WorldWideScience

Sample records for hollow cathode gas-flow

  1. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, S.; Akiba, M.; Arakawa, Y.; Horiike, H.; Sakuraba, J.

    1982-01-01

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  2. Hollow cathode discharges with gas flow: numerical modelling for the effect on the sputtered atoms and the deposition flux

    International Nuclear Information System (INIS)

    Bogaerts, Annemie; Okhrimovskyy, Andriy; Baguer, Neyda; Gijbels, Renaat

    2005-01-01

    A model is developed for a cylindrical hollow cathode discharge (HCD), with an axial gas flow (entering through a hole in the cathode bottom). The model combines a commercial computational fluid dynamics program 'FLUENT' to compute the gas flow, with home-developed Monte Carlo and fluid models for the plasma behaviour. In this paper, we focus on the behaviour of the sputtered atoms, and we investigate how the gas flow affects the sputtered atom density profiles and the fluxes, which is important for sputter deposition. The sputtered atom density profiles are not much affected by the gas flow. The flux, on the other hand, is found to be significantly enhanced by the gas flow, but in the present set-up it is far from uniform in the radial direction at the open end of the HCD, where a substrate for deposition could be located

  3. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  4. Measurements on the source properties of a hollow cathode

    NARCIS (Netherlands)

    Vogels, J.M.M.J.; Konings, L.U.E.; Koelman, J.M.V.A.; Schram, D.C.; Bötticher, W.; Wenk, H.; Schulz-Gulde, E.

    1983-01-01

    The ion production rate of a hollow cathode in a magnetized arc has been measured. At low magnetic fields supersonic ion drifts have been observed. The ionized fraction of the gas flow decreases with increasing flow and the ion flux saturates at high flow rates

  5. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  6. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  7. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  8. The effect of cathode geometry on barium transport in hollow cathode plasmas

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2014-01-01

    The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba + ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe + ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice because the Xe

  9. Examining the effects of fill gas pressure on the distribution of copper atoms in a hollow cathode lamp

    International Nuclear Information System (INIS)

    Oliver, D.R.; Finlayson, T.R.

    1996-01-01

    A modified Copper Hollow Cathode lamp has been used to examine the effects of fill gas pressure on the distribution of sputtered Copper atoms in the body of the lamp. The lamp was modified by placing a quartz disc above the cathode, perpendicular to both the cathode bore and the cathode-anode axis. While the lamp is operating, some of the Copper that has been sputtered out of the cathode bore is deposited on the disc. Modified lamps have been operated at a variety of pressures, and the resulting deposition profiles recorded using an optical microscope. A summary of variations between different pressures are presented

  10. Reactive-environment, hollow cathode sputtering: Basic characteristics and application to Al2O3, doped ZnO, and In2O3:Mo

    International Nuclear Information System (INIS)

    Delahoy, A.E.; Guo, S.Y.; Paduraru, C.; Belkind, A.

    2004-01-01

    A method for thin-film deposition has been studied. The method is based on metal sputtering in a hollow cathode configuration with supply of a reactive gas in the vicinity of the substrate. The working gas and entrained sputtered atoms exit the cathode through an elongated slot. The reactive gas is thereby largely prevented from reaching the target. The basic operation of the cathode was studied using a Cu target and pulsed power excitation. These studies included the dependence of deposition rate on power, pressure, and flow rate, film thickness profiles, and film resistivity as a function of substrate conditions. Modeling was conducted to calculate the gas velocity distribution and pressure inside the cavity. Al 2 O 3 films were prepared in a reactive environment of oxygen by sputtering an Al target. It was demonstrated that only a very small amount of oxygen passing through the cathode will oxidize (poison) the target, whereas large quantities of oxygen supplied externally to the cathode need not affect the target at all. A very stable discharge and ease of Al 2 O 3 formation were realized in this latter mode. The method was applied to the preparation of transparent, conductive films of ZnO doped with either Al or B. High deposition rates were achieved, and, at appropriate oxygen flow rates, low film resistivities. High-mobility In 2 O 3 :Mo transparent conductors were also prepared, with resistivities as low as 1.9x10 -4 Ω cm. Scaling relations for hollow cathodes, and deposition efficiency, and process comparisons between magnetron sputtering and linear, reactive-environment, hollow cathode sputtering are presented

  11. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  12. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  13. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-01-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5 cm and orifice diameter of 0.3 cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25 A and a flow rate of 5.5 sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635 cm and an orifice diameter of 0.1 cm, does not exhibit the same operational characteristics. At a flow rate of 4.25 sccm and discharge current of 12 A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow 'sheath funneling' into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1 A/mm 2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the

  14. Synthesis of diamond-like carbon via PECD using a streaming neutral gas injection hollow cathode

    International Nuclear Information System (INIS)

    Pacho, A.; Pares, E.; Ramos, H.; Mendenilla, A.; Malapit, G.

    2009-01-01

    A streaming neutral gas injection hollow cathode system was used to deposit diamond-like carbon films via plasma enhanced chemical vapor deposition on silicon and nickel-coated silicon substrates with acetylene and hydrogen as reactant gases. Samples were characterized using SEM and Raman spectroscopy. The work presented here aims to demonstrate the capability of the system to synthesize carbonaceous films and is starting point towards work on formation of carbon nanostructures. (author)

  15. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  16. Study on the cathode of ion source for neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    1983-08-01

    Durability of the cathode is an important problem in developing a high power long pulse ion source for neutral beam injector. The Purpose of this study is to develope a long life cathode and investigate the applicability of it to the source. Directly heated filaments which are commonly used as the cathode of injector source do not live very long in general. In the present work, an indirectly heated hollow cathode made of impregnated porous tungsten tube is proposed as the alternative of the directly heated cathode. At first, we fabricated a small hollow cathode to study the discharge characteristcs in a bell-jar configuration and to apply it to a duoPIGatron hydrogen ion source. The experiment showed that the gas flow rate for sustaining the stable arc discharge in the discharge chamber becomes higher than that when the filament cathode is used. To solve this problem, an experiment for gas reduction was made using a newly fabricated larger hollow cathode and a magnetic multi-pole ion source. The influence of the orifice diameter, the effect of a button and of magnetic field on the gas flow rate were experimentally studied and a method for gas reduction was found. In addition, effect of the magnetic field on the characteristics of the hollow cathode ion source was examined in detail and an optimum field configuration around the cathode was found. Finally, beam extraction from an intensively cooled hollow cathode ion source for up to 10 sec was successfully carried out. (author)

  17. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  18. Note: Possibilities of detecting the trace-level erosion products from an electric propulsion hollow cathode plasma source by the method of time-of-flight mass spectrometry

    Science.gov (United States)

    Ning, Zhong-Xi; Zhang, Hai-Guang; Zhu, Xi-Ming; Jiang, Bin-Hao; Zhou, Zhong-Yue; Yu, Da-Ren; An, Bing-Jian; Wang, Yan-Fei

    2018-02-01

    A hollow cathode produces electrons which neutralize ions from electric propulsion thrusters. After hundreds to thousands of hours of operation in space, the cathode materials can be significantly eroded due to ion bombardment. As a result, the electric propulsion system performance will be obviously changed or even fail. In this work, the erosion products from a LaB6 hollow cathode (widely used presently in electric propulsion systems) are studied by using a specific detection system, which consists of a molecular beam sampler and a time-of-flight mass spectrometer. This system measures trace-level-concentration (10-6-10-3) products. Boron (B), tantalum (Ta), and tungsten (W)—originating from the emitter, keeper, and orifice of the hollow cathode—are measured. It is found that the erosion rate is significantly influenced by the gas flow rate to the cathode.

  19. Study on the emission characteristics of cathodes in an ionized gas flow

    International Nuclear Information System (INIS)

    Maslennikov, N.M.

    1975-01-01

    Emission characteristics of molybdenum, tungsten and tantalum cathodes in a flow of argon and argon-potassium plasma with gas pressure of 0.04 atm, 1 atm and 0.25 atm were investigated. Gas was heated in a plasmatron. Measuring electrodes were arranged across the gas flow. Investigations in an argon plasma were carried out with the object of comparing of current-voltage dependences for potassium-activated and nonactivated cathodes. In all cases the current-voltage characteristics were growing. No saturation was observed of a current between accurent electrodes. The increase of a current between the cathodes due to the thermionic emission from the cathode began to effect at the cathode temperature of 2.470 K. The work function was found to be 5 to 5.2 ev. The comparison of the results obtained experimentally in the paper show a qualitative coincidence with calculations by some authors and a discrepancy with theoretical conceptions of other authors

  20. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  1. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  2. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    International Nuclear Information System (INIS)

    Ohtsu, Yasunori; Matsumoto, Naoki

    2014-01-01

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode

  3. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  4. Formation of Ti-N graded bioceramic layer by DC hollow-cathode plasma nitriding

    Institute of Scientific and Technical Information of China (English)

    ZHENG Chuan-lin

    2004-01-01

    Ti-N graded ceramic layer was formed on titanium by using DC hollow-cathode plasma nitriding technique. The structure of Ti-N layer was analyzed using X-ray diffractometry(XRD) with Cu Kα radiation, and the microhardness( HV0.1) was measured from the surface to inner along the cross section of Ti-N layer. The results indicate that the Ti-N graded layer is composed of ε-Ti2 N, δ-TiN and α-Ti(N) phases. Mechanism discussion shows that hollow-cathode discharge can intensify gas ionization, increase current density and enhance the nitriding potential, which directly increases the thickness of the diffusion coatings compared with traditional nitriding methods.

  5. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  6. Heat input properties of hollow cathode arc as a welding heat source

    International Nuclear Information System (INIS)

    Nishikawa, Hiroshi; Shobako, Shinichiro; Ohta, Masashi; Ohji, Takayoshi

    2005-01-01

    In order to clarify whether a hollow cathode arc (HCA) can be used as a welding heat source in space, investigations into the fundamental characteristics of HCA were experimentally performed under low pressure conditions. The HCA method enables an arc discharge to ignite and maintain under low pressure conditions; in contrast, low pressure conditions make it extremely difficult for the conventional gas tungsten arc method to form an arc discharge. In an earlier paper, it was shown that the melting process by HCA is very sensitive to process parameters such as the gas flow rate and arc length, and a deep penetration forms when the arc length is long and the gas flow rate is low. In this paper, the distribution of the arc current on the anode surface and the plasma properties of the HCA under low pressure conditions have been made clear and the total heat energy to the anode has been discussed in order to understand the heat input properties of the HCA. The result shows that the HCA in the case of a low gas flow rate is a high and concentrated energy source, and the high energy input to the anode contributes to the deep penetration

  7. Enhancement of opto-galvanic signals in the hollow cathode dark space: application to single colour 3-photon ionization of uranium

    International Nuclear Information System (INIS)

    Pradhan, S.; Manohar, K.G.; Marathe, A.; Rawat, V.S.; Sridhar, G.; Singh, S.; Jagatap, B.N.; Gantayet, L.M.

    1999-01-01

    Opto-galvanic effect in a hollow cathode lamp offers a very convenient method of spectroscopy of many elements of interest including refractory elements like uranium. The dependence of opto-galvanic signals on various discharge parameters like buffer gas pressure, buffer gas type, discharge current, diameter of the hollow cavity of the cathode etc. have been studied. Various mechanisms for the generation of opto-galvanic signals based on electron impact ionization and super elastic collisions have been proposed. It appears that both these processes do contribute to the opto-galvanic signals simultaneously, under specific discharge conditions

  8. Ionization and excitation of uranium in a hollow-cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Pianarosa, P.; Larin, G.; Saint-Dizier, J.P.; Bouchard, P.

    1981-01-01

    The influence of different carrier gases (Ne,Ar,Kr,Xe) their pressure, and discharge current on the excitation and ionization of uranium atoms in a vapor generator of hollow-cathode design has been investigated by monitoring emission line intensities. From our measurements of line intensities as a function of the carrier gas we obtain an indication of the role of Penning collisions on the excitation of radiative levels in U II

  9. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  10. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  11. Space-time-dependent development of the plasma in a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Schaefer, G.; Wages, M.

    1988-01-01

    This paper presents streak camera investigations on the space-time-dependent development of pulsed hollow-cathode discharges (HCD's) starting from low-current preionization discharges. The discharges started closer to the end of the cathode, then moved further into the cathode, and then spread over a longer range along the axis of the cathode. The depth range of the intense pulsed hollow-cathode plasma was found to be two to eight times the cathode diameter

  12. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  13. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  14. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  15. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Science.gov (United States)

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  16. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  17. Diagnostic of a Hollow Cathode Radio-Frequency Plasma Excited in Organosilicon HMDSO, used for Barrier Anti Corrosion Thin Films Deposition

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2010-01-01

    In this work, remote hollow cathode RF plasma, generated from the monomer hexamethyledisiloxane (HMDSO), as a precursor, and argon as a feed gas, and the plasma mixture HMDSO/O 2 have been studied, as a function of different plasma parameters such as: RF applied power (100-300 W), HMDSO flow rate (2-32 sccm), time deposition (5-20 minutes), and oxygen fraction in HMDSO/O 2 mixture (0-0.9). Plasma diagnostic and prepared thin films characterization have been investigated. (author)

  18. Method of an apparatus for analysing gas flows inside hollow bodies

    International Nuclear Information System (INIS)

    Stewart, P.A.E.

    1981-01-01

    In order to produce a visual image on a screen of the movement of gas flows inside hollow bodies, e.g. gas turbine or internal combustion engines, or wind tunnels, a gaseous tracer material including a short-lived radio-active isotope is injected into the hollow body. One suitable isotope is produced by irradiating carbon tetrafluoride using a stream of deuterons from a cyclotron. The resulting reaction produces an isotope of Fluorine which has a half-life of 11.56 seconds, and decays producing radiation at approximately 1.6 Mev. The activity of the isotope is raised to the highest feasible level by continually irradiating the tracer material in a chamber as it is pumped around a circuit prior to injection. The half lives of the isotopes used are in the range 3 seconds to 2 minutes. (author)

  19. Excited argon 1s5 production in micro-hollow cathode discharges for use as potential rare gas laser sources

    Science.gov (United States)

    Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.

