mail: tangfq@mail.ipc.ac.cn [Chinese Academy of Sciences, Technical Institute of Physics and Chemistry (China)

    2016-11-15

    Mesoporous silica materials have attracted great attention in many fields. However, facile and tunable synthesis of hierarchical mesoporous silica structures is still a big challenge, and thus the development of them still lags behind. Herein, well-defined mesoporous silica flower structure with wrinkled edges and mesoporous silica hollow structure with coarse surface were synthesized simply by using poly(vinylpyrrolidone) and hexadecylamine as cotemplates in different water/ethanol solvent systems. The shape evolution from flower to hollow can be easily realized by tuning the volume ratio of water to ethanol, and the yields of both materials can reach gram scale. The formation mechanisms of mesoporous silica flower and hollow structures were also experimentally investigated and discussed. These novel hierarchical structures having unique physicochemical properties may bring many interesting insights into scientific research and technological application.

  9. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunlei; Yan, Juntao, E-mail: yanjuntaonihao@163.com [Wuhan Polytechnic University, College of Chemistry and Environmental Engineering (China); Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun [Jilin University, College of Chemistry (China)

    2013-09-15

    A series of raspberry-like magnetic-hollow silica nanospheres were successfully synthesized via the sol-gel process, which was based on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene. The Fe{sub 3}O{sub 4}@SiO{sub 2} particles as the outer shell were compactly assembled on the surface of PS, and then magnetic-hollow nanospheres were obtained by calcination. Different synthesis conditions including the amount of NH{sub 4}OH, TEOS, Fe{sub 3}O{sub 4}, and the adding time of PS were systematically investigated to discuss the influence of these conditions on the morphology and structure. The prepared magnetic-hollow nanospheres were systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectrometry, energy-dispersive X-ray analysis, thermogravimetric analysis and nitrogen adsorption-desorption measurement. SEM and TEM images exhibited that the obtained samples with the perfect spherical profile and large cavities structure were well monodisperse and uniform under the optimized condition. Zeta-potential analysis was employed to make clear the formation mechanism of raspberry-like PS@Fe{sub 3}O{sub 4}@SiO{sub 2} composite nanosphere. Moreover, the drug release of ibuprofen experiment results demonstrated that the magnetic-hollow nanospheres could be used as a drug carrier to slowly release and deliver drugs.

  10. Investigation on raspberry-like magnetic-hollow silica nanospheres and its preliminary application for drug delivery

    International Nuclear Information System (INIS)

    Wang, Chunlei; Yan, Juntao; Li, Zhanfeng; Wang, Hongyan; Cui, Xuejun

    2013-01-01

    A series of raspberry-like magnetic-hollow silica nanospheres were successfully synthesized via the sol–gel process, which was based on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene. The Fe 3 O 4 @SiO 2 particles as the outer shell were compactly assembled on the surface of PS, and then magnetic-hollow nanospheres were obtained by calcination. Different synthesis conditions including the amount of NH 4 OH, TEOS, Fe 3 O 4 , and the adding time of PS were systematically investigated to discuss the influence of these conditions on the morphology and structure. The prepared magnetic-hollow nanospheres were systematically characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), fourier transform infrared spectrometry, energy-dispersive X-ray analysis, thermogravimetric analysis and nitrogen adsorption–desorption measurement. SEM and TEM images exhibited that the obtained samples with the perfect spherical profile and large cavities structure were well monodisperse and uniform under the optimized condition. Zeta-potential analysis was employed to make clear the formation mechanism of raspberry-like PS@Fe 3 O 4 @SiO 2 composite nanosphere. Moreover, the drug release of ibuprofen experiment results demonstrated that the magnetic-hollow nanospheres could be used as a drug carrier to slowly release and deliver drugs

  11. Horseradish Peroxidase-Encapsulated Hollow Silica Nanospheres for Intracellular Sensing of Reactive Oxygen Species

    Science.gov (United States)

    Chen, Hsin-Yi; Wu, Si-Han; Chen, Chien-Tsu; Chen, Yi-Ping; Chang, Feng-Peng; Chien, Fan-Ching; Mou, Chung-Yuan

    2018-04-01

    Reactive oxygen species (ROS) have crucial roles in cell signaling and homeostasis. Overproduction of ROS can induce oxidative damage to various biomolecules and cellular structures. Therefore, developing an approach capable of monitoring and quantifying ROS in living cells is significant for physiology and clinical diagnoses. Some cell-permeable fluorogenic probes developed are useful for the detection of ROS while in conjunction with horseradish peroxidase (HRP). Their intracellular scenario is however hindered by the membrane-impermeable property of enzymes. Herein, a new approach for intracellular sensing of ROS by using horseradish peroxidase-encapsulated hollow silica nanospheres (designated HRP@HSNs), with satisfactory catalytic activity, cell membrane permeability, and biocompatibility, was prepared via a microemulsion method. These HRP@HSNs, combined with selective probes or targeting ligands, could be foreseen as ROS-detecting tools in specific organelles or cell types. As such, dihydrorhodamine 123-coupled HRP@HSNs were used for the qualitative and semi-quantitative analysis of physiological H2O2 levels in activated RAW 264.7 macrophages. We envision that this HSNs encapsulating active enzymes can be conjugated with selective probes and targeting ligands to detect ROS in specific organelles or cell types of interest.

  12. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.

    Science.gov (United States)

    Wang, Ying; Zhao, Yating; Cui, Yu; Zhao, Qinfu; Zhang, Qiang; Musetti, Sara; Kinghorn, Karina A; Wang, Siling

    2018-01-01

    Oral administration of nanocarriers remains a significant challenge in the pharmaceutical sciences. The nanocarriers must efficiently overcome multiple gastrointestinal barriers including the harsh gastrointestinal environment, the mucosal layer, and the epithelium. Neutral hydrophilic surfaces are reportedly necessary for mucus permeation, but hydrophobic and cationic surfaces are important for efficient epithelial absorption. To accommodate these conflicting surface property requirements, we developed a strategy to modify nanocarrier surfaces with cationic cell-penetrating peptides (CPP) concealed by a hydrophilic succinylated casein (SCN) layer. SCN is a mucus-inert natural material specifically degraded in the intestine, thus protecting nanocarriers from the harsh gastric environment, facilitating their mucus permeation, and inducing exposure of CPPs after degradation for further effective transepithelial transport. Quantum dots doped hollow silica nanoparticles (HSQN) with a diameter around 180 nm was used as the nanocarrier and demonstrated as high as 50% loading efficacy of paclitaxel, a model drug with poor solubility and permeability. The dual layer modification strategy prevented premature drug leakage in stomach and maintained high mucus permeation (the trajectory spanned 9-fold larger area than single CPP modification). After intestinal degradation of SCN by trypsin, these nanocarriers exhibited strong interaction with epithelial membranes and a 5-fold increase in cellular uptake. Significant transepithelial transport and intestinal distribution were also observed for this dual-modified formulation. A pharmacokinetics study on the paclitaxel-loaded nanocarrier found 40% absolute bioavailability and 7.8-fold higher AUC compared to oral Taxol®. Compared with single CPP modified nanocarriers, our formulation showed increased in vivo efficacy and tumor accumulation of the model drug with negligible intestinal toxicity. In summary, sequential modification

  13. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    Science.gov (United States)

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Science.gov (United States)

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  15. Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Antonio-Lopez, Jose Enrique; Van Newkirk, Amy

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers with a “negative-curvature” of the core-cladding boundary have been extensively studied over the past few years owing to their low loss and wide transmission bandwidths. The key unique feature of the HC-AR fiber is that the coupling between the core and cl...... a silica HC-AR fiber having a single ring of 7 non-touching capillaries, designed to have effectively single-mode operation and low loss from UV to near-IR....

  16. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    Science.gov (United States)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  17. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In vivo and in vitro evaluation of the cytotoxic effects of Photosan-loaded hollow silica nanoparticles on liver cancer

    Science.gov (United States)

    Liu, Zhong-Tao; Xiong, Li; Liu, Zhi-Peng; Miao, Xiong-Ying; Lin, Liang-Wu; Wen, Yu

    2014-06-01

    This study aimed to compare the inhibitory effects of photosensitizers loaded in hollow silica nanoparticles and conventional photosensitizers on HepG2 human hepatoma cell proliferation and determine the underlying mechanisms. Photosensitizers (conventional Photosan-II or nanoscale Photosan-II) were administered to in vitro cultured HepG2 hepatoma cells and treated by photodynamic therapy (PDT) with various levels of light exposure. To assess photosensitizers' effects, cell viability was determined by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, apoptotic and necrotic cells were measured by flow cytometry and the expression of caspase-3 and caspase-9 evaluated by western blot. Finally, the in vivo effects of nanoscale and conventional photosensitizers on liver cancer were assessed in nude mice. Nanoscale Photosan-II significantly inhibited hepatoma cell viability in a concentration-dependent manner and this effect was more pronounced with high laser doses. Moreover, nanoscale photosensitizers performed better than the conventional ones under the same experimental conditions ( p death was markedly increased after treatment with nanoscale Photosan-II in comparison with free Photosan-II ( p Hollow silica nanoparticles containing photosensitizer more efficiently inhibited hepatoma cells than photosensitizer alone, through induction of apoptosis, both in vivo and in vitro.

  19. Effect of Pore Size on the Carbon Dioxide Adsorption Behavior of Porous Liquids Based on Hollow Silica.

    Science.gov (United States)

    Shi, Ting; Zheng, Yaping; Wang, Tianyu; Li, Peipei; Wang, Yudeng; Yao, Dongdong

    2018-01-05

    Porous liquids are an expanding class of material that has huge potential in gas separation and gas adsorption. Pore size has a dramatic influence on the gas adsorption of porous liquids. In this article, we chose hollow silica nanoparticles as cores, 3-(trihydroxysilyl)-1-propanesulfonic acid (SIT) as corona, and inexpensive industrial reagent polyether amine (M2070) as canopy to obtain a new type of porous liquids. Hollow silica nanospheres with different pore sizes were chosen to investigate the influence of porosity size on CO 2 adsorption capacity of porous liquids. Their chemical structure, morphology, thermal behavior and possible adsorption mechanism are discussed in detail. It was proved that with similar grafting density, porous liquid that has bigger pore size possesses a better CO 2 adsorption capacity (2.182 mmol g -1 under 2.5 MPa at 298 K). More than that, this article demonstrates a more facile and low-cost method to obtain porous liquids with good CO 2 adsorption capacity, recyclability, and huge variability. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  1. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Jin; Liu, Jian; Lu, Shanfu

    2017-01-01

    is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA–NH2–HMS nanoparticles are dispersed in the poly(ether sulfone)–polyvinylpyrrolidone (PES–PVP) matrix, forming a hybrid PWA–NH2–HMS/PES–PVP nanocomposite membrane. The resultant...

  2. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Fong-Yu; Chen, Chen-Tai; Yeh, Chen-Sheng, E-mail: csyeh@mail.ncku.edu.t [Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-10-21

    Three Au-based nanomaterials (silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods) were evaluated for their comparative photothermal efficiencies at killing three types of malignant cells (A549 lung cancer cells, HeLa cervix cancer cells and TCC bladder cancer cells) using a CW NIR laser. Photodestructive efficiency was evaluated as a function of the number of nanoparticles required to destroy the cancer cells under 808 nm laser wavelength at fixed laser power. Of the three nanomaterials, silica/Au nanoshells needed the minimum number of particles to produce effective photodestruction, whereas Au nanorods needed the largest number of particles. Together with the calculated photothermal conversion efficiency, the photothermal efficiency rankings are silica-Au nanoshells > hollow Au/Ag nanospheres > Au nanorods. Additionally, we found that HeLa cells seem to present better heat tolerance than the other two cancer cell lines.

  3. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  4. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  5. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2015-01-01

    We report on numerical design optimization of hollow-core antiresonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for r...

  6. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process

    Science.gov (United States)

    He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung

    2017-06-01

    Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.

  7. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    Science.gov (United States)

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  8. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Zhang, Ying [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China. (China); Zhao, Qinfu, E-mail: zqf021110505@163.com [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016 (China)

    2016-10-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  9. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release

    International Nuclear Information System (INIS)

    Jiao, Jian; Li, Xian; Zhang, Sha; Liu, Jie; Di, Donghua; Zhang, Ying; Zhao, Qinfu; Wang, Siling

    2016-01-01

    In this paper, a hollow mesoporous silica nanoparticles (HMSN) was used as the drug vehicle to develop the redox and pH dual stimuli-responsive delivery system, in which the chitosan (CS), a biodegradable cationic polymer, was grafted on the surface of HMSN via the cleavable disulfide bonds. CS was chosen as the gatekeeper mainly due to its appropriate molecular weight as well as possessing abundant amino groups which could be protonated in the acidic condition to achieve pH-responsive drug release. In addition, the PEG was further grafted on the surface of CS to increase the stability and biocompatibility under physiological conditions. The DOX loaded DOX/HMSN-SS-CS@PEG had a relatively high drug loading efficiency up to 32.8%. In vitro release results indicated that DOX was dramatically blocked within the mesopores of HMSN-SS-CS@PEG in pH 7.4 PBS without addition of GSH. However, the release rate of DOX was markedly increased after the addition of 10 mM GSH or in pH 5.0 release medium. Moreover, the release of DOX was further improved in pH 5.0 PBS with 10 mM GSH. The HMSN-SS-CS@PEG could markedly decrease the hemolysis percent and protein adsorption, and increase the biocompatibility and stability of HMSN compared with the HMSN-SS-CS and bare HMSN. This work suggested an exploration about HMSN based stimuli-responsive drug delivery and these results demonstrated that HMSN-SS-CS@PEG exhibited dual-responsive drug release property and could be used as a promising carrier for cancer therapy. - Highlights: • Hollow mesoporous silica nanoparticles (HMSN) were used as a drug carrier. • Chitosan (CS) and PEG were grafted on the surface of HMSN via disulfide bonds. • The DOX loaded DOX/HMSN-SS-CS@PEG had a high drug loading efficiency up to 32.8%. • DOX/HMSN-SS-CS@PEG showed redox/pH dual-responsive drug release property in vitro. • The grafted PEG could increase the biocompatibility and stability of HMSN.

  10. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    Science.gov (United States)

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Halloysite Nanocapsules Containing Thyme Essential Oil: Preparation, Characterization, and Application in Packaging Materials.

    Science.gov (United States)

    Jang, Si-Hoon; Jang, So-Ri; Lee, Gyeong-Min; Ryu, Jee-Hoon; Park, Su-Il; Park, No-Hyung

    2017-09-01

    Halloysite nanotubes (HNTs), which are natural nanomaterials, have a hollow tubular structure with about 15 nm inner and 50 nm outer diameters. Because of their tubular shape, HNTs loaded with various materials have been investigated as functional nanocapsules. In this study, thyme essential oil (TO) was encapsulated successfully in HNTs using vacuum pulling methods, followed by end-capping or a layer-by-layer surface coating process for complete encapsulation. Nanocapsules loaded with TO were mixed with flexographic ink and coated on a paper for applications as food packaging materials. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the nanocapsules and to confirm the TO loading of the nanocapsules. Fourier transform infrared spectroscopy and thermogravimetric analyses analysis were used to complement the structural information. In addition, the controlled release of TO from the nanocapsules showed sustained release properties over a period of many days. The results reveal that the release properties of TO in these nanocapsules could be controlled by surface modifications such as end-capping and/or surface coating of bare nanocapsules. The packaging paper with TO-loaded HNT capsules was effective in eliminating against Escherichia coli during the first 5 d and showed strong antibacterial activity for about 10 d. © 2017 Institute of Food Technologists®.

  12. Immunization of mice by Hollow Mesoporous Silica Nanoparticles as carriers of Porcine Circovirus Type 2 ORF2 Protein

    Directory of Open Access Journals (Sweden)

    Guo Hui-Chen

    2012-06-01

    Full Text Available Abstract Backgroud Porcine circovirus type 2 (PCV2 is a primary etiological agent of post-weaning multi-systemic wasting syndrome (PMWS, which is a disease of increasing importance to the pig industry worldwide. Hollow mesoporous silica nanoparticles (HMSNs have gained increasing interest for use in vaccines. Methods To study the potential of HMSNs for use as a protein delivery system or vaccine carriers. HMSNs were synthesized by a sol–gel/emulsion(oil-in-water/ethanol method, purified PCV2 GST-ORF2-E protein was loaded into HMSNs, and the resulting HMSN/protein mixture was injected into mice. The uptake and release profiles of protein by HMSNs in vitro were investigated. PCV2 GST-ORF2-E specific antibodies and secretion of IFN-γ were detected by enzyme-linked immunosorbent assays, spleen lymphocyte proliferation was measured by the MTS method, and the percentage of CD4+ and CD8+ were determined by flow cytometry. Results HMSNs were found to yield better binding capacities and delivery profiles of proteins; the specific immune response induced by PCV2 GST-ORF2-E was maintained for a relatively long period of time after immunization with the HMSN/protein complex. Conclusion The findings suggest that HMSNs are good protein carriers and have high potential for use in future applications in therapeutic drug delivery.

  13. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    International Nuclear Information System (INIS)

    Qiu, Yang; Wu, Chao; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-01-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption

  14. Lipid-coated hollow mesoporous silica nanospheres for co-delivery of doxorubicin and paclitaxel: Preparation, sustained release, cellular uptake and pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yang; Wu, Chao, E-mail: wuchao27@126.com; Jiang, Jie; Hao, Yanna; Zhao, Ying; Xu, Jie; Yu, Tong; Ji, Peng

    2017-02-01

    A carrier consisting of lipid-coated hollow mesoporous silica nanospheres (L-HMSN) was produced for the combination of the water-insoluble drug (paclitaxel, PTX) and the water-soluble drug (doxorubicin, DOX). DOX was adsorbed into the nanoscale hollow structure of the hollow mesoporous silica nanospheres (HMSN) by adsorption and PTX was wrapped in the phospholipid layer of the HMSN surface by lipid film hydration method. The characterization results showed that DOX and PTX were present in the nanopheres in an amorphous state. The loaded L-HMSN (DOX/PTX@L-HMSN) in vitro drug release showed a sustained release in phosphate buffered solution (PBS) at pH 6.8 and 0.001%SDS. The cellular uptake experiment indicated that L-HMSN was successfully taken up by A549 cells. In addition, the combination of DOX and PTX in L-HMSN exhibited a marked synergistic effect in inhibiting the proliferation of A549 cells. The pharmacokinetic study demonstrated that L-HMSN could significantly improve the relative bioavailability of DOX and PTX. These results confirm that L-HMSN is a promising carrier for successful drug combination. - Highlights: • L-HMSN as a platform is used for combination of DOX and PTX • The drug delivery system demonstrates synergy effect in inhibiting A549 cell proliferation • The drug delivery system slowly releases the drugs and improves drug absorption.

  15. Photodynamic effect of photosensitizer-loaded hollow silica nanoparticles for hepatobiliary malignancies: an in vitro and in vivo study

    Science.gov (United States)

    Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying

    2014-03-01

    Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.

  16. Recent progress in the preparation and application of carbon nanocapsules

    International Nuclear Information System (INIS)

    Hwang, Kuo Chu

    2010-01-01

    In this review paper, the processes for the fabrication of carbon nanoparticles, carbon nanospheres, carbon onions, onion-like carbons and metal-filled carbon nanocapsules are reviewed. These processes include carbon arc discharge, metal catalysed chemical vapour deposition, thermal pyrolysis of organometallics and nanodiamonds, electric arc in liquid (e.g. liquid N 2 , H 2 O and organic solvents), and microwave arcing. The applications of both hollow and metal-filled carbon nanocapsules/nanoparticles as x-ray target materials, nanolubricants, broadband electromagnetic wave absorbers, catalysts for organic reactions, electrode materials for batteries and electrochemical immunoassays, biomedical gene/drug transporters, etc are also reviewed. The future prospects are also discussed.

  17. Recent progress in the preparation and application of carbon nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kuo Chu, E-mail: kchwang@mx.nthu.edu.t [Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-09-22

    In this review paper, the processes for the fabrication of carbon nanoparticles, carbon nanospheres, carbon onions, onion-like carbons and metal-filled carbon nanocapsules are reviewed. These processes include carbon arc discharge, metal catalysed chemical vapour deposition, thermal pyrolysis of organometallics and nanodiamonds, electric arc in liquid (e.g. liquid N{sub 2}, H{sub 2}O and organic solvents), and microwave arcing. The applications of both hollow and metal-filled carbon nanocapsules/nanoparticles as x-ray target materials, nanolubricants, broadband electromagnetic wave absorbers, catalysts for organic reactions, electrode materials for batteries and electrochemical immunoassays, biomedical gene/drug transporters, etc are also reviewed. The future prospects are also discussed.

  18. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens.

    Science.gov (United States)

    Kavruk, M; Celikbicak, O; Ozalp, V C; Borsa, B A; Hernandez, F J; Bayramoglu, G; Salih, B; Arica, M Y

    2015-05-18

    In this study, we designed aptamer-gated nanocapsules for the specific targeting of cargo to bacteria with controlled release of antibiotics based on aptamer-receptor interactions. Aptamer-gates caused a specific decrease in minimum inhibitory concentration (MIC) values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery.

  19. Analysis of the dependence of the guided mode field distribution on the silica bridges in hollow-core Bragg fibers

    DEFF Research Database (Denmark)

    Selleri, S.; Poli, F.; Foroni, M.

    2007-01-01

    The guiding properties of fabricated air-silica Bragg fibers with different geometric characteristics have been numerically investigated through a modal solver based on the finite element method. The method has been used to compute the dispersion curves, the loss spectra and the field distribution...... of the modes sustained by the Bragg fibers under investigation. In particular, the silica bridge influence on the fundamental mode has been analyzed, by considering structures with different cross sections, that is an ideal Bragg fiber, without the silica nonosupports, a squared air-hole one and, finally......, a rounded air-hole one, which better describes the real fiber transverse section. Results have shown.the presence of anti-crossing points in the effective index curves associated with the transition of the guided mode to a surface mode. Moreover, it has been verified that these surface modes are responsible...

  20. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.

    Science.gov (United States)

    Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-03-07

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.

  1. Hollow Mesoporous Silica Supported Ruthenium Nanoparticles: A Highly Active and Reusable Catalyst for H2 Generation from the Hydrolysis of NaBH4

    Directory of Open Access Journals (Sweden)

    Shuge Peng

    2015-01-01

    Full Text Available Ru nanoparticles supported on hollow mesoporous silica (HMS, which are prepared via in situ wet chemical reduction, have been investigated as the highly efficient heterogeneous catalyst for H2 generation from the hydrolysis of an alkaline NaBH4 solution. Many techniques, including X-ray diffraction (XRD, transmission electron microscope (TEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the as-prepared nanocatalyst (Ru/HMS. Factors, such as Ru loadings in HMS, catalyst concentration, and solution temperature, on catalytic property and reutilization are investigated in this work. A rate of H2 generation as high as 18.6 L min−1 g−1 (Ru using 1 wt% NaBH4 solution containing 3 wt% NaOH and 40 mg of Ru/HMS catalyst can be reached at room temperature. The minimum apparent activation energy (Ea of H2 generation, obtained by fitting the curve of Ea values versus catalyst amount, is determined to be 46.7 ± 1 kJ/mol. The residual catalytic activity of the repeated Ru/HMS still remains 47.7% after 15 runs, which perhaps results from the incorporation of the residual by-product (NaBO2 in the pores of HMS based on the analysis of XPS.

  2. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation

    Science.gov (United States)

    HuThese Authors Contributed Equally To This Work., Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-02-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d

  3. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  4. Template-assisted fabrication of protein nanocapsules

    International Nuclear Information System (INIS)

    Dougherty, Shelley A.; Liang Jianyu; Kowalik, Timothy F.

    2009-01-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  5. Template-assisted fabrication of protein nanocapsules

    Science.gov (United States)

    Dougherty, Shelley A.; Liang, Jianyu; Kowalik, Timothy F.

    2009-02-01

    Bionanomaterials have recently begun to spark a great amount of interest and could potentially revolutionize biomedical research. Nanoparticles, nanocapsules, and nanotubular structures are becoming attractive options in drug and gene delivery. The size of the delivery vehicles greatly impacts cellular uptake and makes it highly desirable to precisely control the diameter and length of nanocarriers to make uniform nanoparticles at low cost. Carbon nanotubes have shown great potential within the field of drug and gene delivery. However, their insolubility and cytotoxicity could severely delay FDA approval. A desirable alternative would be to fabricate nanostructures from biomaterials such as proteins, peptides, or liposomes, which are already FDA approved. In this article we demonstrate the preparation of protein nanocapsules with both ends sealed using a template-assisted alternate immersion method combined with controlled cleaving. Glucose oxidase nanocapsules with controllable diameter, wall thickness, and length were fabricated and characterized with SEM and TEM. The biochemical activity of glucose oxidase in the form of nanocapsules after processing was confirmed using UV spectrometry. Our future work will explore proteins suitable for drug encapsulation and cellular uptake and will focus on optimizing the cleaving process to gain precise control over the length of the nanocapsules.

  6. High saturation magnetization FeB(C) nanocapsules

    International Nuclear Information System (INIS)

    Ma, S.; Si, P.Z.; Zhang, Y.; Wu, B.; Li, Y.B.; Liu, J.J.; Feng, W.J.; Ma, X.L.; Zhang, Z.D.

    2007-01-01

    FeB(C) nanocapsules were prepared by arc-discharging Fe 80 B 20 alloy in Ar and CH 4 . X-ray diffraction and transmission electron microscopy analyses showed that the FeB(C) nanocapsules had a core-shell structure with α-Fe and Fe 3 B as cores and graphite as shells. The formation mechanism of the FeB(C) nanocapsules is discussed. The graphite shells display a strong anti-acid effect. The saturation magnetization at room temperature of the FeB(C) nanocapsules is much higher than that of Fe(B) nanocapsules. The blocking temperature of FeB(C) nanocapsules is above 300 K

  7. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells.

    Science.gov (United States)

    Chen, Yu; Yin, Qi; Ji, Xiufeng; Zhang, Shengjian; Chen, Hangrong; Zheng, Yuanyi; Sun, Yang; Qu, Haiyun; Wang, Zheng; Li, Yaping; Wang, Xia; Zhang, Kun; Zhang, Linlin; Shi, Jianlin

    2012-10-01

    Nano-biotechnology has been introduced into cancer theranostics by engineering a new generation of highly versatile hybrid mesoporous composite nanocapsules (HMCNs) for manganese-based pH-responsive dynamic T(1)-weighted magnetic resonance imaging (MRI) to efficiently respond and detect the tumor acidic microenvironment, which was further integrated with ultrasonographic function based on the intrinsic unique hollow nanostructures of HMCNs for potentially in vitro and in vivo dual-modality cancer imaging. The manganese oxide-based multifunctionalization of hollow mesoporous silica nanoparticles was achieved by an in situ redox reaction using mesopores as the nanoreactors. Due to the dissolution nature of manganese oxide nanoparticles under weak acidic conditions, the relaxation rate r(1) of manganese-based mesoporous MRI-T(1) contrast agents (CAs) could reach 8.81 mM(-1)s(-1), which is a 11-fold magnitude increase compared to the neutral condition, and is almost two times higher than commercial Gd(III)-based complex agents. This is also the highest r(1) value ever reported for manganese oxide nanoparticles-based MRI-T(1) CAs. In addition, the hollow interiors and thin mesoporous silica shells endow HMCNs with the functions of CAs for efficient in vitro and in vivo ultrasonography under both harmonic- and B-modes. Importantly, the well-defined mesopores and large hollow interiors of HMCNs could encapsulate and deliver anticancer agents (doxorubicin) intracellularly to circumvent the multidrug resistance (MDR) of cancer cells and restore the anti-proliferative effect of drugs by nanoparticle-mediated endocytosis process, intracellular drug release and P-gp inhibition/ATP depletion in cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Characterization of silver halide fiber optics and hollow silica waveguides for use in the construction of a mid-infrared attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy probe.

    Science.gov (United States)

    Damin, Craig A; Sommer, André J

    2013-11-01

    Advances in fiber optic materials have allowed for the construction of fibers and waveguides capable of transmitting infrared radiation. An investigation of the transmission characteristics associated with two commonly used types of infrared-transmitting fibers/waveguides for prospective use in a fiber/waveguide-coupled attenuated total internal reflection (ATR) probe was performed. Characterization of silver halide polycrystalline fiber optics and hollow silica waveguides was done on the basis of the transmission of infrared light using a conventional fiber optic coupling accessory and an infrared microscope. Using the fiber optic coupling accessory, the average percent transmission for three silver halide fibers was 18.1 ± 6.1% relative to a benchtop reflection accessory. The average transmission for two hollow waveguides (HWGs) using the coupling accessory was 8.0 ± 0.3%. (Uncertainties in the relative percent transmission represent the standard deviations.) Reduced transmission observed for the HWGs was attributed to the high numerical aperture of the coupling accessory. Characterization of the fibers/waveguides using a zinc selenide lens objective on an infrared microscope indicated 24.1 ± 7.2% of the initial light input into the silver halide fibers was transmitted. Percent transmission obtained for the HWGs was 98.7 ± 0.1%. Increased transmission using the HWGs resulted from the absence or minimization of insertion and scattering losses due to the hollow air core and a better-matched numerical aperture. The effect of bending on the transmission characteristics of the fibers/waveguides was also investigated. Significant deviations in the transmission of infrared light by the solid-core silver halide fibers were observed for various bending angles. Percent transmission greater than 98% was consistently observed for the HWGs at the bending angles. The combined benefits of high percent transmission, reproducible instrument responses, and increased bending

  9. Glioblastoma Multiforme and Lipid Nanocapsules: A Review.

    Science.gov (United States)

    Aparicio-Blanco, Juan; Torres-Suárez, Ana-Isabel

    2015-08-01

    Epidemiological data on central nervous system disorders call for a focus on the major hindrance to brain drug delivery, blood-central nervous system barriers. Otherwise, there is little chance of improving the short-term survival of patients with diseases such as glioblastoma multiforme, which is one of the brain disorders associated with many years of life lost. Targetable nanocarriers for treating malignant gliomas are a unique way to overcome low chemotherapeutic levels at target sites devoid of systemic toxicity. This review describes the currently available targetable nanocarriers, focusing particularly on one of the newest nanocarriers, lipid nanocapsules. All of the strategies that are likely to be exploited by lipid nanocapsules to bypass blood-central nervous system barriers, including the most recent targeting approaches (mesenchymal cells), and novel administration routes (convection enhanced delivery) are discussed, together with their most remarkable achievements in glioma-implanted animal models. Although these systems are promising, much research remains to be done in this field.

  10. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  11. Immobilization of TiO2 nanoparticles on Fe-filled carbon nanocapsules for photocatalytic applications

    International Nuclear Information System (INIS)

    Huang, H.-C.; Huang, G.-L.; Chen, H.-L.; Lee, Y.-D.

    2006-01-01

    Using a simple sol-gel method, a novel magnetic photocatalyst was produced by immobilization of TiO 2 nano-crystal on Fe-filled carbon nanocapsules (Fe-CNC). High resolution TEM images indicated that the immobilization of TiO 2 on Fe-CNC was driven primarily by heterogeneous coagulation, whereas surface nucleation and growth was the dominant mechanism for immobilizing TiO 2 on acid-functionalized hollow CNC. The TiO 2 immobilized on Fe-CNC exhibited the anatase phase as revealed by the X-ray diffraction (XRD) patterns. In comparison with free TiO 2 and TiO 2 -coated CNC, TiO 2 -coated Fe-CNC displayed good performance in the removal of NO gas under UV exposure. Due to the advantages of easy recycling and good photocatalytic efficiency, the novel magnetic photocatalyst developed here has potential use in photocatalytic applications for pollution prevention

  12. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule

    OpenAIRE

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2014-01-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showe...

  13. Nanocapsules: The Weapons for Novel Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Radhika Parasuramrajam

    2012-04-01

    Full Text Available Introduction: Nanocapsules, existing in miniscule size, range from 10 nm to 1000 nm. They consist of a liquid/solid core in which the drug is placed into a cavity, which is surrounded by a distinctive polymer membrane made up of natural or synthetic polymers. They have attracted great interest, because of the protective coating, which are usually pyrophoric and easily oxidized and delay the release of active ingredients. Methods: Various technical approaches are utilized for obtaining the nanocapsules; however, the methods of interfacial polymerization for monomer and the nano-deposition for preformed polymer are chiefly preferred. Most important characteristics in their preparation is particle size and size distribution which can be evaluated by using various techniques like X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, superconducting quantum interference device, multi angle laser light scattering and other spectroscopic techniques. Results: Nanocapsules possessing extremely high reproducibility have a broad range of life science applications. They may be applied in agrochemicals, genetic engineering, cosmetics, cleansing products, wastewater treatments, adhesive component applications, strategic delivery of the drug in tumors, nanocapsule bandages to fight infection, in radiotherapy and as liposomal nanocapsules in food science and agriculture. In addition, they can act as self-healing materials. Conclusion: The enhanced delivery of bioactive molecules through the targeted delivery by means of a nanocapsule opens numerous challenges and opportunities for the research and future development of novel improved therapies.

  14. Eco-friendly aqueous core surface-modified nanocapsules.

    Science.gov (United States)

    Carbone, C; Musumeci, T; Lauro, M R; Puglisi, G

    2015-01-01

    In this work, positively charged nanocapsules have been developed for potential ocular delivery exploiting the deposition of PLA onto the droplet surface of a W/O nanoemulsion prepared by the reversed procedure of the PIT method. PLA in combination with different amounts of various oils and surfactants have been studied in order to select the best formulation for polymeric nanocapsule preparation. The traditional visual observation together with the Turbiscan(®) technology were exploited in order to identify the best combination of polymer/oil for nanocapsule preparation. Two different primary surfactants (Span(®) 60 and Span(®) 80) have been tested to select their influence on the field of existence of the nanoemulsion by the construction of the pseudoternary phase diagrams. Cationic hybrid NC have been prepared by the addition of a coating layer of DDAB. The physico-chemical and morphological properties of all the prepared nanocapsules have been evaluated and compared by PCS, DSC and AFM. Therefore, positively charged nanocapsules can be easily prepared by a simple eco-friendly technique that exploits biocompatible materials avoiding a large input of mechanical energy as a potential ocular delivery systems for hydrophilic compounds or gene materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    Science.gov (United States)

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  16. Sonochemically born proteinaceous micro- and nanocapsules.

    Science.gov (United States)

    Vassileva, Elena D; Koseva, Neli S

    2010-01-01

    The use of proteins as a substrate in the fabrication of micro- and nanoparticulate systems has attracted the interest of scientists, manufactures, and consumers. Albumin-derived particles were commercialized as contrast agents or anticancer therapeutics. Food proteins are widely used in formulated dietary products. The potential benefits of proteinaceous micro- and nanoparticles in a wide range of biomedical applications are indisputable. Protein-based particles are highly biocompatible and biodegradable structures that can impart bioadhesive properties or mediate particle uptake by specific interactions with the target cells. Currently, protein microparticles are engineered as vehicles for covalent attachment and/or encapsulation of bioactive compounds, contrast agents for magnetic resonance imaging, thermometric and oximetric imaging, sonography and optical coherence tomography, etc. Ultrasound irradiation is a versatile technique which is widely used in many and different fields as biology, biochemistry, dentistry, geography, geology, medicine, etc. It is generally recognized as an environmental friendly, cost-effective method which is easy to be scaled up. Currently, it is mainly applied for homogenization, drilling, cleaning, etc. in industry, as well for noninvasive scanning of the human body, treatment of muscle strains, dissolution of blood clots, and cancer therapy. Proteinaceous micro- and nanocapsules could be easily produced in a one-step process by applying ultrasound to an aqueous protein solution. The origin of this process is in the chemical changes, for example, sulfhydryl groups oxidation, that takes place as a result of acoustically generated cavitation. Partial denaturation of the protein most probably occurs which makes the hydrophobic interactions dominant and also responsible for the formation of stable capsules. This chapter aims to present the current state-of-the-art in the field of sonochemically produced protein micro- and nanocapsules

  17. Production of a transparent lavender flavour nanocapsule aqueous solution and pyrolysis characteristics of flavour nanocapsule.

    Science.gov (United States)

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Feng, Nienie

    2015-07-01

    Flavour plays an important role and has been widely used in many products. Usually, the components of flavour are volatile and the sensory perception can be changed as a result of volatilization, heating, oxidation and chemical interactions. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the core materials. This work concentrated on production of a transparent lavender flavour nanocapsule aqueous solution. The results showed that a transparent lavender flavour microcapsule aqueous solution can be produced using hydroxypropyl-β-cyclodextrin (HP-β-CD) as wall material. The combination and interaction of flavour and wall materials were investigated by pyrolysis. Pyrolysis characteristics and kinetic parameters of the flavour nanocapsule were determined. During thermal degradation of blank HP-β-CD and flavour-HP-β-CD inclusion complex, three main stages can be distinguished. Due to the vaporization of lavender flavour encapsulated in HP-β-CD, the thermogravimetric (TG) curve of blank HP-β-CD shows a leveling-off from room temperature to 269 °C, while the TG curve of flavour-HP-β-CD inclusion complex is downward sloping in this temperature range. The kinetic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests.

  18. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  19. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  20. Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery

    International Nuclear Information System (INIS)

    Kumar, Vijay Bhooshan; Annamanedi, Madhavi; Prashad, Muvva Durga; Arunasree, Kalle M.; Mastai, Yitzhak; Gedanken, Aharon; Paik, Pradip

    2013-01-01

    This work presents a new synthesis of mesoporous SiO 2 –ZnO composite nanocapsules with sizes of 90–150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2–8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO 2 –ZnO was found to be ∼230 m 2 g −1 . Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles (∼5–7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO 2 –ZnO nanoparticles for using as the carrier of drugs and formation of “SiOZO-plex”, a complex of mesoporous SiO 2 –ZnO with DNA for gene delivery applications.Graphical Abstract

  1. Synthesis of mesoporous SiO{sub 2}-ZnO nanocapsules: encapsulation of small biomolecules for drugs and 'SiOZO-plex' for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay Bhooshan [School of Engineering Sciences and Technology, University of Hyderabad (India); Annamanedi, Madhavi [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Prashad, Muvva Durga [University of Hyderabad, Centre for Nanoscience and Nanotechnology (India); Arunasree, Kalle M. [School of Life Sciences, University of Hyderabad, Department of Animal Sciences (India); Mastai, Yitzhak; Gedanken, Aharon, E-mail: gedanken@mail.biu.ac.il [Bar-Ilan University, Department of Chemistry, Institute for Nanotechnology and Advanced Materials (Israel); Paik, Pradip, E-mail: ppse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad (India)

    2013-09-15

    This work presents a new synthesis of mesoporous SiO{sub 2}-ZnO composite nanocapsules with sizes of 90-150 nm and represents their applications in encapsulation of small biomolecules (fluorescent molecules, drugs, and DNA) for uses in medical biotechnology (e.g., drug and gene delivery) for the first time. The nanocapsule size and morphology have been confirmed through the HRSEM and HRTEM. The mesoporous structure of the novel materials has been confirmed through both BET and HRTEM, and the pore diameter observed to be ca. 2-8 nm with an average diameter of 5.1 nm. The BET surface area of mesoporous SiO{sub 2}-ZnO was found to be {approx}230 m{sup 2} g{sup -1}. Three different types of pores were detected through HRTEM: type-I, normal pores in silica matrix, pore with ZnO nanoparticles at the boundary (type-II) and type-III, the pores with tiny ZnO nanoparticles ({approx}5-7 nm) inside them. To demonstrate the biocompatibility and cell viability of the nanocapsules, normal and cancerous lymphocyte cells have been chosen and investigated in a systematic way. Fluorescent dye (Rhodamine 6G), anticancer drug e.g., Doxorubicin (DOX) were loaded in all types of pores, and EtBr-labeled DNA molecules were loaded efficiently into the mesopores of second and third types of the composite nanocapsules to manifest the characteristic of mesoporous, and to find out its loading efficacy. The release kinetics of Rhodamine 6G and DOX were studied. The results highlight the potential of novel functional mesoporous SiO{sub 2}-ZnO nanoparticles for using as the carrier of drugs and formation of 'SiOZO-plex', a complex of mesoporous SiO{sub 2}-ZnO with DNA for gene delivery applications.Graphical Abstract.

  2. Nanoformulation des corps gras. Nanocapsules, nanoémulsions

    Directory of Open Access Journals (Sweden)

    Simonnet Jean-Thierry

    2004-11-01

    Full Text Available Nanocapsules (submicron particles, of diameter 250 nm, with an oily core enclosed in a solid polymeric shell were prepared using a controlled nanoprecipitation process with preformed polymers (for example poly-E caprolactone, polyethylene adipate. Nanocapsules formed by this method contain up to 7.5% oil (1% polymer. The following properties are observed using nanocapsules : improved oxygen stability of active ingredients (retinol, β carotene, significantly improved vectorisation (up to 3 times in skin and a reservoir effect. Due to their solid polymer shell nanocapsules are stable when formulated and penetrate intact into the superficial layers of the epidermis. Nanoemulsions wich are very fine oil-in-water dispersions having droplet diameter smaller than 100 nanometers, were prepared with a high shear device. Two major sources of unstability were identified and extensively studied: Ostwald ripening and depletion induced floculation following the addition of thickening polymers. The control of these two mechanisms allowed the industrial production of a large variety of cosmetic products. The nanoemulsions are easily valued in skin care due to their good sensorial properties and their biophysical properties.

  3. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic

    Czech Academy of Sciences Publication Activity Database

    Vrána, Oldřich; Novohradský, Vojtěch; Medrikova, Z.; Burdikova, J.; Stuchlíková, O.; Kašpárková, Jana; Brabec, Viktor

    2016-01-01

    Roč. 22, č. 8 (2016), s. 2728-2735 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : interstrand cross-links * dna-adducts * cisplatin nanocapsules Subject RIV: BO - Biophysics Impact factor: 5.317, year: 2016

  4. Hollow MEMS

    DEFF Research Database (Denmark)

    Larsen, Peter Emil

    Miniaturization of electro mechanical sensor systems to the micro range and beyond has shown impressive sensitivities measuring sample properties like mass, viscosity, acceleration, pressure and force just to name a few applications. In order to enable these kinds of measurements on liquid samples...... a hollow MEMS sensor has been designed, fabricated and tested. Combined density, viscosity, buoyant mass spectrometry and IR absorption spectroscopy are possible on liquid samples and micron sized suspended particles (e.g. single cells). Measurements are based on changes in the resonant behavior...... of these sensors. Optimization of the microfabrication process has led to a process yield of almost 100% .This is achieved despite the fact, that the process still offers a high degree of flexibility. By simple modifications the Sensor shape can be optimized for different size ranges and sensitivities...

  5. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  6. Synthesis and characterization of superparamagnetic polymeric nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Renato; Fraceto, Leonardo Fernandes, E-mail: renato.grillo@ymail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil); Gallo, Juan; Grando Stroppa, Daniel; Carbo-Argibay, Enrique; Banõbre-Lopez, Manuel [International Iberian Nanotechnology Laboratory, Braga (Portugal); Lima, Renata de [Universidade de Sorocaba (UNISO), SP (Brazil)

    2016-07-01

    Full text: A wide variety of applications have been considered for superparamagnetic iron oxide nanoparticles (SPIONs), such as magnetic resonance imaging, cancer therapy and remediation of contaminants [1].Polymeric nanostructures (PNS) have also received great interest as suitable encapsulating agents and carriers due to their ability to influence the delivery profile. Hybrid nanosystems have been explored as a synergic approach that combines the modified active release induced by the polymer encapsulation and the intrinsic properties from the inorganic nanoparticles [2]. In this context, poly-ε-caprolactone nanocapsules containing different concentration of ∼8 nm superparamagnetic oleic acid coated magnetite (Fe{sub 3}O{sub 4}@OA) nanoparticles were developed. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy coupled with energy dispersive X-ray (TEM-EDX). Results showed that they accumulate preferentially in the outer organic membrane of the PNS. On the other hand, scanning electron microscopy and dynamic light scattering measurements showed a significant increase in particle size from ca. 400 to 800 nm. Magnetic measurements as a function of the applied magnetic field and temperature were performed in both vibrant sample (VSM) and superconducting quantum interference device magnetometers (SQUID). Hysteresis loops showed a superparamagnetic behavior with increasing saturation magnetization as magnetite concentration was progressively incorporated into the PNS. Zero-field cooled and field-cooled (ZFC-FC) magnetic curves showed a shift of the blocking temperature to higher temperatures as the content of magnetite increases in the capsules. These results are promising and contribute to a better understanding of the interaction between magnetic nanoparticles and PNS. References: [1] L. Zhang, W. Dong, H. Sun. Nanoscale 5, 7664-7684 (2013) [2] K.T. Nguyen and Y.L. Zhao. Acc. Chem. Res. 48, 3016-3025 (2015

  7. Effects of Ultrasound Irradiation on the Preparation of Ethyl Cellulose Nanocapsules Containing Spirooxazine Dye

    Directory of Open Access Journals (Sweden)

    Julija Volmajer Valh

    2017-01-01

    Full Text Available This article presents the influence of low frequency, high intensity ultrasonic irradiation on the characteristics (average size, polydispersity index of ethyl cellulose nanocapsules encapsulating a photochromic dye. Photochromic nanocapsules were prepared by the emulsion-solvent evaporation method. The acoustic densities entering the system were systematically studied with respect to their abilities to modify and reduce the average sizes and polydispersity indexes of the nanocapsules. Scanning electron microscope, confocal laser microscope, and dynamic light scattering were utilised to characterise the structure, shape, size, and polydispersity of ethyl cellulose photochromic nanocapsules. We were able to tailor the size of the photochromic nanocapsules simply by varying the acoustic densities entering the system. At an acoustic density of 1.5 W/mL and 60 s of continuous irradiation, we were able to prepare an almost monodispersed population of the nanocapsules with an average size of 193 nm.

  8. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2015-11-01

    Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated. The high efficient nanocapsules were prepared with spherical shape and smooth surface. The average size of nanocapsules prepared through ultrasonic using aluminum chloride (22nm) was smaller than other products. The structure of prepared nanocapsules was studied by FT-IR spectroscopy. Antimicrobial activity of different nanocapsules against Escherichia coli, Staphylococcus aureus and Candida albicans was investigated by shake flask method during their release showed 100% microbial reduction after 12h stirring. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rational design of protamine nanocapsules as antigen delivery carriers.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Presas, Elena; Dalmau-Mena, Inmaculada; Martínez-Pulgarín, Susana; Alonso, Covadonga; Escribano, José M; Alonso, María J; Csaba, Noemi Stefánia

    2017-01-10

    Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    Science.gov (United States)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  11. Evaluation on carbon nanocapsules for supercapacitors using a titanium cavity electrode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yeou; Wu, Pu-Wei; Lin, Pang [Department of Materials Science and Engineering, National Chiao Tung University Hsin-Chu 300 (China)

    2010-08-01

    We synthesize carbon nanocapsules (CNCs) by a flame combustion method and evaluate their potential as the electrode material for electrochemical double layer capacitor using a titanium cavity electrode (TCE). Identical process is conducted on commercially available carbonaceous materials such as Vulcan XC72R, Black Pearl 2000 (BP2000), multi-walled carbon nanotubes (MWCNTs), and active carbon (AC1100) for comparison purposes. Images from Scanning electron microscope and Transmission electron microscope on the CNCs demonstrate irregular-shaped particles in average size of 10-20 nm with graphene layers on perimeter compassing a hollow core. Electrochemical characterizations including cyclic voltammetry (CV), current reversal chronopotentiometry (CRC), and impedance spectroscopy are carried out in 1N H{sub 2}SO{sub 4} to determine the specific capacitance and cycle life time. Among these samples, the BP2000 still delivers the highest specific capacitance in F g{sup -1} but the CNCs demonstrate the largest value in {mu}F cm{sup 2}. In addition, the CNCs exhibit impressive life time for 5000 cycles without notable degradation. Consistent results are obtained by CV, CRC, and impedance measurements, validating the TCE as a facile tool to perform reliable electrochemical evaluations. (author)

  12. Fumed silica. Fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Sukawa, T.; Shirono, H. (Nippon Aerosil Co. Ltd., Tokyo (Japan))

    1991-10-18

    The fumed silica is explained in particulate superfineness, high purity, high dispersiveness and other remarkable characteristics, and wide application. The fumed silica, being presently produced, is 7 to 40nm in average primary particulate diameter and 50 to 380m{sup 2}/g in specific surface area. On the surface, there coexist hydrophilic silanol group (Si-OH) and hydrophobic siloxane group (Si-O-Si). There are many characteristics, mutually different between the fumed silica, made hydrophobic by the surface treatment, and untreated hydrophilic silica. The treated silica, if added to the liquid product, serves as agent to heighten the viscosity, prevent the sedimentation and disperse the particles. The highest effect is given to heighten the viscosity in a region of 4 to 9 in pH in water and alcohol. As filling agent to strengthen the elastomer and polymer, and powder product, it gives an effect to prevent the consolidation and improve the fluidity. As for its other applications, utilization is made of particulate superfineness, high purity, thermal insulation properties and adsorption characteristics. 2 to 3 patents are published for it as raw material of quartz glass. 38 refs., 16 figs., 4 tabs.

  13. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Cytotoxicity and genotoxicity of lipid nanocapsules.

    Science.gov (United States)

    Le Roux, Gaël; Moche, Hélène; Nieto, Alejandro; Benoit, Jean-Pierre; Nesslany, Fabrice; Lagarce, Frédéric

    2017-06-01

    Lipid nanocapsules (LNCs) offer a promising method for the entrapment and nanovectorisation of lipophilic molecules. This new type of nanocarrier, formulated according to a solvent-free process and using only regulatory-approved components, exhibits many prerequisites for being well tolerated. Although toxicological reference values have already been obtained in mice, interaction of LNCs at the cell level needs to be elucidated. LNCs, measuring from 27.0±0.1nm (25nm LNCs) and 112.1±1.8nm (100nm LNCs) and with a zeta potential between -38.7±1.2mV and +9.18±0.4mV, were obtained by a phase inversion process followed by post-insertion of carboxy- or amino-DSPE-PEG. Trypan blue, MTS and neutral red uptake (NRU) assays were performed to evaluate the cytotoxicity of LNCs on mouse macrophage-like cells RAW264.7 after 24h of exposure. The determination of 50% lethal concentration (LC50) showed a size effect of LNCs on toxicity profiles: LC50 ranged from 1.036mg/L (MTS) and 0.477mg/mL (NRU) for 25nm LNCs, to 4.42mg/mL (MTS) and 2.18mg/mL (NRU) for 100nm LNCs. Surfactant Solutol® HS15 has been shown to be the only constituent to exhibit cytotoxicity; its LC50 reached 0.427mg/mL. Moreover, LNCs were not more toxic than their components in simple mixtures. At sublethal concentration, 100nm LNCs only were able to induce a significant production of nitric oxide (NO) by RAW264.7 cells, as assessed by the Griess reaction. Again, surfactant was the only component responsible for an increased NO release (1.8±0.2-fold). Genotoxicity assays revealed no DNA damage on human lymphocytes in both the in vitro Comet and micronucleus assays using 4-hour and 24-hour treatments, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Directory of Open Access Journals (Sweden)

    Zhong Kuo

    2018-03-01

    Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  16. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    Science.gov (United States)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  17. Polymeric nanocapsules ultra stable in complex biological media

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Emmenegger, Cesar Adolfo; Jäger, Alessandro; Jäger, Eliezer; Štěpánek, Petr; Bologna Alles, A.; Guterres, S. S.; Pohlmann, A. R.; Brynda, Eduard

    2011-01-01

    Roč. 83, č. 2 (2011), s. 376-381 ISSN 0927-7765 R&D Projects: GA AV ČR KAN200670701; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : core/shell nanocapsules * biodegradable * antifouling coating Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.456, year: 2011

  18. Polylactic Acid?Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    OpenAIRE

    Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D?Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-01-01

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence micro...

  19. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  20. Developments in the use of nanocapsules in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Yurgel, V.; Collares, T.; Seixas, F., E-mail: seixas.fk@gmail.com [Universidade Federal de Pelotas, RS (Brazil). Unidade de Biotecnologia. Centro de Desenvolvimento Tecnologico. Grupo de Pesquisa em Oncologia Celular e Molecular

    2013-06-15

    The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis. (author)

  1. Developments in the use of nanocapsules in oncology

    Directory of Open Access Journals (Sweden)

    V. Yurgel

    Full Text Available The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.

  2. Developments in the use of nanocapsules in oncology

    Directory of Open Access Journals (Sweden)

    V. Yurgel

    2013-06-01

    Full Text Available The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.

  3. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -P.; Gopalan, A. I.; Philips, M. F.; Jeong, K.M., E-mail: kplee@knu.ac.kr [Department of Chemistry Education, Teacher' s College, Kyungpook National University 1370, Sankyuk-dong, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2010-07-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics.

  4. Gamma Radiation Induced Preparation of Functional Conducting Polymer Hollow Spheres

    International Nuclear Information System (INIS)

    Lee, K.-P.; Gopalan, A.I.; Philips, M.F.; Jeong, K.M.

    2010-01-01

    New materials are sought for applications in many of the emerging fields that include catalysis, sensors, biomedical, optics and electronic application. With the advent of nanotechnology, innovative materials with novel properties are being synthesized towards target applications. Changing the sizes of particles, chemical, optical, and mechanical properties of the materials can often be tailored according to the specific needs of the application. Nanocrystalline, nanoparticles, nanocapsules, nanoporous materials, nanofibers, nanowires, fullerenes, nanotubes, nanosprings, nanobelts, dendrimers and nanospheres, ets, are few of the nanostructured materials. The examples of nanostructured materials include semiconducting nanowire quantum dots for gas sensing and self-assembled flower-like architectures. Self-assembly of nanoparticles can result in specific structures with unique and useful electronic, optical, and magnetic properties. Self or induced assemby of simple nanoparticles and rods could result into complex geometries, such as nanoflowers, binary superlattices, optical grating. Over the past decade, hollow spherical nanomaterials have received considerable attention due to their interesting properties such as low density, high surface area and good permeation. Various methods like solvothermal, self-assembly, sonochemical, solvent evaporation, chemical vapor deposition, microwave-assisted aqueous hydrothermal and electrochemical are being pursued for the production of hollow spherical materials. Polymer capsules and hollow spheres have increasingly received interest because of their large surface area and potential applications in catalysis, controlled delivery, artificial cells, light fillers and photonics

  5. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance

    Science.gov (United States)

    Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.

    2018-01-01

    Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).

  6. Biocompatible lutein-polymer-lipid nanocapsules: Acute and subacute toxicity and bioavailability in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, Arunkumar; Hindupur, Ravi; Vallikannan, Baskaran, E-mail: baskaranv@cftri.res.in

    2016-12-01

    Lutein-poly-(lactic-co-glycolic acid) (PLGA)-phospholipid (PL) nanocapsules were prepared (henceforth referred as lutein nanocapsules) and studied for acute, subacute oral toxicity and bioavailability of lutein in mice. Prior to examining the safety of lutein nanocapsules, particle size, zeta potential, surface morphology and interaction between lutein, PLGA and PL were studied. In acute study, mice were gavaged with a single dose of lutein nanocapsules at 0.1, 1, 10 and 100 mg/kg body weight (BW) and examined for 2 weeks, while in subacute study, daily mice were gavaged with a dose of 1 and 10 mg/kg BW for 4 weeks. Results revealed that mean size and zeta value of lutein nanocapsules were 140 nm and − 44 mV, respectively. Acute and subacute toxicity studies did not show any mortality or treatment related adverse effect in clinical observations, ophthalmic examinations, body and organ weights. No toxicity related findings were observed in hematology, histopathology and other blood and tissue clinical chemistry parameters. In subacute study, no observed adverse effect level (NOAEL) of lutein nanocapsules was found to be at a dose of 10 mg/kg BW. Feeding lutein nanocapsules resulted in a significant (p < 0.01) increase in lutein level in plasma and tissue compared to the control group. Lutein nanocapsules did not cause toxicity in mice. However, human trials are warranted. - Highlights: • Acute and subacute toxicity studies of lutein-PLGA-PL showed no toxicity. • PLGA-PL nanocapsules were safe carriers for oral delivery of lutein. • Oral gavage of lutein-PLGA-PL nanocapsule improves plasma lutein levels.

  7. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wujie; He Xiaoming [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Rong Jianhua; Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)], E-mail: xmhe@sc.edu

    2009-07-08

    The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M{sub W} = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 deg. C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 deg. C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 deg. C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.

  8. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    Science.gov (United States)

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  9. Labeling the oily core of nanocapsules and lipid-core nanocapsules with a triglyceride conjugated to a fluorescent dye as a strategy to particle tracking in biological studies

    Science.gov (United States)

    Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin

    2014-05-01

    The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter ( D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) ( z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected

  10. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    Science.gov (United States)

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  11. Characterization of Different Functionalized Lipidic Nanocapsules as Potential Drug Carriers

    Directory of Open Access Journals (Sweden)

    José Manuel Peula-García

    2012-02-01

    Full Text Available Lipid nanocapsules (LNC based on a core-shell structure consisting of an oil-filled core with a surrounding polymer layer are known to be promising vehicles for the delivery of hydrophobic drugs in the new therapeutic strategies in anti-cancer treatments. The present work has been designed as basic research about different LNC systems. We have synthesized—and physico-chemically characterized—three different LNC systems in which the core was constituted by olive oil and the shell by different phospholipids (phosphatidyl-serine or lecithin and other biocompatible molecules such as Pluronic® F68 or chitosan. It is notable that the olive-oil-phosphatidyl-serine LCN is a novel formulation presented in this work and was designed to generate an enriched carboxylic surface. This carboxylic layer is meant to link specific antibodies, which could facilitate the specific nanocapsule uptake by cancer cells. This is why nanoparticles with phosphatidyl-serine in their shell have also been used in this work to form immuno-nanocapsules containing a polyclonal IgG against a model antigen (C-reactive protein covalently bounded by means of a simple and reproducible carbodiimide method. An immunological study was made to verify that these IgG-LNC complexes showed the expected specific immune response. Finally, a preliminary in vitro study was performed by culturing a breast-carcinoma cell line (MCF-7 with Nile-Red-loaded LNC. We found that these cancer cells take up the fluorescent Nile-Red molecule in a process dependent on the surface properties of the nanocarriers.

  12. Thermally stable silica-coated hydrophobic gold nanoparticles.

    Science.gov (United States)

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  13. Nanocapsule@xerogel microparticles containing sodium diclofenac: a new strategy to control the release of drugs.

    Science.gov (United States)

    da Fonseca, Letícia Sias; Silveira, Rodrigo Paulo; Deboni, Alberto Marçal; Benvenutti, Edilson Valmir; Costa, Tânia M H; Guterres, Sílvia S; Pohlmann, Adriana R

    2008-06-24

    The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.

  14. Core–shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ünal, Hale, E-mail: unalhale@gmail.com [Hacettepe University, Division of Nanotechnology and Nanomedicine, Institute of Pure and Applied Science (Turkey); D’Angelo, Ivana [Second University of Napoli, Di.S.T.A.Bi.F. (Italy); Pagano, Ester; Borrelli, Francesca; Izzo, Angelo; Ungaro, Francesca; Quaglia, Fabiana [University of Naples Federico II, Department of Pharmacy (Italy); Bilensoy, Erem [Hacettepe University, Division of Nanotechnology and Nanomedicine, Institute of Pure and Applied Science (Turkey)

    2015-01-15

    The objective of this study was to design and in vitro–in vivo evaluate oral nanocapsules prepared from amphiphilic cyclodextrins (CDs) or poly-ε-caprolactone (PCL) for the effective oral delivery of an anticancer agent, camptothecin (CPT). CPT-loaded anionic and Chitosan (CS)-coated cationic nanocapsules were prepared and characterized in vitro. Morphological analysis was performed by scanning electron microscope (SEM). CPT release profile was evaluated using dialysis method under sink conditions. To determine the protective effect and drug stability provided by nanocapsules, all the formulations were incubated in simulated gastrointestinal media. Measurement of mucoadhesive tendency of CPT-loaded nanocapsules was realized by turbidimetric method. Penetration of nanocapsules was performed through an artificial mucus model. The permeability of CPT in solution form and bound to nanocapsule formulations were demonstrated across Caco-2 cell line. Finally, the intestinal uptake of nanocapsules was evaluated in vivo, in a mouse model. Both anionic and cationic formulations were in the range of 180–220 nm with a narrow size distribution and desired zeta potential values. CPT-loaded nanocapsules were found to be stable in simulated gastrointestinal media. Turbidimetric measurements confirmed the interaction between nanoparticles and mucin. Penetration of CPT through an artificial mucus gel layer was higher with CS-coated nanocapsules in accordance with the results obtained from permeability studies across Caco-2 cell line. In vivo animal studies confirmed that the intestinal uptake of nanocapsules was significantly higher with cationic nanocapsules. CPT-loaded positively charged CD nanocapsules might be an attractive and promising treatment for oral chemotherapy.

  15. Core–shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Ünal, Hale; D’Angelo, Ivana; Pagano, Ester; Borrelli, Francesca; Izzo, Angelo; Ungaro, Francesca; Quaglia, Fabiana; Bilensoy, Erem

    2015-01-01

    The objective of this study was to design and in vitro–in vivo evaluate oral nanocapsules prepared from amphiphilic cyclodextrins (CDs) or poly-ε-caprolactone (PCL) for the effective oral delivery of an anticancer agent, camptothecin (CPT). CPT-loaded anionic and Chitosan (CS)-coated cationic nanocapsules were prepared and characterized in vitro. Morphological analysis was performed by scanning electron microscope (SEM). CPT release profile was evaluated using dialysis method under sink conditions. To determine the protective effect and drug stability provided by nanocapsules, all the formulations were incubated in simulated gastrointestinal media. Measurement of mucoadhesive tendency of CPT-loaded nanocapsules was realized by turbidimetric method. Penetration of nanocapsules was performed through an artificial mucus model. The permeability of CPT in solution form and bound to nanocapsule formulations were demonstrated across Caco-2 cell line. Finally, the intestinal uptake of nanocapsules was evaluated in vivo, in a mouse model. Both anionic and cationic formulations were in the range of 180–220 nm with a narrow size distribution and desired zeta potential values. CPT-loaded nanocapsules were found to be stable in simulated gastrointestinal media. Turbidimetric measurements confirmed the interaction between nanoparticles and mucin. Penetration of CPT through an artificial mucus gel layer was higher with CS-coated nanocapsules in accordance with the results obtained from permeability studies across Caco-2 cell line. In vivo animal studies confirmed that the intestinal uptake of nanocapsules was significantly higher with cationic nanocapsules. CPT-loaded positively charged CD nanocapsules might be an attractive and promising treatment for oral chemotherapy

  16. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    Science.gov (United States)

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  17. Synthesis and characterisation of PEG modified chitosan nanocapsules loaded with thymoquinone.

    Science.gov (United States)

    Vignesh Kumar, Suresh Kumar; Renuka Devi, Ponnuswamy; Harish, Saru; Hemananthan, Eswaran

    2017-02-01

    Thymoquinone (TQ), a major bioactive compound of Nigella sativa seeds has several therapeutic properties. The main drawback in bringing TQ to therapeutic application is that it has poor stability and bioavailability. Hence a suitable carrier is essential for TQ delivery. Recent studies indicate biodegradable polymers are potentially good carriers of bioactive compounds. In this study, polyethylene glycol (PEG) modified chitosan (Cs) nanocapsules were developed as a carrier for TQ. Aqueous soluble low molecular weight Cs and PEG was selected among different biodegradable polymers based on their biocompatibility and efficacy as a carrier. Optimisation of synthesis of nanocapsules was done based on particle size, PDI, encapsulation efficiency and process yield. A positive zeta potential value of +48 mV, indicating good stability was observed. Scanning electron microscope and atomic-force microscopy analysis revealed spherical shaped and smooth surfaced nanocapsules with size between 100 to 300 nm. The molecular dispersion of the TQ in Cs PEG nanocapsules was studied using X-ray powder diffraction. The Fourier transform infrared spectrum of optimised nanocapsule exhibited functional groups of both polymer and drug, confirming the presence of Cs, PEG and TQ. In vitro drug release studies showed that PEG modified Cs nanocapsules loaded with TQ had a slow and sustained release.

  18. Benzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules: factorial design and characterization

    International Nuclear Information System (INIS)

    Morales Moraes, Carolina; Prado de Matos, Angelica; Paula, Eneida de; Rosa, Andre Henrique; Fernandes Fraceto, Leonardo

    2009-01-01

    Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables on response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12, an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nanocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment.

  19. Benzocaine loaded biodegradable poly-(D,L-lactide-co-glycolide) nanocapsules: factorial design and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Morales Moraes, Carolina; Prado de Matos, Angelica; Paula, Eneida de [Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP (Brazil); Rosa, Andre Henrique [Department of Environmental Engineering, State University of Sao Paulo, Sorocaba, Sao Paulo (Brazil); Fernandes Fraceto, Leonardo, E-mail: leonardo@sorocaba.unesp.b [Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP (Brazil); Department of Environmental Engineering, State University of Sao Paulo, Sorocaba, Sao Paulo (Brazil)

    2009-12-15

    Local anesthetics are able to induce pain relief since they bind to the sodium channel of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Benzocaine (BZC) is a local anesthetic that presents limited application in topical formulations due to its low water-solubility. This study aimed to develop polymeric nanocapsules as a drug delivery system for the local anesthetic benzocaine (BZC). To do so, BZC loaded poly(D,L-lactide-co-glycolide) (PLGA) nanocapsules were prepared using the nanoprecipitation method and were characterized. The factorial experimental design was used to study the influence of four different independent variables on response to nanocapsules drug loading. The physical characteristics of PLGA nanocapsules were evaluated by analyzing the particle size, the polydispersion index and the zeta potential, using a particle size analyzer. The results of the optimized formulation showed a size distribution with a polydispersity index of 0.12, an average diameter of 123 nm, zeta potential of -33.6 mV and a drug loading of more than 69%. The release profiles showed a significant difference in the release behavior for the pure drug in solution when compared with that containing benzocaine loaded PLGA nanocapsules. Thus, the prepared nanocapsules described here may be of clinical importance in both the processes of stabilization and delivery of benzocaine for pain treatment.

  20. Silica Nephropathy

    Directory of Open Access Journals (Sweden)

    N Ghahramani

    2010-06-01

    Full Text Available Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2 is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600–7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents.

  1. Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo

    2016-04-20

    Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  2. Nanocapsules with fluorous filling: A "molecular zipper" approach

    KAUST Repository

    Merican, Zulkifli

    2014-11-26

    Considerable effort has been devoted to thesynthesis of liquid filled microcapsules and nanocapsules owing to their general usefulness. The DCM solution was combined with an equal volume of the aqueous solution of sodium dodecylsulfate (SDS), and the biphasic mixture was subjected to high-power ultrasound treatment. Furthermore, it is likely that the interlocking of the polymer chains in the hydrophobic layer of the capsule shells leads to objects that are strong and stable. It is worth noting that the cryo-TEM images were obtained for a sample that was more than 30 days old. The self-assembly of capsule shells and their stability depend on the nature and size of both hydrophobic and hydrophilic polymer blocks.