  20. Numerical simulation of the sustaining discharge in radio frequency hollow cathode discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin-Xian; He, Feng, E-mail: hefeng@bit.edu.cn; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Chen, Qiang, E-mail: lppmchenqiang@hotmail.com; Ge, Teng [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing 10081 (China)

    2014-03-15

    In this paper, a two-dimensional fluid model was developed to study the radio frequency (RF) hollow cathode discharge (HCD) in argon at 1 Torr. The evolutions of the particle density distribution and the ionization rate distribution in RF HCD at 13.56 MHz indicate that the discharge mainly occurs inside the hollow cathode. The spatio-temporal distributions of the ionization rate and the power deposition within the hollow cathode imply that sheath oscillation heating is the primary mechanism to sustain the RF HCD, whereas secondary electron emission plays a negligible role. However, as driving frequency decreases, secondary electron heating becomes a dominant mechanism to sustain the discharge in RF hollow cathode.

  1. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    Science.gov (United States)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  2. Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge

    International Nuclear Information System (INIS)

    Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.

    1999-01-01

    The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission

  3. Neutralizer Hollow Cathode Simulations and Comparisons with Ground Test Data

    Science.gov (United States)

    Mikellides, Ioannis G.; Snyder, John S.; Goebel, Dan M.; Katz, Ira; Herman, Daniel A.

    2009-01-01

    The fidelity of electric propulsion physics-based models depends largely on the validity of their predictions over a range of operating conditions and geometries. In general, increased complexity of the physics requires more extensive comparisons with laboratory data to identify the region(s) that lie outside the validity of the model assumptions and to quantify the uncertainties within its range of application. This paper presents numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes. The simulations were performed using a two-dimensional axisymmetric model that solves numerically a relatively extensive system of conservation laws for the partially ionized gas in these devices. A summary of the comparisons between simulation results and Langmuir probe measurements is provided. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NEXT. It is found that a likely cause of the observed keeper voltage drop is cathode orifice erosion. However, due to the small magnitude of this change, is approx. 0.5 V (less than 5% of the beginning-of-life value) over 10 khrs, and in light of the large uncertainties of the cathode material sputtering yield at low ion energies, other causes cannot be excluded. Preliminary simulations to understand transition to plume mode suggest that in the range of 3-5 sccm the existing 2-D model reproduces fairly well the rise of the keeper voltage in the NEXT neutralizer as observed in the laboratory. At lower flow rates the simulation produces oscillations in the keeper current and voltage that require prohibitively small time-steps to resolve with the existing algorithms.

  4. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  5. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  6. Geometrical Aspects of a Hollow-cathode Magnetron (HCM)

    International Nuclear Information System (INIS)

    Cohen, Samuel A.; Wang, Zhehui

    1998-01-01

    A hollow-cathode magnetron (HCM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS), is operable at substantially lower pressures than its planar-magnetron counterpart. We have studied the dependence of magnetron operational parameters on the inner diameter D and length L of a cylindrical HCS. Only when L is greater than L sub zero, a critical length, is the HCM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic or primary electron transport. At pressures above 1 mTorr, an electron-impact ionization model with Bohm diffusion at a temperature equivalent to one-half the primary electron energy and with an ambipolar constraint can explain the ion-electron pair creation required to sustain the discharge. The critical length L sub zero is determined by the magnetization length of the primary electrons

  7. Ionization processes in a transient hollow cathode discharge before electric breakdown: statistical distribution

    International Nuclear Information System (INIS)

    Zambra, M.; Favre, M.; Moreno, J.; Wyndham, E.; Chuaqui, H.; Choi, P.

    1998-01-01

    The charge formation processes in a hollow cathode region (HCR) of transient hollow cathode discharge have been studied at the final phase. The statistical distribution that describe different processes of ionization have been represented by Gaussian distributions. Nevertheless, was observed a better representation of these distributions when the pressure is near a minimum value, just before breakdown

  8. Space and Temporal Correlation between the Moving Virtual Anode and the Ionization Growth in a Transient Hollow Cathode Discharge

    International Nuclear Information System (INIS)

    Zambra, M.; Moreno, J.; Soto, L.; Silva, P.; Sylvester, G.; Alarcon, H.

    2001-01-01

    A Transient Hollow Cathode Discharge is a low-pressure high-voltage electric discharge between plane parallel electrodes with an axial hole in the cathode. There are essential ionization events which lead to final electrical breakdown, between them the enhanced ionization processes taking place inside the Hollow Cathode Region (HCR) and the virtual anode moving in the interelectrode region, which extends the anode potential to within the HCR. In previous works it was studied the virtual anode speed in the A-K gap and the temporal evolution of the ionization growth in the HCR separately. In this paper, the virtual anode speed has been studied temporal and space correlated with the ionization growth inside the HCR. The presence of the moving virtual anode and the ionization growth has been diagnosed by means of capacitive probes and observing the light emission at 656 nm (H-α) from a point behind the cathode aperture respectively. The discharge was operated in hydrogen gas, at pressure in the range 100-300 mTorr, with 5 mm cathode aperture and at 30 kV maximum voltage. (author)

  9. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  10. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    Science.gov (United States)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  11. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna; Kalathil, Shafeer; Ragab, Ala'a; Bian, Bin; AlQahtani, Manal Faisal; Pant, Deepak; Saikaly, Pascal

    2018-01-01

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  12. Dual-Function Electrocatalytic and Macroporous Hollow-Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems

    KAUST Repository

    Katuri, Krishna

    2018-04-30

    Dual-function electrocatalytic and macroporous hollow-fiber cathodes are recently proposed as promising advanced material for maximizing the conversion of waste streams such as wastewater and waste CO2 to valuable resources (e.g., clean freshwater, energy, value-added chemicals) in microbial electrochemical systems. The first part of this progress report reviews recent developments in this type of cathode architecture for the simultaneous recovery of clean freshwater and energy from wastewater. Critical insights are provided on suitable materials for fabricating these cathodes, as well as addressing some challenges in the fabrication process with proposed strategies to overcome them. The second and complementary part of the progress report highlights how the unique features of this cathode architecture can solve one of the intrinsic bottlenecks (gas-liquid mass transfer limitation) in the application of microbial electrochemical systems for CO2 reduction to value-added products. Strategies to further improve the availability of CO2 to microbial catalysts on the cathode are proposed. The importance of understanding microbe-cathode interactions, as well as electron transfer mechanisms at the cathode-cell and cell-cell interface to better design dual-function macroporous hollow-fiber cathodes, is critically discussed with insights on how the choice of material is important in facilitating direct electron transfer versus mediated electron transfer.

  13. Coronal and local thermodynamic equilibriums in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Zheng Xutao

    2005-01-01

    A characteristic two-section profile of excited-state populations is observed in a hollow cathode discharge and is explained by coexistence of the coronal equilibrium (CE) and the local thermodynamic equilibrium (LTE). At helium pressure 0.1 Torr and cathode current 200-300 mA, vacuum ultraviolet radiations from He I 1snp 1 P (n=2-16) and He II np 2 P (n=2-14) are resolved with a 2.2-M McPherson spectrometer. Relative populations of these states are deduced from the discrete line intensities and are plotted against energy levels. For both the He I and He II series, as energy level increases, populations of high-n (n>10) states are found to decrease much more quickly than low-n (n<7) populations. While low-n populations are described with the CE dominated by direct electron-impact excitations, high-n populations are fitted with the LTE to calculate the population temperatures of gas atoms and ions. Validities of the CE and LTE in different n-ranges are considered on the competition between radiative decays of the excited states and their collisions with gas atoms. (author)

  14. Geometrical aspects of a hollow-cathode planar magnetron

    International Nuclear Information System (INIS)

    Wang, Z.; Cohen, S.A.

    1999-01-01

    A hollow-cathode planar magnetron (HCPM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS) [Z. Wang and S. A. Cohen, J. Vac. Sci. Technol. A 17, 77 (1999)], is operable at substantially lower pressures than its planar-magnetron counterpart. HCPM operational parameters depend on the inner diameter D and length L of its cylindrical HCS. Only when L is greater than L 0 , a critical length, is the HCPM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic electron transport. At pressures above 1 mTorr, Bohm diffusion (temperature congruent primary electron energy), with an ambipolar constraint, can explain the ion - electron pair creation required to sustain the discharge. At the lowest pressure, ∼0.3 mTorr, collision-limited diffusion creates fewer ion - electron pairs than required for steady state and therefore cannot explain the experimental data. The critical length L 0 is consistent with the magnetization length of the primary electrons. copyright 1999 American Institute of Physics

  15. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  16. Simple method for identifying doubly ionized uranium (U III) produced in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Piyakis, K.N.; Gagne, J.M.

    1988-01-01

    We have studied by emission spectroscopy the spectral properties of doubly ionized uranium, produced in a vapor generator of hollow-cathode design, as a function of the nature of a pure fill gas (helium, neon, argon, krypton, xenon) and its pressure. The spectral intensity is found to increase with increasing ionization potential of the discharge buffer gas, except in the case of helium. Based on our preliminary results, a simple and practical method for the positive identification of the complex U III spectrum is suggested

  17. Effects of discharge parameters on the micro-hollow cathode sustained glow discharge

    Science.gov (United States)

    Shoujie, HE; Peng, WANG; Jing, HA; Baoming, ZHANG; Zhao, ZHANG; Qing, LI

    2018-05-01

    The effects of parameters such as pressure, first anode radius, and the cavity diameter on the micro-hollow cathode sustained glow discharge are investigated by using a two-dimensional self-consistent fluid model in pure argon. The results indicate that the three parameters influence the discharge in the regions inside and outside of the cavity. Under a fixed voltage on each electrode, a larger volume of high density plasma can be produced in the region between the first and the second anodes by selecting the appropriate pressure, the higher first anode, and the appropriate cavity diameter. As the pressure increases, the electron density inside the hollow cathode, the high density plasma volume between the first anode and second anodes, and the radial electric field in the cathode cavity initially increase and subsequently decrease. As the cavity diameter increases, the high-density plasma volume between the first and second anodes initially increases and subsequently decreases; whereas the electron density inside the hollow cathode decreases. As the first anode radius increases, the electron density increases both inside and outside of the cavity. Moreover, the increase of the electron density is more obvious in the microcathode sustained region than in the micro cavity region. The results reveal that the discharge inside the cavity interacts with that outside the cavity. The strong hollow cathode effect and the high-density plasma inside the cavity favor the formation of a sustained discharge between the first anode and the second anodes. Results also show that the radial boundary conditions exert a considerably weaker influence on the discharge except for a little change in the region close to the radial boundary.

  18. Development of Hollow Cathode of High Power Middle Pressure Arcjet

    National Research Council Canada - National Science Library

    Vaulin, Eujeni

    1995-01-01

    ...: Determine integral performances of arcjet devices in nitrogen, ammonia, and their mixtures using hollow cathode devices at low and high current levels, perform short term tests (up to 50 hours...

  19. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  20. Dependence of electron peak current on hollow cathode dimensions and seed electron energy in a pseudospark discharge

    International Nuclear Information System (INIS)

    Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.

    2008-01-01

    The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5 eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study

  1. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    Wang Wen-Li; Xu Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  2. Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Hur, Min; Kim, Keun Su; Hong, Sang Hee

    2003-01-01

    The operational features and thermal plasma characteristics of a plasma torch with hollow electrodes are investigated based on their dependence on input current, gas flow rate and electrode diameter when air is used as a plasma gas. A plasma torch with a hollow cathode and anode has been designed and fabricated, and the arc voltages and thermal efficiencies are measured from its discharge. The newly modified similarity criteria are derived from the measured data related to torch performances. From the fact that these criteria successfully describe both the arc voltage and thermal efficiency behaviour of the torch, depending on its operating and geometrical parameters, it is proved that they can be usefully applied to the design and operation of high power torches. For the numerical modelling of the interior region of the torch, a cold flow analysis is employed along with a simplified balance equation of the Lorentz and gas dynamic drag forces in order to determine a cathode spot position on the cathode surface. The validity of this method is confirmed by comparison of the calculated and measured net powers. As a practically useful result of this analysis, carried out through this numerical and experimental work, it is suggested that low input current, high gas flow rate and relatively large electrode diameter are more favourable as appropriate operating conditions of the torch for the efficient treatment of hazardous organic wastes

  3. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    Science.gov (United States)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  4. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  5. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    Science.gov (United States)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  6. Spatio-temporal characteristics of self-pulse in hollow cathode discharge

    International Nuclear Information System (INIS)

    Jing, Ha; He, Shoujie

    2015-01-01

    The characteristics of self-pulse in hollow cathode discharge at low pressure have been investigated. The voltage-current (V-I) curves, the influence of ballast resistor on the self-pulses, and the evolution of current and voltage are measured. Both the axial and radial spatio-temporal discharge images of self-pulse are recorded. The results show that there exists the hysteresis effect in the present hollow cathode discharge. The high value of ballast resistors is favourable for the observation of self-pulses. The process of the self-pulse can be divided into three stages from the temporal discharge images, i.e., the pre-discharge, the transition from mainly axial electric field to mainly radial electric field, and the decaying process. The self-pulse is suggested to originate from the mode transition of the discharge in essence

  7. Auxiliary glow discharge in the trigger unit of a hollow-cathode thyratron

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.; Frants, O. B.; Shemyakin, I. A.; Nekhoroshev, V. O. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2016-08-15

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.

  8. A flexible platform for simulations of sputtering hollow cathode discharges for laser applications

    NARCIS (Netherlands)

    Mihailova, D.B.; Grozeva, M.; Hagelaar, G.J.M.; Dijk, van J.; Brok, W.J.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The Plasimo modelling platform, extended with a cathode wall sputtering module is used to study the discharge processes and to optimise the design parameters of a sputtering hollow cathode discharge (HCD). We present Plasimo simulations of a HCD used for laser applications. A time dependent

  9. Determination of electric field strength and kinetic temperature in the cathode fall region of a hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    De la Rosa, M I; Perez, C; Gruetzmacher, K [Universidad de Valladolid, Facultad de Ciencias, 47071 Valladolid (Spain); Gonzalo, A B; Del Val, J A, E-mail: delarosa@opt.uva.e [Universidad de Salamanca, Escuela Politecnica Superior, 05003 Avila (Spain)

    2010-05-01

    In this work, we demonstrate the high potential of two-photon excitation of the 1S -2S transition of atomic hydrogen followed by optogalvanic detection, for measuring under identical experimental conditions, the kinetic temperature and the electric field strength in the cathode sheath region of a hollow cathode discharge. The first obtained results for both parameters are discussed in this paper.