  3. Nanocapsules with fluorous filling: A "molecular zipper" approach

    KAUST Repository

    Merican, Zulkifli; Mugemana, Clement; Almahdali, Sarah; Vu, Khanh B.; O'Shea, John Paul; Sougrat, Rachid; Rodionov, Valentin

    2014-01-01

    Considerable effort has been devoted to thesynthesis of liquid filled microcapsules and nanocapsules owing to their general usefulness. The DCM solution was combined with an equal volume of the aqueous solution of sodium dodecylsulfate (SDS), and the biphasic mixture was subjected to high-power ultrasound treatment. Furthermore, it is likely that the interlocking of the polymer chains in the hydrophobic layer of the capsule shells leads to objects that are strong and stable. It is worth noting that the cryo-TEM images were obtained for a sample that was more than 30 days old. The self-assembly of capsule shells and their stability depend on the nature and size of both hydrophobic and hydrophilic polymer blocks.

  4. Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules

    International Nuclear Information System (INIS)

    Siqueira-Moura, Marigilson P.; Primo, Fernando L.; Espreafico, Enilza M.; Tedesco, Antonio C.

    2013-01-01

    In this work we have developed nanocapsules containing chloroaluminum phthalocyanine (ClAlPc) and assessed their phototoxic action on WM1552C, WM278, and WM1617 human melanoma cell lines. The ClAlPc-loaded nanocapsules were prepared by the nanoprecipitation method and optimized by means of a 2 3 full factorial design. The ClAlPc nanocapsules were characterized by particle size and distribution, zeta potential, morphology, encapsulation efficiency, singlet oxygen production, stability, and phototoxic action on melanoma cells. Both the development and optimization studies revealed that stable colloidal formulations could be obtained by using 1.75% (w/v) soybean lecithin, 1.25% (w/v) Poloxamer 188, 2.5% (v/v) soybean oil, and 0.75% (w/v) poly(D,L-lactide-co-glycolide). The nanocapsules had a mean diameter of 230 nm, homogeneous size distribution (polydispersity index −1 ) under light irradiation at 20 mJ cm −2 . On the other hand, the cell survival percentage for all the melanoma cell lines treated with the highest light dose (150 mJ cm −2 ) was lower than 10%. In summary, ClAlPc nanoencapsulation could enable application of this hydrophobic photosensitizer in the treatment of malignant melanoma with the use of both low sensitizer drug concentration and light dose. - Highlights: ► Nanocapsules containing a hydrophobic metallophthalocyanine (ClAlPc) were developed. ► The colloidal formulations were characterized by their physicochemical parameters. ► ClAlPc nanocapsules were used for the photosensitization of human melanoma cell lines. ► Phototoxicity was achieved with low ClAlPc nanocapsules concentration and light dose

  5. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis

    NARCIS (Netherlands)

    Hamelers, I.H.L.; Staffhorst, R.W.H.M.; Voortman, J.; de Kruijff, B.; Reedijk, J.; van Bergen en Henegouwen, P.M.P.; de Kroon, A.I.P.M.

    2009-01-01

    Purpose: Cisplatin nanocapsules, nanoprecipitates of cisplatin encapsulated in phospholipid bilayers, exhibit increased in vitro toxicity compared with the free drug toward a panel of human ovarian carcinoma cell lines. To elucidate the mechanism of cell killing by nanocapsules and to understand the

  6. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  7. A Novel Melt-Dispersion Technique for Simplistic Preparation of Chlorpromazine-Loaded Polycaprolactone Nanocapsules

    Directory of Open Access Journals (Sweden)

    Thiresen Govender

    2015-06-01

    Full Text Available The aim of this study was to design, synthesize and optimize chlorpromazine hydrochloride (CPZ-loaded, poly-ε-caprolactone (PCL based nanocapsules, intended for site specific delivery to the frontal lobe, using a novel melt-dispersion technique that is non-arduous, inexpensive and devoid of any hazardous organic solvents. Experimental trials using a central composite design were performed on 13 statistically derived formulations of various combinations of PCL (1000–3000 mg and Polysorbate 80 (2%–5% v/v on the physicochemical and physicomechanical properties and interactive effects on PCL nanocapsule formulation. Differential scanning calorimetry (DSC, Temperature modulated differential scanning calorimetry (TMDSC and Fourier transform infrared spectroscopy (FTIR revealed that there was no thermodegardation of the constituents utilized in the melt dispersion technique. Nanocapsule yields achieved were very high however entrapment of CPZ proved to be relatively low due to the highly hydrophilic nature of CPZ and the processing of the nanocapsules post synthesis. Nanocapsule sizes were in the nanotherapeutic range and varied from 132.7 ± 6.8 nm to 566.6 ± 5.5 nm. Zeta potential ranged from 15.1 ± 0.65 mV to 28.8 ± 0.84 mV revealing capsules that were of incipient to moderate stability. Transmission electron microscopy revealed nanocapsules that were spherical shape, well individualized with a moderate degree of flocculation. In vitro CPZ release was biphasic for all formulations with an initial burst release followed by pseudo-steady controlled release over 30 days. The cytotoxicity of the optimized nanocapsule system on a PC12 neuronal cell line proved to be minimal. Following incorporation of the optimized nanocapsules within a polymeric membrane, in vivo implantation of the device in a New Zealand Albino rabbit model proved the efficacy of the system in achieving prolonged more targeted CPZ levels to the brain. Extensive in vitro

  8. Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira-Moura, Marigilson P. [Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Primo, Fernando L. [Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Espreafico, Enilza M. [Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Tedesco, Antonio C., E-mail: atedesco@usp.br [Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil)

    2013-04-01

    In this work we have developed nanocapsules containing chloroaluminum phthalocyanine (ClAlPc) and assessed their phototoxic action on WM1552C, WM278, and WM1617 human melanoma cell lines. The ClAlPc-loaded nanocapsules were prepared by the nanoprecipitation method and optimized by means of a 2{sup 3} full factorial design. The ClAlPc nanocapsules were characterized by particle size and distribution, zeta potential, morphology, encapsulation efficiency, singlet oxygen production, stability, and phototoxic action on melanoma cells. Both the development and optimization studies revealed that stable colloidal formulations could be obtained by using 1.75% (w/v) soybean lecithin, 1.25% (w/v) Poloxamer 188, 2.5% (v/v) soybean oil, and 0.75% (w/v) poly(D,L-lactide-co-glycolide). The nanocapsules had a mean diameter of 230 nm, homogeneous size distribution (polydispersity index < 0.3), and negative zeta potential (about − 30 mV). Their morphology was spherical, with evident polymer membrane coating droplet. The encapsulation efficiency was 70%, as expected for hydrophobic drugs, and the nanoencapsulated ClAlPc was able to produce high singlet oxygen quantum yield. ClAlPc nanocapsules exhibited good physical stability over a 12-month period. WM1552C primary melanoma cells were more sensitive (p < 0.05) to the phototoxic effect elicited by ClAlPc nanocapsules (0.3 μg ml{sup −1}) under light irradiation at 20 mJ cm{sup −2}. On the other hand, the cell survival percentage for all the melanoma cell lines treated with the highest light dose (150 mJ cm{sup −2}) was lower than 10%. In summary, ClAlPc nanoencapsulation could enable application of this hydrophobic photosensitizer in the treatment of malignant melanoma with the use of both low sensitizer drug concentration and light dose. - Highlights: ► Nanocapsules containing a hydrophobic metallophthalocyanine (ClAlPc) were developed. ► The colloidal formulations were characterized by their physicochemical parameters

  9. Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: a potential for breast cancer treatment.

    Science.gov (United States)

    Safwat, Sally; Hathout, Rania M; Ishak, Rania A; Mortada, Nahed D

    2017-03-01

    We noticed paucity in exploiting solutol-based lipid nanocapsules in statins formulations though they carry all favorable properties that are needed for cancer passive targeting such as their small particle size, stealth properties, ability to highly accommodate lipophilic drugs, good internalization and P-gp pump inhibition. The aim of this study was to design and optimize new simvastatin drug delivery systems; lipid nanocapsules intended for administration through the intravenous route as potential treatment for breast cancer. Optimized nanocapsules were prepared by the phase-inversion method according to a D-optimal mixture design, characterized and assessed for their cytotoxicity. Three successful models for particle size, polydispersity index (PDI) and percentage of drug released after 48 h were generated. The prepared lipid nanocapsules acquired spherical and homogenous morphology, good stability and tolerance to sterilization. The obtained release profiles demonstrated desired sustained release pattern. Furthermore, testing selected formulations on human breast cancer adenocarcinoma cells showed augmented cytotoxicity of simvastatin reaching low IC50 values as 1.4 ± 0.02 μg/ml compared to the pure drug. The proposed lipid nanocapsules pose promising candidates as simvastatin carriers intended for the targeting of breast cancer.

  10. Intracellular localisation of proteins to specific cellular areas by nanocapsule mediated delivery.

    Science.gov (United States)

    Wang, Huabin; Chen, Ligang; Sun, Xianchao; Fu, Ailing

    2017-09-01

    Nanocapsules are promising carriers with great potential for intracellular protein transport. Although many studies have intended to improve cell uptake efficacy, there is an increasing interest in understanding of subcellular distribution of cargoes inside cells, which is essential for purposeful delivery of biomolecules into specific sites within cells. Herein, we interrogate the intracellular localisation of exogenous proteins, including fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) and green fluorescent protein (GFP), mediated by specially designed nanocapsules. The results show that the designed nanocapsules can deliver the two types of fluorescent proteins into different cellular destinations (cytosol, nucleus or the whole cell), depending on the composition of nanocapsules. Meanwhile, several impact factors that influence the distribution of proteins in cells have also been investigated, and the results suggest that the localisation of capsule-mediated proteins in cells is strongly affected by the surface properties of nanocapsules, the types of stabilisers and proteins, and environmental temperatures. The rational control of intracellular localised delivery of exogenous proteins as we demonstrated in this study might open new avenues to obtain desired magnitude of drug effects for modulating cell activity.

  11. Breaking the glass ceiling: hollow OmniGuide fibers

    Science.gov (United States)

    Johnson, Steven G.; Ibanescu, Mihai; Skorobogatiy, Maksim A.; Weisberg, Ori; Engeness, Torkel D.; Soljacic, Marin; Jacobs, Steven A.; Joannopoulos, John D.; Fink, Yoel

    2002-04-01

    We argue that OmniGuide fibers, which guide light within a hollow core by concentric multilayer films having the property of omnidirectional reflection, have the potential to lift several physical limitations of silica fibers. We show how the strong confinement in OmniGuide fibers greatly suppresses the properties of the cladding materials: even if highly lossy and nonlinear materials are employed, both the intrinsic losses and nonlinearities of silica fibers can be surpassed by orders of magnitude. This feat, impossible to duplicate in an index-guided fiber with existing materials, would open up new regimes for long-distance propagation and dense wavelength-division multiplexing (DWDM). The OmniGuide-fiber modes bear a strong analogy to those of hollow metallic waveguides; from this analogy, we are able to derive several general scaling laws with core radius. Moreover, there is strong loss discrimination between guided modes, depending upon their degree of confinement in the hollow core: this allows large, ostensibly multi-mode cores to be used, with the lowest-loss TE01 mode propagating in an effectively single-mode fashion. Finally, because this TE01 mode is a cylindrically symmetrical ('azimuthally' polarized) singlet state, it is immune to polarization-mode dispersion (PMD), unlike the doubly-degenerate linearly-polarized modes in silica fibers that are vulnerable to birefringence.

  12. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  13. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine towards maize plants

    Science.gov (United States)

    Oliveira, Halley; Stolf-Moreira, Renata; Martinez, Cláudia; Sousa, Gustavo; Grillo, Renato; de Jesus, Marcelo; Fraceto, Leonardo

    2015-10-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were ten-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL-1), maize plants presented 15 and 21 % decreases in maximum quantum yield of photosystem II and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected four and eight days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a ten-fold lower concentration (0.1 mg mL-1), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth.

  14. Photoresponsive nanocapsulation of cobra neurotoxin and enhancement of its central analgesic effects under red light

    Directory of Open Access Journals (Sweden)

    Yang Q

    2017-05-01

    Full Text Available Qian Yang, Chuang Zhao, Jun Zhao, Yong Ye Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, People’s Republic of China Abstract: Cobra neurotoxin (CNT, a peptide isolated from snake venom of Naja naja atra, shows central analgesic effects in our previous research. In order to help CNT pass through blood–brain barrier (BBB and improve its central analgesic effects, a new kind of CNT nanocapsules were prepared by double emulsification with soybean lecithin and cholesterol as the shell, and pheophorbide as the photosensitizer added to make it photoresponsive. The analgesic effects were evaluated by hot plate test and acetic acid-induced writhing in mice. The CNT nanocapsules had an average particle size of 229.55 nm, zeta potential of -53.00 mV, encapsulation efficiency of 84.81% and drug loading of 2.98%, when the pheophorbide content was 1% of lecithin weight. Pheophorbide was mainly distributed in outer layer of the CNT nanocapsules and increased the release of the CNT nanocapsules after 650 nm illumination. The central analgesic effects were improved after intraperitoneal injection of CNT at 25 and 50 µg·kg-1 under 650 nm irradiation for 30 min in the nasal cavity. Activation of pheophorbide by red light generated reactive oxygen species which opened the nanocapsules and BBB and helped the CNT enter the brain. This research provides a new drug delivery for treatment of central pain. Keywords: cobra neurotoxin, nanocapsules, photoresponsive, central analgesic effects, red light, drug delivery, photosensitizer

  15. Evaluation of the side effects of poly(epsilon-caprolactone nanocapsules containing atrazine towards maize plants

    Directory of Open Access Journals (Sweden)

    Halley Caixeta Oliveira

    2015-10-01

    Full Text Available Poly(epsilon-caprolactone (PCL nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were ten-fold more effective in the control of mustard plants (a target species, as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.. One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL-1, maize plants presented 15 and 21 % decreases in maximum quantum yield of photosystem II and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected four and eight days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a ten-fold lower concentration (0.1 mg mL-1, a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting

  16. Polyelectrolyte-coated nanocapsules containing undecylenic acid: Synthesis, biocompatibility and neuroprotective properties.

    Science.gov (United States)

    Piotrowski, Marek; Jantas, Danuta; Szczepanowicz, Krzysztof; Łukasiewicz, Sylwia; Lasoń, Władysław; Warszyński, Piotr

    2015-11-01

    The main objectives of the present study were to investigate the biocompatibility of polyelectrolyte-coated nanocapsules and to evaluate the neuroprotective action of the nanoencapsulated water-insoluble neuroprotective drug-undecylenic acid (UDA), in vitro. Core-shell nanocapsules were synthesized using nanoemulsification and the layer-by-layer (LbL) technique (by saturation method). The average size of synthesized nanocapsules was around 80 nm and the concentration was 2.5 × 10(10) particles/ml. Their zeta potential values ranged from less than -30 mV for the ones with external polyanion layers through -4 mV for the PEG-ylated layers to more than 30 mV for the polycation layers. Biocompatibility of synthesized nanocarriers was evaluated in the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). The results obtained showed that synthesized nanocapsules coated with PLL and PGA (also PEG-ylated) were non-toxic to SH-SY5Y cells, therefore, they were used as nanocarriers for UDA. Moreover, studies with ROD/FITC-labeled polyelectrolytes demonstrated approximately 20% cellular uptake of synthetized nanocapsules. Further studies showed that nanoencapsulated form of UDA was biocompatible and protected SH-SY5Y cells against the staurosporine-induced damage in lower concentrations than those of the same drug added directly to the culture medium. These data suggest that designed nanocapsules might serve as novel, promising delivery systems for neuroprotective agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Science.gov (United States)

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  18. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2011-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a)extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  19. HOLLOW FIBRE MEMBRANE

    NARCIS (Netherlands)

    Wessling, Matthias; Stamatialis, Dimitrios; Kopec, K.K.; Dutczak, S.M.

    2013-01-01

    The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a

  20. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC) and Lipid-Core Nanocapsules (LNC) on Bovine Embryo Culture Model.

    Science.gov (United States)

    Komninou, Eliza Rossi; Remião, Mariana Härter; Lucas, Caroline Gomes; Domingues, William Borges; Basso, Andrea Cristina; Jornada, Denise Soledade; Deschamps, João Carlos; Beck, Ruy Carlos Ruver; Pohlmann, Adriana Raffin; Bordignon, Vilceu; Seixas, Fabiana Kömmling; Campos, Vinicius Farias; Guterres, Silvia Stanisçuaski; Collares, Tiago

    2016-01-01

    Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin

  1. Effects of Two Types of Melatonin-Loaded Nanocapsules with Distinct Supramolecular Structures: Polymeric (NC and Lipid-Core Nanocapsules (LNC on Bovine Embryo Culture Model.

    Directory of Open Access Journals (Sweden)

    Eliza Rossi Komninou

    Full Text Available Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC and lipid-core (LNC nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel, melatonin-loaded polymeric nanocapsules (Mel-NC and melatonin-loaded lipid-core nanocapsules (Mel-LNC at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M, Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of

  2. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  3. Galactosylated DNA lipid nanocapsules for efficient hepatocyte targeting.

    Science.gov (United States)

    Morille, M; Passirani, C; Letrou-Bonneval, E; Benoit, J-P; Pitard, B

    2009-09-11

    The main objective of gene therapy via a systemic pathway is the development of a stable and non-toxic gene vector that can encapsulate and deliver foreign genetic materials into specific cell types with the transfection efficiency of viral vectors. With this objective, DNA complexed with cationic lipids of DOTAP/DOPE was encapsulated into lipid nanocapsules (LNCs) forming nanocarriers (DNA LNCs) with a size suitable for systemic injection (109+/-6 nm). With the goal of increasing systemic delivery, LNCs were stabilised with long chains of poly(ethylene glycol) (PEG), either from a PEG lipid derivative (DSPE-mPEG(2000)) or from an amphiphilic block copolymer (F108). In order to overcome internalisation difficulties encountered with PEG shield, a specific ligand (galactose) was covalently added at the distal end of the PEG chains, in order to provide active targeting of the asialoglycoprotein-receptor present on hepatocytes. This study showed that DNA LNCs were as efficient as positively charged DOTAP/DOPE lipoplexes for transfection. In primary hepatocytes, when non-galactosylated, the two polymers significantly decreased the transfection, probably by creating a barrier around the DNA LNCs. Interestingly, galactosylated F108 coated DNA LNCs led to a 18-fold increase in luciferase expression compared to non-galactosylated ones.

  4. Tumor transfection after systemic injection of DNA lipid nanocapsules.

    Science.gov (United States)

    Morille, Marie; Passirani, Catherine; Dufort, Sandrine; Bastiat, Guillaume; Pitard, Bruno; Coll, Jean-Luc; Benoit, Jean-Pierre

    2011-03-01

    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Antimicrobial Lemongrass Essential Oil—Copper Ferrite Cellulose Acetate Nanocapsules

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-04-01

    Full Text Available Cellulose acetate (CA nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs, with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.

  6. Eugenol nanocapsule for enhanced therapeutic activity against periodontal infections.

    Science.gov (United States)

    Pramod, Kannissery; Aji Alex, M R; Singh, Manisha; Dang, Shweta; Ansari, Shahid H; Ali, Javed

    2016-01-01

    Eugenol is a godsend to dental care due to its analgesic, local anesthetic, and anti-inflammatory and antibacterial effects. The aim of the present research work was to prepare, characterize and evaluate eugenol-loaded nanocapsules (NCs) against periodontal infections. Eugenol-loaded polycaprolactone (PCL) NCs were prepared by solvent displacement method. The nanometric size of the prepared NCs was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The in vitro drug release was found to follow a biphasic pattern and followed Michaelis-Menten like model. The percentage cell viability values near to 100 in the cell viability assay indicated that the NCs are not cytotoxic. In the in vivo studies, the eugenol NC group displayed significant difference in the continuity of epithelium of the interdental papilla in comparison to the untreated, pure eugenol and placebo groups. The in vivo performance of the eugenol-loaded NCs using ligature-induced periodontitis model in rats indicated that eugenol-loaded NCs could prevent septal bone resorption in periodontitis. On the basis of our research findings it could be concluded that eugenol-loaded PCL NCs could serve as a novel colloidal drug delivery system for enhanced therapeutic activity of eugenol in the treatment of periodontal infections.

  7. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    Science.gov (United States)

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  8. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-07-01

    Full Text Available Polylactic acid was combined with lemongrass essential oil (EO to produce functional nanocapsules (NCs. The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  9. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier

    International Nuclear Information System (INIS)

    Chen, Zhong-Hua; Yu, Fei; Zeng, Xing-Rong; Zhang, Zheng-Guo

    2012-01-01

    Highlights: ► We prepare nanocapsules containing n-dodecanol via miniemulsion polymerization. ► Polymerizable emulsifier plays important role in the preparation of nanocapsules. ► Adding co-emulsifier into water phase is helpful to encapsulate n-dodecanol. ► The phase change latent heat of nanocapsule is 98.8 J/g with temperature of 18.2 °C. -- Abstract: Nanocapsules containing phase change material (PCM) n-dodecanol as core and polymethyl methacrylate (PMMA) as shell were synthesized by miniemulsion polymerization with polymerizable emulsifier DNS-86 and co-emulsifier hexadecane (HD). The nanocapsules were characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and laser particle diameter analyzer. The effects of polymerizable emulsifier and co-emulsifier on the properties of nanocapsules were studied. The results show that thermal properties of nanocapsules are affected greatly by the addition methods of HD and the amounts of DNS-86 and HD. Adding HD into water phase is helpful for the encapsulation of n-dodecanol. When the mass ratios of DNS-86 to n-dodecanol and the mass ratios of HD to n-dodecanol were 3% and 2%, the phase change latent heat and the encapsulation efficiency of nanocapsules reached to the maximum value of 98.8 J/g and 82.2%, respectively. Spherical nanocapsules with mean diameter of 150 nm and phase change temperature of 18.2 °C are obtained, which are sure to have a good potential for energy storage.

  10. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  11. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  12. Curvature and position of nested tubes in hollow-core anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers where a symmetric distribution of cladding tubes compose a “negative-curvature” core boundary have extraordinary optical properties, such as low transmission loss, wide transmission bands and weak power overlap between the core modes and the silica parts [1...

  13. Er:YAG delamination of immersed biological membranes using sealed flexible hollow waveguides

    Science.gov (United States)

    Sagi-Dolev, A. M.; Dror, Jacob; Inberg, Alexandra; Ferencz, J. R.; Croitoru, Nathan I.

    1996-04-01

    The radiation of Er-YAG laser ((lambda) equals 2.94 micrometer) gives selective interaction with tissues. The extinction in soft tissues is only a few micrometers and in hard tissues is of the order of hundreds of micrometers. This makes this type of laser very suitable for treatments in dentistry, orthopedy, or ophthalmology. Because the usual silica fibers are not transmitting the radiation at lambda equals 2.94 micrometer of this laser, many applications cannot be presently performed. Fused silica hollow fibers for Er-YAG radiation were developed in our laboratory and several possible applications in dentistry, orthopedy and ophthalmology were indicated. Hole opening and implantation preparation of teeth were experimented, using Er-YAG laser and hollow plastic waveguide delivery systems. Hole drilling in cow bones was demonstrated for applications in orthopedy. A new procedure of delivering Er-YAG radiation on fibrotic membranes of inner eggshell as a model of the membranes in eyes was developed employing silica hollow waveguides of 0.5 and 0.7 mm ID or a plastic waveguide of 1.0 mm ID. For this purpose waveguides with sealed distal tip were employed to enable us to approach the delivery system through liquid media near to the membrane. This experiment demonstrates the possibility of surgical applications in vitectomy in ophthalmology using Er-YAG laser and silica hollow waveguides.

  14. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  15. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    Science.gov (United States)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  16. Synthesis, characterization and microwave absorption of carbon-coated Cu nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan, (China); Feng, Chao; Liu, Xianguo; Jin, Chuangui, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, (Hong Kong)

    2014-03-15

    The microstructure and microwave absorption of carbon-coated Cu nanocapsules have been investigated. Carbon-coated Cu nanocapsules have been synthesized by an arc-discharge method. The paraffin-Cu/C nanocapsules composite shows excellent electromagnetic (EM) absorption properties. An optimal reflection loss (RL) value of –40.0 dB is reached at 10.52 GHz for a layer 1.9 mm thickness. RL exceeding –20 dB can be realized in any interval within the 1-18 GHz range by choosing an appropriate thickness of the absorbent layer between 1.1 and 10.0 mm. Theoretical simulation for the microwave absorption using the transmission line theory agrees reasonably well with the experimental results. The EM-wave absorption properties of nanocapsules materials are illustrated by means of an absorption-tube-map. The carbon-coated Cu nano capsule is an attractive candidate for EM-wave absorption, which significantly enriches the family of EM-wave nano absorbents. (author)

  17. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules

    NARCIS (Netherlands)

    Sanchez-Moreno, P.; Buzon, P.; Boulaiz, H.; Peula-Garcia, J. M.; Ortega-Vinuesa, J. L.; Luque, I.; Salvati, A.; Marchal, J. A.

    Several studies have shown the potential of biocompatible lipid nanocapsules as hydrophobic drug delivery systems. Understanding the factors that determine the interactions of these oil-in-water nanoemulsions with cells is a necessary step to guide the design of the most effective formulations. The

  18. Hollow bunches production

    CERN Document Server

    Hancock, S

    2017-01-01

    Hollow bunches address the issue of high-brightnessbeams suffering from transverse emittance growth in a strongspace charge regime. During the Proton Synchrotron (PS)injection plateau, the negative space charge tune shift canpush the beam onto theQy=6integer resonance. Modify-ing the longitudinal bunch profile in order to reduce the peakline charge density alleviates the detrimental impact of spacecharge. To this end we first produce longitudinally hollowphase space distributions in the PS Booster by exciting aparametric resonance with the phase loop feedback system.These inherently flat bunches are then transferred to the PS,where the beam becomes less prone to the emittance growthcaused by the integer resonance.During the late 2016 machine development sessions inthe PS Booster we profited from solved issues from 2015and managed to reliably extract hollow bunches of1.3eVsmatched longitudinal area. Furthermore, first results to cre-ate hollow bunches with larger longitudinal emittances to-wards the LHC Inject...

  19. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors

    Science.gov (United States)

    Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue

    2018-04-01

    Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.

  20. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    Science.gov (United States)

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies

  1. Zein nanocapsules as a tool for surface passivation, drug delivery and biofilm prevention

    Directory of Open Access Journals (Sweden)

    Stephen H. Kasper

    2016-11-01

    Full Text Available Current oral hygiene treatments focus on managing oral biofilms (i.e. dental plaque by broad antimicrobial strategies, indiscriminately killing both pathogenic and commensal microorganisms present in the oral cavity. In an effort to identify alternative approaches to antimicrobials, several research groups, including our own, have identified small molecule inhibitors that interrupt cell-cell signaling and biofilm formation, with potential to be selective against pathogens while leaving commensal flora unperturbed. A drawback to such inhibitors is their limited efficacy when used in acute exposures (e.g. mouthwash or brushing. In order to enhance bioavailability and maximize efficacy of these agents in a complex and dynamic environment such as the oral cavity, it is necessary to maintain a constant reservoir of the agents in situ. Therefore, we formulated a biofilm inhibitor delivery system by encapsulating an inhibitor of Streptococcus mutans biofilm formation, S-phenyl-L-cysteine sulfoxide, into zein nanocapsules. Nanocapsules formed 110–235 nm particles in a liquid-liquid dispersion synthesis procedure with S-phenyl-L-cysteine sulfoxide, as determined by dynamic light scattering. The inhibitor-loaded nanocapsules were then used to cast a film and subsequent S. mutans biofilm formation at this surface was studied. Nanocapsule films loaded with biofilm inhibitors were shown to deter early S. mutans biofilm development at 24 h, as well as reduce total viable biofilm-recovered cells at 48 h. This demonstrates proof-of-concept that biofilm inhibitor-loaded zein nanocapsules can reduce S. mutans biofilm growth, and demonstrates a new approach to extend the time that dental plaque inhibitors are present at the tooth surface. This approach has the potential to delay recolonization of the tooth and reduce oral infection/disease.

  2. Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application

    Science.gov (United States)

    Najafabadi, Alireza Hassani; Abdouss, Majid; Faghihi, Shahab

    2014-03-01

    A new method to conjugate methoxy polyethylene glycol (mPEG) to C6 position of chitosan under the mild condition is introduced that improves the biocompatibility and water solubility of chitosan. Harsh deprotecting step and several purification cycles are two major disadvantages of the current methods for preparing PEGylated chitosan. In this study, the amine groups at C2 position of chitosan are protected using SDS followed by grafting the PEG. The protecting group of chitosan is simply removed by dialyzing against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1H NMR spectroscopy. Fourier transformed-infrared (FT-IR) and 1H NMR spectra confirmed that the mPEG is successfully grafted to C6 position of chitosan. Prepared methoxy polyethylene glycol (mPEG) is then employed to prepare the nanocapsules for the encapsulation of poor water-soluble drug, propofol. The TEM, AFM, and DLS techniques are used to characterize the prepared nanocapsules size and morphology. The results show a size of about 80 nm with spherical shape for nanocapsules. In vitro drug release is carried out to evaluate the potential of nanocarriers for the intravenous delivery of drugs. The profile of release from formulated nanocapsules is similar to those of commercial lipid emulsion (CLE). In vivo animal sleep-recovery test on rats shows a close similarity between the time of unconsciousness and recovery of righting reflex between nanoparticles and CLE. This study provides an efficient, novel, and easy method for preparing a carrier system that requires less intensive reaction conditions, fewer reaction steps, and less purification steps. In addition, the nanocapsules introduced here could be a promising nano carrier for the delivery of poor water-soluble drugs.

  3. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide.

    Science.gov (United States)

    Hatahet, T; Morille, M; Shamseddin, A; Aubert-Pouëssel, A; Devoisselle, J M; Bégu, S

    2017-02-25

    Quercetin is a plant flavonoid with strong antioxidant and antiinflammatory properties interesting for skin protection. However, its poor water solubility limits its penetration and so its efficiency on skin. For this purpose, quercetin lipid nanocapsules were formulated implementing phase inversion technique wherein several modifications were introduced to enhance quercetin loading. Quercetin lipid nanocapsules were formulated with two particle size range, (50nm and 20nm) allowing a drug loading of 18.6 and 32mM respectively. The successful encapsulation of quercetin within lipid nanocapsules increased its apparent water solubility by more than 5000 fold (from 0.5μg/ml to about 5mg/ml). The physicochemical properties of these formulations such as surface charge, stability and morphology were characterized. Lipid nanocapsules had spherical shape and were stable for 28days at 25°C. Quercetin release from lipid nanocapsules was studied and revealed a prolonged release kinetics during 24h. Using DPPH assay, we demonstrated that the formulation process of lipid nanocapsules did not modify the antioxidant activity of quercetin in vitro (92.3%). With the goal of a future dermal application, quercetin lipid nanocapsules were applied to THP-1 monocytes and proved the cellular safety of the formulation up to 2μg/ml of quercetin. Finally, formulated quercetin was as efficient as the crude form in the protection of THP-1 cells from oxidative stress by exogenous hydrogen peroxide. With its lipophilic nature and occlusive effect on skin, lipid nanocapsules present a promising strategy to deliver quercetin to skin tissue and can be of value for other poorly water soluble drug candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug

    Energy Technology Data Exchange (ETDEWEB)

    Savian, Ana L. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Rodrigues, Daiane [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Weber, Julia; Ribeiro, Roseane F. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Motta, Mariana H. [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Schaffazick, Scheila R.; Adams, Andréa I.H. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900 (Brazil); Andrade, Diego F. de; Beck, Ruy C.R. [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS 90610-000 (Brazil); and others

    2015-01-01

    Dithranol is a very effective drug for the topical treatment of psoriasis. However, it has some adverse effects such as irritation and stain in the skin that make its application and patient adherence to treatment difficult. The aims of this work were to prepare and characterize dithranol-loaded nanocapsules as well as to evaluate the photostability and the irritation potential of these nanocarriers. Lipid-core nanocapsules containing dithranol (0.5 mg/mL) were prepared by interfacial deposition of preformed polymer. EDTA (0.05%) or ascorbic acid (0.02%) was used as antioxidants. After preparation, dithranol-loaded lipid-core nanocapsules showed satisfactory characteristics: drug content close to the theoretical concentration, encapsulation efficiency of about 100%, nanometric mean size (230–250 nm), polydispersity index below 0.25, negative zeta potential, and pH values from 4.3 to 5.6. In the photodegradation study against UVA light, we observed a higher stability of the dithranol-loaded lipid-core nanocapsules comparing to the solution containing the free drug (half-life times around 4 and 1 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing EDTA, respectively; half-life times around 17 and 7 h for the dithranol-loaded lipid-core nanocapsules and free drug solution containing ascorbic acid, respectively). Irritation test by HET-CAM method was conducted to evaluate the safety of the formulations. From the results it was found that the nanoencapsulation of the drug decreased its toxicity compared to the effects observed for the free drug. - Highlights: • Strategy to prepare lipid-core nanocapsules containing dithranol • Evaluation of the nanoencapsulation effect on the photostability and irritation • Evaluation of the in vitro release of dithranol-loaded lipid-core nanocapsules.

  5. DEVELOPMENT OF ORAL NIFEDIPINE-LOADED POLYMERIC NANOCAPSULES: PHYSICOCHEMICAL CHARACTERISATION, PHOTOSTABILITY STUDIES, IN VITRO AND IN VIVO EVALUATION

    Directory of Open Access Journals (Sweden)

    Monika Piazzon Tagliari

    2015-07-01

    Full Text Available In this study, nifedipine (NFP-loaded polymeric nanocapsules were prepared and characterised with a view to protect the drug from degradation. Nanocapsule suspensions were prepared using two different surfactants (pluronic F68 and polyvinyl alcohol. Physicochemical stability and in vivoantihypertensive effect were evaluated. The particle size, zeta potential and entrapment efficiency remained constant during a period of 28 days of exposure under light irradiation. A smaller particle size and a higher zeta potential were obtained for the nanocapsules prepared with Pluronic F68 as surfactant. The solid drug and the nanocapsules were submitted to light exposure for 28 days. After this period of time, the percentage of drug remaining in the PF68NFP and PVANFP nanocapsules was 28.1% and 21.3%, respectively. In contrast, the solid drug was completely degraded after 4 days, suggesting that the nanocapsule suspensions promoted significant protection of the drug against light exposure. In addition, in vivo studies were carried out, which demonstrated that the formulations with polyvinyl alcohol exhibited a very rapid onset of action after oral administration in rats and led to faster drug release. The nanoparticles developed can be considered as an alternative for improving NFP stability in liquid formulations.

  6. Mercury - the hollow planet

    Science.gov (United States)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  7. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.

    Science.gov (United States)

    Ma, Xing; Wang, Xu; Hahn, Kersten; Sánchez, Samuel

    2016-03-22

    The quest for biocompatible microswimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica microparticles powered by the biocatalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 min with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micromotor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nanometers, making the hybrid micromotor an active and controllable drug delivery microsystem.

  8. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers

    Directory of Open Access Journals (Sweden)

    Zhao YQ

    2013-10-01

    Full Text Available Yi-qing Zhao, Li-ping Wang, Chao Ma, Kun Zhao, Ying Liu, Nian-ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaBackground: Tetrandrine is an active constituent that is extracted from the root tuber of the Chinese herb Stephania tetrandra S. Moore. It has shown various pharmacological effects, such as antitumor activity, multidrug resistance reversal, and hepatic fibrosis resistance. In clinical applications, it has been used to treat hypertension, pneumosilicosis, and lung cancer. However, the poor water solubility of tetrandrine has limited its application. In this study, a newly emerging oral drug carrier of phospholipid complex loaded lipid nanocapsules was developed to improve the oral bioavailability of tetrandrine.Methods: The phospholipid complex was prepared with the solvent-evaporation method to enhance the liposolubility of tetrandrine. The formation of the phospholipid complex was confirmed with a solubility study, infrared spectroscopy, and a differential scanning calorimetry (DSC analysis. The tetrandrine-phospholipid complex loaded lipid nanocapsules (TPC-LNCs were prepared using the phase inversion method. Lyophilization was performed with mannitol (10% as a cryoprotectant. TPC-LNCs were characterized according to their particle size, zeta potential, encapsulation efficiency, morphology by transmission electron microscopy, and crystallinity by DSC. In addition, the in vitro release of tetrandrine from TPC-LNCs was examined to potentially illustrate the in vivo release behavior. The in vivo bioavailability of TPC-LNCs was studied and compared to tetrandrine tablets in rats.Results: The liposolubility of tetrandrine in n-octanol improved from 8.34 µg/mL to 35.64 µg/mL in the tetrandrine-phospholipid complex. The prepared TPC-LNCs were spherical-shaped particles with a small size of 40 nm and a high encapsulation efficiency of 93.9%. DSC measurements revealed

  9. Synthesis and new structure shaping mechanism of silica particles formed at high pH

    International Nuclear Information System (INIS)

    Zhang, Henan; Zhao, Yu; Akins, Daniel L.

    2012-01-01

    For the sol–gel synthesis of silica particles under high pH catalytic conditions (pH>12) in water/ethanol solvent, we have deduced that the competing dynamics of chemical etching and sol–gel process can explain the types of silica particles formed and their morphologies. We have demonstrated that emulsion droplets that are generated by adding tetraethyl orthosilicate (TEOS) to a water–ethanol solution serve as soft templates for hollow spherical silica (1–2 μm). And if the emulsion is converted by the sol–gel process, one finds that suspended solid silica spheres of diameter of ∼900 nm are formed. Moreover, several other factors are found to play fundamental roles in determining the final morphologies of silica particles, such as by variation of the pH (in our case, using OH – ) to a level where condensation dominates; by changing the volume ratios of water/ethanol; and using an emulsifier (specifically, CTAB) - Graphical abstract: “Local chemical etching” and sol–gel process have been proposed to interpret the control of morphologies of silica particles through varying initial pHs in syntheses. Highlights: ► Different initial pHs in our syntheses provides morphological control of silica particles. ► “Local chemical etching” and sol–gel process describes the formation of silica spheres. ► The formation of emulsions generates hollow silica particles.

  10. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.

    Science.gov (United States)

    Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin

    2018-11-01

    Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

  11. Crosslinked polymeric nanocapsules with controllable structure via a 'self-templating' approach

    International Nuclear Information System (INIS)

    Liu Peng; Liu Guangfeng; Zhang Wei; Jiang Fan

    2010-01-01

    We developed a novel strategy for the near-monodispersed crosslinked polymeric nanocapsules with controllable structure via the 'self-templating' approach by the following four steps: (i) preparation of the PVAc lattices by the emulsion polymerization of VAc; (ii) surface hydrolysis of the PVAc lattices; (iii) crosslinking the PVA segments on the surface of the surface-hydrolyzed PVAc lattices and (iv) removal of the PVAc core of the core-shell structures by being dissolved by methanol. The strategy developed was confirmed with Fourier-transform infrared, transmission electron microscopy and dynamic light scattering techniques. In the strategy developed, the particle size, the thickness and the crosslinking degree of the nanocapsules could be controlled with the lattice's size, relative molecular weight of PVAc and the crosslinking degree of the crosslinked shell.

  12. Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.

    Science.gov (United States)

    Chen, Aibing; Xia, Kechan; Zhang, Linsong; Yu, Yifeng; Li, Yuetong; Sun, Hexu; Wang, Yuying; Li, Yunqian; Li, Shuhui

    2016-09-06

    A novel "dissolution-capture" method for the fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules (N-HMSCCs) with high capability for supercapacitor is developed. The fabrication process is performed by depositing mesoporous silica on the surface of the polyacrylonitrile nanospheres, followed by a dissolution-capture process occurring in the polyacrylonitrile core and silica shell. The polyacrylonitrile core is dissolved by dimethylformamide treatment to form a hollow cavity. Then, the polyacrylonitrile is captured into the mesochannel of silica. After carbonization and etching of silica, N-HMSCCs with uniform mesopore size are produced. The N-HMSCCs show a high specific capacitance of 206.0 F g(-1) at a current density of 1 A g(-1) in 6.0 M KOH due to its unique hollow nanostructure, high surface area, and nitrogen content. In addition, 92.3% of the capacitance of N-HMSCCs still remains after 3000 cycles at 5 A g(-1). The "dissolution-capture" method should give a useful enlightenment for the design of electrode materials for supercapacitor.

  13. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.

    OpenAIRE

    Morille , Marie; Montier , Tristan; Legras , Pierre; Carmoy , Nathalie; Brodin , Priscille; Pitard , Bruno; Benoît , Jean-Pierre; Passirani , Catherine

    2010-01-01

    International audience; Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size in...

  14. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modifed nanocapsules.

    OpenAIRE

    Mosqueira, Vanessa Carla Furtado; Legrand, Philippe; Gulik, Annette; Bourdon, Olivier; Gref, Ruxandra; Labarre, Denis; Barratt, Gillian

    2001-01-01

    ABSTRACT: The aim of our work was to examine the relationship between modi"cations of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the "rst ti...

  15. Synthesis, characterization and electromagnetic properties of SnO-coated FeNi alloy nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingling; Li, Honglin; Xu, Taotao; Nie, Yu, E-mail: lml771212@163.com [College of Chemistry and Material Engineering, Chaohu University (China)

    2016-11-15

    SnO-coated FeNi alloy nanocapsules have been synthesized by an arc-discharge method. High resolution transmission electron microscopy and x-ray photoelectron spectroscopy analysis show that the nanocapsules have a shell/core structure with FeNi alloy nanoparticles as the core and amorphous SnO as the shell. Dielectric relaxation of SnO shell and the interfacial relaxation between SnO shell and FeNi core lead to the dual nonlinear dielectric resonance. The natural resonance in the SnO coated FeNi nanocapsules shifts to 14.0 GHz. Reflection loss (RL) reaches -46.1 dB at 14.8 GHz for a matching thickness of 1.95 mm, while it exceeds-20 dB over the 13.6 -16.7 GHz range and it exceeds -10 dB in the whole Ku-band (12.4-18 GHz). In addition, the optimal RL values at 5.0-7.6 GHz with the absorbing thickness of 3.4-5.0 mm just exhibit a slight fluctuation. (author)

  16. Olive-oil nanocapsules stabilized by HSA: influence of processing variables on particle properties

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Bolívar, J. A., E-mail: jmb@uma.es [University of Málaga, Department of Applied Physics II, Engineering School (Spain); Galisteo-González, F. [University of Granada, Department of Applied Physics (Spain)

    2015-10-15

    Liquid lipid nanocapsules (LLN) are considered to be promising drug carriers in the medical field. The size and the surface charge of these nanocarriers are of major importance, affecting their bioavailability and the in vivo behaviour after intravenous injection. This research provides a comprehensive study on the preparation of olive-oil nanocapsules stabilized with a human serum albumin shell (HSA). LLN were prepared by modified solvent-displacement method. Numerous experimental variables were examined in order to characterize their impact on LLN size, distribution, and electrophoretic mobility. Physicochemical parameters of LLN were controlled by adjusting the nanodroplet stabilizing shell of adsorbed protein molecules, which was affected by the oil:HSA ratio, pH, and ionic strength of aqueous medium. The stronger the repulsion between adsorbed HSA molecules, the smaller and more monodisperse the particles proved. Other process parameters, including the ethanol:acetone ratio, organic:aqueous phase ratio, speed of organic-phase injection, and stirring rate were examined to achieve optimum preparation conditions. LLN produced by our standardized formulation were in the range of 170–175 nm with low polydispersity index (<0.1). Long-term colloidal stability of samples was evaluated after 6 months of storage. Efficient incorporation of curcumin, a model for a water-insoluble drug, into olive-oil nanocapsules was achieved (90 %). Encapsulation of curcumin into LLN had a stabilizing effect with respect to drug photodecomposition compared to that of the free molecule in solution.

  17. Fe_3C@carbon nanocapsules/expanded graphite as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Huang, You-Guo; Lin, Xi-Le; Zhang, Xiao-Hui; Pan, Qi-Chang; Yan, Zhi-Xiong; Wang, Hong-Qiang; Chen, Jian-Jun; Li, Qing-Yu

    2015-01-01

    ABSTRACT: Fe_3C@carbonnanocapsules(*)/expanded graphite composite was successfully prepared by a new and facile method, including mix of starting materials and heat treatment of the precursor. It is featured by unique 3-D structure, where expanded graphite acts as scaffold to ensure a continuous entity, and Fe_3C particles coated by carbon nanocapsules are embedded intimately. The Fe_3C nanoparticles encased in carbon nanocapsules act as catalyst in the modification of SEI film during the cycles. The interesting 3-D architecture which aligns the conductivity paths in the planar direction with expanded graphite and in the axial direction with carbon nanocapsules minimizes the resistance and enhances the reversible capacity. The prepared composite exhibits a high reversible capacity and excellent rate performance as an anode material for lithium ion batteries. The composite maintains a reversible capacity of 1226.2 mAh/g after 75 cycles at 66 mA/g. When the current density increases to 200 mA/g, the reversible capacity maintains 451.5 mAh/g. The facile synthesis method and excellent electrochemical performances make the composite expected to be one of the most potential anode material for lithium ion batteries.

  18. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin.

    Science.gov (United States)

    Schultze, Eduarda; Ourique, Aline; Yurgel, Virginia Campello; Begnini, Karine Rech; Thurow, Helena; de Leon, Priscila Marques Moura; Campos, Vinicius Farias; Dellagostin, Odir Antônio; Guterres, Silvia R; Pohlmann, Adriana R; Seixas, Fabiana Kömmling; Beck, Ruy Carlos Ruver; Collares, Tiago

    2014-05-01

    Tretinoin is a retinoid derivative that has an antiproliferative effect on several kinds of tumours. Human lung adenocarcinoma epithelial cell lines (A549) exhibit a profound resistance to the effects of tretinoin. Nanocarriers seem to be a good alternative to overcomecellular resistance to drugs. The aim of this study was to test whether tretinoin-loaded lipid-core nanocapsules exert anantitumor effect on A549 cells. A549 cells were incubated with free tretinoin (TTN), blank nanocapsules (LNC) and tretinoin-loaded lipid-core nanocapsules (TTN-LNC). Data from evaluation of DNA content and Annexin V binding assay by flow cytometry showed that TTN-LNC induced apoptosis and cell cycle arrest at the G1-phase while TTN did not. TTN-LNC showed higher cytotoxic effects than TTN on A549 cells evaluated by MTT and LIVE/DEAD cell viability assay. Gene expression profiling identified up-regulated expression of gene p21 by TTN-LNC, supporting the cell cycle arrest effect. These results showed for the first time that TTN-LNC are able to overcome the resistance of adenocarcinoma cell line A549 to treatment with TTN by inducing apoptosis and cell cycle arrest, providing support for their use in applications in lung cancer therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  20. A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules.

    Science.gov (United States)

    Hong, Chien-Chong; Wang, Chih-Ying; Peng, Kuo-Ti; Chu, I-Ming

    2011-04-15

    This paper presents a microfluidic chip platform with electrochemical carbon nanotube electrodes for preclinical evaluation of antibiotics nanocapsules. Currently, there has been an increasing interest in the development of nanocapsules for drug delivery applications for localized treatments of diseases. So far, the methods to detect antibiotics are liquid chromatography (LC), high performance liquid chromatography (HPLC), mass spectroscopy (MS). These conventional instruments are bulky, expensive, not ease of access, and talented operator required. In order to help the development of nanocapsules and understand drug release profile before planning the clinical experiments, it is important to set up a biosensing platform which could monitor and evaluate the real-time drug release profile of nanocapsules with high sensitivity and long-term measurement ability. In this work, a microfluidic chip platform with electrochemical carbon nanotube electrodes has been developed and characterized for rapid detection of antibiotics teicoplanin nanocapsules. Multi-walled carbon nanotubes are used to modify the gold electrode surfaces to enhance the performance of the electrochemical biosensors. Experimental results show that the limit of detection of the developed platform using carbon nanotubes electrodes is 0.1 μg/ml with a linear range from 1 μg/ml to 10 μg/ml. The sensitivity of the developed system is 0.023 mA ml/μg at 37°C. The drug release profile of teicoplanin nanocapsules in PBS shows that the antibiotics nanocapsules significantly increased the release of drug on the 4th day, measuring 0.4858 μg/(ml hr). The release of drug from the antibiotics nanocapsules reached 34.98 μg/ml on the 7th day. The results showed a similar trend compared with the measurement result using the HPLC instrument. Compared with the traditional HPLC measurements, the electrochemical sensing platform we developed measures results with increased flexibility in controlling experimental

  1. Morphology-controlled synthesis of SiO{sub 2} hollow microspheres using pollen grain as a biotemplate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: caofeng.cn@gmail.co, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2009-04-15

    Hollow surface-structured silica microspheres, a potential candidate for drug delivery systems, were synthesized using the rape pollen grain as a biotemplate via a facile sol-gel coating followed by a calcination process. Different surface morphologies relating to the controllable release property were also achieved on the as-prepared silica hollow microspheres by changing the ratio of the tetraethyl orthosilicate (TEOS) and water in sols. Differential scanning calorimetry (DSC) and thermogravity (TG), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), as well as Fourier transform infrared spectroscopy (FT-IR) were utilized to characterize the original pollen grain, the silica sols-coated pollen grain and the as-prepared hollow silica microspheres, respectively. Results indicated that the pollen grain would be removed at around 500 deg. C, and the sol coating was kept to form hollow microspheres. Physical adsorption was proved to be the main effect in the sol coating. A speculation on the formation mechanism of different morphologies is also given.

  2. Morphology-controlled synthesis of SiO2 hollow microspheres using pollen grain as a biotemplate

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2009-01-01

    Hollow surface-structured silica microspheres, a potential candidate for drug delivery systems, were synthesized using the rape pollen grain as a biotemplate via a facile sol-gel coating followed by a calcination process. Different surface morphologies relating to the controllable release property were also achieved on the as-prepared silica hollow microspheres by changing the ratio of the tetraethyl orthosilicate (TEOS) and water in sols. Differential scanning calorimetry (DSC) and thermogravity (TG), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), as well as Fourier transform infrared spectroscopy (FT-IR) were utilized to characterize the original pollen grain, the silica sols-coated pollen grain and the as-prepared hollow silica microspheres, respectively. Results indicated that the pollen grain would be removed at around 500 deg. C, and the sol coating was kept to form hollow microspheres. Physical adsorption was proved to be the main effect in the sol coating. A speculation on the formation mechanism of different morphologies is also given.

  3. Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range....

  4. Core-shell structure of Miglyol/poly(D,L-lactide)/Poloxamer nanocapsules studied by small-angle neutron scattering.

    Science.gov (United States)

    Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim

    2005-10-03

    The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.

  5. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Catiúscia P. de Oliveira

    2018-01-01

    Full Text Available Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT and in human breast carcinoma cells (MCF-7. Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors, while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7 being promising products for further in vivo pre-clinical evaluations.

  6. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    International Nuclear Information System (INIS)

    Ribeiro, Roseane Fagundes; Motta, Mariana Heldt; Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer; Beck, Ruy Carlos Ruver; Schaffazick, Scheila Rezende

    2016-01-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  7. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Roseane Fagundes [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Motta, Mariana Heldt [Curso de Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); Beck, Ruy Carlos Ruver [Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000 (Brazil); Schaffazick, Scheila Rezende [Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900 (Brazil); and others

    2016-02-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze-drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102% with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products. - Highlights: • Polymeric nanocapsule suspensions containing tioconazole were submitted to spray-drying and freeze-drying. • Dried products from nanocapsule suspensions were stable for 30 days. • Release studies showed that the dried products presented greater control of drug release compared to the original suspension.

  8. Method for sizing hollow microspheres

    Science.gov (United States)

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  9. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    Science.gov (United States)

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  10. Light-Responsive Polymer Micro- and Nano-Capsules

    Directory of Open Access Journals (Sweden)

    Valentina Marturano

    2016-12-01

    Full Text Available A significant amount of academic and industrial research efforts are devoted to the encapsulation of active substances within micro- or nanocarriers. The ultimate goal of core–shell systems is the protection of the encapsulated substance from the environment, and its controlled and targeted release. This can be accomplished by employing “stimuli-responsive” materials as constituents of the capsule shell. Among a wide range of factors that induce the release of the core material, we focus herein on the light stimulus. In polymers, this feature can be achieved introducing a photo-sensitive segment, whose activation leads to either rupture or modification of the diffusive properties of the capsule shell, allowing the delivery of the encapsulated material. Micro- and nano-encapsulation techniques are constantly spreading towards wider application fields, and many different active molecules have been encapsulated, such as additives for food-packaging, pesticides, dyes, pharmaceutics, fragrances and flavors or cosmetics. Herein, a review on the latest and most challenging polymer-based micro- and nano-sized hollow carriers exhibiting a light-responsive release behavior is presented. A special focus is put on systems activated by wavelengths less harmful for living organisms (mainly in the ultraviolet, visible and infrared range, as well as on different preparation techniques, namely liposomes, self-assembly, layer-by-layer, and interfacial polymerization.

  11. Synthesis and separation properties of an α-alumina-supported high-silica MEL membrane

    NARCIS (Netherlands)

    Kosinov, N.; Hensen, E.J.M.

    2013-01-01

    A thin high-silica MEL membrane was synthesized on a porous a-alumina hollow fiber support by a secondary growth approach. The membrane quality was evaluated by permporometry, single-gas permeation and butane isomer separation. Comparison of the pervaporation performance of MEL membranes with a MFI

  12. Au-HKUST-1 Composite Nanocapsules: Synthesis with a Coordination Replication Strategy and Catalysis on CO Oxidation.

    Science.gov (United States)

    Liu, Yongxin; Zhang, Jiali; Song, Lingxiao; Xu, Wenyuan; Guo, Zanru; Yang, Xiaomin; Wu, Xiaoxin; Chen, Xi

    2016-09-07

    A novel coordination replication of Cu2O redox-template strategy is reported to efficiently fabricate Au-HKUST-1 composite nanocapsule, with a HKUST-1 sandwich shell and an embedded Au nanoparticles layer. The novel synthesis procedure involves forming Au nanoparticles on the surface of Cu2O, transforming partial Cu2O into HKUST-1 shell via coordination replication, and removing the residual Cu2O by acid. The as-prepared Au-HKUST-1 composite nanocapsules displayed high catalytic activity on CO oxidation.

  13. Square-lattice large-pitch hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Couny, F.; Roberts, John; Birks, T.A.

    2008-01-01

    We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber's linear optical properties include an ultra-low group...... velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber....

  14. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  15. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  16. The Electrospun Ceramic Hollow Nanofibers

    Directory of Open Access Journals (Sweden)

    Shahin Homaeigohar

    2017-11-01

    Full Text Available Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate. In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use.

  17. The Riddle of the Apparently Hollow Himalaya

    Indian Academy of Sciences (India)

    The Riddle of the Apparently Hollow Himalaya. Ramesh .... It was as if the Himalayas were hollow inside. ... block would be consistent with the ground elevation in such a ... Alternative models and possible preference: Many refinements of.

  18. Oral fondaparinux: use of lipid nanocapsules as nanocarriers and in vivo pharmacokinetic study

    Directory of Open Access Journals (Sweden)

    Ramadan A

    2011-11-01

    Full Text Available Alyaa Ramadan1,4, Frederic Lagarce1,3, Anne Tessier-Marteau2, Olivier Thomas1, Pierre Legras5, Laurent Macchi2, Patrick Saulnier1, Jean Pierre Benoit1,31LUNAM Université, Ingénierie de la Vectorisation Particulaire, Inserm U-646, Angers, France; 2Hematology Department, Angers University Hospital, Angers, France; 3Department of Pharmacy, Angers University Hospital, Angers, France; 4Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; 5SCAHU, Animal House, Angers, FranceAbstract: Oral anticoagulant therapy could be advanced using lipid-based nanoparticulate systems. This study examined lipid nanocapsules for their oral absorption potential as the first step in developing oral fondaparinux (Fp novel carriers. Using phase inversion method and cationic surfactants such as hexadecyltrimethyl ammonium bromide (CTAB or stearylamine (SA, cationic lipid nanocapsules (cLNCs, loaded with Fp on their surface, were prepared and characterized (zeta potential, size and Fp association efficiency and content. In vivo studies were conducted after single oral increasing doses of Fp-loaded cLNCs (0.5 to 5 mg/kg of Fp in rats and the concentration of Fp in the plasma was measured by anti-factor Xa activity assay. The monodisperse, (~50 nm, positively charged Fp-cLNCs with high drug loadings demonstrated linear pharmacokinetic profiles of the drug with an increased oral absolute bioavailability (up to ~21% compatible with therapeutic anticoagulant effect (>0.2 µg/mL.Keywords: oral anticoagulant, fondaparinux, lipid nanocapsules, bioavailability, pharmacokinetics, rats

  19. Hollow nanotubular toroidal polymer microrings.

    Science.gov (United States)

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  20. Hollow fiber liquid supported membranes

    International Nuclear Information System (INIS)

    Violante, V.

    1987-01-01

    The hollow fiber system are well known and developed in the scientific literature because of their applicability in the process separation units. The authors approach to a mathematical model for a particular hollow fiber system, usin liquid membranes. The model has been developed in order to obtain a suitable tool for a sensitivy analysis and for a scaling-up. This kind of investigation is very usefull from an engineering point of view, to get a spread range of information to build up a pilot plant from the laboratory scale

  1. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  3. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Feng, Jinkui, E-mail: jinkui@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Ci, Lijie [Key Laboratory for Liquid–Solid Structural Evolution & Processing of Materials (Ministry of Education), Jinan 250100 (China); Xiong, Shenglin [School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.

  4. An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks

    KAUST Repository

    Zou, Houbing

    2014-06-27

    We have developed an organosilane-directed growth-induced etching strategy to prepare hollow periodic mesoporous organosilica (PMO) nanospheres with perpendicular mesoporous channels and a clear hollow interior as well as an amphiphilic framework. This facile strategy is simple, efficient, and highly controllable. Silica nanospheres were utilized as hard templates to obtain hollow PMO nanospheres through a one-step route, with the structure parameter highly controlled by adjusting the synthesis conditions. Different organosilanes were used to obtain bridged hollow PMO nanospheres of different organic groups and showed different directed capacities. The integrity of the bridged organic group was confirmed by Fourier-transform infrared (FT-IR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Transmission electron microscopy (TEM) observations showed that the growth of the PMO shell and the dissolution of the silica nanosphere core occurred simultaneously for each nanosphere, while 29Si NMR spectra revealed that the dissolved silica species from the silica nanospheres transformed into PMO shells by co-condensation with hydrolyzed organosilane oligomers. As a result, the obtained hollow nanospheres were amphiphilic, which can even be used as a particle emulsifier for O-W or W-O emulsion in various systems. These materials can also be served as an efficient sorbent for removal of hydrophobic contaminants in water. Using the proposed formation mechanism, this strategy can be extended to transform silica-coated composite materials into yolk-shell structures with a functional interior core and a perpendicular mesoporous amphiphilic shell. As a nanoreactor, the -Ph- bridged amphiphilic shell showed a faster diffusion rate for organic reactants in water than the hydrophilic silica shell, and thus better catalytic activity for reduction of 4-nitrophenol. This journal is © the Partner Organisations 2014.

  5. What Is Crystalline Silica?

    Science.gov (United States)

    ... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...

  6. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  7. Hollow core plasma channel generation

    International Nuclear Information System (INIS)

    Quast, Heinrich Martin

    2018-03-01

    The use of a hollow plasma channel in plasma-based acceleration has beneficial properties for the acceleration of electron and positron bunches. In the scope of the FLASHForward facility at DESY, the generation of such a plasma structure is examined. Therefore, the generation of a ring-shaped laser intensity profile with different techniques is analyzed. From the obtained intensity profiles the electron density of a hollow plasma channel is simulated in the focal region. Different parameters are scanned to understand their influence on the electron density distribution - an important parameter being, for example, the radius of the central region of the channel. In addition to the simulations, experiments are presented, during which a laser pulse is transformed into a hollow beam with a spiral phase plate. Subsequently, it forms a plasma during the interaction with hydrogen, where the plasma is imaged with interferometry. For energies above 0.9 mJ a hollow plasma structure can be observed at the location of first plasma formation.

  8. The Legend of Sleepy Hollow

    Institute of Scientific and Technical Information of China (English)

    Washington; Irving

    1987-01-01

    Part Ⅰ On the Eastern shore of the Hudson River there was a little valley, among high hills, which was one of the quietest places in the whole world. This little valley had long been known by the name of SIeepy Hollow. Many strange stories about ghosts were told and retold in the village situated there.

  9. Microstructured hollow fibers for ultrafiltration

    NARCIS (Netherlands)

    Culfaz, Pmar Zeynep; Culfaz, P.Z.; Rolevink, Hendrikus H.M.; van Rijn, C.J.M.; Lammertink, Rob G.H.; Wessling, Matthias

    2010-01-01

    Hollow fiber ultrafiltration membranes with a corrugated outer microstructure were prepared from a PES/PVP blend. The effect of spinning parameters such as air gap, take-up speed, polymer dope viscosity and coagulation value on the microstructure and membrane characteristics was investigated. Fibers

  10. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.

    Science.gov (United States)

    Morille, Marie; Montier, Tristan; Legras, Pierre; Carmoy, Nathalie; Brodin, Priscille; Pitard, Bruno; Benoît, Jean-Pierre; Passirani, Catherine

    2010-01-01

    Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size inferior to 130 nm. Amphiphilic and flexible poly (ethylene glycol) (PEG) polymer coatings [PEG lipid derivative (DSPE-mPEG(2000)) or F108 poloxamer] at different concentrations were selected to make DNA LNCs stealthy. Some of these coated lipid nanocapsules were able to inhibit complement activation and were not phagocytized in vitro by macrophagic THP-1 cells whereas uncoated DNA LNCs accumulated in the vacuolar compartment of THP-1 cells. These results correlated with a significant increase of in vivo circulation time in mice especially for DSPE-mPEG(2000) 10 mm and an early half-life time (t(1/2) of distribution) 5-fold greater than for non-coated DNA LNCs (7.1 h vs 1.4 h). Finally, a tumor accumulation assessed by in vivo fluorescence imaging system was evidenced for these coated LNCs as a passive targeting without causing any hepatic damage.

  11. MnWO{sub 4} nanocapsules: Synthesis, characterization and its electrochemical sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, Selvamani; Suresh, Ranganathan; Giribabu, Krishnamoorthy; Manigandan, Ramadoss; Praveen Kumar, Sivakumar; Munusamy, Settu; Narayanan, Vengidusamy, E-mail: vnnara@yahoo.co.in

    2015-01-15

    Highlights: • Synthesis of MnWO{sub 4} nanocapsules without use of any other external reagent. • High crystalline MnWO{sub 4} was obtained with phase purity. • Electrochemical sensing platform based on MnWO{sub 4} for sensing quercetin. • Micromolar detection ability of MnWO{sub 4} modified GCE. - Abstract: Manganese tungstate (MnWO{sub 4}) was synthesized by surfactant free precipitation method. MnWO{sub 4} was characterized by using various spectroscopic techniques. The phase, crystalline nature and the morphological analysis were carried out using XRD, scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM). Further, FT-IR, Raman, and DRS-UV–Vis spectral analysis were carried out in order to ascertain the optical property and the presence of functional groups. From the analysis, the morphology of the MnWO{sub 4} was observed to be in capsules with breadth and thickness were in nm range. The oxidation state of tungsten (W), and manganese (Mn) were investigated using X-ray photo electron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR). The synthesized MnWO{sub 4} nanocapsules were used to modify glassy carbon electrode (GCE) to detect quercetin.

  12. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Priscilla Pereira dos [Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciência e Tecnologia de Alimentos (Brazil); Paese, Karina; Guterres, Silvia Stanisçuaski [Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia (Brazil); Pohlmann, Adriana Raffin [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Química Orgânica, Instituto de Química (Brazil); Costa, Tania Hass [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Química, Instituto de Química (Brazil); Jablonski, André [Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Engenharia de Minas (Brazil); Flôres, Simone Hickmann; Rios, Alessandro de Oliveira, E-mail: alessandro.rios@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciência e Tecnologia de Alimentos (Brazil)

    2015-02-15

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ε-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (−11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C)

  13. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.

    Science.gov (United States)

    Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank

    2009-11-01

    Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.

  14. Development and validation of an HPLC method to quantify camptothecin in polymeric nanocapsule suspensions.

    Science.gov (United States)

    Granada, Andréa; Murakami, Fabio S; Sartori, Tatiane; Lemos-Senna, Elenara; Silva, Marcos A S

    2008-01-01

    A simple, rapid, and sensitive reversed-phase column high-performance liquid chromatographic method was developed and validated to quantify camptothecin (CPT) in polymeric nanocapsule suspensions. The chromatographic separation was performed on a Supelcosil LC-18 column (15 cm x 4.6 mm id, 5 microm) using a mobile phase consisting of methanol-10 mM KH2PO4 (60 + 40, v/v; pH 2.8) at a flow rate of 1.0 mL/min and ultraviolet detection at 254 nm. The calibration graph was linear from 0.5 to 3.0 microg/mL with a correlation coefficient of 0.9979, and the limit of quantitation was 0.35 microg/mL. The assay recovery ranged from 97.3 to 105.0%. The intraday and interday relative standard deviation values were entrapment efficiency and drug content in polymeric nanocapsule suspensions during the early stage of formulation development.

  15. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    International Nuclear Information System (INIS)

    Santos, Priscilla Pereira dos; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-01-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ε-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (−11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C)

  16. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    Science.gov (United States)

    dos Santos, Priscilla Pereira; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-02-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ɛ-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (-11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

  17. Crystalline Silica Primer

    Science.gov (United States)

    ,

    1992-01-01

    Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated

  18. Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition

    NARCIS (Netherlands)

    Culfaz, P.Z.; Haddad, M.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared

  19. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  20. Antimicrobial nanocapsules: from new solvent-free process to in vitro efficiency

    Directory of Open Access Journals (Sweden)

    Steelandt J

    2014-09-01

    Full Text Available Julie Steelandt,1 Damien Salmon,1,2 Elodie Gilbert,1 Eyad Almouazen,3 François NR Renaud,4 Laurène Roussel,1 Marek Haftek,5 Fabrice Pirot1,2 1University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Pharmacie Galénique Industrielle, 2Hospital Pharmacy, FRIPharm, Hospital Edouard Herriot, Hospices Civils de Lyon, 3Laboratoire d’Automatique et de Génie des Procédés, University Claude Bernard Lyon 1, 4University Claude Bernard Lyon 1, UMR CNRS 5510/MATEIS, 5University Claude Bernard Lyon 1, Faculty of Pharmacy, Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function, FRIPharm, Laboratoire de Dermatologie, Lyon, France Abstract: Skin and mucosal infections constitute recurrent pathologies resulting from either inappropriate antiseptic procedures or a lack of efficacy of antimicrobial products. In this field, nanomaterials offer interesting antimicrobial properties (eg, long-lasting activity; intracellular and tissular penetration as compared to conventional products. The aim of this work was to produce, by a new solvent-free process, a stable and easily freeze-dryable chlorhexidine-loaded polymeric nanocapsule (CHX-NC suspension, and then to assess the antimicrobial properties of nanomaterials. The relevance of the process and the physicochemical properties of the CHX-NCs were examined by the assessment of encapsulation efficiency, stability of the nanomaterial suspension after 1 month of storage, and by analysis of granulometry and surface electric charge of nanocapsules. In vitro antimicrobial activities of the CHX-NCs and chlorhexidine digluconate solution were compared by measuring the inhibition diameters of two bacterial strains (Escherichia coli and Staphylococcus aureus and one fungal strain (Candida albicans cultured onto appropriate media. Based on the findings of this study, we report a new solvent-free process for the

  1. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  2. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  3. Oxygen configurations in silica

    International Nuclear Information System (INIS)

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-01-01

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society

  4. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  5. Nano-memory-element applications of carbon nanocapsule encapsulating potassium ions: molecular dynamics study

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2004-01-01

    We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.