  10. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  11. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan

    2011-10-12

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber-encapsulated sulfur cathode for effective trapping of polysulfides and demonstrate experimentally high specific capacity and excellent electrochemical cycling of the cells. The hollow carbon nanofiber arrays were fabricated using anodic aluminum oxide (AAO) templates, through thermal carbonization of polystyrene. The AAO template also facilitates sulfur infusion into the hollow fibers and prevents sulfur from coating onto the exterior carbon wall. The high aspect ratio of the carbon nanofibers provides an ideal structure for trapping polysulfides, and the thin carbon wall allows rapid transport of lithium ions. The small dimension of these nanofibers provides a large surface area per unit mass for Li2S deposition during cycling and reduces pulverization of electrode materials due to volumetric expansion. A high specific capacity of about 730 mAh/g was observed at C/5 rate after 150 cycles of charge/discharge. The introduction of LiNO3 additive to the electrolyte was shown to improve the Coulombic efficiency to over 99% at C/5. The results show that the hollow carbon nanofiber-encapsulated sulfur structure could be a promising cathode design for rechargeable Li/S batteries with high specific energy. © 2011 American Chemical Society.

  12. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  13. Self-induced optogalvanic effect in a segmented hollow-cathode discharge

    Science.gov (United States)

    Steflekova, V.; Zhechev, D.

    2018-03-01

    Optogalvanic (OG) interaction is simulated and studied in a segmented hollow-cathode discharge (SHCD). HCD-lamps are used to induce an OG signal by their own emission or by that of another lamp. The efficiency of the OG of a Ne/Cu HCD lamp in the range 320-380 nm is estimated theoretically. An irregular galvanic peak arising near the inflection point in the i-V curve (∂V/∂i<0) is detected. Its origin is related to Penning ionization of the sputtered cathode material.

  14. Study of a DC gas discharge with a copper cathode in a water flow

    Science.gov (United States)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  15. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    Ioffe, R.B.; Korovin, Yu.I.

    1978-01-01

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  16. Construction and characterization of a hollow cathode tube for high sensibility laser spectroscopy

    International Nuclear Information System (INIS)

    Morage, A.; Motta, C.C.

    1998-01-01

    A new hollow cathode tube argon-iron design was developed to be used in laser atomic spectroscopy experiments, were high sensibility is required. This tube was employed in order to allow laser absorption and optogalvanic signal measurements. The tube also included fused-quartz Brewster angle windows aligned with the optical axis in each ending of the tube. Therefore, in this configuration a minimum laser intensity losses through the windows can be attained for the appropriate light polarization. The optogalvanic signal detection was accomplished using a tunable dye laser resonant with the Ar, 3p 5 4p ( 3 S 1 )--> 3p 5 4d ( 3 D 1 0 ) transition, that corresponds to 591.2 nm in air. It was also possible to determine the gas temperature by measuring the Doppler line broadening and the results were compared to those obtained from a theoretical model for gas heat conduction. To measure the temperature of the cathode external surface a thermocouple was used inside the tube. The analysis of results showed that a high signal to noise ratio can be obtained with this tube configuration, that permits experimental investigation of electronic transitions presenting low light absorption cross sections. (author)

  17. Characterization of an atom beam produced with the help of a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Babin, F.; Gagne, J.

    1986-01-01

    A hollow-cathode type discharge is used as a refractory element vapor generator for the formation of an atomic beam. The development of the technique brings us to discuss its possibilities in spectroscopic studies of refractory elements. We focus primarily on the production of a uranium atomic beam and its characterization by laser-induced fluorescence spectroscopy. We determine, among other things, the beam divergence and the most probable velocity along its axis for specific current and pressure conditions in the discharge. We also discuss beam behavior with respect to buffer gas pressure and electric current in the discharge

  18. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  19. Electron and ion kinetics in a micro hollow cathode discharge

    International Nuclear Information System (INIS)

    Kim, G J; Iza, F; Lee, J K

    2006-01-01

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall

  20. Theory of hollow cathode arc discharges. II. Metastable state balance inside the cathode. Application to argon

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Delcroix, J.L.

    1975-01-01

    In the hollow cathode the metastable species are created by fast electrons, which are emitted by the cathode wall and injected in the plasma across a space-charge sheath, and destroyed by Maxwellian electrons. A detailed analysis of the different electronic destruction mechanisms in argon shows that the re-excitation up to 3p 5 4p states plays a very important role. Solutions of the metastable balance equation were obtained in a wide range of variation of the discharge parameters displaying the best conditions of operation to obtain high concentrations [fr

  1. Hollow-cathode lamps as optical frequency standards: the influence of optical imaging on the line-strength ratios

    Science.gov (United States)

    Huke, Philipp; Tal-Or, Lev; Sarmiento, Luis Fernando; Reiners, Ansgar

    2016-07-01

    Hollow cathode discharge lamps (HCLs) have been successfully used in recent years as calibration sources of optical astronomical spectrographs. The numerous narrow metal lines have stable wavelengths, which makes them well suited for m/s calibration accuracy of high-resolution spectrographs, while the buffer-gas lines are less stable and less useful. Accordingly, an important property is the metal-to-gas line-strength ratio (Rmetal/gas). Processes inside the lamp cause the light to be emitted from different regions between the cathode and the anode leaing to the emission of different beams with different values of Rmetal/gas. We used commercially- available HCLs to measure and characterize these beams with respect to their spatial distribution, their angle of propagation relative to the optical axis, and their values of Rmetal/gas. We conclude that a good imaging of an HCL into a fiber-fed spectrograph would consist of an aperture close to its front window in order to filter out the parts of the beam with low Rmetal/gas, and of a lens to collimate the important central beam. We show that Rmetal/gas can be further improved with only minor adjustments of the imaging parameters, and that the imaging scheme that yields the highest Rmetal/gas does not necessarily provide the highest flux.

  2. Ultra-Compact Center-Mounted Hollow Cathodes for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a long lifetime, compact hollow cathode that can be mounted along the axis of a 600 W-class Hall effect thruster. Testing at kilowatt...

  3. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  4. Geometrical features in longitudinal sputtering hollow cathode discharges for laser applications

    NARCIS (Netherlands)

    Mihailova, D.B.; Dijk, van J.; Hagelaar, G.J.M.; Karatodorov, S.; Zahariev, P.; Grozeva, M.; Mullen, van der J.J.A.M.

    2012-01-01

    Longitudinal sputtering hollow cathode discharge (HCD) used as active medium for lasing is studied by means of numerical modelling. Due to the longitudinal non-uniformities of the discharge, the laser operation could be strongly affected. The non-uniformity of the discharge is mainly influenced by

  5. Time resolved diagnostics and kinetic modelling of a modulated hollow cathode discharge of NO2

    International Nuclear Information System (INIS)

    Castillo, M; Herrero, V J; Mendez, I; Tanarro, I

    2004-01-01

    The transients associated with the ignition and the extinction of the cold plasma produced in a low frequency, square-wave modulated, hollow cathode discharge of nitrogen dioxide are characterized by time resolved emission spectroscopy, mass spectrometry and electrical probes. The temporal evolution of the concentrations of neutral species created or destroyed in the NO 2 discharges are compared with the predictions of a simple kinetic model previously developed for discharges of other nitrogen oxides (N 2 O and NO). The physical conditions of pressure, gas flow rate, modulation frequency and electrical current in the NO 2 plasma were selected in order to highlight the time-dependent behaviour of some of the stable species formed in the discharge, especially the nitrogen oxide products, whose concentrations show transient maxima. The usefulness of the analysis of the transient results is emphasized as a means to evaluate the relevance of the different elementary processes and as a key to estimate the values of some of the rate constants critical to the modelling. This work is dedicated to the memory of Professor Jose Campos

  6. Connection experiments with a hollow cathode ion source and a helium gas jet system for on-line isotope separation

    International Nuclear Information System (INIS)

    Mazumdar, A.K.; Wagner, H.; Walcher, W.; Lund, T.

    1976-01-01

    A helium jet system was connected to a hollow cathode ion source. Using fission products the efficiencies of the different steps were measured by β-, X-ray and γ-counting while the mass spectrum and the focussing of the extracted ion beam were observed with a small deflecting magnet. Mean transport efficiencies of 50% through the 12 m capillary were obtained and ion source efficiencies in the percent range for several elements. (Auth.)

  7. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    International Nuclear Information System (INIS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-01-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry

  8. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  9. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  10. Local Electric Field Strength in a Hollow Cathode Determined by Stark Splitting of the 2S Level of Hydrogen Isotopes by Optogalvanic Spectroscopy

    International Nuclear Information System (INIS)

    Perez, C.; Rosa, M. I. de la; Gruetzmacher, K.; Fuentes, L. M.; Gonzalo, A. B.

    2008-01-01

    In this work we present Doppler-free two-photon optogalvanic spectroscopy as a tool to measure the electric field strength in the cathode fall region of a hollow cathode discharge via the Stark splitting of the 2S level of atomic deuterium. The strong electric field strength present in the hollow cathode is determined for various discharge conditions which allows studying the corresponding variations of the cathode fall, and its changes with discharge operation time.

  11. Absolute atomic hydrogen density distribution in a hollow cathode discharge by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Gonzalo, A B; Rosa, M I de la; Perez, C; Mar, S; Gruetzmacher, K

    2004-01-01

    We report on quantitative measurements of ground-state atomic hydrogen densities in a stationary plasma far off thermodynamic equilibrium, generated in a hollow cathode discharge, by two-photon polarization spectroscopy via the 1S-2S transition. Absolute densities are obtained using a well established calibration method based on the non-resonant two-photon polarization signal of xenon gas at room temperature, which serves as the reference at the wavelength of the hydrogen transition. This study is dedicated to demonstrating the capability of two-photon polarization spectroscopy close to the detection limit. Therefore, it requires single-longitudinal mode UV-laser radiation provided by an advanced UV-laser spectrometer

  12. Deposition of hematite Fe.sub.2./sub.O.sub.3./sub. thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system

    Czech Academy of Sciences Publication Activity Database

    Hubička, Zdeněk; Kment, Štěpán; Olejníček, Jiří; Čada, Martin; Kubart, T.; Brunclíková, Michaela; Kšírová, Petra; Adámek, Petr; Remeš, Zdeněk

    2013-01-01

    Roč. 549, Dec (2013), s. 184-191 ISSN 0040-6090 R&D Projects: GA ČR GAP108/12/2104; GA MŠk LH12043 Grant - others:AVČR(CZ) M100101215 Institutional support: RVO:68378271 Keywords : HIPIMS * thin films * hollow cathode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.867, year: 2013

  13. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries

    KAUST Repository

    Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.; Hong, Seung Sae; Cui, Yi

    2011-01-01

    Sulfur has a high specific capacity of 1673 mAh/g as lithium battery cathodes, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a hollow carbon nanofiber

  14. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  15. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  16. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  17. Experimental study of the hollow cathode radio-frequency plasma mixture: Argon-Oxygen

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2008-01-01

    This study presents experimental results of plasma gas mixture Ar-O 2 for different mixing ratios in radio-frequency hollow cathode plasma. The following plasma parameters have been investigated: The electronic temperature, plasma potential, floating potential, emission atomic lines intensities, as a function of some variables, where the effect of power has been studied in the range [100-300 W], and the effect of pressure has been studied in the range [0.05-0.3 mbar]. The effect of relative composition has been studied for a fixed power and pressure. Two diagnostic techniques have been employed: Optical emission spectroscopy and langmuir probe. The most important result of this study is the ability to measure the relative atomic density of oxygen by optical emission spectroscopy, where the maximum of this density is obtained for the mixture 40% Ar - 60% O 2 . (author)

  18. Atomization of thorium in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1984-01-01

    The atomization of thorium metal in a hollow-cathode electrical discharge has been investigated. Laser absorption spectroscopy with the laser tuned on the 5760.55 A (0-17355 1 cm -1 ) transition of Th I was used to evaluate the density of atoms in the 3 F 2 ground state. The results obtained (densities up to 10 13 atoms cm -3 ) show that our discharge tube is a suitable source of thorium metal atoms for laser assisted spectroscopic analysis of this element. (author)

  19. Nitrogen Atom Energy Distributions in a Hollow-cathode Planar Sputtering Magnetron

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Goeckner, M.J.; Cohen, S.A.; Wang, Zhehui

    1999-01-01

    Energy distributions of N atoms in a hollow-cathode planar sputtering magnetron were obtained by use of optical emission spectroscopy. A characteristic line, N I 8216.3 , well-separated from molecular nitrogen emission bands, was identified. Jansson's nonlinear spectral deconvolution method, refined by minimization of χ w ampersand sup2; , was used to obtain the optimal deconvolved spectra. These showed nitrogen atom energies from 1 eV to beyond 500 eV. Based on comparisons with VFTRIM results, we propose that the energetic N atoms are generated from N 2 + ions after these ions are accelerated through the sheath and dissociatively reflect from the cathode

  20. Ion source using a hollow cathode discharge system and especially, particle accelerator comprising said source

    International Nuclear Information System (INIS)

    Mourier, Georges.

    1975-01-01

    An ion source provided with a hollow cathode discharge system is presented. The ion extraction system is designed in view of generating a beam directed towards a point of use located far from the point of ion production. Said source essentially comprises two cathodes facing each other, an anode at a continuous voltage with respect to the cathodes, a heated filament beyond the cathode on the path of the extracted beam, and a grid between said filament and cathode. The ion extraction is limited to a certain portion of the ions present inside the plasma, so as the discharge to continue to be sustained by itself. For that purpose pierced cathodes are used, with a transparency (the ratio of the hole area to the whole cathode area) not much higher than 50% [fr

  1. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property

    International Nuclear Information System (INIS)

    Tian, Yu; Li, Jinchai; Xiong, Hui; Dai, Jiangnan

    2012-01-01

    Highlights: ► Zn powder as precursor template for synthesis ZnO hollow spheres. ► Different precursor templates result in different ZnO nanostructures. ► Different experimental conditions enable growth of different surface morphologies of ZnO sphere. ► ZnO hollow sphere materials have good gas sensing performance for detecting ethanol gas. - Abstract: Using Zn powder as precursor templates, ZnO hollow microspheres were successfully prepared by thermal evaporation method and characterized by X-ray diffraction analysis, scanning electron microscope and transmission electron microscope. It was found that different size and shape of precursor resulted in different ZnO nanostructures. When varying experimental conditions, such as air flow rate and working pressure, ZnO hollow spheres with different surface morphologies could be obtained. The advantages of the present synthetic technology are simple, relatively low cost, and high reproducibility. A gas sensor was fabricated from the as-prepared ZnO hollow microspheres and tested to the ethanol gas at different operating temperatures.

  2. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  3. Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O2 Batteries

    Directory of Open Access Journals (Sweden)

    Amrita Chatterjee

    2018-05-01

    Full Text Available As a step towards efficient and cost-effective electrocatalytic cathodes for Li–O2 batteries, highly porous hausmannite-type Mn3O4 hollow nanocages (MOHNs of a large diameter of ~250 nm and a high surface area of 90.65 m2·g−1 were synthesized and their physicochemical and electrochemical properties were studied in addition to their formation mechanism. A facile approach using carbon spheres as the template and MnCl2 as the precursor was adopted to suit the purpose. The MOHNs/Ketjenblack cathode-based Li–O2 battery demonstrated an improved cyclability of 50 discharge–charge cycles at a specific current of 400 mA·g−1 and a specific capacity of 600 mAh·g−1. In contrast, the Ketjenblack cathode-based one can sustain only 15 cycles under the same electrolytic system comprised of 1 M LiTFSI/TEGDME. It is surmised that the unique hollow nanocage morphology of MOHNs is responsible for the high electrochemical performance. The hollow nanocages were a result of the aggregation of crystalline nanoparticles of 25–35 nm size, and the mesoscopic pores between the nanoparticles gave rise to a loosely mesoporous structure for accommodating the volume change in the MOHNs/Ketjenblack cathode during electrocatalytic reactions. The improved cyclic stability is mainly due to the faster mass transport of the O2 through the mesoscopic pores. This work is comparable to the state-of-the-art experimentations on cathodes for Li–O2 batteries that focus on the use of non-precious transition materials.

  4. Extraction of a long-pulsed intense electron beam from a pulsed plasma based on hollow cathode discharge

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1977-05-01

    An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm phi) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 μsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space. (auth.)

  5. Experiments with a large sized hollow cathode discharge fed with argon

    International Nuclear Information System (INIS)

    Bastian, C.; Boeschoten, F.; Hekman, H.; Komen, R.; Riske, H.P.; Iersel, A. van.

    1974-04-01

    Several plasma parameters which are pertinent to the rotation of the plasma column of the hollow cathode discharge ''John Luce'' were measured. Several improvements to the device were made, notably concerning the construction of the electrodes and their supports. The ion temperature, Tsub(i), was measured with a Fabry-Perot interferometer; depending on arc current and gas flow Tsub(i) may be varied in argon arc in the range 1-10 eV. The magnetic field strength, B, is adjustable from 600-6000 Gauss. The plasma column is fully ionized, and for higher values of Tsub(i) and B it is also fully magnetized (ωsub(ci)tausub(i) > 1). Simultaneous Doppler-shift measurements of the Asup(II) line 4806 A reveal that the plasma column rotates non-uniformly around its axis. (Order of magnitude of angular frequency is 10 5 rad/sec.) At larger distances from the axis the rotation was measured with a pendulum and with a directional Langmuir Probe. The object of the experiments is to disclose the connection between this rotation and the stability of the plasma column. Langmuir Probes are used to measure radial density profiles under various conditions in the arc. A flat probe with its normal to the surface pointing in radial direction makes reliable ion density measurements possible, even in the presence of a magnetic field. Floating potential measurements were used in order to estimate the radial electric field strength and the drift velocity which is related to it. The electron temperature, Tsub(e), is measured with less accuracy

  6. Study of the three-step photoionization of uranium using a hollow cathode discharge tube

    International Nuclear Information System (INIS)

    Hu, Q.; Yin, L.; Zhang, Y.; Jin, C.; Cui, J.; Su, H.; Lin, F.

    1986-01-01

    The hollow cathode discharge (HCD) tube as a spectral light source has been developed. Because any element including refractory metals can be atomized by the cathode sputtering effect in HCD, a simple and reliable atomic vapor source produced by HCD has been widely used in laser spectroscopy. To the authors' knowledge, there is no previous work on the photoionization processes of metal atoms using an HCD tube. Here the authors report their study of the resonant three-step ionization of U in a homemade HCD tube

  7. Simulation of electron and ion bipolar flow in high current diode with magnetic insulation

    International Nuclear Information System (INIS)

    Vrba, P.; Engelko, V.I.

    1990-08-01

    Numerical simulation of the formation of the collector ion flow in a magnetically insulated ion diode (MID) with a hollow cylindrical and cone-shaped cathode was studied. Such cathodes are often used for the production of tubular high current microsecond electron beams. The ions, emitted by the collector and born as a result of ionization of the residual gas by the electron beam, are focused into the cathode plasma region. This effect can adversely influence the diode operation

  8. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  9. Observation of a very high electron current extraction mode in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1993-01-01

    Earlier results by Hershcovitch, Kovarik, and Prelec in J. Appl. Phys. 67, 671 (1990) proved that, in a low-pressure operating mode, hollow cathode discharges can have a two-component electron population, one of which is that of ''fast'' electrons having an energy corresponding to the cathode potential and a thermal spread of about 0.13 eV, which could form a basis for an excellent electron gun. Investigations of extracted electron currents in this low pressure mode indicate the existence of a narrow pressure range characterized by very high electron current extraction

  10. Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations

    International Nuclear Information System (INIS)

    Boeuf, J. P.; Pitchford, L. C.

    2005-01-01

    Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control. However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years. Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of micro-discharges arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of micro-discharges or filaments. In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how

  11. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  12. Hollow-cathode electrode for high-power, high-pressure discharge devices

    Science.gov (United States)

    Chang, J.J.; Alger, T.W.

    1995-08-22

    Several different cold cathode configurations are disclosed for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures. 8 figs.

  13. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  14. Statistical analysis on hollow and core-shell structured vanadium oxide microspheres as cathode materials for Lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2018-06-01

    Full Text Available In this data, the statistical analyses of vanadium oxide microspheres cathode materials are presented for the research article entitled “Statistical analyses on hollow and core-shell structured vanadium oxides microspheres as cathode materials for Lithium ion batteries” (Liang et al., 2017 [1]. This article shows the statistical analyses on N2 adsorption-desorption isotherm and morphology vanadium oxide microspheres as cathode materials for LIBs. Keywords: Adsorption-desorption isotherm, Pore size distribution, SEM images, TEM images

  15. Observation of even-parity autoionization states of uranium by three-colour photoionization optogalvanic spectroscopy in U–Ne hollow cathode discharges

    International Nuclear Information System (INIS)

    Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.

    2013-01-01

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U–Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U–Ne hollow cathode discharge tube has been used as a source of uranium atomic vapours and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52,150–52,590 cm −1 , through three different excitation pathways, originating from its ground state, 0 cm −1 ( 5 L o 6 ). By analysing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. The J-value of five autoionization resonances, which have been observed either through all three excitation pathways or through two different excitation pathways where J-value of the second excited levels differs by two, has been assigned uniquely. -- Highlights: ► Three-colour photoionization optogalvanic spectroscopy of uranium was performed in a U–Ne hollow cathode discharge tube. ► Hollow cathode discharge tube was used as a source of atomic vapour and laser ionisation detector. ► Uranium photoionization spectra were investigated through three different three-colour photoionization schemes. ► Sixty new even-parity autoionization levels of uranium were identified. ► J-value of five autoionization levels was assigned uniquely

  16. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    Directory of Open Access Journals (Sweden)

    A. Sasoh

    2017-06-01

    Full Text Available Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called “swirl acceleration,” in which F≅JdBRa ∕2, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  17. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    International Nuclear Information System (INIS)

    Naddaf, M; Saloum, S; Hamadeh, H

    2007-01-01

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 deg. C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups

  18. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    Science.gov (United States)

    Naddaf, M.; Saloum, S.; Hamadeh, H.

    2007-07-01

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 °C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups.

  19. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M; Saloum, S; Hamadeh, H [Department of Physics, Atomic Energy Commission of Syria (AECS), PO Box 6091, Damascus (Syrian Arab Republic)

    2007-07-07

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 deg. C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups.

  20. Photoluminescence from PP-HMDSO thin films deposited using a remote plasma of 13.56 MHz hollow cathode discharge

    International Nuclear Information System (INIS)

    Naddaf, M.; Saloum, S.; Hamadeh, H.

    2008-01-01

    Room temperature photoluminescence (PL) from plasma-polymerized hexamethyldisiloxane (PP-HMDSO) thin films deposited on silicon wafers has been investigated as a function of both the applied RF power and the monomer flow rate. Films were deposited in a low pressure-low temperature remote plasma ignited in a 13.56 MHz hollow cathode discharge reactor, using pure HMDSO as a monomer and Ar as a feed gas. The substrate temperature during the deposition was as low as 40 deg. C and the total pressure was about 0.03 mbar. Optical emission spectroscopy (OES) has been used as in situ tool for monitoring the different chemical species present in the plasma during deposition processes. The deposited PP-HMDSO films showed a strong, broad 'green/yellow' PL band. The RF power and the flow rate of the HMDSO monomer are found to have a significant impact on the PL intensity of the deposited film. The changes in the chemical bonding of the film as a function of deposition parameters have been investigated by using the Fourier transform infrared (FTIR) spectroscopic analysis and are related to PL and OES results. The 'green/yellow' PL band is ascribed to chemical groups and bonds of silicon, hydrogen and/or oxygen constituting the films, in particular, SiH, SiO bonds and silanol Si-O-H groups. (Authors)

  1. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    International Nuclear Information System (INIS)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur

    2016-01-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  2. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  3. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-CEERI Campus, Pilani (India); Pal, Dharmendra Kumar; Jadon, Arvind Singh; Rahaman, Hasibur [CSIR-Central Electronics Engineering Research Institute (CSIR-CEERI), Pilani, Rajasthan 333031 (India)

    2016-03-15

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  4. Population distribution of atomic uranium in the afterglow of a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Demers, Yves; Gagne, J.-M.; Pianarosa, Piero

    1987-01-01

    From laser absorption measurements we have deduced the time evolution of the population distribution of atomic uranium in the afterglow of a pulsed hollow-cathode type discharge. The vapour generator operates with xenon as the discharge sustaining gas at a pressure of 280 Pa (2.1 Torr). The current pulse characteristics are width 250 μs and height 1.5 A. The pulse repetition frequency is 100 Hz. It is shown that the populations in the three metastable levels at 6249, 3868 and 3800 cm -1 decrease almost exponentially in a time interval between 150 and 300 μs. From 400 μs onwards in the afterglow, the atom population is essentially shared between the ground and the first metastable (620 cm -1 ) levels. Furthermore, starting from 9 ms in the afterglow more than 80% of the U atoms are found in the ground level. (author)

  5. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  6. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2016-06-01

    Full Text Available Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer interconnected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g−1 at 2 A g−1, and stable high-rate cycling life (70 mAh g−1 after 12,500 cycles at 2 A g−1. The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  7. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  8. Kinetic model of a Ne-H2 Penning Recombination Laser operating in the hollow cathode discharge

    International Nuclear Information System (INIS)

    Pramatarov, P.M.; Stefanova, M.S.; Petrov, G.M.

    1995-01-01

    The Penning Recombination Laser (PRL) requires the presence of both a recombination plasma populating the upper laser level (ULL) and a gas component efficiently depopulating the lower laser level (LLL) by Penning reactions. Such requirements are met in the negative glow plasma of a pulsed high voltage Ne-H 2 discharge with a helical hollow cathode. High rates of ionizations followed by recombinations are reached due to the beam component of non-Maxwellian electrons of 1-2 keV energy present in the tail of the electron energy distribution function. The H 2 , on the one hand plays the role of Penning component and on the other hand effectively cools the electrons by rotational and vibrational levels excitation. The latter contributes to the effectiveness of the recombination processes. A kinetic model of the physical processes determining the inversion population on the NeI(2p 1 -1s 2 ) transition (the 585.3 nm line) in a Ne-H 2 PRL operating in a high voltage hollow cathode discharge at intermediate pressures is proposed. About 60 plasma-chemical reactions are considered in the model. These include: two-electron recombination of Ne + ; dissociative recombination of Ne 2 + , NeH + and H 2 + ; ion-ion recombination of Ne + and H - ; Ne and H 2 direct ionization by fast electrons; Ne stepwise ionization; Penning ionization; Ne excitation by fast electrons; Ne stepwise excitation and de-excitation; radiative transitions; electron mixing between Ne excited states; H 2 rotational and vibrational levels excitation; H 2 dissociative attachment; elastic electron collisions with H 2 and Ne. The rate constants for the reactions are either taken from the literature or calculated in this work

  9. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  10. The effect of self-absorption in hollow cathode lamp on its temperature

    International Nuclear Information System (INIS)

    Sobhanian, S.; Naghshara, H.

    2014-01-01

    It has been shown experimentally that even a small error in the calculation of the temperature inside the hollow-cathode lamp (HCL) and the current applied to the lamp, may cause a tremendous error in determination of the absorption ratio in optical resonance absorption (ORA) method. This effect is intensified nonlinearity for large absorption ratios. If a higher current is applied to a copper hollow cathode lamp, the copper density inside the lamp is increasing rapidly. Due to the cylindrical (axisymmetric) form of the lamp, the density of atoms around the main axis of the lamp becomes greater than that near the internal wall. In this case the auto-absorption (or self-absorption) is occurred and as its result, the emission spectrum produced by copper atoms is locally absorbed before going out from the lamp. This absorption is stronger near the main axis compared with the areas near the wall because of the Gaussian profile of the spectral line. Two different Cu atoms ground state lines with the similar lower state (327.4 nm and 324.7 nm) are used in this work as optical resonance absorption and the absorption coefficient is obtained for three different pressures (0.6, 4.5 and 14 µbar). The best values for copper HCL temperature and for maximum HCL current were found respectively 450 K, and 5mA. (author)

  11. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    Science.gov (United States)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  12. Three-colour photoionization optogalvanic spectroscopy in U-Ne hollow cathode discharges: observation of even-parity autoionization states of uranium

    International Nuclear Information System (INIS)

    Mandal, P.K.; Seema, A.U.; Das, R.C.; Shah, M.L.; Dev, Vas; Suri, B.M.