  6. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    Science.gov (United States)

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-06-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.

  8. Lipid Nanocapsule-Based Gels for Enhancement of Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2011-01-01

    Full Text Available Previous reports show ineffective transdermal delivery of ketorolac by nanostructured lipid carriers (NLCs. The aim of the present work was enhancement of transdermal delivery of ketorolac by another colloidal carriers, lipid nanocapsules (LNCs. LNCs were prepared by emulsification with phase transition method and mixed in a Carbomer 934P gel base with oleic acid or propylene glycol as penetration enhancers. Permeation studies were performed by Franz diffusion cell using excised rat abdominal skin. Aerosil-induced rat paw edema model was used to investigate the in vivo performance. LNCs containing polyethylene glycol hydroxyl stearate, lecithin in Labrafac as the oily phase, and dilution of the primary emulsion with 3.5-fold volume of cold water produced the optimized nanoparticles. The 1% Carbomer gel base containing 10% oleic acid loaded with nanoparticles enhanced and prolonged the anti-inflammatory effects of this drug to more than 12 h in Aerosil-induced rat paw edema model.

  9. PEGylated lipid nanocapsules with improved drug encapsulation and controlled release properties.

    Science.gov (United States)

    Hervella, Pablo; Alonso-Sande, Maria; Ledo, Francisco; Lucero, Maria L; Alonso, Maria J; Garcia-Fuentes, Marcos

    2014-01-01

    Drugs with poor lipid and water solubility are some of the most challenging to formulate in nanocarriers, typically resulting in low encapsulation efficiencies and uncontrolled release profiles. PEGylated nanocapsules (PEG-NC) are known for their amenability to diverse modifications that allow the formation of domains with different physicochemical properties, an interesting feature to address a drug encapsulation problem. We explored this problem by encapsulating in PEG-NC the promising anticancer drug candidate F10320GD1, used herein as a model for compounds with such characteristics. The nanocarriers were prepared from Miglyol(®), lecithin and PEG-sterate through a solvent displacement technique. The resulting system was a homogeneous suspension of particles with size around 200 nm. F10320GD1 encapsulation was found to be very poor (<15%) if PEG-NC were prepared using water as continuous phase; but we were able to improve this value to 85% by fixing the pH of the continuous phase to 9. Interestingly, this modification also improved the controlled release properties and the chemical stability of the formulation during storage. These differences in pharmaceutical properties together with physicochemical data suggest that the pH of the continuous phase used for PEG-NC preparation can modify drug allocation, from the external shell towards the inner lipid core of the nanocapsules. Finally, we tested the bioactivity of the drug-loaded PEG-NC in several tumor cell lines, and also in endothelial cells. The results indicated that drug encapsulation led to an improvement on drug cytotoxicity in tumor cells, but not in non-tumor endothelial cells. Altogether, the data confirms that PEG-NC show adequate delivery properties for F10320GD1, and underlines its possible utility as an anticancer therapy.

  10. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    Science.gov (United States)

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  12. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    International Nuclear Information System (INIS)

    Piotrowski, Marek; Szczepanowicz, Krzysztof; Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław; Warszyński, Piotr

    2013-01-01

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from ∼80 to ∼100 nm. Zeta potential values ranged from less than approximately −30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H 2 O 2 (0.5 mM/24 h)-induced damage in 20–40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes

  13. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Marek, E-mail: ncpiotro@cyf-kr.edu.pl; Szczepanowicz, Krzysztof [Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry (Poland); Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław [Polish Academy of Sciences, Institute of Pharmacology (Poland); Warszyński, Piotr [Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry (Poland)

    2013-11-15

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from ∼80 to ∼100 nm. Zeta potential values ranged from less than approximately −30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H{sub 2}O{sub 2} (0.5 mM/24 h)-induced damage in 20–40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes.

  14. Stimuli-responsive protamine-based biodegradable nanocapsules for enhanced bioavailability and intracellular delivery of anticancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Krishna; Thomas, Midhun B.; Pulakkat, Sreeranjini [Indian Institute of Science, Department of Materials Engineering (India); Gnanadhas, Divya P.; Chakravortty, Dipshikha [Indian Institute of Science, Department of Microbiology and Cell Biology (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Indian Institute of Science, Department of Materials Engineering (India)

    2015-08-15

    Enzyme- and pH-responsive polyelectrolyte nanocapsules having diameters in the range of 200 ± 20 nm were fabricated by means of Layer-by-Layer assembly of biopolymers, protamine, and heparin, and then loaded with anticancer drug doxorubicin. The incorporation of the FDA-approved peptide drug protamine as a wall component rendered the capsules responsive to enzyme stimuli. The stimuli-responsive drug release from these nanocapsules was evaluated, and further modulation of capsule permeability to avoid premature release was demonstrated by crosslinking the wall components. The interaction of the nanocapsules with cancer cells was studied using MCF-7 breast cancer cells. These capsules were readily internalized and disintegrated inside the cells, culminating in the release of the loaded doxorubicin and subsequent cell death as observed by confocal microscopy and MTT Assay. The bioavailability studies performed using BALB/c mice revealed that the encapsulated doxorubicin exhibited enhanced bioavailability compared to free doxorubicin. Our results indicate that this stimuli-responsive system fabricated from clinically used FDA-approved molecules and exhibiting minimal premature release has great potential for drug-delivery applications.

  15. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees.

    Science.gov (United States)

    Lopes, Leonardo Q S; Santos, Cayane G; de Almeida Vaucher, Rodrigo; Gende, Liesel; Raffin, Renata P; Santos, Roberto C V

    2016-08-01

    The American Foulbrood Disease (AFB) is a fatal larval bee infection. The etiologic agent is the bacterium Paenibacillus larvae. The treatment involves incineration of all contaminated materials, leading to high losses. The Glycerol Monolaurate (GML) is a known antimicrobial potential compound, however its use is reduced due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages like improved stability and solubility in water. The present study aimed to evaluate the antimicrobial activity against P. larvae and the toxicity in bees of GML nanoparticles. The nanocapsules were produced and presented mean diameter of 210 nm, polydispersity index of 0.044, and zeta potential of -23.4 mV demonstrating the acceptable values to predict a stable system. The microdilution assay showed that it is necessary 142 and 285 μg/mL of GML nanocapsules to obtain a bacteriostatic and bactericidal effect respectively. The time-kill curve showed the controlled release of compound, exterminating the microorganism after 24 h. The GML nanocapsules were able to kill the spore form of Paenibacillus larvae while the GML do not cause any effect. The assay in bees showed that the GML has a high toxicity while the GML nanoparticles showed a decrease on toxic effects. Concluding, the formulation shows positive results in the action to combat AFB besides not causing damage to bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microbubble-Triggered Spontaneous Separation of Transparent Thin Films from Substrates Using Evaporable Core-Shell Nanocapsules.

    Science.gov (United States)

    Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup

    2018-05-23

    The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.

  17. Reorganization of lipid nanocapsules at air-water interface: Part 2. Properties of the formed surface film.

    Science.gov (United States)

    Minkov, I; Ivanova, Tz; Panaiotov, I; Proust, J; Saulnier, P

    2005-09-01

    The state, electrical and dilatational rheological properties of surface films formed at air-water interface from lipid nanocapsules (LNC) with various compositions as well as model monolayers formed by the LNC constituents-Labrafac, Solutol and Lipoid are investigated. These nanocapsules constitute potential drug delivery systems where lypophilic drug will be loaded in their core. The study of the model Labrafac/Solutol (Lab/Sol) mixed monolayers shows behavior close to the ideal. Small negative deviations in the mean molecular areas a and dipole moments mu are observed. All studied monolayers have elastic behavior during the small continuous compressions. The comparison between the properties of surface films formed from LNC with those of the model monolayers confirms the idea developed in the kinetic study that the surface films formed after a rapid disaggregation of the unstable nanocapsule fraction (LNC I) contains mainly Labrafac and Solutol. The Labrafac molar part (xLab) in the formed Lab/Sol mixed layer is established.

  18. Development and validation of a fast RP-HPLC method for determination of methotrexate entrapment efficiency in polymeric nanocapsules.

    Science.gov (United States)

    Sartori, Tatiane; Seigi Murakami, Fabio; Pinheiro Cruz, Ariane; Machado de Campos, Angela

    2008-07-01

    A rapid and effective isocratic chromatographic procedure is successfully developed to determinate methotrexate (MTX) entrapment efficiency (EE) in polymeric nanocapsules using reversed-phase high-performance liquid chromatography. The method employed a RP-C(18) Shimadzu Shim-pack CLC-ODS (150 mm x 4.6 mm, 5 microm) column with mobile phase constituted by a mixture of water-acetonitrile-tetrahydrofuran (65:30:5 v/v/v; pH 3.0) at a flow rate of 0.8 mL/min. The eluate is monitored with a UV detector set at 313 nm. The parameters used in the validation process are: linearity, specificity, precision, accuracy, and limit of quantitation (LOQ). The linearity is evaluated by a calibration curve in the concentration range of 10-50 microg/mL and presented a correlation coefficient of 0.9998. The polymers (PLA or PLA-PEG), oil, and surfactants used in the nanocapsule formulation did not interfere with analysis and the recovery was quantitative. The intra and inter-day assay relative standard deviation were less than 0.72%. Results are satisfactory, and the method proved to be adequate for the determination of methotrexate in nanocapsules formulations.

  19. Development and Optimization of Polymeric Self-Emulsifying Nanocapsules for Localized Drug Delivery: Design of Experiment Approach

    Directory of Open Access Journals (Sweden)

    Jyoti Wadhwa

    2014-01-01

    Full Text Available The purpose of the present study was to formulate polymeric self-emulsifying curcumin nanocapsules with high encapsulation efficiency, good emulsification ability, and optimal globule size for localized targeting in the colon. Formulations were prepared using modified quasiemulsion solvent diffusion method. Concentration of formulation variables, namely, X1 (oil, X2 (polymeric emulsifier, and X3 (adsorbent, was optimized by design of experiments using Box-Behnken design, for its impact on mean globule size (Y1 and encapsulation efficiency (Y2 of the formulation. Polymeric nanocapsules with an average diameter of 100–180 nm and an encapsulation efficiency of 64.85 ± 0.12% were obtained. In vitro studies revealed that formulations released the drug after 5 h lag time corresponding to the time to reach the colonic region. Pronounced localized action was inferred from the plasma concentration profile (Cmax 200 ng/mL that depicts limited systemic absorption. Roentgenography study confirms the localized presence of carrier (0–2 h in upper GIT; 2–4 h in small intestine; and 4–24 h in the lower intestine. Optimized formulation showed significantly higher cytotoxicity (IC50 value 20.32 μM in HT 29 colonic cancer cell line. The present study demonstrates systematic development of polymeric self-emulsifying nanocapsule formulation of curcumin for localized targeting in colon.

  20. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor.

    Science.gov (United States)

    Moteki, Takahiko; Chaikittisilp, Watcharop; Shimojima, Atsushi; Okubo, Tatsuya

    2008-11-26

    Novel pure silica sodalite with hollow sodalite-cages has been synthesized for the first time by topotactic conversion of layered silicate (RUB-15) precursor. This success has been achieved by stepwise syntheses from silicate monomers, through clusters and layers, to microporous crystals. The pretreatment of layered silicate with small carboxylic acids before conversion is a crucial step. The obtained sodalite possesses accessible micropores, as confirmed by physical adsorption of hydrogen molecules. This plate-like silica sodalite would be very promising as fillers in mixed-matrix membranes for hydrogen separation.

  1. Hollow nanocrystals and method of making

    Science.gov (United States)

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  2. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  3. Chemo-enzymatic Synthesis of Propionyl-ester-linked Taxol-monosaccharide Conjugate and its Drug Delivery System Using Hybrid-Bio-nanocapsules Targeting Brain Glioma Cells

    Directory of Open Access Journals (Sweden)

    Hiroki Hamada

    2013-01-01

    Full Text Available Taxol is recognized as one of the most potent anticancer agents used in the treatment of breast and ovarian cancers, which are common cancers in women. To overcome its shortcomings, that is, its low water-solubility that reduces drug loading capacity of DDS carriers when incorporating taxol, chemo-enzymatic synthesis of ester-linked taxol-glucose conjugate, i.e., 7-propionyltaxol 2′- O -α-D-glucoside, as a water soluble taxol prodrug was achieved by using a-glucosidase as a glucosylation catalyst. The water-solubility of 7-propionyltaxol 2′- O -α-D-glucoside (25 mM was 63 fold higher than that of taxol (0.4 mM. The pre-S1 peptide which displays on the surface of bio-nanocapsules, which are nanoparticles composed of the hepatitis B virus surface antigen, was replaced with the antibody affinity motif of protein A. Conjugation of such bio-nanocapsules with anti-human epidermal growth factor receptor antibody gave hybrid bio-nanocapsules. The hybrid bio-nanocapsules were effective for delivering 7-propionyltaxol 2′- O -α-D-glucoside to human brain glioma cells. 7-Propionyltaxol 2′- O -α-D-glucoside was effectively hydrolyzed to give taxol in 95% by human glioma cells. The drug loading capacity of hybrid bio-nanocapsules incorporating 7-propionyltaxol 2′- O -α-D-glucoside was 120 times higher than that incorporating taxol itself.

  4. Polyamide nanocapsules and nano-emulsions containing Parsol® MCX and Parsol® 1789: in vitro release, ex vivo skin penetration and photo-stability studies.

    Science.gov (United States)

    Hanno, Ibrahim; Anselmi, Cecilia; Bouchemal, Kawthar

    2012-02-01

    To prepare polyamide nanocapsules for skin photo-protection, encapsulating α-tocopherol, Parsol®MCX (ethylhexyl methoxycinnamate) and/or Parsol®1789 (butyl methoxydibenzoylmethane). Nanocapsules were obtained by combining spontaneous emulsification and interfacial polycondensation reaction between sebacoyl chloride and diethylenetriamine. Nano-emulsions used as control were obtained by the same process without monomers. The influence of carrier on release rate was studied in vitro with a membrane-free model. Epidermal penetration of encapsulated sunscreens was ex vivo evaluated using Franz diffusion cells. Ability of encapsulated sunscreens to improve photo-stability was verified by comparing percentage of degradation after UV radiation exposure. Sunscreen-containing nanocapsules (260-400 nm) were successfully prepared; yield of encapsulation was >98%. Parsol®MCX and Parsol®1789 encapsulation led to decreased release rate by up to 60% in comparison with nano-emulsion and allowed minimum penetration through pig ear epidermis. Presence of polyamide shell protected encapsulated sunscreen filters from photo-degradation without affecting their activity. Encapsulation of Parsol®MCX and Parsol®1789 into oil-core of polyamide nanocapsules allowed protection from photo-degradation, controlled release from nanocapsules, and limited penetration through pig ear epidermis.

  5. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging.

    Science.gov (United States)

    Néstor, Mendoza-Muñoz; Kei, Noriega-Peláez Eddy; Guadalupe, Nava-Arzaluz María; Elisa, Mendoza-Elvira Susana; Adriana, Ganem-Quintanar; David, Quintanar-Guerrero

    2011-10-01

    The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Nifedipine-loaded polymeric nanocapsules: validation of a stability-indicating HPLC method to evaluate the drug entrapment efficiency and in vitro release profiles.

    Science.gov (United States)

    Granada, Andréa; Tagliari, Monika Piazzon; Soldi, Valdir; Silva, Marcos António Segatto; Zanetti-Ramos, Betina Ghiel; Fernandes, Daniel; Stulzer, Hellen Karine

    2013-01-01

    A simple stability-indicating analytical method was developed and validated to quantify nifedipine in polymeric nanocapsule suspensions; an in vitro drug release study was then carried out. The analysis was performed using an RP C18 column, UV-Vis detection at 262 nm, and methanol-water (70 + 30, v/v) mobile phase at a flow rate of 1.2 mL/min. The method was validated in terms of specificity, linearity and range, LOQ, accuracy, precision, and robustness. The results obtained were within the acceptable ranges. The nanocapsules, made of poly(epsilon-caprolactone), were prepared by the solvent displacement technique and showed high entrapment efficiency. The entrapment efficiency was 97.6 and 98.2% for the nifedipine-loaded polymeric nanocapsules prepared from polyvinyl alcohol (PVA) and Pluronic F68 (PF68), respectively. The particle size and zeta potential of nanocapsules were found to be influenced by the nature of the stabilizer used. The mean diameter and zeta potential for nanocapsules with PVA and PF68 were 290.9 and 179.9 nm, and -17.7 mV and -32.7 mV, respectively. The two formulations prepared showed a drug release of up to 70% over 4 days. This behavior indicates the viability of this drug delivery system for use as a controlled-release system.

  7. Identification of Bloch-modes in hollow-core Photonic Crystal Fiber cladding

    DEFF Research Database (Denmark)

    Couny, F.; Benabid, F.; Roberts, John

    2007-01-01

    We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short...... length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives...

  8. Poly(ionic liquids) hollow nanospheres with PDMAEMA as joint support of highly dispersed gold nanoparticles for thermally adjustable catalysis

    International Nuclear Information System (INIS)

    He, Xiaoyan; Liu, Zhirong; Fan, Fuhong; Qiang, Shenglu; Cheng, Li; Yang, Wu

    2015-01-01

    A smart hollow hybrid system was prepared by introducing poly(2-(1-methylimidazolium 3-yl)-ethyl methacrylate chloride) (PMIMC) network, the temperature-responsive PDMAEMA brushes, and Au nanoparticles into silica nanoparticles through two-step surface-initiated atom transfer radical polymerization. TEM, FTIR, EDX, XRD, XPS, and TGA were used to characterize the morphology and structure of air@PMIMC–PDMAEMA–Au hairy hollow nanospheres. The result showed that Au nanoparticles with an average diameter of 1.5 ± 0.2 nm were homogeneously embedded inside the PMIMC–PDMAEMA shell. Catalytic activity of the as-synthesized air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were investigated using the reduction of 4-nitrophenol with NaBH 4 as a model reaction. It was found that the joint structures of PMIMC hollow nanospheres and PDMAEMA brushes lead to production of the highly active and stable catalyst for reduction of 4-nitrophenol. Furthermore, the obtained air@PMIMC–PDMAEMA–Au hairy hollow nanospheres were found to have a thermally adjustable catalytic activity for the reduction of 4-nitrophenol

  9. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    Science.gov (United States)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  10. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release

    Science.gov (United States)

    Zhang, Shengjian; Qian, Xiaoqing; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2015-04-01

    The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports on a generic construction strategy to achieve a multiple stimuli-responsive theranostic system for cancer simply by optimizing the chemical compositions of inorganic nanoplatforms to avoid the tedious and complicated synthetic procedure for traditional organic or organic/inorganic nanosystems. Based on the ``breaking up'' nature of manganese oxides and specific features of the carbonaceous framework to interact with aromatic drug molecules, manganese oxide nanoparticles were elaborately integrated into hollow mesoporous carbon nanocapsules by a simple in situ framework redox strategy to realize concurrent pH-sensitive T1-weighted magnetic resonance imaging (MRI) and pH-/HIFU-responsive on-demand drug release. The ultrasensitive disease-triggered MRI performance has been successfully demonstrated by a 52.5-fold increase of longitudinal relaxivity (r1 = 10.5 mM-1 s-1) and on nude mice 4T1 xenograft. The pH- and HIFU-triggered doxorubicin release and enhanced therapeutic outcome against multidrug resistance of cancer cells were systematically confirmed. In particular, the fabricated inorganic composite nanocapsules were found to feature unique biological behaviours, such as antimetastasis effect, extremely low hemolysis against red blood cells and high in vivo histocompatibility. This report on the successful construction of a pure inorganic nanosystem with multiple stimuli-responsivenesses may pave the way to new methods for the development of intelligent nanofamilies for cancer therapy.The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports

  11. Graphene Oxide and Gadolinium-Chelate Functionalized Poly(lactic acid) Nanocapsules Encapsulating Perfluorooctylbromide for Ultrasound/Magnetic Resonance Bimodal Imaging Guided Photothermal Ablation of Cancer.

    Science.gov (United States)

    Li, Zhenglin; Ke, Hengte; Wang, Jinrui; Miao, Zhaohua; Yue, Xiuli

    2016-03-01

    This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation. Thus, such a single theranostic agent with the combination of realtime US imaging and high-resolution MR imaging could achieve great therapeutic effectiveness without systemic damage to the body. In addition, the cytotoxicity assay on HUVEC cells revealed a good biocompatibility of PFOB@PLA/GO/Gd-DTPA NCs, showing that the versatile nanocapsule system may hold great potential as an effective nanoplatform for contrast enhanced imaging guided photothermal therapy.

  12. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physico-chemical properties and anesthetic activity.

    Science.gov (United States)

    de Melo, Nathalie Ferreira Silva; Grillo, Renato; Guilherme, Viviane Aparecida; de Araujo, Daniele Ribeiro; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-08-01

    The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine. Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade. The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component. Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

  13. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W microemulsion and UV cured on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-08-15

    Encapsulation is the best method to protect the plant extracts against volatility and instability in the presence of air, light, moisture and high temperatures. Nevertheless, application of encapsulated plant extracts on the textiles requires a low-temperature and high rate processing to avoid from breaking or destroying of capsules. The present paper represents application of nanocapsules prepared by ultrasound irradiation assisted W/O/W microemulsion method on the cotton fabric through UV curing method. The surface and structure of nanocapsules and treated cotton fabric using FESEM and FT-IR indicated the spherical nanocapsules with size of 60-80nm stabilized on the fabric surface in a film layer feature. Also, the treated cotton fabric showed a good release behavior of 96h, a high stability against washing and rubbing tests and a relative good antimicrobial activity with 91, 89 and 94% reduction against S. aureus, E. coli and C. albicans, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    Highlights: • Hollow silica–zirconia composite spheres were fabricated on polystyrene templates by the sol–gel method. • We study the effect of preparation conditions on the activity for hydrolytic dehydrogenation of ammonia borane. • The activity of hollow silica–zirconia composite spheres depends on wall thickness. - Abstract: In this paper, we report fabrication of hollow silica–zirconia composite spheres by polystyrene (PS) template method and control of wall thickness of the hollow spheres in nanoscale. Both the hollow spheres before and after calcination were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and powder X-ray diffraction analysis (XRD). Morphology of the hollow spheres does not significantly change after calcination from the results of SEM and TEM images, while the amount of residual PS templates drastically decreases via the calcination procedure from the results of FTIR and elemental analysis. The sample after calcination mainly includes amorphous silica from the results of XRD, indicating that the hollow silica–zirconia composite spheres consist of amorphous phases and/or fine particles. Wall thicknesses of the samples after calcination are controlled by adjusting the amount of PS template suspension, and hollow silica–zirconia composite spheres with the wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are obtained using the PS template suspension of 25.0, 33.5, 100.0, and 400.0 g, respectively. The activities of the hollow spheres for hydrolytic dehydrogenation of ammonia borane (NH{sub 3}BH{sub 3}) were compared. The evolutions of 2.0, 3.1, 5.0, and 8.0 mL hydrogen from aqueous NH{sub 3}BH{sub 3} solution were finished in about 4, 5, 3, and 7 min in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm, respectively. The molar ratios of the hydrolytically generated hydrogen to

  15. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David)

    2008-11-03

    Hollow micro-nanostructures are of great interest in many current and emerging areas of technology. Perhaps the best-known example of the former is the use of fly-ash hollow particles generated from coal power plants as partial replacement for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic strategies for hollow structures. These strategies are broadly categorized into four themes, which include well-established approaches, such as conventional hard-templating and soft-templating methods, as well as newly emerging methods based on sacrificial templating and template-free synthesis. Success in each has inspired multiple variations that continue to drive the rapid evolution of the field. The Review therefore focuses on the fundamentals of each process, pointing out advantages and disadvantages where appropriate. Strategies for generating more complex hollow structures, such as rattle-type and nonspherical hollow structures, are also discussed. Applications of hollow structures in lithium batteries, catalysis and sensing, and biomedical applications are reviewed. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA,.

  16. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting

    Science.gov (United States)

    Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong

    2014-10-01

    Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change

  17. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  18. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  19. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  20. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...

  1. Collective mechanical behavior of multilayer colloidal arrays of hollow nanoparticles.

    Science.gov (United States)

    Yin, Jie; Retsch, Markus; Thomas, Edwin L; Boyce, Mary C

    2012-04-03

    The collective mechanical behavior of multilayer colloidal arrays of hollow silica nanoparticles (HSNP) is explored under spherical nanoindentation through a combination of experimental, numerical, and theoretical approaches. The effective indentation modulus E(ind) is found to decrease with an increasing number of layers in a nonlinear manner. The indentation force versus penetration depth behavior for multilayer hollow particle arrays is predicted by an approximate analytical model based on the spring stiffness of the individual particles and the multipoint, multiparticle interactions as well as force transmission between the layers. The model is in good agreement with experiments and with detailed finite element simulations. The ability to tune the effective indentation modulus, E(ind), of the multilayer arrays by manipulating particle geometry and layering is revealed through the model, where E(ind) = (0.725m(-3/2) + 0.275)E(mon) and E(mon) is the monolayer modulus and m is number of layers. E(ind) is seen to plateau with increasing m to E(ind_plateau) = 0.275E(mon) and E(mon) scales with (t/R)(2), t being the particle shell thickness and R being the particle radius. The scaling law governing the nonlinear decrease in indentation modulus with an increase in layer number (E(ind) scaling with m(-3/2)) is found to be similar to that governing the indentation modulus of thin solid films E(ind_solid) on a stiff substrate (where E(ind_solid) scales with h(-1.4) and also decreases until reaching a plateau value) which also decreases with an increase in film thickness h. However, the mechanisms underlying this trend for the colloidal array are clearly different, where discrete particle-to-particle interactions govern the colloidal array behavior in contrast to the substrate constraint on deformation, which governs the thickness dependence of the continuous thin film indentation modulus.

  2. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  3. Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro.

    Science.gov (United States)

    Ganassin, Rayane; Souza, Ludmilla Regina de; Py-Daniel, Karen Rapp; Longo, João Paulo Figueiró; Coelho, Janaína Moreira; Rodrigues, Mosar Correa; Jiang, Cheng-Shi; Gu, Jinsong; Morais, Paulo César de; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre

    2018-01-01

    Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

  4. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  5. Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics.

    Science.gov (United States)

    Cauchetier, Emmanuelle; Deniau, M; Fessi, H; Astier, A; Paul, M

    2003-01-02

    Nanocapsules with atovaquone concentration of 1,000 micrograms/ml were prepared according to the interfacial deposition technique using different polymers: poly- epsilon -caprolactone (PECL), poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLAGA). The following characteristics of nanoparticles were determined: percentage of encapsulation of atovaquone, percentage of encapsulation of benzyl benzoate (BB), nanoparticle size, nanoparticle wall thickness, suspension pH, and in vitro stability. The different formulations showed similar characteristics: maximal percentage of encapsulation (100%), particle size of approximately 230 nm, neutral pH and wall thickness of approximately 20 nm. The type of polymer used was the main factor influencing stability, in decreasing order: PECL>PLA>PLAGA. No release of atovaquone or benzylbenzoate was noted with PECL nanoparticles over 4 months. Release of atovaquone (25.9%) was found with PLA nanoparticles at 4 months. Release of both atovaquone (18.9%) and benzylbenzoate (54.2%) was noted with PLAGA nanoparticles from the third month, indicating a disruption of the nanoparticle membrane.

  6. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.

    Science.gov (United States)

    Mosqueira, V C; Legrand, P; Gulik, A; Bourdon, O; Gref, R; Labarre, D; Barratt, G

    2001-11-01

    The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the first time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the fluorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to affect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages.

  7. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol.

    Science.gov (United States)

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G

    2016-01-05

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.

  8. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Designing a Poly (N-isopropylacrylamide) Nanocapsule for Magnetic Field-assisted Drug Delivery

    Science.gov (United States)

    Denmark, Daniel; Mukherjee, Pritish; Witanachchi, Sarath

    2014-03-01

    The method of synthesis and the characteristics of polymer based nanocapsules as biomedical drug delivery systems are presented. Magnetic iron oxide nanoparticles have been incorporated into these capsules for effective guidance with external magnetic fields to transport therapeutic compounds to various parts of the human body. Once they have reached their destination they can be stimulated to release the drug to the target tissue through externally applied fields. The polymeric material that constitutes the capsules is specifically designed to melt away with the external stimuli to deliver the therapeutic bio agents near the target tissue. In this work we use nebulization to create aqueous poly (N-isopropylacrylamide) nanoparticles that decompose after being heated beyond their transition temperature. Transmission Electron Microscopic imaging (TEM) and dynamic light scattering (DLS) experiments have been conducted to study the decomposition of the capsules under external stimuli. Distribution of the magnetic nanoparticles within the capsules and their role in delivering the bio agents have been investigated by the Magnetic Force Microscopy (MFM).

  10. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  11. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  12. Hollow Micro-/Nanostructures: Synthesis and Applications

    KAUST Repository

    Lou, Xiong Wen (David); Archer, Lynden A.; Yang, Zichao

    2008-01-01

    for Portland cement, to produce concrete with enhanced strength and durability. This review is devoted to the progress made in the last decade in synthesis and applications of hollow micro-nanostructures. We present a comprehensive overview of synthetic

  13. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  14. Adsorption characteristics of activated carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    B. V. Kaludjerović

    2009-01-01

    Full Text Available Carbon hollow fibers were prepared with regenerated cellulose or polysulfone hollow fibers by chemical activation using sodium phosphate dibasic followed by the carbonization process. The activation process increases the adsorption properties of fibers which is more prominent for active carbone fibers obtained from the cellulose precursor. Chemical activation with sodium phosphate dibasic produces an active carbon material with both mesopores and micropores.

  15. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  16. Hollow-duct radiation delivery system investigation

    Directory of Open Access Journals (Sweden)

    Kramer D.

    2013-05-01

    Full Text Available Investigation of hollow-duct structure for high-power laser-diode-array radiation delivery into the end-pumped large-aperture gain media is reported. A ray tracing method has been used to evaluate the performance of the structure designed for maximum transmission efficiency and output beam profile homogeneity. Variable hollow-duct lengths as well as emanating angles of laser-diode-array have been taken into account.

  17. Pharmacokinetics on a microscale: visualizing Cy5-labeled oligonucleotide release from poly(n-butylcyanoacrylate nanocapsules in cells

    Directory of Open Access Journals (Sweden)

    Tomcin S

    2014-11-01

    Full Text Available Stephanie Tomcin,1 Grit Baier,1 Katharina Landfester,1 Volker Mailänder1,21Max Planck Institute for Polymer Research, 2University Medical Center of the Johannes Gutenberg University, III Medical Clinic, Mainz, GermanyAbstract: For successful design of a nanoparticulate drug delivery system, the fate of the carrier and cargo need to be followed. In this work, we fluorescently labeled poly(n-butylcyanoacrylate (PBCA nanocapsules as a shell and separately an oligonucleotide (20 mer as a payload. The nanocapsules were formed by interfacial anionic polymerization on aqueous droplets generated by an inverse miniemulsion process. After uptake, the PBCA capsules were shown to be round-shaped, endosomal structures and the payload was successfully released. Cy5-labeled oligonucleotides accumulated at the mitochondrial membrane due to a combination of the high mitochondrial membrane potential and the specific molecular structure of Cy5. The specificity of this accumulation at the mitochondria was shown as the uncoupler dinitrophenol rapidly diminished the accumulation of the Cy5-labeled oligonucleotide. Importantly, a fluorescence resonance energy transfer investigation showed that the dye-labeled cargo (Cy3/Cy5-labeled oligonucleotides reached its target site without degradation during escape from an endosomal compartment to the cytoplasm. The time course of accumulation of fluorescent signals at the mitochondria was determined by evaluating the colocalization of Cy5-labeled oligonucleotides and mitochondrial markers for up to 48 hours. As oligonucleotides are an ideal model system for small interfering RNA PBCA nanocapsules demonstrate to be a versatile delivery platform for small interfering RNA to treat a variety of diseases.Keywords: drug delivery, mitochondria, miniemulsion, colocalization

  18. Thérapie génique à l'aide de nanocapsules lipidiques PEGylées

    OpenAIRE

    Morille, Marie

    2009-01-01

    The main objective of gene therapy via a systemic pathway is the development of a stable and non-toxic gene vector that can encapsulate and deliver foreign genetic materials into specific cell types with the transfection efficiency of viral vectors. In this way, lipid nanocapsules loaded with DOTAP/DOPE lipoplexes, named DNA LNCs were used. These vectors were post-inserted by with long poly (ethylene glycol) (PEG) chains, thanks to two kinds of amphiphilic polymers: DSPEmPEG2000 and copolymer...