    2013-01-01

    Three-colour three-step photoionization spectroscopy of uranium has been performed in a U-Ne hollow cathode discharge tube by temporally resolving three-colour photoionization optogalvanic (PIOG) signal from the normal optogalvanic (OG) signal using three tunable pulsed dye lasers. U-Ne hollow cathode discharge tube has been used as a source of uranium atomic vapour and photoionization detector. Using this technique, photoionization spectra of uranium have been investigated systematically in the energy region 52150-52590 cm -1 , through three different excitation pathways, originating from its ground state, 0 cm -1 ( 5 L 0 6 ). By analyzing the three-colour photoionization spectra sixty new even-parity autoionization resonances of uranium have been identified and their probable total angular momentum (J) values have been assigned according to the J-momentum selection rule. (author)

  13. Optical constants of silicon-like (Si:Ox:Cy:Hz) thin films deposited on quartz using hexamethyldisiloxane in a remote RF hollow cathode discharge plasma

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.

    2008-01-01

    Deposition of amorphous silicon-like (Si:O x :C y :H z ) thin films in a remote RF hollow cathode discharge plasma using Hexamethyldisoloxane as monomer and Ar as feed gas; has been investigated for films optical constants and plasma diagnostic as a function of RF power (100-300 W) and precursor flow rate (1-10 sccm). Plasma diagnostic has been performed using optical emission spectroscopy (OES). The optical constants (refractive index, extinction coefficient and dielectric constant) have been obtained by reflection/transmission measurements in the range 300-700 nm. It is found that the refractive index increases from 1.92 to 1.97 with increasing power from 100 to 300 W, and from 1.70 to 1.92 with increasing precursor flow rate from 1 to 10 sccm. The optical energy-band gap E g and the optical-absorption tail ΔE have been estimated from optical absorption spectra, it is found that E g decreases from 3.28 eV to 3.14 eV with power increase from 100 to 300 W, and from 3.54 eV to 3.28 eV with precursor flow rate increase from 1 to 10 sccm. ΔE is found to increase with applied RF power and precursor flow rate increase. The dependence of optical constants on deposition parameters has been correlated to plasma OES. (author)

  14. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    Science.gov (United States)

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  15. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge

    Science.gov (United States)

    Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie

    2018-01-01

    Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.

  16. Investigation of modified thin SnO2 layers treated by rapid thermal annealing by means of hollow cathode spectroscopy and AFM technique

    International Nuclear Information System (INIS)

    Djulgerova, R; Popova, L; Beshkov, G; Petrovic, Z Lju; Rakocevic, Z; Mihailov, V; Gencheva, V; Dohnalik, T

    2006-01-01

    By means of hollow cathode spectroscopy and atomic force microscopy the surface morphology and composition of SnO 2 thin film, modified with hexamethyldisilazane after rapid thermal annealing treatment (800-1200 deg. C), are investigated. Formation of crystalline structure is suggested at lower temperatures. Depolimerization, destruction and dehydration are developed at temperatures of 1200 deg. C. It is shown that the rapid thermal annealing treatment could modify both the surface morphology and the composition of the layer, thus changing the adsorption ability of the sensing layer. The results confirm the ability of hollow cathode emission spectroscopy for depth profiling of new materials especially combined with standard techniques

  17. Optogalvanic detection of the Zeeman effect in a hollow-cathode discharge

    International Nuclear Information System (INIS)

    Langlois, E.; Gagne, J.

    1987-01-01

    Optogalvanic detection of complex Zeeman patterns in a hollow-cathode lamp is investigated. Uranium lines with J 1 = 6 and J 2 = 7 are resolved, with our best results obtained using intermodulate optogalvanic spectroscopy (but this scheme is applicable only to lines giving strong signals). This detection method has a 40-MHz resolution, so a magnetic field of 0.1 T is sufficient to resolve most patterns. Weak lines can be studied with modulated optogalvanic spectroscopy. However, the stronger field required in this case perturbs the discharge. Although they are impractical for the measurement of component relative intensities, these detection methods may find applications in the determination of Lande g factors

  18. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2017-01-15

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{sup 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.

  19. Density of uranium ions in the 4I0/sub 9/2/ ground state in a hollow-cathode type discharge

    International Nuclear Information System (INIS)

    Pianarosa, P.; Bouchard, P.; Saint-Dizier, J.P.; Gagne, J.M.

    1983-01-01

    A hollow-cathode type discharge cell as generator of uranium ions is investigated. The 4 I 0 /sub 9/2/ ground-state ion density has been obtained by absorption spectroscopy at 5493 and 4244 A. The absorption measurements have been performed using two identical hollow-cathode lamps: one acting as a light source, the other as a reservoir of free ions. Neon and xenon have been used as discharge sustaining gases. In our experimental conditions the measured ion ground-state density is of the order of 10 12 ions cm -3 . Absorption measurements performed at 5915 and 4246 A of U i give a density of the order of 10 12 atoms cm -3 . This latter value is in excellent agreement with a previously measured value obtained by laser-absorption spectroscopy

  20. An ingenious design of lamellar Li1.2Mn0.54Ni0.13Co0.13O2 hollow nanosphere cathode for advanced lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yao; Zhang, Wansen; Shen, Shuiyun; Yan, Xiaohui; Wu, Aiming; Wu, Ruofei; Zhang, Junliang

    2017-01-01

    Highlights: •Lamellar Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 hollow nanospheres serve as a cathode for LIBs. •Unique lamella and hollow structures benefit the enhanced electrochemical performance. •Lamellar shells can provide a short lithium-ion diffusion pathway. •The sufficient void space can accommodate volumetric expansion and contraction. -- Abstract: Although very appealing in developing hollow structured lithium-rich layered transition-metal oxides as cathodes for lithium-ion batteries (LIBs), a great challenge lies in controlling the growth of transition metal elements with desired molar ratios while maintaining intact hollow structures during synthesis. Herein, we propose a scalable strategy to successfully synthesize novel lamellar Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 hollow (L-LMOH) nanosphere cathode for advanced lithium-ion batteries (LIBs). It is proved that the employment of sulfonated polystyrene (SPS) gel nanospheres as the template plays a key role in the formation of flower-like SPS@ Ni-Co-Mn-precursor nanospheres with desired molar ratios, and a subsequently delicate control in the heating rate leads to the intact L-LMOH nanospheres. It is demonstrated that the use of L-LMOH nanosphere cathode not only delivers outstanding reversible discharge capacities of 281.7 mAh g −1 at a current density of 20 mA g −1 and 136.6 mAh g −1 at 2000 mA g −1 , but also possess superior cycling stability with a capacity reservation of 80% at 2000 mA g −1 after 200 continuous cycles. It is well analyzed that the ingenious design of both unique lamella and hollow architectures synergistically benefits the significantly enhanced rate capability and cycling stability.

  1. Use of a discharge in an hollow cathode as neutral atom source for resonant ionization mass spectrometry

    International Nuclear Information System (INIS)

    Berthoud, T.; Briand, A.; Khelifa, N.; Mauchien, P.

    1987-01-01

    The resonance ionization mass spectrometry in our laboratory is aimed at simplification of isotope measurements of elements present in mixtures and at measurement of very small isotopes. An atomization source which produces an atomic beam collimated from a discharge in a hollow cathode has been developed. First results of this spectrometry with an uranium atomic jet are presented [fr

  2. Mesoporous hollow spheres from soap bubbling.

    Science.gov (United States)

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Microhollow cathode discharge stability with flow and reaction

    International Nuclear Information System (INIS)

    Hsu, David D; Graves, David B

    2003-01-01

    Under certain conditions, microhollow cathode (MHC) discharges display self-pulsing, with relaxation oscillations in voltage (V d ) and current (I d ). An equivalent circuit model of the discharge and circuit demonstrates that relaxation oscillations occur only if the load line crosses the discharge characteristic in the region of negative differential resistivity R d ≡ ∂V d /∂I d . The pulsing and steady-state current regimes could have implications on the use of the discharges as reactors. We present measurements and model results in a study of high pressure MHC discharges as flow reactors in the steady-state current regime. Flow of molecular gases through the intense discharge induces chemical modifications such as molecular decomposition. The MHC behaves approximately as a plug flow reactor with reactant conversion depending primarily on residence time in the plasma. Measured peak gas temperatures in the plasma of the order of 1000-2000 K suggest that endothermic reaction conversion should be thermodynamically favoured. Comparisons to literature values of thermal decomposition kinetics indicate that the MHC plasma has the decomposition activity of gas at 2000-3000 K. High gas temperatures and molecular dissociation induce a significant pressure drop through the plasma. A model calculation for flow through a cylindrical tube containing an intense plasma demonstrates that the increase of pressure drop across the plasma zone is due to the increase in gas mass-averaged velocity as a result of lower mass density associated with the temperature increase and creation of molecular fragments

  4. Analytical study of electron flows with a virtual cathode

    International Nuclear Information System (INIS)

    Dubinov, A.E.

    2000-01-01

    The dynamics of the electron flow behavior by its injection into a half-space is considered. Two problems are considered, namely the long-term injection of a monoenergetic electron flow and instantaneous flow injection with an assigned electron energy spectrum. The all flow electrons in both cases return to the injection plane. The simple analytical self-consistent model of the initial stage of the virtual cathode formation in a plane-parallel equipotential gap is plotted in the course of analysis whereof the duration of the virtual cathode formation process is determined. The performance of this model is not limited by the multivalence of the electron velocity in the flow. This makes it possible to extend the frames of the model performance relative to the moment of the virtual cathode formation and to consider its dynamics. The frequency of electron oscillations in the potential cathode-virtual cathode well is determined on the basis of the above model [ru

  5. Hierarchical nanostructured hollow spherical carbon with mesoporous shell as a unique cathode catalyst support in proton exchange membrane fuel cell.

    Science.gov (United States)

    Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung

    2009-03-07

    Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.

  6. Doppler spectroscopy of hydrogen Balmer lines in a hollow cathode glow discharge in ammonia and argon-ammonia mixture

    International Nuclear Information System (INIS)

    Sisovic, N. M.; Konjevic, N.

    2008-01-01

    The results of Doppler spectroscopy of hydrogen Balmer lines from a stainless steel (SS) and copper (Cu) hollow cathode (HC) glow discharge in ammonia and argon-ammonia mixture are reported. The experimental profiles in ammonia discharge are fitted well by superposing three Gaussian profiles. The half widths, in energy units, of narrow and medium Gaussians are in the ranges 0.3-0.4 eV and 3-4 eV, respectively, for both hollow cathodes what is expected on the basis of earlier electron beam→NH 3 experiments. The half widths of the largest Gaussian in ammonia are 46 and 55 eV for SS and Cu HC, respectively. In argon-ammonia discharge, three Gaussians are also required to fit experimental profiles. While half widths of narrow and medium Gaussians are similar to those in ammonia, the half widths of the largest Gaussians are 35 and 42 eV for SS and Cu HC, respectively. The half widths of the largest Gaussians in ammonia and in argon-ammonia mixture indicate the presence of excessive Doppler broadening.

  7. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Bolat, Sami; Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-01

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N 2 /H 2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH 3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N 2 :H 2 ambient

  8. Efficient small molecular organic light emitting diode with graphene cathode covered by a Sm layer with nano-hollows and n-doped by Bphen:Cs2CO3 in the hollows

    Science.gov (United States)

    Yao, Li; Li, Lei; Qin, Laixiang; Ma, Yaoguang; Wang, Wei; Meng, Hu; Jin, Weifeng; Wang, Yilun; Xu, Wanjin; Ran, Guangzhao; You, Liping; Qin, Guogang

    2017-03-01

    Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ˜4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough. Using 4,7-diphenyl-1,10-phenanthroline (Bphen):Cs2CO3 to n-dope graphene is a very good method, but the electron injection barrier between the n-doped graphene and Bphen:Cs2CO3 is still too high to be ˜1.0 eV. In this work, in order to further reduce the electron injection barrier, a novel method is suggested. On the graphene cathode, a Sm layer with a lot of nano-hollows, and subsequently a layer of Bphen:Cs2CO3, are deposited. The Bphen:Cs2CO3 can n-dope graphene in the nano-hollows, and the Fermi level of the graphene rises. The nano Sm layer is very easily oxidized. Oxygen adsorbed on the surface of graphene may react with Sm to form an O--Sm+ dipole layer. On the areas of the Sm oxide dipole layer without nano-hollows, the electron injection barrier can be further lowered by the dipole layer. Electrons tend to mainly inject through the lower electron barrier where the dipole layer exists. Based on this idea, an effective inverted small molecular OLED with the structure of graphene/1 nm Sm layer with a lot of nano-hollows/Bphen:Cs2CO3/Alq3:C545T/NPB/MoO3/Al is presented. The maximum current efficiency and maximum power efficiency of the OLED with a 1 nm Sm layer are about two and three times of those of the reference OLED without any Sm layer, respectively.

  9. Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas

    KAUST Repository

    Khalilpour, Rajab

    2011-08-12

    The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).

  10. Anode and cathode geometry and shielding gas interdependence in GTAW

    International Nuclear Information System (INIS)

    Key, J.F.