  19. Synthesis of Nickel-Encapsulated Carbon Nanocapsules and Cup-Stacked-Type Carbon Nanotubes via Nickel-Doped Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available Nickel- (Ni doped C60 nanowhiskers (NWs were synthesized by a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and isopropanol with Ni nitrate hexahydrate Ni(NO32·6H2O. By varying the heating temperature of Ni-doped C60 NWs, two types of one-dimensional carbon nanostructures were produced. By heating the NWs at 973 and 1173 K, carbon nanocapsules (CNCs that encapsulated Ni nanoparticles were produced. The Ni-encapsulated CNCs joined one dimensionally to form chain structures. Upon heating the NWs to 1373 K, cup-stacked-type carbon nanotubes were synthesized.

  20. Synthesis of Hollow Nanotubes of Zn2SiO4 or SiO2: Mechanistic Understanding and Uranium Adsorption Behavior.

    Science.gov (United States)

    Tripathi, Shalini; Bose, Roopa; Roy, Ahin; Nair, Sajitha; Ravishankar, N

    2015-12-09

    We report a facile synthesis of Zn2SiO4 nanotubes using a two-step process consisting of a wet-chemical synthesis of core-shell ZnO@SiO2 nanorods followed by thermal annealing. While annealing in air leads to the formation of hollow Zn2SiO4, annealing under reducing atmosphere leads to the formation of SiO2 nanotubes. We rationalize the formation of the silicate phase at temperatures much lower than the temperatures reported in the literature based on the porous nature of the silica shell on the ZnO nanorods. We present results from in situ transmission electron microscopy experiments to clearly show void nucleation at the interface between ZnO and the silica shell and the growth of the silicate phase by the Kirkendall effect. The porous nature of the silica shell is also responsible for the etching of the ZnO leading to the formation of silica nanotubes under reducing conditions. Both the hollow silica and silicate nanotubes exhibit good uranium sorption at different ranges of pH making them possible candidates for nuclear waste management.

  1. In situ crystallization of b-oriented MFI films on plane and curved substrates coated with a mesoporous silica layer

    KAUST Repository

    Deng, Zhiyong

    2013-05-01

    A simple and reproducible method is presented for preparing b-oriented MFI films on plane (disc) and curved (hollow fiber) supports by in situ hydrothermal synthesis. A mesoporous silica (sub-)layer was pre-coated on the supports by dip coating followed by a rapid thermal calcination step (973 K during 1 min) to reduce the number of grain boundaries while keeping the hydrophilic behavior of silica. The role of the silica sub-layer is not only to smoothen the substrate surface, but also to provide a silica source to promote the nucleation and growth of zeolite crystals via a heterogeneous nucleation mechanism (zeolitization), and adsorb zeolite moieties generated in the synthesis solution via a homogeneous nucleation mechanism. A monolayer of b-oriented MFI crystals was obtained on both supports after 3 h synthesis time with a moderate degree of twinning on the surface. © 2013 Elsevier Ltd.

  2. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    Science.gov (United States)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  3. Kerr Hollow Quarry Remediation Project

    International Nuclear Information System (INIS)

    Walker, K.L.

    1993-01-01

    The Kerr Hollow Quarry is a 3-acre flooded limestone quarry located near the Y-12 Facility on the Oak Ridge Reservation. The quarry was used in the 1940s as a source of construction material for the Department of Energy in Oak Ridge, Tennessee. Its use was discontinued in the early 1950s, and it was allowed to flood with water. The quarry presently has a maximum water depth of approximately 55 ft. During the period between the early 1950s until about 1988, the quarry was used for the treatment and disposal of a variety of materials including water-reactive, alkali metals, shock-sensitive chemicals, and compressed gas cylinders. For some of these materials, the treatment consisted of dropping the vessels containing the materials into the quarry from a high bluff located on one side of the quarry. The vessels were then punctured by gun shot, and the materials were allowed to react with the water and sink to the bottom of the quarry. Very few disposal records exist for the period from 1952 to 1962. The records after that time, from 1962 until 1988, indicate some 50 t of hazardous and nonhazardous materials were disposed of in the quarry. This report documents remediation efforts that have taken place at the quarry beginning in September 1990

  4. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sara S.; Lorenzoni, Alessandra; Ferreira, Luana M.; Mattiazzi, Juliane; Adams, Andréa I.H. [Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria (Brazil); Denardi, Laura B.; Alves, Sydney H. [Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria (Brazil); Schaffazick, Scheila R. [Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria (Brazil); Cruz, Letícia, E-mail: leticiacruz@smail.ufsm.br [Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria (Brazil)

    2013-04-01

    Clotrimazole is a common choice for the treatment of vulvovaginal infections, but its low solubility and some side effects pose a challenge to its application. This work evaluated the feasibility to formulate clotrimazole-loaded cationic nanocapsules using Eudragit® RS100 and medium chain triglycerides as polymer and oily core, respectively, by the method of interfacial deposition of a preformed polymer. The physicochemical characteristics of nanocapsule formulations were evaluated at 0 day and 60 days after preparation. Particle size, zeta potential, polydispersity index, pH and drug content were stable during this period. In addition, nanocapsules were able to protect clotrimazole from photodegradation under UV radiation. By the dialysis bag diffusion technique, the nanosized formulations showed prolonged release of clotrimazole by anomalous transport and first order kinetics. A microbiological study was carried out by the microdilution method and showed that nanocapsules (mean size: 144 nm; zeta potential: + 12 mV) maintained the antifungal activity of clotrimazole against Candida albicans and Candida glabrata strains susceptible and resistant to fluconazole. - Highlights: ► Clotrimazole-loaded NC were in the nanometric range and positively charged. ► Physicochemical characteristics of NC were kept for 60 days. ► Nanoencapsulation improved the drug photostability against UV radiation. ► NC prolonged the drug release by anomalous transport and first order kinetics. ► NC were able to maintain clotrimazole activity against Candida species.

  5. Clotrimazole-loaded Eudragit® RS100 nanocapsules: Preparation, characterization and in vitro evaluation of antifungal activity against Candida species

    International Nuclear Information System (INIS)

    Santos, Sara S.; Lorenzoni, Alessandra; Ferreira, Luana M.; Mattiazzi, Juliane; Adams, Andréa I.H.; Denardi, Laura B.; Alves, Sydney H.; Schaffazick, Scheila R.; Cruz, Letícia

    2013-01-01

    Clotrimazole is a common choice for the treatment of vulvovaginal infections, but its low solubility and some side effects pose a challenge to its application. This work evaluated the feasibility to formulate clotrimazole-loaded cationic nanocapsules using Eudragit® RS100 and medium chain triglycerides as polymer and oily core, respectively, by the method of interfacial deposition of a preformed polymer. The physicochemical characteristics of nanocapsule formulations were evaluated at 0 day and 60 days after preparation. Particle size, zeta potential, polydispersity index, pH and drug content were stable during this period. In addition, nanocapsules were able to protect clotrimazole from photodegradation under UV radiation. By the dialysis bag diffusion technique, the nanosized formulations showed prolonged release of clotrimazole by anomalous transport and first order kinetics. A microbiological study was carried out by the microdilution method and showed that nanocapsules (mean size: 144 nm; zeta potential: + 12 mV) maintained the antifungal activity of clotrimazole against Candida albicans and Candida glabrata strains susceptible and resistant to fluconazole. - Highlights: ► Clotrimazole-loaded NC were in the nanometric range and positively charged. ► Physicochemical characteristics of NC were kept for 60 days. ► Nanoencapsulation improved the drug photostability against UV radiation. ► NC prolonged the drug release by anomalous transport and first order kinetics. ► NC were able to maintain clotrimazole activity against Candida species

  6. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line.

    Science.gov (United States)

    Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K

    2014-01-01

    Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.

  7. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    Science.gov (United States)

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  8. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  9. Diatomite releases silica during spirit filtration.

    Science.gov (United States)

    Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M

    2014-09-15

    The purpose of this study was to ascertain whether diatomite is an inert filter aid during spirit filtration. Surely, any compound with a negative effect on the spirit composition or the consumer's health could be dissolved. In this study different diatomites were treated with 36% vol. ethanol/water mixtures and the amounts and structures of the extracted compounds were determined. Furthermore, Brandy de Jerez was diatomite- and membrane-filtered at different temperatures and the silicon content was analysed. It was found that up to 0.36% by weight of diatomite dissolved in the aqueous ethanol and amorphous silica, in the form of hollow spherical microparticles, was the most abundant component. Silicon concentrations in Brandy de Jerez increased by up to 163.0% after contact with diatomite and these changes were more marked for calcined diatomite. In contrast, reductions of more than 30% in silicon concentrations were achieved after membrane filtration at low temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Science.gov (United States)

    Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Yan, Zemin; Duan, Mingxing

    2010-10-01

    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /- 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating-cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  11. Miltefosine Lipid Nanocapsules for Single Dose Oral Treatment of Schistosomiasis Mansoni: A Preclinical Study.

    Directory of Open Access Journals (Sweden)

    Maha M Eissa

    Full Text Available Miltefosine (MFS is an alkylphosphocholine used for the local treatment of cutaneous metastases of breast cancer and oral therapy of visceral leishmaniasis. Recently, the drug was reported in in vitro and preclinical studies to exert significant activity against different developmental stages of schistosomiasis mansoni, a widespread chronic neglected tropical disease (NTD. This justified MFS repurposing as a potential antischistosomal drug. However, five consecutive daily 20 mg/kg doses were needed for the treatment of schistosomiasis mansoni in mice. The present study aims at enhancing MFS efficacy to allow for a single 20mg/kg oral dose therapy using a nanotechnological approach based on lipid nanocapsules (LNCs as oral nanovectors. MFS was incorporated in LNCs both as membrane-active structural alkylphospholipid component and active antischistosomal agent. MFS-LNC formulations showed high entrapment efficiency (EE%, good colloidal properties, sustained release pattern and physical stability. Further, LNCs generally decreased MFS-induced erythrocyte hemolytic activity used as surrogate indicator of membrane activity. While MFS-free LNCs exerted no antischistosomal effect, statistically significant enhancement was observed with all MFS-LNC formulations. A maximum effect was achieved with MFS-LNCs incorporating CTAB as positive charge imparting agent or oleic acid as membrane permeabilizer. Reduction of worm load, ameliorated liver pathology and extensive damage of the worm tegument provided evidence for formulation-related efficacy enhancement. Non-compartmental analysis of pharmacokinetic data obtained in rats indicated independence of antischistosomal activity on systemic drug exposure, suggesting possible gut uptake of the stable LNCs and targeting of the fluke tegument which was verified by SEM. The study findings put forward MFS-LNCs as unique oral nanovectors combining the bioactivity of MFS and biopharmaceutical advantages of LNCs

  12. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    Directory of Open Access Journals (Sweden)

    Yan Zemin

    2010-01-01

    Full Text Available Abstract The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs. The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride; however, the zeta potential of CoQ10-LNCs was above /− 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC in one heating–cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM. The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  13. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  14. Using the interplay of magnetic guidance and controlled TGF-β release from protein-based nanocapsules to stimulate chondrogenesis.

    Science.gov (United States)

    Chiang, Chih-Sheng; Chen, Jian-Yi; Chiang, Min-Yu; Hou, Kai-Ting; Li, Wei-Ming; Chang, Shwu-Jen; Chen, San-Yuan

    2018-01-01

    Stimulating the proliferation and differentiation of chondrocytes for the regeneration of articular cartilage is a promising strategy, but it is currently ineffective. Although both physical stimulation and growth factors play important roles in cartilage repair, their interplay remains unclear and requires further investigation. In this study, we aimed to clarify their contribution using a magnetic drug carrier that not only can deliver growth factors but also provide an external stimulation to cells in the two-dimensional environment. We developed a nanocapsule (transforming growth factor-β1 [TGF-β1]-loaded magnetic amphiphilic gelatin nanocapsules [MAGNCs]; TGF-β1@MAGNCs) composed of hexanoic-anhydride-grafted gelatin and iron oxide nanoparticles to provide a combination treatment of TGF-β1 and magnetically induced physical stimuli. With the expression of Arg-Gly-Asp peptide in the gelatin, the TGF-β1@MAGNCs have an inherent affinity for chondrogenic ATDC5 cells. In the absence of TGF-β1, ATDC5 cells treated with a magnetic field show significantly upregulated Col2a1 expression. Moreover, TGF-β1 slowly released from biodegradable TGF-β1@ MAGNCs further improves the differentiation with increased expression of Col2a1 and Aggrecan. Our study shows the time-dependent interplay of physical stimuli and growth factors on chondrogenic regeneration, and demonstrates the promising use of TGF-β1@MAGNCs for articular cartilage repair.

  15. Serpentinization processes: Influence of silica

    Science.gov (United States)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  16. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies.

    Science.gov (United States)

    Coradini, Karine; Friedrich, Rossana B; Fonseca, Francisco N; Vencato, Marina S; Andrade, Diego F; Oliveira, Cláudia M; Battistel, Ana Paula; Guterres, Silvia S; da Rocha, Maria Izabel U M; Pohlmann, Adriana R; Beck, Ruy C R

    2015-10-12

    Resveratrol and curcumin are two natural polyphenols extensively used due to their remarkable anti-inflammatory activity. The present work presents an inedited study of the in vivo antioedematogenic activity of these polyphenols co-encapsulated in lipid-core nanocapsules on Complete Freund's adjuvant (CFA)-induced arthritis in rats. Lipid-core nanocapsules were prepared by interfacial deposition of preformed polymer. Animals received a single subplantar injection of CFA in the right paw. Fourteen days after arthritis induction, they were treated with resveratrol, curcumin, or both in solution or loaded in lipid-core nanocapsules (1.75 mg/kg/twice daily, i.p.), for 8 days. At the doses used, the polyphenols in solution were not able to decrease paw oedema. However, nanoencapsulation improved the antioedematogenic activity of polyphenols at the same doses. In addition, the treatment with co-encapsulated polyphenols showed the most pronounced effects, where an inhibition of 37-55% was observed between day 16 and 22 after arthritis induction. This treatment minimized most of the histological changes observed, like fibrosis in synovial tissue, cartilage and bone loss. In addition, unlike conventionally arthritis treatment, resveratrol and curcumin co-encapsulated in lipid-core nanocapsules did not alter important hepatic biochemical markers (ALP, AST, and ALT). In conclusion, the strategy of co-encapsulating resveratrol and curcumin in lipid-core nanocapsules improves their efficacy as oedematogenic agents, with no evidence of hepatotoxic effects. This is a promising strategy for the development of new schemes for treatment of chronic inflammation diseases, like arthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors.

    Science.gov (United States)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F; Su, Wu

    2015-01-14

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m(2) g(-1)). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.

  18. Foulant analysis of hollow fine fiber (HFF) membranes in Red Sea SWRO plants using membrane punch autopsy (MPA)

    KAUST Repository

    Green, Troy N.

    2017-06-12

    Membrane punch autopsy (MPA) is a procedure for quantitative foulant analysis of hollow fine fiber (HFF) permeators. In the past, quantitative autopsies of membranes were restricted to spiral wound. This procedure was developed at SWCC laboratories and tested on permeators of two commercial Red Sea reverse osmosis plants. For membrane autopsies, stainless steel hollow bore picks were penetrated to membrane cores and fibers extracted for foulant analysis. Quantitative analysis of extracted materials contained inorganic and organic foulants including bacteria. Fourier transform infrared spectroscopy analysis confirmed the presence of organic fouling functional groups and scanning electron microscopy with energy dispersive X-ray spectroscopy in the presence of diatoms and silica most likely not from particulate sand. API analysis revealed the presence of Shewanella and two Vibrio microbial species confirmed by 16S rDNA sequence library. It was observed that fouling content of HFF cellulose triacetate (CTA) membranes were more than 800 times than polyamide spiral wound membranes.

  19. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  20. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  1. Toxicological Effects of a Post Emergent Herbicide on Spirodela polyrhiza as a Model Macrophyte: A Comparison of the Effects of Pure and Nano-capsulated Form of the Herbicide

    OpenAIRE

    Samaneh Torbati *; Mehdi Mahmoudian; Neda Alimirzaei

    2018-01-01

    Background: One of the main reasons of environmental contaminations is the broad application of herbicides. Controlled release technologies such as encapsulation of herbicides are as an effective tool to reduce environmental contaminations. The aim of the present study was successful nanocapsulation of Gallant Super (GS), its characterization and compare the physiological responses of Spirodela polyrhiza L. upon exposure to GS and its encapsulated form. Methods: Nanocapsulation of GS in th...

  2. Silica coated ionic liquid templated mesoporous silica nanoparticles ...

    African Journals Online (AJOL)

    A series of long chain pyridinium based ionic liquids 1-tetradecylpyridinium bromide, 1-hexadecylpyridinium bromide and 1-1-octadecylpyridinium bromide were used as templates to prepare silica coated mesoporous silica nanoparticles via condensation method under basic condition. The effects of alkyl chain length on ...

  3. Hydrothermal stability of microporous silica and niobia-silica membranes

    NARCIS (Netherlands)

    Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    The hydrothermal stability of microporous niobia–silica membranes was investigated and compared with silica membranes. The membranes were exposed to hydrothermal conditions at 150 and 200 °C for 70 h. The change of pore structure before and after exposure to steam was probed by single-gas permeation

  4. Development of tree hollows in pedunculate oak (Quercus robur)

    OpenAIRE

    Ranius, Thomas; Niklasson, Mats; Berg, Niclas

    2009-01-01

    Many invertebrates, birds and mammals are dependent on hollow trees. For landscape planning that aims at persistence of species inhabiting hollow trees it is crucial to understand the development of such trees. In this study we constructed an individual-based simulation model to predict diameter distribution and formation of hollows in oak tree populations. Based on tree-ring data from individual trees, we estimated the ages when hollow formation commences for pedunculate oak (Quercus robur) ...

  5. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  6. Adiabatic Rearrangement of Hollow PV Towers

    Directory of Open Access Journals (Sweden)

    Eric A Hendricks

    2010-10-01

    Full Text Available Diabatic heating from deep moist convection in the hurricane eyewall produces a towering annular structure of elevated potential vorticity (PV. This structure has been referred to as a hollow PV tower. The sign reversal of the radial gradient of PV satisfies the Charney-Stern necessary condition for combined barotropic-baroclinic instability. For thin enough annular structures, small perturbations grow exponentially, extract energy from the mean flow, and lead to hollow tower breakdown, with significant vortex structural and intensity change. The three-dimensional adiabatic rearrangements of two prototypical hurricane-like hollow PV towers (one thick and one thin are examined in an idealized framework. For both hollow towers, dynamic instability causes air parcels with high PV to be mixed into the eye preferentially at lower levels, where unstable PV wave growth rates are the largest. Little or no mixing is found to occur at upper levels. The mixing at lower and middle levels is most rapid for the breakdown of the thin hollow tower, consistent with previous barotropic results. For both hollow towers, this advective rearrangement of PV affects the tropical cyclone structure and intensity in a number of ways. First, the minimum central pressure and maximum azimuthal mean velocity simultaneously decrease, consistent with previous barotropic results. Secondly, isosurfaces of absolute angular momentum preferentially shift inward at low levels, implying an adiabatic mechanism by which hurricane eyewall tilt can form. Thirdly, a PV bridge, similar to that previously found in full-physics hurricane simulations, develops as a result of mixing at the isentropic levels where unstable PV waves grow most rapidly. Finally, the balanced mass field resulting from the PV rearrangement is warmer in the eye between 900 and 700 hPa. The location of this warming is consistent with observed warm anomalies in the eye, indicating that in certain instances the hurricane

  7. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  8. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  9. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  10. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  11. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  12. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  13. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  14. One-by-one imprinting in two eccentric layers of hollow core-shells: Sequential electroanalysis of anti-HIV drugs.

    Science.gov (United States)

    Singh, Kislay; Jaiswal, Swadha; Singh, Richa; Fatma, Sana; Prasad, Bhim Bali

    2018-07-15

    Double layered one-by-one imprinted hollow core-shells@ pencil graphite electrode was fabricated for sequential sensing of anti-HIV drugs. For this, two eccentric layers were developed on the surface of vinylated silica nanospheres to obtain double layered one-by-one imprinted solid core-shells. This yielded hollow core-shells on treatment with hydrofluoric acid. The modified hollow core-shells (single layered dual imprinted) evolved competitive diffusion of probe/analyte molecules. However, the corresponding double layered one-by-one imprinted hollow core-shells (outer layer imprinted with Zidovudine, and inner layer with Lamivudine) were found relatively better owing to their bilateral diffusions into molecular cavities, without any competition. The entire work is based on differential pulse anodic stripping voltammetry at double layered one-by-one imprinted hollow core-shells. This resulted in indirect detection of electro inactive targets with limits of detection as low as 0.91 and 0.12 (aqueous sample), 0.94 and 0.13 (blood serum), and 0.99 and 0.20 ng mL -1 (pharmaceutics) for lamivudine and zidovudine, respectively in anti-HIV drug combination. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Engineering the internal structure of magnetic silica nanoparticles by thermal control

    KAUST Repository

    Song, Hyon Min; Zink, Jeffrey I.; Khashab, Niveen M.

    2014-01-01

    Calcination of hydrated iron salts in the pores of both spherical and rod-shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min-1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α-Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si-O-Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe-O-Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.

  16. Engineering the internal structure of magnetic silica nanoparticles by thermal control

    KAUST Repository

    Song, Hyon Min

    2014-09-30

    Calcination of hydrated iron salts in the pores of both spherical and rod-shaped mesoporous silica nanoparticles (NPs) changes the internal structure from an ordered 2D hexagonal structure into a smaller number of large voids in the particles with sizes ranging from large hollow cores down to ten nanometer voids. The voids only form when the heating rate is rapid at a rate of 30 °C min-1. The sizes of the voids are controlled reproducibly by the final calcination temperature; as the temperature is decreased the number of voids decreases as their size increases. The phase of the iron oxide NPs is α-Fe2O3 when annealed at 500 °C, and Fe3O4 when annealed at lower temperatures. The water molecules in the hydrated iron (III) chloride precursor salts appear to play important roles by hydrolyzing Si-O-Si bonding, and the resulting silanol is mobile enough to affect the reconstruction into the framed hollow structures at high temperature. Along with hexahydrates, trivalent Fe3+ ions are assumed to contribute to the structure disruption of mesoporous silica by replacing tetrahedral Si4+ ions and making Fe-O-Si bonding. Volume fraction tomography images generated from transmission electron microscopy (TEM) images enable precise visualization of the structures. These results provide a controllable method of engineering the internal shapes in silica matrices containing superparamagnetic NPs.

  17. Hollow-in-Hollow Carbon Spheres for Lithium-ion Batteries with Superior Capacity and Cyclic Performance

    International Nuclear Information System (INIS)

    Zang, Jun; Ye, Jianchuan; Fang, Xiaoliang; Zhang, Xiangwu; Zheng, Mingsen; Dong, Quanfeng

    2015-01-01

    Highlights: • Hollow-in-hollow structured HIHCS was synthesized via a facile templating strategy. • The HCS core and hollow carbon shell constitute the hollow-in-hollow structure. • The HIHCS exhibited superior rate capability and cycle stability as anode material. • The excellent performance is attributed to the unique hollow-in-hollow structure. - Abstract: Hollow spheres structured materials have been intensively pursued due to their unique properties for energy storage. In this paper, hollow-in-hollow carbon spheres (HIHCS) with a multi-shelled structure were successfully synthesized using a facile hard-templating procedure. When evaluated as anode material for lithium-ion batteries, the resultant HIHCS anode exhibited superior capacity and cycling stability than HCS. It could deliver reversible capacities of 937, 481, 401, 304 and 236 mAh g −1 at current densities of 0.1 A g −1 , 1 A g −1 , 2 A g −1 , 5 A g −1 and 10 A g −1 , respectively. And capacity fading is not apparent in 500 cycles at 5 A g −1 . The excellent performance of the HIHCS anode is ascribed to its unique hollow-in-hollow structure and high specific surface area.

  18. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    International Nuclear Information System (INIS)

    Wang Jiexin; Wang Zhihui; Chen Jianfeng; Yun, Jimmy

    2008-01-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N 2 adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 μm, and had a specific surface area of about 306 m 2 /g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties

  19. Molecular motor transport through hollow nanowires

    DEFF Research Database (Denmark)

    Lard, Mercy; Ten Siethoff, Lasse; Generosi, Johanna

    2014-01-01

    -driven motion of fluorescent probes (actin filaments) through 80 nm wide, Al2O 3 hollow nanowires of micrometer length. The motor-driven transport is orders of magnitude faster than would be possible by passive diffusion. The system represents a necessary element for advanced devices based on gliding assays...

  20. Hollow micro string based calorimeter device

    DEFF Research Database (Denmark)

    2014-01-01

    positions so as to form a free released double clamped string in-between said two longitudinally distanced positions said micro-channel string comprising a microfluidic channel having a closed cross section and extending in the longitudinal direction of the hollow string, acoustical means adapted...

  1. Hollow fibre supported liquid membrane extraction of ...

    African Journals Online (AJOL)

    A simple sample pre-treatment method utilizing hollow fibre supported liquid membrane (HFSLM) was carried out on pharmaceuticals samples comprising of cough syrups (CS1 and CS2) and an anti-inflammatory product (AI). The active ingredients targeted in the extraction process were diphenylhydramine (DPH), ...

  2. TEACHING PHYSICS: Biking around a hollow sphere

    Science.gov (United States)

    Mak, Se-yuen; Yip, Din-yan

    1999-11-01

    The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.

  3. Evidence of fire resistance of hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    is therefore going on in the Netherlands about the fire resistance of hollow-core slabs. In 2014 the producers of hollow-core slabs have published a report of a project called Holcofire containing a collection of 162 fire tests on hollow-core slabs giving for the first time an overview of the fire tests made....... The present paper analyses the evidence now available for assessment of the fire resistance of extruded hollow-core slabs. The 162 fire tests from the Holcofire report are compared against the requirements for testing from the product standard for hollow-core slabs EN1168 and knowledge about the possible......Hollow-core slabs have during the past 50 years comprised a variety of different structures with different cross-sections and reinforcement. At present the extruded hollow-core slabs without cross-reinforcement in the bottom flange and usually round or oval longitudinal channels (holes...

  4. Evolution of nickel sulfide hollow spheres through topotactic transformation

    Science.gov (United States)

    Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng

    2013-11-01

    In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f

  5. Silica research in Glasgow

    International Nuclear Information System (INIS)

    Barr, B W; Cagnoli, G; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lueck, H; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 -19 m Hz -1/2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented

  6. Antitumor activity and systemic effects of PVM/MA-shelled selol nanocapsules in lung adenocarcinoma-bearing mice

    International Nuclear Information System (INIS)

    De Souza, Ludmilla Regina; Muehlmann, Luis Alexandre; Matos, Lívia Carneiro; Lacava, Zulmira Guerreiro Marques; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Simón-Vázquez, Rosana; González-Fernández, África; De-Paula, Alfredo Maurício Batista; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Morais, Paulo César

    2015-01-01

    Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility. (paper)

  7. Caenorhabditis elegans as an alternative in vivo model to determine oral uptake, nanotoxicity, and efficacy of melatonin-loaded lipid-core nanocapsules on paraquat damage.

    Science.gov (United States)

    Charão, Mariele Feiffer; Souto, Caroline; Brucker, Natália; Barth, Anelise; Jornada, Denise S; Fagundez, Daiandra; Ávila, Daiana Silva; Eifler-Lima, Vera L; Guterres, Silvia S; Pohlmann, Adriana R; Garcia, Solange Cristina

    2015-01-01

    Caenorhabditis elegans is an alternative in vivo model that is being successfully used to assess the pharmacological and toxic effects of drugs. The exponential growth of nanotechnology requires the use of alternative in vivo models to assess the toxic effects of theses nanomaterials. The use of polymeric nanocapsules has shown promising results for drug delivery. Moreover, these formulations have not been used in cases of intoxication, such as in treatment of paraquat (PQ) poisoning. Thus, the use of drugs with properties improved by nanotechnology is a promising approach to overcome the toxic effects of PQ. This research aimed to evaluate the absorption of rhodamine B-labeled melatonin (Mel)-loaded lipid-core nanocapsules (LNC) by C. elegans, the application of this model in nanotoxicology, and the protection of Mel-LNC against PQ damage. The formulations were prepared by self-assembly and characterized by particle sizing, zeta potential, drug content, and encapsulation efficiency. The results demonstrated that the formulations had narrow size distributions. Rhodamine B-labeled Mel-LNC were orally absorbed and distributed in the worms. The toxicity assessment of LNC showed a lethal dose 50% near the highest dose tested, indicating low toxicity of the nanocapsules. Moreover, pretreatment with Mel-LNC significantly increased the survival rate, reduced the reactive oxygen species, and maintained the development in C. elegans exposed to PQ compared to those worms that were either untreated or pretreated with free Mel. These results demonstrated for the first time the uptake and distribution of Mel-LNC by a nematode, and indicate that while LNC is not toxic, Mel-LNC prevents the effects of PQ poisoning. Thus, C. elegans may be an interesting alternative model to test the nanocapsules toxicity and efficacy.

  8. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    International Nuclear Information System (INIS)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael

    2015-01-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug

  9. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    Science.gov (United States)

    Roversi, Katiane; Benvegnú, Dalila M.; Roversi, Karine; Trevizol, Fabíola; Vey, Luciana T.; Elias, Fabiana; Fracasso, Rafael; Motta, Mariana H.; Ribeiro, Roseane F.; dos S. Hausen, Bruna; Moresco, Rafael N.; Garcia, Solange C.; da Silva, Cristiane B.; Burger, Marilise E.

    2015-04-01

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups ( n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  10. Haloperidol-loaded lipid-core polymeric nanocapsules reduce DNA damage in blood and oxidative stress in liver and kidneys of rats

    Energy Technology Data Exchange (ETDEWEB)

    Roversi, Katiane, E-mail: katianeroversi@gmail.com [Universidade Federal de Santa Maria, Programa de Pós-Graduação em Farmacologia (Brazil); Benvegnú, Dalila M., E-mail: dalilabenvegnu@yahoo.com.br [Universidade Federal da Fronteira Sul (UFFS), Bioquímica e Farmacologia (Brazil); Roversi, Karine, E-mail: karineroversi-@hotmail.com [Universidade Federal de Santa Maria (UFSM), Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (Brazil); Trevizol, Fabíola, E-mail: fatrevizol@yahoo.com.br [Universidade Federal de Santa Maria, Programa de Pós-Graduação em Farmacologia (Brazil); Vey, Luciana T., E-mail: luciana.taschetto@hotmail.com [Universidade Federal de Santa Maria (UFSM), Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde (Brazil); Elias, Fabiana, E-mail: fabiana.elias@uffs.edu.br [Universidade Federal da Fronteira Sul (UFFS), Bioquímica e Farmacologia (Brazil); Fracasso, Rafael, E-mail: rafael.fra@hotmail.com [Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Farmacêuticas (Brazil); and others

    2015-04-15

    Haloperidol (HP) nanoencapsulation improves therapeutic efficacy, prolongs the drug action time, and reduces its motor side effects. However, in a view of HP toxicity in organs like liver and kidneys in addition to the lack of knowledge regarding the toxicity of polymeric nanocapsules, our aim was to verify the influence of HP-nanoformulation on toxicity and oxidative stress markers in the liver and kidneys of rats, also observing the damage caused in the blood. For such, 28 adult male Wistar rats were designated in four experimental groups (n = 7) and treated with vehicle (C group), free haloperidol suspension (FH group), blank nanocapsules suspension (B-Nc group), and haloperidol-loaded lipid-core nanocapsules suspension (H-Nc group). The nanocapsules formulation presented the size of approximately 250 nm. All suspensions were administered to the animals (0.5 mg/kg/day-i.p.) for a period of 28 days. Our results showed that FH caused damage in the liver, evidenced by increased lipid peroxidation, plasma levels of aspartate aminotransferase, and alanine aminotransferase, as well as decreased cellular integrity and vitamin C levels. In kidneys, FH treatment caused damage to a lesser extent, observed by decreased activity of δ-aminolevulinate dehydratase (ALA-D) and levels of VIT C. In addition, FH treatment was also related to a higher DNA damage index in blood. On the other hand, animals treated with H-Nc and B-Nc did not show damage in liver, kidneys, and DNA. Our study indicates that the nanoencapsulation of haloperidol was able to prevent the sub-chronic toxicity commonly observed in liver, kidneys, and DNA, thus reflecting a pharmacological superiority in relation to free drug.

  11. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  12. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  13. Nonconventional concrete hollow blocks evaluation by destructive and non-destructive testing

    Directory of Open Access Journals (Sweden)

    M.S. Rodrigues

    Full Text Available The aim of this study was to evaluate cementitious matrices properties by partial replacement of Portland cement by silica fume (SF or by rice husk ash (RHA, and their application in nonbearing hollow blocks, tested by destructive and non-destructive methods. The following mixtures were produced: reference (100% of Portland cement and Portland cement replacement (10% by mass with SF or RHA. The non-destructive testing showed that the highest values of UPV were obtained for SF-based blocks and RHA-based blocks. The destructive test showed better results for SF-based blocks, but there was no statistical difference between the RHA-based and control ones.

  14. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-01-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater

  15. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.

    Science.gov (United States)

    Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang

    2017-06-15

    Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. In-depth nanocrystallization enhanced Li-ions batteries performance with nitrogen-doped carbon coated Fe3O4 yolk-shell nanocapsules

    Science.gov (United States)

    Wu, Qianhui; Zhao, Rongfang; Liu, Wenjie; Zhang, Xiue; Shen, Xiao; Li, Wenlong; Diao, Guowang; Chen, Ming

    2017-03-01

    In this paper nitrogen-doped carbon-encapsulation Fe3O4 yolk-shell magnetic nanocapsules (Fe3O4@C-N nanocapsules) have been successfully constructed though a facile hydrothermal method and subsequent annealing process. Fe3O4 nanoparticles are completely enclosed in nitrogen-doped carbon shells with void space between the nanoparticle and the shell. The yolk-shell structure allows Fe3O4 nanoparticles to expand freely without breaking the outer carbon shell during the lithiation/delithiation processes. The volume expansion of Fe3O4 results in the in-depth nanocrystallization. Fortunately, the new generated small nanoparticles can increase the capability with the cycle increase due to the unique confinement effect and excellent electronic conductivity of the nitrogen-doped carbon shells. Hence, after 150 cycles, the discharge capacity of Fe3O4@C-N-700 nanocapsules still remained 832 mA h g-1 at 500 mA g-1, which corresponds to 116.7% of the lowest capacity (713 mA h g-1) at the 16th cycle. We believe that the yolk-shell structure is conducive to enhance the capacity of easy pulverization metal oxidation during the charge/discharge processes.

  17. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  18. Investigation on the effect of sintering temperature on kaolin hollow fibre membrane for dye filtration.

    Science.gov (United States)

    Mohtor, Nur Hamizah; Othman, Mohd Hafiz Dzarfan; Ismail, Ahmad Fauzi; Rahman, Mukhlis A; Jaafar, Juhana; Hashim, Nur Awanis

    2017-07-01

    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m 2  bar and RB5 rejection of 68%.

  19. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  20. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  1. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  2. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  3. Silica research in Glasgow

    CERN Document Server

    Barr, B W; Casey, M M; Clubley, D; Crooks, D R M; Danzmann, K; Elliffe, E J; Gossler, S; Grant, A; Grote, H; Heptonstall, A; Hough, J; Jennrich, O; Lück, H B; McIntosh, S A; Newton, G P; Palmer, D A; Plissi, M V; Robertson, D I; Robertson, N A; Rowan, S; Skeldon, K D; Sneddon, P; Strain, K A; Torrie, C I; Ward, H; Willems, P A; Willke, B; Winkler, W

    2002-01-01

    The Glasgow group is involved in the construction of the GEO600 interferometer as well as in R and D activity on technology for advanced gravitational wave detectors. GEO600 will be the first GW detector using quasi-monolithic silica suspensions in order to decrease thermal noise significantly with respect to steel wire suspensions. The results concerning GEO600 suspension mounting and performance will be shown in the first section. Section 2 is devoted to the present results from the direct measurement of thermal noise in mirrors mounted in the 10 m interferometer in Glasgow which has a sensitivity limit of 4 x 10 sup - sup 1 sup 9 m Hz sup - sup 1 sup / sup 2 above 1 kHz. Section 3 presents results on the measurements of coating losses. R and D activity has been carried out to understand better how thermal noise in the suspensions affects the detector sensitivity, and in section 4 a discussion on the non-linear thermoelastic effect is presented.

  4. Embedding of Hollow Polymer Microspheres with Hydrophilic Shell in Nafion Matrix as Proton and Water Micro-Reservoir

    Directory of Open Access Journals (Sweden)

    Zhaolin Liu

    2012-08-01

    Full Text Available Assimilating hydrophilic hollow polymer spheres (HPS into Nafion matrix by a loading of 0.5 wt % led to a restructured hydrophilic channel, composed of the pendant sulfonic acid groups (–SO3H and the imbedded hydrophilic hollow spheres. The tiny hydrophilic hollow chamber was critical to retaining moisture and facilitating proton transfer in the composite membranes. To obtain such a tiny cavity structure, the synthesis included selective generation of a hydrophilic polymer shell on silica microsphere template and the subsequent removal of the template by etching. The hydrophilic HPS (100–200 nm possessed two different spherical shells, the styrenic network with pendant sulfonic acid groups and with methacrylic acid groups, respectively. By behaving as microreservoirs of water, the hydrophilic HPS promoted the Grotthus mechanism and, hence, enhanced proton transport efficiency through the inter-sphere path. In addition, the HPS with the –SO3H borne shell played a more effective role than those with the –CO2H borne shell in augmenting proton transport, in particular under low humidity or at medium temperatures. Single H2-PEMFC test at 70 °C using dry H2/O2 further verified the impactful role of hydrophilic HPS in sustaining higher proton flux as compared to pristine Nafion membrane.

  5. Preparation of liquid-core nanocapsules from poly[(ethylene oxide)-co-glycidol] with multiple hydrophobic linoleates at an oil-water interface and its encapsulation of pyrene.

    Science.gov (United States)

    Ren, Yong; Wang, Guowei; Huang, Junlian

    2007-06-01

    A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.

  6. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  7. Manufacturing hollow obturator with resilient denture liner on post hemimaxillectomy

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2006-03-01

    Full Text Available A resilient denture liner is placed in the part of the hollow obturator base that contacts to post hemimaxillectomy mucosa. Replacing the resilient denture liner can makes the hollow obturator has an intimate contact with the mucosa, so it can prevents the mouth liquid enter to the cavum nasi and sinus, also eliminates painful because of using the hollow obturator. Resilient denture liner is a soft and resilient material that applied to the fitting surface of a denture in order to allow a more distribution of load. A case was reported about using the hollow obturator with resilient denture liner on post hemimaxillectomy to overcome these problems.

  8. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    Science.gov (United States)

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  10. Pumping Iron and Silica Bodybuilding

    Science.gov (United States)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  11. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers

    Directory of Open Access Journals (Sweden)

    Kamalapuram SK

    2016-04-01

    Full Text Available Sishir K Kamalapuram,1 Rupinder K Kanwar,1 Kislay Roy,1 Rajneesh Chaudhary,1 Rakesh Sehgal,2 Jagat R Kanwar1 1Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia; 2Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India Abstract: The present study successfully developed orally deliverable multimodular zinc (Zn iron oxide (Fe3O4-saturated bovine lactoferrin (bLf-loaded polymeric nanocapsules (NCs, and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability in an in vivo human xenograft CpG-island methylator phenotype (CIMP-1+/CIMP2−/chromosome instability-positive colonic adenocarcinoma (Caco2 and claudin-low, triple-negative (ER−/PR−/HER2−; MDA-MB-231 breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5 mice showed a tumor volume of 52.28±11.55 mm3, and Zn-Fe-bLf NC diet (n=5-treated mice had a tumor-volume of 0.10±0.073 mm3. In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5-treated mice showed a tumor volume of 0.051±0.062 mm3 within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These

  12. Silica nanoparticle stability in biological media revisited.

    Science.gov (United States)

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  13. Hollow mandrin facilitates external ventricular drainage placement.

    Science.gov (United States)

    Heese, O; Regelsberger, J; Kehler, U; Westphal, M

    2005-07-01

    Placement of ventricular catheters is a routine procedure in neurosurgery. Ventricle puncture is done using a flexible ventricular catheter stabilised by a solid steel mandrin in order to improve stability during brain penetration. A correct catheter placement is confirmed after removing the solid steel mandrin by observation of cerebrospinal fluid (CSF) flow out of the flexible catheter. Incorrect placement makes further punctures necessary. The newly developed device allows CSF flow observation during the puncture procedure and in addition precise intracranial pressure (ICP) measurement. The developed mandrin is hollow with a blunt tip. On one side 4-5 small holes with a diameter of 0.8 mm are drilled corresponding exactly with the holes in the ventricular catheter, allowing CSF to pass into the hollow mandrin as soon as the ventricle is reached. By connecting a small translucent tube at the distal portion of the hollow mandrin ICP can be measured without loss of CSF. The system has been used in 15 patients with subarachnoid haemorrhage (SAH) or intraventricular haemeorrhage (IVH) and subsequent hydrocephalus. The new system improved the external ventricular drainage implantation procedure. In all 15 patients catheter placement was correct. ICP measurement was easy to perform immediately at ventricle puncture. In 4 patients at puncture no spontaneous CSF flow was observed, therefore by connecting a syringe and gentle aspiration of CSF correct placement was confirmed in this unexpected low pressure hydrocephalus. Otherwise by using the conventional technique further punctures would have been necessary. Advantages of the new technique are less puncture procedures with a lower risk of damage to neural structures and reduced risk of intracranial haemorrhages. Implantation of the ventricular catheter to far into the brain can be monitored and this complication can be overcome. Using the connected pressure monitoring tube an exact measurement of the opening

  14. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  15. Development of silica RO membranes

    International Nuclear Information System (INIS)

    Ikeda, Ayumi; Kawamoto, Takashi; Matsuyama, Emi; Utsumi, Keisuke; Nomura, Mikihiro; Sugimoto, Masaki; Yoshikawa, Masato

    2012-01-01

    Silica based membranes have been developed by using a counter diffusion CVD method. Effects of alkyl groups in the silica precursors and deposition temperatures had investigated in order to control pore sizes of the silica membranes. In this study, this type of a silica membrane was applied for RO separation. Effects of silica sources, deposition temperatures and post treatments had been investigated. Tetramethoxysilane (TMOS), Ethyltrimethoxysilane (ETMOS) and Phenyltrimethoxysilane (PhTMOS) were used as silica precursors. A counter diffusion CVD method was carried out for 90 min at 270 - 600degC on γ-alumina capillary substrates (effective length: 50 mm, φ: 4 nm: NOK Co.). O 3 or O 2 was introduced into the inside of the substrate at the O 2 rate of 0.2 L min -1 . Ion beam irradiation was carried out for a post treatment using Os at 490 MeV for 1.0 x 10 10 ions cm -2 or 3.0 x 10 10 ions cm -2 . Single gas permeance was measured by using H 2 , N 2 and SF 6 . RO tests were employed at 3.0 or 5.4 MPa for 100 mg L -1 of feed NaCl solution. First, effects of the silica sources were investigated. The total fluxes increased by increasing N 2 permeance through the silica membrane deposited by ETMOS. The maximum NaCl rejection was 28.2% at 12.2 kg m -2 h -1 of the total flux through the membrane deposited at 270degC. N 2 permeance was 9.6 x 10 -9 mol m -2 s -1 Pa -1 . While, total fluxes through the membrane deposited by using PhTMOS were smaller than those through the ETMOS membranes. The phenyl groups for the PhTMOS membrane must be important for the hydrophobic properties through the membrane. Next, effects of ion beam irradiation were tested for the TMOS membranes. Water is difficult to permeate through the TMOS membranes due to the low N 2 permeance through the membrane (3.1 x 10 -11 mol m -2 s -1 Pa -1 ). N 2 permeance increased to 7.3 x 10 -9 mol m -2 s -1 Pa -1 by the irradiation. Irradiation amounts had little effects on N 2 permeance. However, NaCl rejections

  16. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  17. Desenvolvimento e caracterização de nanocápsulas de poli (L-lactídeo contendo benzocaína Development and characterization of poli (L-lactide nanocapsules containing benzocaine

    Directory of Open Access Journals (Sweden)

    Nathalie Ferreira Silva de Melo

    2010-01-01

    Full Text Available In this paper we describe the preparation poly (L-lactide (PLA nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.

  18. Porous-wall hollow glass microspheres as carriers for biomolecules

    Science.gov (United States)

    Li, Shuyi; Dynan, William S; Wicks, George; Serkiz, Steven

    2013-09-17

    The present invention includes compositions of porous-wall hollow glass microspheres and one or more biomolecules, wherein the one or more biomolecules are positioned within a void location within the hollow glass microsphere, and the use of such compositions for the diagnostic and/or therapeutic delivery of biomolecules.

  19. Fabrication of Closed Hollow Bulb Obturator Using Thermoplastic Resin Material

    Directory of Open Access Journals (Sweden)

    Bidhan Shrestha

    2015-01-01

    Full Text Available Purpose. Closed hollow bulb obturators are used for the rehabilitation of postmaxillectomy patients. However, the time consuming process, complexity of fabrication, water leakage, and discoloration are notable disadvantages of this technique. This paper describes a clinical report of fabricating closed hollow bulb obturator using a single flask and one time processing method for an acquired maxillary defect. Hard thermoplastic resin sheet has been used for the fabrication of hollow bulb part of the obturator. Method. After fabrication of master cast conventionally, bulb and lid part of the defect were formed separately and joined by autopolymerizing acrylic resin to form one sized smaller hollow body. During packing procedure, the defect area was loaded with heat polymerizing acrylic resin and then previously fabricated smaller hollow body was adapted over it. The whole area was then loaded with heat cure acrylic. Further processes were carried out conventionally. Conclusion. This technique uses single flask which reduces laboratory time and makes the procedure simple. The thickness of hollow bulb can be controlled and light weight closed hollow bulb prosthesis can be fabricated. It also minimizes the disadvantages of closed hollow bulb obturator such as water leakage, bacterial infection, and discoloration.

  20. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  1. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  2. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  3. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    Science.gov (United States)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  4. Preparation and Optimization Lipid Nanocapsules to Enhance the Antitumor Efficacy of Cisplatin in Hepatocellular Carcinoma HepG2 Cells.

    Science.gov (United States)

    Zhai, Qingqing; Li, Hailong; Song, Yanlin; Wu, Ruijiao; Tang, Chuanfang; Ma, Xiaodong; Liu, Zhihao; Peng, Jinyong; Zhang, Jianbin; Tang, Zeyao

    2018-04-20

    This work aimed to develop and optimize several lipid nanocapsule formulations (LNCs) to encapsulate cisplatin (CDDP) for treatment of hepatocellular carcinoma. By comparing the effect of oil/surfactant ratio, lecithin content, and oil/surfactant type on LNC characteristics, two LNCs were selected as optimal formulations: HS15-LNC (Solutol HS 15/MCT/lecithin, 54.5:42.5:3%, w/w) and EL-LNC (Cremophor EL/MCT/lecithin, 54.5:42.5:3%, w/w). Both LNCs could effectively encapsulate CDDP with the encapsulation efficiency of 73.48 and 78.84%. In vitro release study showed that both LNCs could sustain the release CDDP. Moreover, cellular uptake study showed that C6-labeled LNCs could be effectively internalized by HepG2 cells. Cellular cytotoxicity study revealed that both LNCs showed negligible cellular toxicity when their concentrations were below 313 μg/mL. Importantly, CDDP-loaded LNCs exhibited much stronger cell killing potency than free CDDP, with the IC50 values decreased from 17.93 to 3.53 and 5.16 μM after 72-h incubation. In addition, flow cytometric analysis showed that the percentage of apoptotic cells was significantly increased after treatment with LNCs. Therefore, the prepared LNC formulations exhibited promising anti-hepatocarcinoma effect, which could be beneficial to hepatocellular carcinoma therapy.

  5. Reorganization of lipid nanocapsules at air-water interface 3. Action of hydrolytic enzymes HLL and pancreatic PLA2.

    Science.gov (United States)

    Minkov, I; Ivanova, Tz; Panaiotov, I; Proust, J; Verger, R

    2005-09-25

    The action of the hydrolytic enzymes humicola lanuginosa lipase (HLL) and pancreatic phospholipase A2 (PLA2) on monolayers formed from lipid nanocapsules (LNC) and model monolayers containing their components, Labrafac, Solutol and Lipoid, is studied by simultaneous measuring the changes in the film area and the surface potential in the "zero order" trough at constant surface pressure (pi). The kinetic models describing the hydrolysis by HLL of the Labrafac, Solutol and their mixtures have been proposed. By using the developed theoretical approach together with the experimental results the surface concentrations of the substrates, hydrolysis products and values of the global kinetic constants were obtained. The comparison between the global kinetic constants in the case of HLL hydrolysis of pure Labrafac, Solutol monolayers and those of the model mixed Labrafac/Solutol monolayers, shows that the rates of hydrolysis are of the same order of magnitude, i.e. an additively of the HLL enzyme action is observed. The composition of the mixed Labrafac/Solutol monolayer, formed after the interfacial LNC destabilization, was estimated.

  6. Micro- and nano-capsulated fungal pectinase with outstanding capabilities of eliminating turbidity in freshly produced juice.

    Science.gov (United States)

    Mahmoud, Khaled F; Abo-Elmagd, Heba I; Housseiny, Manal M

    2018-01-01

    The present study aimed to compare the pectinase forms produced from Trichoderma viride-free, micro-capsule, and nano-capsule-in sodium alginate to analyze the pectin that causes the turbidity of orange juice. This was performed along with an estimation of viscosity, residual of pectin, and turbidity. The extracted and purified enzyme was 24.35-fold better than that of the crude enzyme. After application of free one, it loses most of the activity on low degrees of acidity and remains constant on the temperatures of pasteurization. Therefore, the tested enzyme was encapsulated by two different ways using the same polymer. The morphology of the three pectinase forms was obtained by transmission electron microscopy, and the micrographs clearly showed the pores on the surface of sodium alginate matrix after encapsulation. The size of the wall (sodium alginate) ranged from 3.24 to 3.76 µm diameter but was 3.15 µm for core of enzyme. Micro-capsuled and nano-capsuled pectinase can be used in the hydrolysis of pectic substances in orange juice with natural ways and maintaining the quality of final product. Consequently, the cost of juice clarifying can be reduced due to reusing the enzyme several times.

  7. Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice.

    Science.gov (United States)

    Pensel, Patricia E; Ullio Gamboa, Gabriela; Fabbri, Julia; Ceballos, Laura; Sanchez Bruni, Sergio; Alvarez, Luis I; Allemandi, Daniel; Benoit, Jean Pierre; Palma, Santiago D; Elissondo, María C

    2015-12-01

    Therapeutic failures attributed to medical management of cystic echinococcosis (CE) with albendazole (ABZ) have been primarily linked to the poor drug absorption rate resulting in low drug level in plasma and hydatid cysts. Lipid nanocapsules (LNCs) represent nanocarriers designed to encapsulate lipophilic drugs, such as ABZ. The goals of the current work were: (i) to characterize the plasma and cyst drug exposure after the administration of ABZ as ABZ-LNCs or ABZ suspension (ABZ-SUSP) in mice infected with Echinococcus granulosus, and ii) to compare the clinical efficacies of both ABZ formulations. Enhanced ABZ sulphoxide (ABZ-SO) concentration profiles were obtained in plasma and cysts from ABZ-LNC treated animals. ABZSO exposure (AUC0-LOQ) was significantly higher in plasma and cyst after the ABZ-LNC treatments, both orally and subcutaneously, compared to that observed after oral administration of ABZ-SUSP. Additionally, ABZSO concentrations measured in cysts from ABZ-LNC treated mice were 1.7-fold higher than those detected in plasma. This enhanced drug availability correlated with an increased efficacy against secondary CE in mice observed for the ABZ-LNCs, while ABZ-SUSP did not reach differences with the untreated control group. This new pharmacotechnically-based strategy could be a potential alternative to improve the treatment of human CE. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Macrophage Activation by a Lipophilic Derivative of Muramyldipeptide within Nanocapsules: Investigation of the Mechanism of Drug Delivery

    International Nuclear Information System (INIS)

    Seyler, Isabelle; Appel, Martine; Devissaguet, Jean-Philippe; Legrand, Philippe; Barratt, Gillian

    1999-01-01

    Different colloidal formulations: nanocapsules (NC), emulsion and micelles, containing the lipophilic immunomodulator muramyltripeptide cholesterol (MTP-Chol) induce nitric oxide synthase activity in the RAW 264.7 cell line. The use of cytochalasin B, an inhibitor of cell movements, showed that phagocytosis was an important mechanism as far as NC and the emulsion were concerned. However, when the cells were separated from particles containing the immunomodulator by a membrane of 100 nm pore size, significant activity could still be obtained, provided that serum was included in the medium. To determine whether low-density lipoprotein (LDL) might act as an intermediate carrier for MTP-Chol, the transfer of the immunomodulator from NC to LDL was studied by an ultrafiltration/centrifugation method followed by HPLC analysis. Although MTP-Chol could be transferred to LDL, when purified human LDL was added to serum-free medium, activation by MTP-Chol NC was reduced, rather than increased. This suggests that intact LDL carrying MTP-Chol is not taken up to a great extent by these macrophages

  9. Long-term evaluation of hollow screw and hollow cylinder dental implants : Clinical and radiographic results after 10 years

    NARCIS (Netherlands)

    Telleman, Gerdien; Meijer, Henny J. A.; Raghoebar, Gerry M.

    Background: In 1988, an implant manufacturer offered a new dental implant system, with a wide choice of hollow cylinder (HC) and hollow screw (HS) implants. The purpose of this retrospective study of HS and HC implants was to evaluate clinical and radiographic parameters of peri-implant tissue and

  10. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  11. Functionalized silica materials for electrocatalysis

    Indian Academy of Sciences (India)

    To increase the efficiency of the electrocatalytic process and to increase the electrochemical accessibility of the immobilized electrocatalysts, functionalized and non-functionalized mesoporous organo-silica (MCM41-type-materials) are used in this study. These materials possess several suitable properties to be durable ...

  12. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  13. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  14. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Yurgel VC

    2014-03-01

    Full Text Available Virginia C Yurgel,1,* Catiuscia P Oliveira,2,* Karine R Begnini,1 Eduarda Schultze,1 Helena S Thurow,1 Priscila MM Leon,1 Odir A Dellagostin,1 Vinicius F Campos,1 Ruy CR Beck,2 Silvia S Guterres,2 Tiago Collares,1 Adriana R Pohlmann,2–4 Fabiana K Seixas11Programa de Pós-Graduação em Biotecnologia (PPGB, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 3Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; 4Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil*These authors contributed equally to this workAbstract: Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt2] and MTX(OEt2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt2 solution and MTX(OEt2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231

  15. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V) Beta(3) Integrin Expressed on Tumor Cells

    Science.gov (United States)

    Antonow, Michelli B.; Franco, Camila; Prado, Willian; Beckenkamp, Aline; Silveira, Gustavo P.; Buffon, Andréia; Guterres, Sílvia S.

    2017-01-01

    Doxorubicin (Dox) clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC) and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD)-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7) and human glioblastoma astrocytoma (U87MG) expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100) and RGD-MCMN (Dox500)). Blank formulation (RGD-MCMN) had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1) × 1011 particles mL−1, while RGD-MCMN (Dox100) and RGD-MCMN (Dox500) showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6) × 1011 and (6.1 ± 1.0) × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG. PMID:29271920

  16. Experimental study on hollow structural component by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Mianjun, E-mail: dmjwl@163.com [PLA University of Science and Technology, Nanjing 210007 (China); Wei, Ling, E-mail: 386006087@qq.com [Tongda College, Nanjing University of Posts and Telecommunication, Nanjing 210007 (China); Hong, Jin [PLA University of Science and Technology, Nanjing 210007 (China); Ran, Hong [Southwestern Institute of Physics, Chengdu 610041 (China); Ma, Rui; Wang, Yaohua [PLA University of Science and Technology, Nanjing 210007 (China)

    2014-12-15

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property.

  17. Experimental study on hollow structural component by explosive welding

    International Nuclear Information System (INIS)

    Duan, Mianjun; Wei, Ling; Hong, Jin; Ran, Hong; Ma, Rui; Wang, Yaohua

    2014-01-01

    Highlights: • This paper relates to a study on a thin double-layers hollow structural component by using an explosive welding technology. • This thin double-layer hollow structural component is an indispensable component required for certain core equipment of thermonuclear experimental reactor. • An adjusted explosive welding technology for manufacturing an inconel625 hollow structural component was developed which cannot be made by common technology. • The result shows that a metallurgical bonding was realized by the ribs and slabs of the hollow sheet. • The shearing strength of bonding interface exceeds that of the parent metal. - Abstract: A large thin-walled hollow structural component with sealed channels is required for the vacuum chamber of a thermonuclear experimental reactor, with inconel625 as its fabrication material. This hollow structural component is rarely manufactured by normal machining method, and its manufacture is also problematic in the field of explosive welding. With this in mind, we developed an adjusted explosive welding technology which involves a two-step design, setting and annealing technology. The joints were evaluated using optical microscope and scanning electron microscope, and a mechanical experiment was conducted, involving micro-hardness test, cold helium leak test and hydraulic pressure test. The results showed that a metallurgical bonding was realized by the ribs and slabs, and the shearing strength of the bonding interface exceeded that of the parent metal. Hence, the hollow structural component has a good comprehensive mechanical performance and sealing property

  18. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  19. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  20. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  1. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  2. Hollow fiber membranes and methods for forming same

    Science.gov (United States)

    Bhandari, Dhaval Ajit; McCloskey, Patrick Joseph; Howson, Paul Edward; Narang, Kristi Jean; Koros, William

    2016-03-22

    The invention provides improved hollow fiber membranes having at least two layers, and methods for forming the same. The methods include co-extruding a first composition, a second composition, and a third composition to form a dual layer hollow fiber membrane. The first composition includes a glassy polymer; the second composition includes a polysiloxane; and the third composition includes a bore fluid. The dual layer hollow fiber membranes include a first layer and a second layer, the first layer being a porous layer which includes the glassy polymer of the first composition, and the second layer being a polysiloxane layer which includes the polysiloxane of the second composition.

  3. Axisymmetric Vibration of Piezo-Lemv Composite Hollow Multilayer Cylinder

    Directory of Open Access Journals (Sweden)

    E. S. Nehru

    2012-01-01

    Full Text Available Axisymmetric vibration of an infinite piezolaminated multilayer hollow cylinder made of piezoelectric layers of 6 mm class and an isotropic LEMV (Linear Elastic Materials with Voids layers is studied. The frequency equations are obtained for the traction free outer surface with continuity conditions at the interfaces. Numerical results are carried out for the inner, middle, and outer hollow piezoelectric layers bonded by LEMV (It is hypothetical material layers and the dispersion curves are compared with that of a similar 3-layer model and of 3 and 5 layer models with inner, middle, and outer hollow piezoelectric layers bonded by CFRP (Carbon fiber reinforced plastics.

  4. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  5. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G; Kuznetsov, G; Shiltsev, V; Still, D A; Valishev, A; Vorobiev, L G; Assmann, R; Kabantsev, A

    2012-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  6. Development of hollow electron beams for proton and ion collimation

    CERN Document Server

    Stancari, G.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-01-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams

  7. Generation and propagation characteristics of a localized hollow beam

    Science.gov (United States)

    Xia, Meng; Wang, Zhizhang; Yin, Yaling; Zhou, Qi; Xia, Yong; Yin, Jianping

    2018-05-01

    A succinct experimental scheme is demonstrated to generate a localized hollow beam by using a π-phase binary bitmap and a convergent thin lens. The experimental results show that the aspect ratio of the dark-spot size of the hollow beam can be effectively controlled by the focal length of the lens. The measured beam profiles in free space also agree with the theoretical modeling. The studies hold great promise that such a hollow beam can be used to cool trapped atoms (or molecules) by Sisyphus cooling and to achieve an optically-trapped Bose–Einstein condensate by optical-potential evaporative cooling.

  8. Two-piece hollow bulb obturator

    Directory of Open Access Journals (Sweden)

    Subramaniam Elangovan

    2011-01-01

    Full Text Available There are various types of obturator fabrication achievable by prosthodontist. Maxillectomy, which is a term used by head and neck surgeons and prosthodontists to describe the partial or total removal of the maxilla in patients suffering from benign or malignant neoplasms is a defect for which to provide an effective obturator is a difficult task for the maxillofacial prosthodontist. Multidisciplinary treatment planning is essential to achieve adequate retention and function for the prosthesis. Speech is often unintelligible as a result of the marked defects in articulation and nasal resonance. This paper describes how to achieve the goal for esthetics and phonetics and also describes the fabrication of a hollow obturator by two piece method, which is simple and maybe used as definitive obturator for maximum comfort of the patient.

  9. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  10. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  11. Energetically benign synthesis of lanthanum silicate through “silica garden” route and its characterization

    International Nuclear Information System (INIS)

    Parmar, Kavita; Bhattacharjee, Santanu

    2017-01-01

    Lanthanum silicate synthesis through “silica garden” route has been reported as an alternative to energy intensive milling procedure. Under optimum conditions lanthanum chloride crystals react with water glass (sodium silicate) to produce self generating hollow lanthanum silicate precipitation tube(s) (LaSPT). The micro tubes are irregular, thick, white coloured and amorphous but are hierarchically built from smaller tubules of 10–20 nm diameters. They retain their amorphous nature on being heated up to 600 °C beyond which crystallization starts. The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. “As synthesized” LaSPT is heterogeneous and comprises non stoichiometric phases. The exterior and interior surfaces of these tubes are remarkably different in their morphology and chemical composition. LaSPT sintered at 1200 and 1300 °C show fair amount of ionic conductivity. - Graphical abstract: Lanthanum silicate precipitation tube (LaSPT) produced through ‘silica garden’ route offers a green alternative to energy intensive milling procedure. - Highlights: • La-silicate precipitation tube (LaSPT) synthesized via silica garden route. • The microtubes are irregular, thick, white coloured and amorphous. • They are hierarchically built from smaller tubules of 10–20 nm diameters. • The major phase in the LaSPT heated at 900 °C is La_2Si_2O_7. • LaSPT sintered at 1200 °C is fairly conducting.

  12. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  13. Silica Nanofiber Combat Hemostat (SINCH)

    Science.gov (United States)

    2008-10-13

    1.5mg 0.6 65 205 High aspect ratio silica fibers (30um x 60nm) 9mg 0.63 58.9 140 Kaolin (TEG control) 0.2mg n/a 59.8 155 TiO2 high aspect ratio...high surface area to volume ratio and thus the material is difficult to handle in an uncontrolled environment. It is easily dispersed and is not easy

  14. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry

    Science.gov (United States)

    Khanal, Manakamana; Barras, Alexandre; Vausselin, Thibaut; Fénéant, Lucie; Boukherroub, Rabah; Siriwardena, Aloysius; Dubuisson, Jean; Szunerits, Sabine

    2015-01-01

    The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2nd generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal

  15. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin.

    Science.gov (United States)

    Hatahet, T; Morille, M; Hommoss, A; Devoisselle, J M; Müller, R H; Bégu, S

    2018-05-05

    Quercetin is a flavonoid with strong antioxidant and antiinflammatory activities considered as a potential drug candidate for skin exogenous supplementation. Nevertheless, crude quercetin suffers from poor water solubility and consequently topical inactivity. Therefore, quercetin formulation within a suitable system that overcomes its solubility limitation is a matter of investigation. Three approaches were tested to improve quercetin delivery to skin: liposomes, lipid nanocapsules (LNC) and smartCrystals®. These nanoformulations were compared in terms of average particle size, homogeneity (PDI), quercetin loading and cellular interactions with HaCaT (keratinocytes) and TPH-1 (monocytes) cell lines. Finally, two formulations were selected for testing quercetin delivery to human skin in vivo using stripping test. Different size distribution was obtained with each strategy starting from 26 nm with quercetin LNC, 179 nm with liposomes to 295 nm with quercetin smartCrystals®. The drug loading varied with each formulation from 0.56 mg/ml with liposomes, 10.8 mg/ml with LNC to 14.4 mg/ml with smartCrystals®. No toxicity was observed in HaCaT cells with quercetin and free radical scavenging ability was established at 5 µg/ml. The safety of quercetin at 5 µg/ml was further confirmed on THP-1 cells with efficient free radical scavenging ability. Finally, skin penetration evidenced different behavior between the two selected forms (LNC and SmartCrystals®), which could lead to different promising strategies for skin protection. On one side, quercetin smartCrystals® seems to enable the superficial deposition of quercetin on top of the skin, which presents a good strategy for a quercetin-based sunscreen product. On the other side, LNC seems to allow quercetin delivery to viable epidermis that holds the promise for skin inflammatory disorders such as psoriasis. Copyright © 2018. Published by Elsevier B.V.

  16. Treatment of 9L gliosarcoma in rats by ferrociphenol-loaded lipid nanocapsules based on a passive targeting strategy via the EPR effect.

    Science.gov (United States)

    Huynh, Ngoc Trinh; Morille, Marie; Bejaud, Jerome; Legras, Pierre; Vessieres, Anne; Jaouen, Gerard; Benoit, Jean-Pierre; Passirani, Catherine

    2011-12-01

    To study a passive targeting strategy, via the enhanced permeability and retention effect following systemic administration of lipid nanocapsules (LNCs) loaded with ferrociphenol, FcdiOH. Long chains of polyethylene glycol (DSPE-mPEG2000) were incorporated onto the surface of LNCs by post-insertion technique. Stealth properties of LNCs were investigated by in vitro complement consumption and macrophage uptake, and in vivo pharmacokinetics in healthy rats. Antitumour effect of FcdiOH-loaded LNCs was evaluated in subcutaneous and intracranial 9L gliosarcoma rat models. LNCs and DSPE-mPEG2000-LNCs presented low complement activation and weak macrophage uptake. DSPE-mPEG2000-LNCs exhibited prolonged half-life and extended area under the curve in healthy rats. In a subcutaneous gliosarcoma model, a single intravenous injection of FcdiOH-LNCs (400 μL, 2.4 mg/rat) considerably inhibited tumour growth when compared to the control. DSPE-mPEG2000-FcdiOH-LNCs exhibited a strong antitumour effect by nearly eradicating the tumour by the end of the study. In intracranial gliosarcoma model, treatment with DSPE-mPEG2000-FcdiOH-LNCs and FcdiOH-LNCs statistically improved median survival time (28 and 27.5 days, respectively) compared to the control (25 days). These results demonstrate the interesting perspectives for the systemic treatment of glioma thanks to bio-organometallic chemotherapy via lipid nanocapsules.