    1979-01-01

    Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW

  11. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    International Nuclear Information System (INIS)

    Zheng Jie; Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-01

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia

  12. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  13. Electric field measurements in a hollow cathode discharge by two-photon polarization spectroscopy of atomic deuterium

    International Nuclear Information System (INIS)

    Rosa, M I de la; Perez, C; Gruetzmacher, K; Gonzalo, A B; Steiger, A

    2006-01-01

    The local electric field strength (E-field) is an important parameter to be known in low pressure plasmas such as glow discharges, RF and microwave discharges, plasma boundaries in tokamaks etc. In this paper, we demonstrate, for the first time, the potential of two-photon polarization spectroscopy measuring the E-field in the cathode fall region of a hollow cathode discharge, via Doppler-free spectra of the Stark splitting of the 2S level of atomic deuterium. Electric field strength is determined in the range from 2 to 5 kV cm -1 . Compared with LIF, this method has several advantages: it is not affected by background radiation, it can be applied without limitation at elevated pressure and it allows simultaneous measurement of absolute local atomic ground state densities of hydrogen isotopes

  14. Characterization of hollow cathode fall field strength measured by Doppler-free two-photon optogalvanic spectroscopy via Stark splitting of the 2S level of hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; De la Rosa, M I; Gruetzmacher, K, E-mail: concha@opt.uva.e [Universidad de Valladolid, Facultad de Ciencias, 47071 Valladolid (Spain)

    2010-05-01

    Doppler-free two-photon optogalvanic spectroscopy has been applied to measure the strong electric field strength and the cathode fall characteristics of hollow cathode discharges operated in hydrogen and deuterium via the Stark splitting of the 2S level of atomic hydrogen isotopes. In this paper we show similarities and differences in the tendencies of the cathode fall characteristics of hydrogen and deuterium in a wide range of identical discharge parameters.

  15. Characterization of hollow cathode fall field strength measured by Doppler-free two-photon optogalvanic spectroscopy via Stark splitting of the 2S level of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Perez, C; De la Rosa, M I; Gruetzmacher, K

    2010-01-01

    Doppler-free two-photon optogalvanic spectroscopy has been applied to measure the strong electric field strength and the cathode fall characteristics of hollow cathode discharges operated in hydrogen and deuterium via the Stark splitting of the 2S level of atomic hydrogen isotopes. In this paper we show similarities and differences in the tendencies of the cathode fall characteristics of hydrogen and deuterium in a wide range of identical discharge parameters.

  16. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  17. Study of the use of an electric discharge for hollow cathodes used as optical excitation sources in the spectrographic measurement of fluorine in thorium, uranium and plutonium

    International Nuclear Information System (INIS)

    Bufpereau, M.; Crehange, G.; Poublan, J.

    1964-01-01

    Previous works and phenomena concerned with a hollow cathode excitation are reviewed. Experiments aimed specially on the determination of the best conditions for an analysis of fluorine in oxides-metals and solutions. In that purpose, several factors have been pointed out. One started some researches about others elements that fluorine. Carrying fluorine into discharge and excitation have been more specially studied. A quantitative analysis method is given. The analysis limit is 45 ppm about but the detection limit is 5 ppm about. As a conclusion, various ways for optical excitation of fluorine are reviewed as other analytical possibilities a hollow cathode discharge offers. (authors) [fr

  18. Electrodepositing of Au on hollow PS micro-spheres

    International Nuclear Information System (INIS)

    Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing

    2010-01-01

    Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)

  19. Compact and Robust Refilling and Connectorization of Hollow Core Photonic Crystal Fiber Gas Reference Cells

    Science.gov (United States)

    Poberezhskiy, Ilya Y.; Meras, Patrick; Chang, Daniel H.; Spiers, Gary D.

    2007-01-01

    This slide presentation reviews a method for refilling and connectorization of hollow core photonic crystal fiber gas reference cells. Thees hollow-core photonic crystal fiber allow optical propagation in air or vacuum and are for use as gas reference cell is proposed and demonstrated. It relies on torch-sealing a quartz filling tube connected to a mechanical splice between regular and hollow-core fibers.

  20. Ultrafast Mid-IR Nonlinear Optics in Gas-filled Hollow-core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Habib, Selim

    Invention of hollow-core fiber has been proven an ideal medium to study light-gas interaction. Tight confinement of light inside hollowcore fiber allows unremitting and tailored interaction between light and gas over long distances. In this work, we used a special kind of hollowcore fiber − hollow......-core anti-resonant (HC-AR) fiber to study the various nonlinear effects filled with Raman free noble gas. One of the main striking features of HC-AR fiber is that ∼99.99% light can be guided inside the central hollow-core region, which significantly enhances damage threshold level. HC-AR fiber can sustain...... be tuned by simply changing the pressure of the gas while at the same time providing extremely wide transparency ranges. In this thesis, we propose several low-loss broadband guidance HC-AR fibers and investigate soliton-plasma dynamics using HC-AR fiber filled with noble gas in the mid-IR. The combined...

  1. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  2. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  3. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  4. Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls

    Directory of Open Access Journals (Sweden)

    Chu Manh Hung

    2016-03-01

    Full Text Available The synthesis of porous metal-oxide semiconductors for gas-sensing application is attracting increased interest. In this study, α-Fe2O3 hollow balls were synthesized using an inexpensive, scalable, and template-free hydrothermal method. The gas-sensing characteristics of the semiconductors were systematically investigated. Material characterization by XRD, SEM, HRTEM, and EDS reveals that single-phase α-Fe2O3 hollow balls with an average diameter of 1.5 μm were obtained. The hollow balls were formed by self assembly of α-Fe2O3 nanoparticles with an average diameter of 100 nm. The hollow structure and nanopores between the nanoparticles resulted in the significantly high response of the α-Fe2O3 hollow balls to ethanol at working temperatures ranging from 250 °C to 450 °C. The sensor also showed good selectivity over other gases, such as CO and NH3 promising significant application.

  5. Forged hollows (alloy 617) for PNP-hot gas collectors

    International Nuclear Information System (INIS)

    Hofmann, F.

    1984-01-01

    When the partners in the PNP-Project decided to manufacture components, such as gas collectors, from material of type alloy 617, the problem arose that required semi-fabricated products, especially forged hollows weighing several tons each, were not available. As VDM (Vereinigte Deutsche Metallwerke AG) had already experience in production of other semi-fabricated products of this alloy, attempts were made based on this knowledge, to develop manufacturing methods for forged hollows. The aim was to produce hollows as long as possible, and to keep the welding cost minimum. Welded seams are always critical during fabrication, as well as during later inspection under actual operating conditions. The three stage plan used to perform the above task illustrates the development aims is described

  6. The plasma properties and electron emission characteristics of near-zero differential resistance of hollow cathode-based plasma contactors with a discharge chamber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kan, E-mail: xiekan@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Farnell, Casey C.; Williams, John D. [Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80524 (United States)

    2014-08-15

    The formation of electron emission-bias voltage (I-V) characteristics of near-zero differential resistance in the cathodic plasma contactor for bare electrodynamic tether applications, based on a hollow cathode embedded in a ring-cusp ionization stage, is studied. The existence of such an I-V regime is important to achieve low impedance performance without being affected by the space plasma properties for a cathodic plasma contactor. Experimental data on the plasma structure and properties downstream from the ionization stage are presented as functions of the xenon flow rate and the electron emission current. The electrons were emitted from the cathode to the cylindrical vacuum chamber wall (r = 0.9 m) under ≈10{sup −5 }Torr of vacuum pressure. The ring-cusp configuration selected for the plasma contactor created a 125-Gauss axial field near the cathode orifice, along with a large-volume 50-Gauss magnitude pocket in the stage. A baseline ion energy cost of ≈300 eV/ion was measured in the ionization stage when no electrons were emitted to the vacuum chamber wall. In addition, the anode fall growth limited the maximum propellant unitization to below ≈75% in the discharge loss curves for this ion stage. Detailed measurements on the plasma properties were carried out for the no-electron emission and 3 A emission conditions. The experimental data are compared with 1-D models, and the effectiveness of the model is discussed. The four key issues that played important roles in the process of building the near-zero different resistance I-V regime are: a significant amount of ionization by the emission electrons, a decrease in the number of reflected electrons in the plume, the electron-temperature increment, and low initial ion energy at the source outlet.

  7. In situ plasma diagnostics study of a commercial high-power hollow cathode magnetron deposition tool

    International Nuclear Information System (INIS)

    Meng Liang; Raju, Ramasamy; Flauta, Randolph; Shin, Hyungjoo; Ruzic, David N.; Hayden, Douglas B.

    2010-01-01

    Using a newly designed and built plasma diagnostic system, the plasma parameters were investigated on a commercial 200 mm high-power hollow cathode magnetron (HCM) physical vapor deposition tool using Ta target under argon plasma. A three dimensional (3D) scanning radio frequency (rf)-compensated Langmuir probe was constructed to measure the spatial distribution of the electron temperature (T e ) and electron density (n e ) in the substrate region of the HCM tool at various input powers (2-15 kW) and pressures (10-70 mTorr). The T e was in the range of 1-3 eV, scaling with decreasing power and decreasing pressure. Meanwhile, n e was in the range of 4x10 10 -1x10 12 cm -3 scaling with increasing power and decreasing pressure. As metal deposits on the probe during the probe measurements, a self-cleaning plasma cup was designed and installed in the chamber to clean the tungsten probe tip. However, its effectiveness in recovering the measured plasma parameters was hindered by the metal layer deposited on the insulating probe tube which was accounted for the variation in the plasma measurements. Using a quartz crystal microbalance combined with electrostatic filters, the ionization fraction of the metal flux was measured at various input power of 2-16 kW and pressure of 5-40 mTorr. The metal ionization fraction reduced significantly with the increasing input power and decreasing gas pressure which were attributed to the corresponding variation in the ionization cross section and the residence time of the sputtered atoms in the plasma, respectively. Both the metal neutral and ion flux increased at higher power and lower pressure. The 3D measurements further showed that the ionization fraction decreased when moving up from the substrate to the cathode.

  8. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  9. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  10. Research on Distributed Gas Detection Based on Hollow-core Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Gui XIN

    2014-07-01

    Full Text Available We have demonstrated a distributed gas detection system by using hollow-core photonic crystal fiber (HC-PCF as a gas chamber. The HC-PCF gas chamber has several lateral micro- channels fabricated by the femtosecond laser. The HC-PCF is connected to the single mode fiber by thermal splicing, and gas can diffuse in hollow-core of PCF via micro-channels. Compared to the traditional gas chamber, the HC-PCF gas chamber has relatively simpler construction and quite stability. According to experiment results, the system response time of 15 s has been achieved for a 5 cm HC-PCF which has ten channels with 4mm channel distance. It would construct long sensing length fiber gas sensor that the side holes and the splicer have introduced very little loss. Thus make it possible to achieve highly sensitive sensing system without influencing the response time. By using self-reference demodulation algorithm and space division multiplexing technique, distributed gas detection system with fast response was achieved.

  11. FPIV study of gas entrainment by a hollow cone spray submitted to variable density

    Energy Technology Data Exchange (ETDEWEB)

    Prosperi, B. [UMR CNRS/INPT-UPS 5502, Institut de Mecanique des Fluides de Toulouse, Toulouse (France); P GS AD INCAS, Siemens VDO Automotive, 1, av Paul Ourliac, BP 1149, Toulouse (France); Delay, G.; Bazile, R. [UMR CNRS/INPT-UPS 5502, Institut de Mecanique des Fluides de Toulouse, Toulouse (France); Helie, J.; Nuglish, H.J. [P GS AD INCAS, Siemens VDO Automotive, 1, av Paul Ourliac, BP 1149, Toulouse (France)

    2007-08-15

    The gas entrainment in a hollow cone spray submitted to variable density is studied experimentally in order to better understand the effect on mixture formation. Particle image velocimetry on fluorescent tracers, associated with a specific processing of the instantaneous velocity fields have been applied to obtain measurement in the close vicinity of the spray edge. In the ''quasi-steady'' region of the spray, important effect of the ambient density on the mass flow rate of entrained gas (m{sub e}) have been pointed out. The axial evolution of m{sub e} is in good agreement with an integral model that takes the momentum exchange between phases into account. (orig.)

  12. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  13. A cold cathode of a gas-discharge electron-ion gun

    International Nuclear Information System (INIS)

    1974-01-01

    A cold cathode of a gas-discharge electron-ion gun is constructed in order to continuously replace the eroded material by feeding a wire or a set of coaxial cylinders in the spot where the ions hit the cathode. In this way, the form of the cathode and the electric-field configuration is preserved which guarantees the conservation of a sharp narrow electron beam profile

  14. Hollow Core Optical Fiber Gas Lasers: Toward Novel and Practical Systems in Fused Silica

    Science.gov (United States)

    2017-05-18

    Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long interaction...polarization dependent fiber properties. Preliminary experiments were performed toward simultaneous lasing in the visible and near infrared; lasing in...words) Hollow core Optically pumped Fiber Gas LASer’s (HOFGLAS’s) based on population inversion combine advantages of fiber lasers such as long

  15. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  16. Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray

    Science.gov (United States)

    Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu

    2013-06-01

    A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.

  17. Development of hollow anode penning ion source for laboratory application

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.K., E-mail: dasbabu31@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Shyam, A.; Das, R. [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Autonagar, Visakhapatnam (India); Rao, A.D.P. [Department of Nuclear Physics, Andhra University, Visakhapatnam (India)

    2012-03-21

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J Multiplication-Sign B force in the region helps for efficient ionization of the gas even in the high vacuum region{approx}1 Multiplication-Sign 10{sup -5} Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 {mu}A was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  18. Methods and systems for detecting gas flow by photoacoustic signal generation

    Science.gov (United States)

    Choudhury, Niloy; Challener, William Albert

    2018-03-06

    A method for the detection of a gas flowing from a location in a structure is described. A hollow-core optical fiber is placed in a position adjacent the structure. The fiber includes a sound-conductive cladding layer; and further includes at least one aperture extending into its cross-sectional diameter. A beam of pulsed, optical is transmitted into the fiber with a tunable laser. The optical energy is characterized by a wavelength that can be absorbed by the gas that flows into the fiber through the aperture. This causes a temperature fluctuation in the region of gas absorption, which in turn generates an acoustic wave in the absorption region. The acoustic wave travels through the cladding layer, and can be detected with a microphone, so as to provide the location of gas flow, based on the recorded position and movement of the acoustic wave. A related system is also described.

  19. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    International Nuclear Information System (INIS)

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  20. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  1. Reservoir Cathode for Electric Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  2. Phenomenological model of an electron flow with a virtual cathode

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Khramov, A.E.; Anfinogenov, V.G.

    1999-01-01

    A phenomenological model of electron flow with a virtual cathode in diode space, which is a modification of cellular automation, is suggested. The type of models, called cellular conveyer, permits making allowance for distribution and delay in a beam with a virtual cathode. A good agreement between results of numerical study of electron flow dynamics and results obtained using the phenomenological model described has been achieved [ru

  3. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  4. Advanced Cathodes for Next Generation Electric Propulsion Technology

    Science.gov (United States)

    2008-03-01

    learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in

  5. Characteristics of an elongated plasma column produced by magnetically coupled hollow cathode plasma source

    Science.gov (United States)

    Bhuva, M. P.; Karkari, S. K.; Kumar, Sunil

    2018-03-01

    An elongated plasma column in the presence of an axial magnetic field has been formed using a cylindrical hollow cathode (HC) and a constricted anode (CA). The plasma characteristics of the central line have been found to vary with the magnetic field strength and the axial distance from the source. It is believed that the primary electrons constituting the discharge current are steered by the axial magnetic field to undertake ionizing collisions along the plasma column. The current carrying electrons from the HC reach the anode by cross-field diffusion towards the central line. The above observation has been substantiated using a phenomenological model which links the observed characteristics of the source with the plasma column. The experimental results are found to be in qualitative agreement with the model.

  6. Improving the Ar I and II branching ratio calibration method: Monte Carlo simulations of effects from photon scattering/reflecting in hollow cathodes

    Science.gov (United States)

    Lawler, J. E.; Den Hartog, E. A.

    2018-03-01

    The Ar I and II branching ratio calibration method is discussed with the goal of improving the technique. This method of establishing a relative radiometric calibration is important in ongoing research to improve atomic transition probabilities for quantitative spectroscopy in astrophysics and other fields. Specific suggestions are presented along with Monte Carlo simulations of wavelength dependent effects from scattering/reflecting of photons in a hollow cathode.

  7. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood

    OpenAIRE

    Arazawa, D. T.; Kimmel, J. D.; Finn, M.C.; Federspiel, W. J.

    2015-01-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (< 500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3−), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal ...

  8. Ultrafast Raman scattering in gas-filled hollow-core fibers

    OpenAIRE

    Belli, Federico

    2017-01-01

    The experimental and numerical work reported here is rooted in ultrafast molecular phenomena and nonlinear fiber optics, which are brought together in a deceptively simple system: a homo-nuclear molecular gas (e.g. H2,D2) loaded in the hollow-core of a broad-band guiding photonic crystal fiber (PCF) and exposed to ultrashort pulses of moderate energies (∼ μJ). On one hand, the choice of a molecular gas as the nonlinear medium provides a rich playground for light-matter interactions. ...

  9. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    Science.gov (United States)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  10. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  11. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer....... The humidification effect was found to be dependent on both the degree of humidification and the cathode polarization. No significant effect of humidification was found at OCV which rules out the possibility of a traditional poisoning effect with a blocking of active sites. Post-mortem high resolution FEG......-SEM analysis showed clear changes at and around the cathode/electrolyte contact area. In contrast to Risø 2 G cells, a very high tolerance towards humidification of cathode gas air was observed for Risø 2.5 G cells with no detectable effect of humidification even when the humidification was as high as 12.8 mol%...

  12. Mid-infrared 1  W hollow-core fiber gas laser source.

    Science.gov (United States)

    Xu, Mengrong; Yu, Fei; Knight, Jonathan

    2017-10-15

    We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.

  13. Destructive physical analysis of hollow cathodes from the Deep Space 1 Flight spare ion engine 30,000 hr life test

    Science.gov (United States)

    Sengupta, Anita

    2005-01-01

    Destructive physical analysis of the discharge and neutralizer hollow cathode assemblies from the Deep Space 1 Flight Spare 30,000 Hr life test was performed to characterize physical and chemical evidence of operationally induced effects after 30,372 hours of operation with beam extraction. Post-test inspection of the discharge-cathode assembly was subdivided into detailed analyses at the subcomponent level. Detailed materials analysis and optical inspection of the insert, orifice plate, cathode tube, heater, keeper assembly, insulator, and low-voltage propellant isolator were performed. Energy dispersive X-ray (EDX) and scanning electron microscopy (SEW analyses were used to determine the extent and composition of regions of net deposition and erosion of both the discharge and neutralizer inserts. A comparative approach with an un-operated 4:1:1 insert was used to determine the extent of impregnate material depletion as a function of depth from the ID surface and axial position from the orifice plate. Analysis results are compared and contrasted with those obtained from similar analyses on components from shorter term tests, and provide insight regarding the prospect for successful longer-term operation consistent with SOA ion engine program life objectives at NASA.

  14. Cathode for Electric Space Propulsion Utilizing Iodine as Propellant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode suitable for use in ion or Hall thrusters which utilizes iodine as a propellant. Reservoir cathodes have several unique...

  15. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Science.gov (United States)

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  16. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-11-01

    Full Text Available To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG as the solvent medium and cetyltrimethylammonium bromide (CTAB as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C, good high-rate discharge capacity (118 mAh g−1 at 10 C, and fine cycling stability (99.2% after 200 cycles at 0.1 C. The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure.

  17. Ignition and extinction phenomena in helium micro hollow cathode discharges

    International Nuclear Information System (INIS)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R.; Sadeghi, N.; Overzet, L. J.

    2013-01-01

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*( 3 S 1 ) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*( 3 S 1 ) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities

  18. Ignition and extinction phenomena in helium micro hollow cathode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d' Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28

    Micro hollow cathode discharges (MHCD) were produced using 250 μm thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 μm thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 μs long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few μs relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  19. Long-life cathode for the Berkeley-type ion source

    International Nuclear Information System (INIS)

    Fink, J.H.; Biagi, L.A.

    1977-01-01

    Preliminary experiments indicate that a hollow cathode, made from impregnated tungsten emitters, can be adapted for the Lawrence Berkeley Laboratory (LBL)/Lawrence Livermore Laboratory (LLL) ion source. Such cathodes could be the basis of a long life, continuously operated positive-ion source

  20. Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers are perhaps the best platform for ultrafast nonlinear optics based on light-gas interactions because they offer broadband guidance and low-loss guidance. The main advantage of using gases inside HC fibers is that both the dispersion and nonlinearity can...... be tuned by simply changing the pressure of the gas [1]. The emission of efficient dispersive wave (DW) in the deep-UV has been already observed in a uniform Ar-filled hollow-core fiber with tunability from 200 to 320 nm by changing the gas pressure and pulse energy [2]. In the quest of optimizing...

  1. A hollow-waveguide gas correlation radiometer for ultra-precise column measurements of formaldehyde on Mars

    International Nuclear Information System (INIS)

    Wilson, Emily L; Riris, Haris; Heaps, William S; Neveu, Marc; Georgieva, Elena M

    2011-01-01

    We present preliminary results in the development of a miniaturized gas correlation radiometer that implements a hollow-core optical fiber (hollow-waveguide) gas correlation cell. The substantial reduction in mass and volume of the gas correlation cell makes this technology appropriate for an orbital mission—capable of pinpointing sources of trace gases in the Martian atmosphere. Here, we demonstrate a formaldehyde (H 2 CO) sensor and report a detection limit equivalent to ∼30 ppb in the Martian atmosphere. The relative simplicity of the technique allows it to be expanded to measure a range of atmospheric trace gases of interest on Mars such as methane (CH 4 ), water vapor (H 2 O), deuterated water vapor (HDO), and methanol (CH 3 OH). Performance of a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 m long, 1000 µm inner diameter hollow-core fiber gas correlation cell, a 92.8° sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km × 10 km. Initial results indicate that for 1 s of averaging, a detection limit of 1 ppb is possible

  2. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    Science.gov (United States)

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  3. Studies on pulsed optogalvanic effect in Eu/Ne hollow cathode discharge.

    Science.gov (United States)

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2014-07-01

    The optogalvanic (OG) effect has been observed in a Eu/Ne hollow cathode discharge lamp using pulsed laser irradiation. An OG spectrum is recorded in dye laser wavelength region 574–602 nm using a boxcar-averager. In total 41 atomic lines are observed. Of these, 38 lines are assigned to neon transitions. Two lines observed corresponding to wavelengths 576.519 and 601.815 nm are assigned to europium transitions; (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 6 7/2 ) and (4f 7 6s 2 , S 8 7/2 →4f 7 6s6p , zP 8 9/2 ), respectively, and the remaining line at 582.475 nm could not be assigned. The effect of the discharge current on europium as well as neon OG signals is also studied. At moderate discharge current values, an extra positive peak is observed in neon OG signal for the transition (1s 5 →2p 2 ) at 588.189 nm, which is explained by Penning-ionization process using the quasi-resonant energy transfer interactions between excited neon and europium atoms lying in 2p 2 and D 10 9/2 states, respectively.

  4. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  5. High flux polyethersulfone-polyimide blend hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Kapantaidakis, G.; Koops, G.H.

    2002-01-01

    In this work, the preparation of gas separation hollow fibers based on polyethersulfone Sumikaexcel (PES) and polyimide Matrimid 5218 (PI) blends, for three different compositions (i.e. PES/PI: 80/20, 50/50 and 20/80 wt.%), is reported. The dry/wet spinning process has been applied to prepare

  6. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  7. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  8. Investigation of the effect of Hollow Cathode in a Grimm-type source (Ar) on the excitation processes using Fe samples

    International Nuclear Information System (INIS)

    Weinstein, V.; Steers, E.B.M.

    2009-01-01

    Complete text of publication follows. Analytical spectroscopic applications using a Grimm Glow Discharge source sometimes require an increased sensitivity and therefore a higher signal to background ratio, which can be reached by using hollow cathode (HC) instead of plane samples. At the beginning of the 20 th century, intensity enhancements of emission lines using HC were observed and explained by longer residence time of sample atoms and consequently more collisional excitation. Later a HC was used with a Grimm source, to achieve higher sensitivity for lines of minor constituents. Recently the HC effect was further investigated for several metallic samples with a commercial GD-OES instrument (T.Gusarova., J. Anal. At. Spectrom., 2009., DOI: 10.1039/b814977a) for improvement of the signal to background ratio (SBR). The intensities and SBR from HC and plane cathode were compared, but only one or two lines could be observed for each element in the sample. The line intensities using plane and HC samples depend on the excitation processes occurring in the two cases. To make conclusions about the excitation mechanism differences, a large number of lines should be examined. Therefore we have recorded spectra over a wide wavelength range (approx. 200-600 nm) using a Fourier Transform Spectrometer (FTS), which allows simultaneous recording of spectra with a very high resolution. The 15 mm deep Fe HC sample and Fe plane cathode sample were analysed using argon as the carrier gas. The comparison of the data was made by calculating the ratio of intensities obtained from the HC sample to intensities of the plane cathode sample and plotting this against the excitation energy of Fe I, Fe II and Ar I, Ar II emission lines. Such plots link the intensity differences with the upper levels of the transitions and so help to clarify the relative importance of excitation processes. The experiments were also carried out at different currents, therefore the effect of the current on

  9. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe

    Science.gov (United States)

    Zhang, Ziyue; haq, Mahmood; Wen, Zhen; Ye, Zhizhen; Zhu, Liping

    2018-03-01

    WO3 mesoporous hollow nanospheres doped with Fe synthesized by a facile method have mesoporous hollow nanospherical like morphology, small grain size (10 nm), high crystalline quality and ultrahigh surface area (165 m2/g). XRD spectra and Raman spectra indicate the Fe doping leading to the smaller cell parameters as compared to pure WO3, and the slight distortion in the crystal lattice produces a number of defects, making it a better candidate for gas sensing. XPS analysis shows that Fe-doped WO3 mesoporous hollow nanospheres have more oxygen vacancies than pure WO3, which is beneficial to the adsorption of oxygen and NO2 and its surface reaction. The gas sensor based on Fe-WO3 exhibited excellent low ppb-level (10 ppb) NO2 detecting performance and outstanding selectivity.

  10. Investigation of H2S and CO2 Removal from Gas Streams Using Hollow Fiber Membrane Gas–liquid Contactors

    Directory of Open Access Journals (Sweden)

    S. M. Mirfendereski

    2017-07-01

    Full Text Available Chemical absorption of H2S and CO2 from CH4 was carried out in a polypropylene porous asymmetric hollow fiber membrane contactor (HFMC. A 0.5 mol L–1 aqueous solution of methyldiethanolamine (MDEA was used as chemical absorbent solution. Effects of gas flow rate, liquid flow rate, H2S concentration and CO2 concentration on the H2S outlet concentrations and CO2 removal percentage were investigated. The results showed that the removal of H2S with aqueous solution of MDEA was very high and indicated almost total removal of H2S. Experimental results also indicated that the membrane contactor was very efficient in the removal of trace H2S at high gas/ liquid flow ratio. The removal of H2S was almost complete with a recovery of more than 96 %. Using feed gas mixtures containing 5000 ppm H2S with CO2 concentrations in the range of 4–12 vol.%, the outlet H2S concentration of less than 1.0 ppm was attained with less than 4.0 vol.% of CO2 permeated and absorbed.

  11. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  12. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  13. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries.

    Science.gov (United States)

    Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie

    2017-09-20

    Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.

  14. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  15. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  16. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  17. Synthesis of aluminum nitride films by plasma immersion ion implantation-deposition using hybrid gas-metal cathodic arc gun

    International Nuclear Information System (INIS)

    Shen Liru; Fu, Ricky K.Y.; Chu, Paul K.