  17. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    Science.gov (United States)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  18. Enhanced rate capability and cycling stability of core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo, E-mail: liuxianguohugh@gmail.com [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Wu, Niandu; Cui, Caiyun; Zhou, Pingping [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Maanshan 243032 (China)

    2015-09-25

    Highlights: • Core/shell-structured CoFe{sub 2}O{sub 4}/onion-like carbon nanocapsules have been prepared. • CoFe{sub 2}O{sub 4}/C nanocapsules possess good reversibility even when the current density is up to 4C. • CoFe{sub 2}O{sub 4}/C nanocapsules obtain a discharge capacity of 914.2 mA h g{sup −1} after 500 cycles at 0.1C. - Abstract: In this work, core/shell structured CoFe{sub 2}O{sub 4}/onion-like C nanocapsules have been successfully fabricated by the arc discharge method and air-annealing process and confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The core/shell structure effectively withstands the volume change of CoFe{sub 2}O{sub 4} nanoparticles during the cycling process. Moreover, the onion-like C shells reduce the charge transfer resistance and facilitate electron and ion transport throughout the electrode. As a result, CoFe{sub 2}O{sub 4}/onion-like C nanocapsules exhibit excellent performance as a potential anode material for lithium ion batteries and deliver a reversible capacity of 914.2 mA h g{sup −1} at 0.1C, even after 500 cycles and recover its original capacity when the rate returns from 4C to the initial 0.1C after 120 cycles.

  19. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin

    Science.gov (United States)

    Mishra, Akhilesh Kumar; Pandey, Himanshu; Agarwal, Vishnu; Ramteke, Pramod W.; Pandey, Avinash C.

    2014-08-01

    The motive of the at hand exploration was to contrive a proficient innovative pH-responsive nanocarrier designed for an anti-neoplastic agent that not only owns competent loading capacity but also talented to liberate the drug at the specific site. pH sensitive hollow mesoporous silica nanoparticles ( MSN) have been synthesized by sequence of chemical reconstruction with an average particle size of 120 nm. MSN reveal noteworthy biocompatibility and efficient drug loading magnitude. Active molecules such as Doxorubicin (DOX) can be stocked and set free from the pore vacuities of MSN by tuning the pH of the medium. The loading extent of MSN was found up to 81.4 wt% at pH 7.8. At mild acidic pH, DOX is steadily released from the pores of MSN. Both, the nitrogen adsorption-desorption isotherms and X-ray diffraction patterns reflects that this system holds remarkable stable mesostructure. Additionally, the outcomes of cytotoxicity assessment further establish the potential of MSN as a relevant drug transporter which can be thought over an appealing choice to a polymeric delivery system.

  20. Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre

    CERN Document Server

    Konorov, S O; Kolevatova, O A; Beloglasov, V I; Skibina, N B; Shcherbakov, A V; Wintner, E; Zheltikov, A M

    2003-01-01

    Sequences of picosecond pulses with a total energy in the pulse train of about 1 mJ are transmitted through a hollow-core photonic-crystal fibre with a core diameter of approximately 14 mu m. The fluence of laser radiation coupled into the core of the fibre under these conditions exceeds the breakdown threshold of fused silica by nearly an order of magnitude. The laser beam coming out of the fibre is then focused to produce a breakdown on a solid surface. Parameters of laser radiation were chosen in such a way as to avoid effects related to the excitation of higher order waveguide modes and ionization of the gas filling the fibre in order to provide the possibility to focus the output beam into a spot with a minimum diameter, thus ensuring the maximum spatial resolution and the maximum power density in the focal spot.

  1. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  2. Development of Hollow Cathode of High Power Middle Pressure Arcjet

    National Research Council Canada - National Science Library

    Vaulin, Eujeni

    1995-01-01

    ...: Determine integral performances of arcjet devices in nitrogen, ammonia, and their mixtures using hollow cathode devices at low and high current levels, perform short term tests (up to 50 hours...

  3. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  4. Hollow porous-wall glass microspheres for hydrogen storage

    Science.gov (United States)

    Heung, Leung K.; Schumacher, Ray F.; Wicks, George G.

    2010-02-23

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  5. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  6. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  7. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  8. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  9. Investigation of concrete mixtures incorporating hollow plastic microspheres.

    Science.gov (United States)

    1981-01-01

    This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...

  10. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Behzad, Ali Reza; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2014-01-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene

  11. MASS BALANCE OF SILICA IN STRAW FROM THE PERSPECTIVE OF SILICA REDUCTION IN STRAW PULP

    Directory of Open Access Journals (Sweden)

    Celil Atik,

    2012-06-01

    Full Text Available The high silica content of wheat straw is an important limiting factor for straw pulping. High silica content complicates processing and black liquor recovery, wears out factory installations, and lowers paper quality. Each section of wheat straw has different cells and chemical compositions and thus different silica content. In this work, the silica content of balled straw samples were examined according to their physical components, including internodes, nodes, leaves (sheath and blade, rachis, grain, other plant bodies, and other plant spikes. Mass distribution of silica was determined by a dry ashing method. Half (50.90% of the silica comes from leaves, and its mechanical separation will reduce the silica content in wheat straw pulp significantly. Destroying silica bodies by sonication will increase the strength properties of straw pulp.

  12. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De; Malerba, Mario; Patrini, Maddalena; Miele, Ermanno; Das, Gobind; Toma, Andrea; Proietti Zaccaria, Remo; Di Fabrizio, Enzo M.

    2013-01-01

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  13. 3D hollow nanostructures as building blocks for multifunctional plasmonics

    KAUST Repository

    De Angelis, Francesco De

    2013-08-14

    We present an advanced and robust technology to realize 3D hollow plasmonic nanostructures which are tunable in size, shape, and layout. The presented architectures offer new and unconventional properties such as the realization of 3D plasmonic hollow nanocavities with high electric field confinement and enhancement, finely structured extinction profiles, and broad band optical absorption. The 3D nature of the devices can overcome intrinsic difficulties related to conventional architectures in a wide range of multidisciplinary applications. © 2013 American Chemical Society.

  14. Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper

    Directory of Open Access Journals (Sweden)

    Meng Xianwei

    2009-01-01

    Full Text Available Abstract A general approach has been designed to blue, green, and red pigments by metal ions doping hollow TiO 2. The reaction involves initial formation of PS at TiO2 core–shell nanoparticles via a mixed-solvent method, and then mixing with metal ions solution containing PEG, followed calcining in the atmosphere. The as-prepared hollow pigments exhibit uniform size, bright color, and tunable density, which are fit for electronic paper display.

  15. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  16. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  17. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  18. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  19. Mesoporous Silica: A Suitable Adsorbent for Amines

    Directory of Open Access Journals (Sweden)

    Abdollahzadeh-Ghom Sara

    2009-01-01

    Full Text Available Abstract Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices.

  20. COOH-functionalisation of silica particles

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Albrecht, Trent [Ian Wark Research Institute, University of South Australia, Adelaide (Australia); Weber, Siegfried [Department of Biotechnology, University of Applied Sciences, Mannheim (Germany)

    2011-09-01

    In this study COOH-functionalised silica is synthesised using phosphonateN-(phosphonomethyl)iminodiacetic acid (PMIDA) in an aqueous solution. The presence of PMIDA on the silica particles was verified using Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and titration. Experimentally, surface concentrations of COOH functional groups of up to about 3 mmol/g{sub silica} were achieved, whereas theoretical calculation of the maximum COOH functional group concentration gave about 1 mmol/g{sub silica}. The discrepancy may be caused by PMIDA multilayer formation on the particle.

  1. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  2. Practical Hydrogen Loading of Air Silica Fibres

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Jensen, Jesper Bevensee; Jensen, Jesper Bo Damm

    2005-01-01

    A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown.......A method for hydrogen-loading air-silica optical fibres has been developed allowing out-diffusion times comparable to standard step-index fibres. Examples of the first grating written in Ge-doped air-silica fibres using a 266nm UV-laser are shown....

  3. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  4. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  5. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  6. Synthesis and superior lithium storage performances of hybrid hollow urchin-like silicate constructed by nanotubes wrapped in reduced graphene oxides

    International Nuclear Information System (INIS)

    Chen, Xuefang; Huang, Ying; Zhang, Kaichuang; Zhang, Xin; Wei, Chao

    2017-01-01

    Hybrid hollow urchin-like cobalt and copper silicate constructed by nanotubes encapsulated in graphene nanosheets composites were successfully prepared using graphene oxide as carrier and silica spheres as template, which were done through a well-known Stȍber process and a hydrothermal method. In fact, the synthesis of hybrid urchin-like silicate constructed by nanotubes through onestep hydrothermal reaction has rarely been reported.The electrochemical performances of the composites as lithium-ion battery anode materials were studiedfor the first time. As novel anode materials of Li-ion batteries, the special hollow urchin-like structure not only could facilitate the Li + diffusion and electron transport but alsocouldaccommodate the volume variation during the conversion reactions. In addition, the introduction of graphene can make the electrical conductivity better. Graphene wrapped hollow urchin-like silicate compositespossesses superior electrochemical cycling properties. The first discharge capacity is1955.2mAh/g with a current density of 300 mA/g. The unique well-designed configuration presents a beneficial method to synthesize efficient and high performance electrode materials for advanced power applications.

  7. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  8. Synthesis of uniform carbon at silica nanocables and luminescent silica nanotubes with well controlled inner diameters

    International Nuclear Information System (INIS)

    Qian Haisheng; Yu Shuhong; Ren Lei; Yang Yipeng; Zhang Wei

    2006-01-01

    Uniform carbon at silica nanocables and silica nanotubes with well-controlled inner diameters can be synthesized in an easy way by a sacrificial templating method. This was performed using carbon nanofibres as hard templates that were synthesized previously by a hydrothermal carbonization process. Silica nanotubes with well-controlled inner diameters were synthesized from carbon at silica core-shell nanostructures by removal of the core carbon component. The inner diameters of the as-prepared silica nanotubes can be well controlled from several nanometres to hundreds of nanometres by adjusting the diameters of the carbon nanofibres. The silica nanotubes synthesized by this method display strong photoluminescence in ultraviolet at room temperature. Such uniform silica nanotubes might find potential applications in many fields such as encapsulation, catalysis, chemical/biological separation, and sensing

  9. Silica gel matrix immobilized Chlorophyta hydrodictyon africanum ...

    African Journals Online (AJOL)

    Chlorophyta hydrodictyon africanum was immobilized on a silica gel matrix to improve its mechanical properties. The algae-silica gel adsorbent was used for batch sorption studies of a cationic dye, methylene blue (MB). Optimum adsorption was obtained with a dosage of 0.8 g bio sorbent. Results from sorption studies ...

  10. Nanoporous silica membranes with high hydrothermal stability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Magnacca, Giualiana; Yue, Yuanzheng

    to improve the stability of nanoporous silica structure. This work is a quantitative study on the impact of type and concentration of transition metal ions on the microporous structure and stability of amorphous silica-based membranes, which provides information on how to design chemical compositions...

  11. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  12. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van

    1998-01-01

    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  13. Silica artificial opal incorporated with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjiang, E-mail: wjli@zju.edu.cn [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China); Sun Tan [Center for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang University, Joint Research Center of Photonics of the Royal Institute of Technology and Zhejiang University, Zijingang Campus, Room 210, East Building 5, Hangzhou 310058 (China)

    2009-07-15

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  14. Silica artificial opal incorporated with silver nanoparticles

    International Nuclear Information System (INIS)

    Li Wenjiang; Sun Tan

    2009-01-01

    The silica artificial opal with a three-dimensional (3D) periodic structure was prepared using highly monodispersed silica microspheres by a force packing method in ITO glass cell. The silica artificial opal incorporated with silver nanoparticles was fabricated by the electroplating technique. The optical microscope images of the synthetic sample and the corresponding optical properties were measured after each treatment of electroplating-washing-drying circle. The transmission and reflection spectra presented a red shift, showing that the effective refractive index of the complex silver/silica opal increased after each electroplating. Combining the SEM images, it was seen that the silver nanoparticles could be directly deposited on the surface of silica spheres in the opaline structure. The silver/silica complex opal film could provide a simple way to tune the opal properties by controlling silver nanoparticles in the silica opal. The silver/silica opal crystal structures could be used for nano-photonic circuits, white-light LEDs or as photocatalysts.

  15. Refractive index dispersion law of silica aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2007-01-01

    This paper presents measurements of the refractive index of a hygroscopic silica aerogel block at several wavelengths. The measurements, performed with a monochromator, have been compared with different parameterisations for n(λ), in order to determine the best chromaticity law for the aerogel. This is an important input for design and operation of RICH detectors with silica aerogel radiator. (orig.)

  16. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  17. Influence of silica nanospheres on corrosion behavior of magnesium matrix syntactic foam

    Science.gov (United States)

    Qureshi, W.; Kannan, S.; Vincent, S.; Eddine, N. N.; Muhammed, A.; Gupta, M.; Karthikeyan, R.; Badari, V.

    2018-04-01

    Over the years, the development of Magnesium alloys as biodegradable implants has seen significant advancements. Magnesium based materials tend to provide numerous advantages in the field of biomedical implants over existing materials such as titanium or stainless steel. The present research focuses on corrosive behavior of Magnesium reinforced with different volume percentages of Hollow Silica Nano Spheres (HSNS). These behaviors were tested in two different simulated body fluids (SBF) namely, Hank’s Buffered Saline Solution (HBSS) and Phosphate Buffered Solution (PBS). This corrosion study was done using the method of electrochemical polarization with a three-electrode configuration. Comparative studies were established by testing pure Mg which provided critical information on the effects of the reinforcing material. The HSNS reinforced Mg displayed desirable characteristics after corrosion experiments; increased corrosion resistance was witnessed with higher volume percentage of HSNS.

  18. Optically driven self-oscillations of a silica nanospike at low gas pressures

    Science.gov (United States)

    Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.

    2016-09-01

    We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.

  19. 188Re-loaded lipid nanocapsules as a promising radiopharmaceutical carrier for internal radiotherapy of malignant gliomas

    International Nuclear Information System (INIS)

    Allard, E.; Hindre, F.; Passirani, C.; Lemaire, L.; Benoit, J.P.; Lepareur, N.; Noiret, N.; Menei, P.

    2008-01-01

    Lipid nanocapsules (LNC) entrapping lipophilic complexes of 188 Re( 188 Re(S 3 CPh) 2 (S 2 CPh) [ 188 Re-SSS]) were investigated as a novel radiopharmaceutical carrier for internal radiation therapy of malignant gliomas. The present study was designed to evaluate the efficacy of intra-cerebral administration of 188 Re-SSS LNC by means of convection-enhanced delivery (CED) on a 9L rat brain tumour model. Female Fischer rats with 9L glioma were treated with a single injection of 188 Re-SSS LNC by CED 6days after cell implantation. Rats were put into random groups according to the dose infused: 12, 10, 8 and 3Gy in comparison with blank LNC, perrhenate solution (4Gy) and non-treated animals. The radionuclide brain retention level was evaluated by measuring 188 Re elimination in faeces and urine over 72h after the CED injection. The therapeutic effect of 188 Re-SSS LNC was assessed based on animal survival. CED of 188 Re perrhenate solution resulted in rapid drug clearance with a brain T 1/2 of 7h. In contrast, when administered in LNC, 188 Re tissue retention was greatly prolonged, with only 10% of the injected dose being eliminated at 72h. Rat median survival was significantly improved for the group treated with 8Gy 188 Re-SSS LNC compared to the control group and blank LNC-treated animals. The increase in the median survival time was about 80% compared to the control group; 33% of the animals were long-term survivors. The dose of 8Gy proved to be a very effective dose, between toxic (10-12Gy) and ineffective (3-4Gy) doses. These findings show that CED of 188 Re-loaded LNC is a safe and potent anti-tumour system for treating malignant gliomas. Our data are the first to show the in vivo efficacy of 188 Re internal radiotherapy for the treatment of brain malignancy. (orig.)

  20. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  1. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    Science.gov (United States)

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  3. Hollow proppants and a process for their manufacture

    Science.gov (United States)

    Jones, A.H.; Cutler, R.A.

    1985-10-15

    Hollow, fine-grained ceramic proppants are less expensive and improve fracture control when compared to conventional proppants (dense alumina, mullite, bauxite, zirconia, etc.). Hollow proppants of the present invention have been fabricated by spray drying, followed by sintering in order to obtain a dense case and a hollow core. These proppants generally have high sphericity and roundness (Krumbein sphericity and roundness greater than 0.8), have diameters on average between 2,250 and 125 [mu]m, depending on proppant size required, and have strength equal to or greater than that of sand. The hollow core, the size of which can be controlled, permits better fracture control in hydraulic fracturing treatments since the proppant can be transported in lower viscosity fluids. Hollow proppants produced at the same cost/weight as conventional proppants also provide for lower costs, since less weight is required to fill the same volume. The fine-grained (preferably less than 5 [mu]m in diameter) ceramic case provides the strength necessary to withstand closure stresses and prevent crushing. 6 figs.

  4. Solvent-free synthesis of nanosized hierarchical sodalite zeolite with a multi-hollow polycrystalline structure

    KAUST Repository

    Zeng, Shangjing; Wang, Runwei; Li, Ang; Huang, Weiwei; Zhang, Zongtao; Qiu, Shilun

    2016-01-01

    A solvent-free route is developed for preparing nanoscale sodalite zeolite with a multi-hollow structure. Furthermore, the synthesis of nanosized hollow sodalite polycrystalline aggregates with a mesoporous structure and high crystallinity

  5. Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells.

    Science.gov (United States)

    Chauvet, Sylvain; Barras, Alexandre; Boukherroub, Rabah; Bouron, Alexandre

    2015-12-01

    Hyperforin is described as a natural antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble surfactant. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-rich medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the surfactant Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this surfactant can influence cellular calcium signaling in the brain, a finding that can have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.

    Science.gov (United States)

    Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento

    2008-01-01

    The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.

  7. Pressure effects in hollow and solid iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.J.O., E-mail: nunojoao@ua.pt [Departamento de Física and CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Saisho, S.; Mito, M. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Millán, A.; Palacio, F. [Instituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Departamento de Física de la Materia Condensada, Facultad de Ciencias, 50009 Zaragoza (Spain); Cabot, A. [Universitat de Barcelona and Catalonia Energy Research Institute, Barcelona (Spain); Iglesias, Ò.; Labarta, A. [Departament de Física Fonamental, Universitat de Barcelona and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2013-06-15

    We report a study on the pressure response of the anisotropy energy of hollow and solid maghemite nanoparticles. The differences between the maghemite samples are understood in terms of size, magnetic anisotropy and shape of the particles. In particular, the differences between hollow and solid samples are due to the different shape of the nanoparticles and by comparing both pressure responses it is possible to conclude that the shell has a larger pressure response when compared to the core. - Highlights: ► Study of the pressure response of core and shell magnetic anisotropy. ► Contrast between hollow and solid maghemite nanoparticles. ► Disentanglement of nanoparticles core and shell magnetic properties.

  8. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  9. Hollow volcanic tumulus caves of Kilauea Caldera, Hawaii County, Hawaii

    Directory of Open Access Journals (Sweden)

    William R. Halliday

    1998-01-01

    Full Text Available In addition to lava tube caves with commonly noted features, sizable subcrustal spaces of several types exist on the floor of Kilauea Caldera. Most of these are formed by drainage of partially stabilized volcanic structures enlarged or formed by injection of very fluid lava beneath a plastic crust. Most conspicuous are hollow tumuli, possibly first described by Walker in 1991. Walker mapped and described the outer chamber of Tumulus E-I Cave. Further exploration has revealed that it has a hyperthermic inner room beneath an adjoining tumulus with no connection evident on the surface. Two lengthy, sinuous hollow tumuli also are present in this part of the caldera. These findings support Walkers conclusions that hollow tumuli provide valuable insights into tumulus-forming mechanisms, and provide information about the processes of emplacement of pahoehoe sheet flows.

  10. Management of maxillectomy defect with a hybrid hollow bulb obturator

    Science.gov (United States)

    Singh, Kamleshwar; Singh, Saumyendra V; Mishra, Niraj; Agrawal, Kaushal Kishor

    2013-01-01

    A woman having already undergone maxillectomy came to the department complaining of difficulty in eating and speech. During the construction of an obturator, the bulb area should be hollowed to reduce weight so that the teeth and supporting tissues are not stressed unnecessarily. The conventional open design drains fluid from the adjacent mucosa, possibly increasing the weight of the prosthesis, and is difficult to clean. The closed bulb design does not drain secretions and may cause obstruction and susceptibility to infection in the paranasal and pharyngeal regions, though it is easier to maintain. An alternative to the two designs, combining their advantages, is presented in this report. As the open hollow part of the obturator was shallow, it was easy to clean. Making the inferior part of the bulb hollow and closed led to a reduction in the overall weight of the prosthesis while increasing its resonance. PMID:23436886

  11. Hollow-core fibers for high power pulse delivery

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngsø, Jens K.; Jakobsen, Christian

    2016-01-01

    We investigate hollow-core fibers for fiber delivery of high power ultrashort laser pulses. We use numerical techniques to design an anti-resonant hollow-core fiber having one layer of non-touching tubes to determine which structures offer the best optical properties for the delivery of high power...... picosecond pulses. A novel fiber with 7 tubes and a core of 30 mu m was fabricated and it is here described and characterized, showing remarkable low loss, low bend loss, and good mode quality. Its optical properties are compared to both a 10 mu m and a 18 mu m core diameter photonic band gap hollow......-core fiber. The three fibers are characterized experimentally for the delivery of 22 picosecond pulses at 1032nm. We demonstrate flexible, diffraction limited beam delivery with output average powers in excess of 70W. (C) 2016 Optical Society of America...

  12. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  13. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  14. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  15. Fire resistance of extruded hollow-core slabs

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl; Sørensen, Lars Schiøtt; Giuliani, Luisa

    2017-01-01

    to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings – Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality......Purpose – Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found...... in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of loadbearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach – Furthermore, it compares theoretica calculation and assessment according...

  16. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli; Moreno Chaparro, Nicolas; Nunes, Suzana Pereira

    2015-01-01

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  17. Sharp tipped plastic hollow microneedle array by microinjection moulding

    Science.gov (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  18. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  19. Fabrication of Polyacrylonitrile Hollow Fiber Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, Dooli

    2015-10-08

    The interest in green processes and products has increased to reduce the negative impact of many industrial processes to the environment. Solvents, which play a crucial role in the fabrication of membranes, need to be replaced by sustainable and less toxic solvent alternatives for commonly used polymers. The purpose of this study is the fabrication of greener hollow fiber membranes based on polyacrylonitrile (PAN), substituting dimethylformamide (DMF) by less toxic mixtures of ionic liquids (IL) and dimethylsulfoxide (DMSO). A thermodynamic analysis was conducted, estimating the Gibbs free energy of mixing to find the most convenient solution compositions. Hollow fiber membranes were manufactured and optimized. As a result, a uniform pattern and high porosity were observed in the inner surface of the membranes prepared from the ionic liquid solutions. The membranes were coated with a polyamide layer by interfacial polymerization the hollow fiber membranes were applied in forward osmosis experiments by using sucrose solutions as draw solution.

  20. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  1. Silica and lung cancer: a controversial issue.

    Science.gov (United States)

    Pairon, J C; Brochard, P; Jaurand, M C; Bignon, J

    1991-06-01

    The role of crystalline silica in lung cancer has long been the subject of controversy. In this article, we review the main experimental and epidemiological studies dealing with this problem. Some evidence for a genotoxic potential of crystalline silica has been obtained in the rare in vitro studies published to date. In vivo studies have shown that crystalline silica is carcinogenic in the rat; the tumour types appear to vary according to the route of administration. In addition, an association between carcinogenic and fibrogenic potency has been observed in various animal species exposed to crystalline silica. An excess of lung cancer related to occupational exposure to crystalline silica is reported in many epidemiological studies, regardless of the presence of silicosis. However, most of these studies are difficult to interpret because they do not correctly take into account associated carcinogens such as tobacco smoke and other occupational carcinogens. An excess of lung cancer is generally reported in studies based on silicosis registers. Overall, experimental and human studies suggest an association between exposure to crystalline silica and an excess of pulmonary malignancies. Although the data available are not sufficient to establish a clear-cut causal relationship in humans, an association between the onset of pneumoconiosis and pulmonary malignancies is probable. In contrast, experimental observations have given rise to a pathophysiological mechanism that might account for a putative carcinogenic potency of crystalline silica.

  2. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  3. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  4. SCC modification by use of amorphous nano-silica

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Spiesz, P.R.; Hüsken, G.; Brouwers, H.J.H.

    2014-01-01

    In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica

  5. A method for manufacturing a hollow mems structure

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to a method for manufacturing an at least partly hollow MEMS structure. In a first step one or more through-going openings is/are provided in core material. The one or more through-going openings is/are then covered by an etch-stop layer. After this step, a bottom...... further comprises the step of creating bottom and top conductors in the respective bottom and top layers. Finally, excess core material is removed in order to create the at least partly hollow MEMS structure which may include a MEMS inductor....

  6. Rotary compression process for producing toothed hollow shafts

    Directory of Open Access Journals (Sweden)

    J. Tomczak

    2014-10-01

    Full Text Available The paper presents the results of numerical analyses of the rotary compression process for hollow stepped shafts with herringbone teeth. The numerical simulations were performed by Finite Element Method (FEM, using commercial software package DEFORM-3D. The results of numerical modelling aimed at determining the effect of billet wall thickness on product shape and the rotary compression process are presented. The distributions of strains, temperatures, damage criterion and force parameters of the process determined in the simulations are given, too. The numerical results obtained confirm the possibility of producing hollow toothed shafts from tube billet by rotary compression methods.

  7. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  8. Antiresonant hollow core fiber with seven nested capillaries

    DEFF Research Database (Denmark)

    Antonio-Lopez, Jose E.; Habib, Selim; Van Newkirk, Amy

    2016-01-01

    We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth.......We report an antiresonant hollow core fiber formed of 7 non-touching capillaries with inner tubes. The fiber has a core diameter of ∼33μm and a core wall of ∼780nm of thickness. We demonstrate robust single mode operation at 1064nm and broad transmission bandwidth....

  9. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  10. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    Science.gov (United States)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  11. Obtaining high purity silica from rice hulls

    Directory of Open Access Journals (Sweden)

    José da Silva Júnior

    2010-01-01

    Full Text Available Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR, powder x-ray diffraction (XRD, x-ray fluorescence (XRF, scanning electron microscopy (SEM, particle size analysis by laser diffraction (LPSA and thermal analysis.

  12. Amorphous silica from rice husk at various temperatures

    International Nuclear Information System (INIS)

    Javed, S.J.; Feroze, N.; Tajwar, S.

    2008-01-01

    Rice husk is being used as a source of energy in many heat generating system because of its high calorific value and its availability in many rice producing areas. Rice husk contains approximately 20% silica which is presented in hydrated form. This hydrated silica can be retrieved as amorphous silica under controlled thermal conditions. Uncontrolled burning of rice husk produces crystalline silica which is not reactive silica but can be used as filler in many applications. Amorphous silica is reactive silica which has better market value due to its reactive nature in process industry. The present study deals with the production of amorphous silica at various temperatures from rice husk. Various ashes were prepared in tube furnace by changing the burning temperatures for fixed time intervals and analyzed by XRD. It has been observed that for two hours calculation's of rice husk renders mostly amorphous silica at 650 degree C where as at higher temperatures crystalline silica was obtained. (author)

  13. Toxicological Effects of a Post Emergent Herbicide on Spirodela polyrhiza as a Model Macrophyte: A Comparison of the Effects of Pure and Nano-capsulated Form of the Herbicide

    Directory of Open Access Journals (Sweden)

    Samaneh Torbati *

    2018-02-01

    Full Text Available Background: One of the main reasons of environmental contaminations is the broad application of herbicides. Controlled release technologies such as encapsulation of herbicides are as an effective tool to reduce environmental contaminations. The aim of the present study was successful nanocapsulation of Gallant Super (GS, its characterization and compare the physiological responses of Spirodela polyrhiza L. upon exposure to GS and its encapsulated form. Methods: Nanocapsulation of GS in the poly (methyl methacrylate (PMMA was performed in the Department of Nanotechnology, Faculty of Sciences and biological effects of the contaminants on S. polyrhiza was investigated in Biotechnology Research Center, both in Urmia University, Urmia, Iran in 2016. The surface morphology of PMMA/GS nanocapsules was studied by SEM and TEM and their chemical characterization was determined by FT-IR spectroscopy. For assessment of the effects of the encapsulated Gallant Super (ECGS and GS on S. polyrhiza, some plant physiological parameters were investigated. Results: Direct treatment of GS had more and notable negative effects on the plant growth when compared with ECGS treatments. Moreover, different examined concentrations of the two contaminant groups led to the remarkable induction of the activities of the antioxidant enzymes such as SOD. Even though the enhancement of the antioxidant enzymes activities when the plant was treated with GS was notably more than the effects of ECGS. Conclusion: ECGS caused to the fewer changes in the plant physiological parameters and negative effects of the treatment of ECGs were less than when the plant had direct contact with GS.

  14. Synthesis, structure and magnetic properties of Fe-Gd nanocapsules coated with B2O3/H3BO3 and Fe3BO5+GdBO3

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Buschow, K.H.J.; Zhang, W.S.; Klaasse, J.C.P.; Boer, F.R. de

    2004-01-01

    Nanocapsules consisting of B 2 O 3 /H 3 BO 3 encapsulating Fe-Gd cores have been synthesized by an arc-discharge process using metal-boron alloys as cathode. Most of the nanocapsules have a well-constructed shell/core structure with a uniform B 2 O 3 /H 3 BO 3 shell. Heat-treatment induces reactions between the shell and the core, resulting in the formation of a Fe 3 BO 5 +GdBO 3 matrix embedded with Fe nanoparticles, reduction of the metallic-core size and decrease of the blocking temperature T B . Above T B , the magnetization curves plotted vs. H/T overlap and show zero coercivity. Below T B , the coercivity shows a linear dependence when plotted vs. T 1/2 . However, the coercivity-T 1/2 curve below 60 K has a different slope from that above 60 K, indicating the existence of two different magnetic phases in the nanocapsules. Different from bulk Fe 3 BO 5 , nanoscale Fe 3 BO 5 particles have a lower transition temperature to the weak-ferromagnetic state, and magnetic hysteresis is absent due to size effects

  15. Growth, structure, and optical properties of carbon-reinforced silica fibers

    International Nuclear Information System (INIS)

    Zhang, Z. J.; Ajayan, P. M.; Ramanath, G.; Vacik, J.; Xu, Y. H.

    2001-01-01

    We report the synthesis of carbon-reinforced silica fibers by methane exposure of metallocene-treated oxidized-Si(001) substrates at 1100 degree C. The SiO 2 cap layer transforms into silica fibers reinforced by glassy carbon in the core during methane exposure. High-resolution electron microscopy and spatially resolved spectroscopy measurements of the fibers reveal an amorphous structure without a hollow, and domains of glassy carbon embedded at the fiber core. The carbon-reinforced fibers are optically transparent and have an optical band gap of ≅3.1 eV. These fibers are organized in radial patterns that vary for different metallocene species. On nickelocene-treated substrates, the fibers originate from the circumference of the circular templates and grow outwards, forming radial patterns. On ferrocene-treated substrates, randomly oriented fibers grow within as well as slightly outside the perimeter of the templates, forming wreath-like patterns. Aligned growth of such fibers could be useful for fabricating optoelectronics devices and reinforced composites. [copyright] 2001 American Institute of Physics

  16. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  17. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  18. Cathodoluminescence microcharacterization of ballen silica in impactites

    International Nuclear Information System (INIS)

    Okumura, T.; Ninagawa, K.; Toyoda, S.; Gucsik, A.; Nishido, H.

    2009-01-01

    The ballen silica shows fairly weak (faint) CL with homogeneous feature in its grain exhibiting almost same spectral pattern with two broad band peaks at around 390 and 650 nm, which might be assigned to self-trapped excitons (STE) or an intrinsic and nonbridging oxygen hole centers (NBOHC), respectively, recognized in amorphous and crystalline silica. In addition, ballen silica from Lappajaervi crater shows bright and heterogeneous CL with a broad band centered at around 410 nm, presumably attributed to [AlO 4 /M + ] 0 centers or self-trapped excitons (STE). Micro-Raman and micro-XRD analyses show that fairly homogeneous CL part is α-quartz and heterogeneous CL part is composed of α-cristobalite and α-quartz. These indicate that ballen silica could be formed in the quenching process from relatively high temperature.

  19. Anomalous enthalpy relaxation in vitreous silica

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2015-01-01

    scans. It is known that the liquid fragility (i.e., the speed of the viscous slow-down of a supercooled liquid at its Tg during cooling) has impact on enthalpy relaxation in glass. Here, we find that vitreous silica (as a strong system) exhibits striking anomalies in both glass transition and enthalpy...... relaxation compared to fragile oxide systems. The anomalous enthalpy relaxation of vitreous silica is discovered by performing the hyperquenching-annealing-calorimetry experiments. We argue that the strong systems like vitreous silica and vitreous Germania relax in a structurally cooperative manner, whereas...... the fragile ones do in a structurally independent fashion. We discuss the origin of the anomalous enthalpy relaxation in the HQ vitreous silica....

  20. Ordered mesoporous silica materials with complicated structures

    KAUST Repository

    Han, Yu; Zhang, Daliang

    2012-01-01

    Periodically ordered mesoporous silicas constitute one of the most important branches of porous materials that are extensively employed in various chemical engineering applications including adsorption, separation and catalysis. This short review