    2004-01-01

    Aluminum nitride (AlN) is of interest in the industry because of its excellent electronic, optical, acoustic, thermal, and mechanical properties. In this work, aluminum nitride films are deposited on silicon wafers (100) by metal plasma immersion ion implantation and deposition (PIIID) using a modified hybrid gas-metal cathodic arc plasma source and with no intentional heating to the substrate. The mixed metal and gaseous plasma is generated by feeding the gas into the arc discharge region. The deposition rate is found to mainly depend on the Al ion flux from the cathodic arc source and is only slightly affected by the N 2 flow rate. The AlN films fabricated by this method exhibit a cubic crystalline microstructure with stable and low internal stress. The surface of the AlN films is quite smooth with the surface roughness on the order of 1/2 nm as determined by atomic force microscopy, homogeneous, and continuous, and the dense granular microstructures give rise to good adhesion with the substrate. The N to Al ratio increases with the bias voltage applied to the substrates. A fairly large amount of O originating from the residual vacuum is found in the samples with low N:Al ratios, but a high bias reduces the oxygen concentration. The compositions, microstructures and crystal states of the deposited films are quite stable and remain unchanged after annealing at 800 deg. C for 1 h. Our hybrid gas-metal source cathodic arc source delivers better AlN thin films than conventional PIIID employing dual plasmas

  18. Polysulfone coating for hollow fiber artificial lungs operated at hypobaric and hyperbaric pressures.

    Science.gov (United States)

    High, K M; Snider, M T; Panol, G R; Richard, R B; Gray, D N

    1996-01-01

    Carbon dioxide transfer is increased when the gas phase of a hollow fiber membrane lung is operated at hypobaric pressures. Oxygen transfer is augmented by hyperbaric pressures. However, uncoated hollow fibers transmit gas bubbles into the blood when operated at a pressure greater than 800 mmHg and may have increased plasma leakage when operated at hypobaric pressures. Ultrathin polymer coatings may avoid this problem while reducing thrombogenicity. The authors coated microporous polypropylene hollow fibers with 380 microns outer diameter and 50 microns walls using 1, 2, 3, and 4% solutions of polysulfone in tetrahydrofuran by dipping or continuous pull through. These fibers were mounted in small membrane lung prototypes having surface areas of 70 and 187 cm2. In gas-to-gas testing, the longer the exposure time to the solution and the greater the polymer concentration, the less the permeation rate. The 3% solutions blocked bulk gas flow. The coating was 1 micron thick by mass balance calculations. During water-to-gas tests, hypobaric gas pressures of 40 mmHg absolute were tolerated, but CO2 transfer was reduced to 40% of the bare fibers. Hyperbaric gas pressures of 2,100 mmHg absolute tripled O2 transfer without bubble formation.

  19. Hollow Nodules Gas Escape Sedimentary Structures in Lacustrine Deposits on Earth and Gale Crater

    Science.gov (United States)

    Bonaccorsi, R.; Willson, D.; Fairen, A. G.; Baker, L.; McKay, C.; Zent, A.; Mahaffy, P. R.

    2015-12-01

    Curiosity's Mastcam and MAHLI instruments in Gale Crater (GC) imaged mm-sized circular rimmed hollow nodules (HNs) (Figure 1A), pitting the Sheepbed mudstone of Yellowknife Bay Formation [1,2]. HNs are significantly smaller than the solid nodules within the outcrop, with an external mean diameter of 1.2 mm and an interior one of 0.7 mm [2] Several formation mechanisms of HNs have been discussed, such as: (1) Diagenetic dissolution of soluble mineral phases; or, (2) Gas bubbles released shortly after sediment deposition [1-3]. In an ephemeral pond in Ubehebe Crater (Death Valley, CA) we observed the formation of hollow nodule sedimentary structures produced by gas bubbles (Figure 1C) preserved in smectite-rich mud that are strikingly similar to those imaged in GC (Figure 1A). This finding supports the gas bubble hypothesis [2]. Ubehebe Crater (UC) surface sediment hollow nodules were sampled, imaged, and their internal diameter measured (200 hollow structures) showing similar shape, distribution, and composition to those imaged by Curiosity in GC. UC in-situ observations suggest the gas bubbles were generated within the slightly reducing ephemerally submerged mud. These intra-crater deposits remain otherwise extremely dry year round, i.e., Air_rH ~2-5%; ground H2O wt%: 1-2%; Summer air/ground T: 45-48ºC/67-70ºC [4-5]. Data from the Sample Analysis at Mars (SAM), CheMin, and ChemCam instruments onboard the rover revealed that HNs-bearing mudstone are rich in smectite clay e.g., ~18-20% [6,7] deposited in a neutral to mildly alkaline environment, capturing a period when the surface was potentially habitable [1]. The UC HNs-hosting deposits are also rich in smectite clays (~30%) and occur in an ephemeral shallow freshwater setting [4-5]. If present, surface hollow nodules are easy to find in dry clay-rich mud in lacustrine sediments, so they could represent a new indicator of ephemeral but habitable/inhabited environments on both Earth and early Mars. References: [1

  20. Numerical study on rectangular microhollow cathode discharge

    International Nuclear Information System (INIS)

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-01-01

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  1. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  2. Hollow fiber adsorbents for CO2 capture: Kinetic sorption performance

    KAUST Repository

    Lively, Ryan P.

    2011-07-01

    We describe a CO 2 capture platform based on hollow polymeric fibers with sorbent particles embedded in the porous fiber wall for post-combustion CO 2 capture. These fibers are intended for use in a rapid temperature swing adsorption (RTSA) process. The RTSA system utilizes the hollow fiber morphology by flowing cooling water on the bore-side of the fibers during sorption to prevent temperature rise associated with the sorption enthalpy. Steam or hot water is flowed through the bores during desorption to desorb CO 2 rapidly. To minimize material transfer between the bore and the fiber wall, a dense Neoprene ® lumen layer is cast on the bore-side of the fiber wall. In this paper, the key sorption step and associated kinetic resistances for the uncooled fibers are examined and evaluated for this portion of the RTSA process. Chopped fibers in a packed bed, as well as fibers assembled into a parallel flow module, have been tested in a simulated flue gas stream. Kinetic limitations in the hollow fiber modules are largely overcome by increasing the superficial gas velocity and the fiber packing in the module-indicating that film diffusion is the controlling mass transfer limitation in the fiber system. The un-cooled fiber modules lose apparent capacity as superficial velocities are increased, likely indicating non-isothermal operation, whereas the actively-cooled fibers in the packed bed maintain apparent capacity at all flowrates studied. © 2011 Elsevier B.V.

  3. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  4. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  5. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    Science.gov (United States)

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  6. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    Directory of Open Access Journals (Sweden)

    Takuro Iwata

    2016-12-01

    Full Text Available A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  7. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  8. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  9. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  10. Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light

    Science.gov (United States)

    Cooper, Charles David (Inventor); Clausen, Christian Anthony (Inventor)

    2005-01-01

    An apparatus for treating pollutants in a gas may include a source of hydrogen peroxide, and a treatment injector for creating and injecting dissociated hydrogen peroxide into the flow of gas. The treatment injector may further include an injector housing having an inlet, an outlet, and a hollow interior extending therebetween. The inlet may be connected in fluid communication with the source of hydrogen peroxide so that hydrogen peroxide flows through the hollow interior and toward the outlet. At least one ultraviolet (UV) lamp may be positioned within the hollow interior of the injector housing. The at least one UV lamp may dissociate the hydrogen peroxide flowing through the tube. The dissociated hydrogen peroxide may be injected into the flow of gas from the outlet for treating pollutants, such as nitrogen oxides.

  11. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  12. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  13. Conversion of Carbon Dioxide to Ethanol by Electrochemical Synthesis Method Using Brass as A Cathode

    Directory of Open Access Journals (Sweden)

    Septian Ramadan

    2017-09-01

    Full Text Available The effect of potential and gas flow rate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide to ethanol. The conversion process is carried out using a NaHCO3 electrolyte solution in an electrochemical reactor equipped with a cathode and anode. As cathode is used brass, while as anode is used carbon. The result of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced qualitatively and quantitatively. The optimum electrochemical synthesis conditions to convert carbon dioxide to ethanol are potential and gas flow rate are 3 volts and 0.5 L/minutes with ethanol concentration yielded 1.32%.

  14. Comparison Between Conventional Design and Cathode Gas Recirculation Design of a Direct-Syngas Solid Oxide Fuel Cell–Gas Turbine Hybrid Systems Part I: Design Performance

    Directory of Open Access Journals (Sweden)

    Vahid Azami

    2017-06-01

    Keywords: Solid oxide fuel cell, Gas turbine, Cathode gas recirculation, Exergy. Article History: Received Feb 23rd 2017; Received in revised form May 26th 2017; Accepted June 1st 2017; Available online How to Cite This Article: Azami, V, and Yari, M. (2017 Comparison between conventional design and cathode gas recirculation design of a direct-syngas solid oxide fuel cell–gas turbine hybrid systems part I: Design performance. International Journal of Renewable Energy Develeopment, 6(2, 127-136. https://doi.org/10.14710/ijred.6.2.127-136

  15. Transmission properties of hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Falk, Charlotte Ijeoma; Hald, Jan; Petersen, Jan C.

    2010-01-01

    Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers.......Variations in optical transmission of four types of hollow-core photonic bandgap fibers are measured as a function of laser frequency. These variations influence the potential accuracy of gas sensors based on molecular spectroscopy in hollow-core fibers....

  16. [Reparative regeneration of rat skin under influence of hollow cathode lamp (HCL) with manganese and copper line spectrum emission].

    Science.gov (United States)

    Mel'nikova, V I; Izvol'skaia, M S; Voronova, S N; Sharipova, M M; Rukin, E M; Zakharova, L A

    2010-01-01

    Influence of local light exposure by hollow cathode lamp with typical manganese and copper (HCL-Mn, Cu) line emission spectrum on posttraumatic regeneration rate of rat skin has been investigated. We performed the comparative analysis of the morphology and the differentiation ability of rat skin on the 15th and 24th days after full-thickness skin wound had been inflicted on rat dorsums. On the 15th day after injury, the experimental group (daily 30 s exposure for two weeks) showed scab loss, re-epithelialization, and hair regrowth, in contrast to the control rats, where scabs were still observed on the 24th day. Histological analysis revealed that in contrast to the control group the treatment with HCL-Mn, Cu resulted in the increased number of hair follicles and sebaceous glands, the decreased number of blood vessels and horizontal orientation of collagen fibers. The immunohistochemistry for OX-62 revealed that the number of dermal dendritic cells in the experimental groups was maximal on the 15th day, and then decreased to the 24th day after injury. The number of dermal dendritic cells was significantly lower in the control group. The immunohistochemistry for pan-keratins in the control animals revealed a high number of cells expressing different types of keratins, distributed in the main part of the epidermis on the 15th day after surgery, whereas in the experimental group the number of such cells was significantly lower and the cells were concentrated more close to the external part of the epidermis. The number of cells stained for keratin 19 was higher in the experimental group on the 15th day after surgery, whereas this number decreased in this group on the 24th day after surgery as compared to the control group. Thus, typical manganese and copper line spectrum emission emitted by hollow cathode lamp stimulates innate immunity, accelerates restoration of derma, skin epithelium and other skin derivates, and stimulates wound healing in general.

  17. Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery

    Science.gov (United States)

    Zhang, Yu; Zhu, Tianjiao; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan

    2017-11-01

    Lithium-rich manganese-based layered materials have been considered as the most promising cathode materials for future high-energy-density lithium-ion batteries. However, a great loss of irreversible capacity at the initial cycle, poor cycle stability, and rate performance severely restrict its application. Herein, we develop a new strategy to synthesize hierarchical hollow Li1.2Mn0.54Ni0.13Co0.13O2 microspheres using sucrose and cetyltrimethylammonium bromide as a soft template combined with hydrothermal assisted homogeneous precipitation method. The hollow microspheres are assembled by the primary particles with the size of 50 nm. As a result, the as-prepared material exhibits high reversible capacity, good cycling stability, and excellent rate property. It delivers a high initial discharge capacity of 305.9 mAh g-1 at 28 mA g-1 with coulombic efficiency of 80%. Even at high current density of 560 mA g-1, the sample also shows a stable discharge capacity of 215 mAh g-1. The enhanced electrochemical properties are attributed to the stable hierarchical hollow sphere structure and the appropriate contact area between electrode and electrolyte, thus effectively improve the lithium-ion intercalation and deintercalation kinetics. [Figure not available: see fulltext.

  18. Basic characteristics of hollow-filament polyimide membrane in gas separation and application to tritium monitors

    International Nuclear Information System (INIS)

    Sasaki, Sh.; Suzuki, T.; Kondo, K.; Tega, E.; Shimada, A.; Akahori, S.; Okuno, K.

    2003-01-01

    The separation efficiency of hollow-filament polyimide membranes for 3 H and 41 Ar is preliminarily examined for a potential application to continuous gas monitoring systems for analysis of stack emission from accelerator facilities. The basic gas separation characteristics of the membranes are experimentally investigated, and a preliminary gas monitor design is proposed. The membranes are capable of selectively enriching hydrogen by more than 25 times, with negligible variation with respect to the species of isotope. (author)

  19. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    Science.gov (United States)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J.; Dussart, Rémi

    2016-04-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I-V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3-10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I-V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime.

  20. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser absorption spectroscopy for measurement of He metastable atoms of a microhollow cathode plasma

    Science.gov (United States)

    Ueno, Keisuke; Kamebuchi, Kenta; Kakutani, Jiro; Matsuoka, Leo; Namba, Shinichi; Fujii, Keisuke; Shikama, Taiichi; Hasuo, Masahiro

    2018-01-01

    We generated a 0.3-mm-diameter DC, hollow-cathode helium discharge in a gas pressure range of 10-80 kPa. In discharge plasmas, we measured position-dependent laser absorption spectra for helium 23S1-23P0 transition with a spatial resolution of 55 µm. From the results of the analysis of the measured spectra using Voigt functions and including both the Doppler and collision broadening, we produced two-dimensional maps of the metastable 23S1 atomic densities and gas temperatures of the plasmas. We found that, at all pressures, the gas temperatures were approximately uniform in space with values in the range of 400-1500 K and the 23S1 atomic densities were ˜1019 m-3. We also found that the two-dimensional density distribution profiles became ring-shaped at high gas pressures, which is qualitatively consistent with the two-dimensional fluid simulation results.

  2. Analysis of hollow fibre membrane systems for multicomponent gas separation

    KAUST Repository

    Khalilpour, Rajab

    2013-02-01

    This paper analysed the performance of a membrane system over key design/operation parameters. A computation methodology is developed to solve the model of hollow fibre membrane systems for multicomponent gas feeds. The model represented by a nonlinear differential algebraic equation system is solved via a combination of backward differentiation and Gauss-Seidel methods. Natural gas sweetening problem is investigated as a case study. Model parametric analyses of variables, namely feed gas quality, pressure, area, selectivity and permeance, resulted in better understanding of operating and design optima. Particularly, high selectivities and/or permeabilities are shown not to be necessary targets for optimal operation. Rather, a medium selectivity (<60 in the given example) combined with medium permeance (∼300-500×10-10mol/sm2Pa in the given case study) is more advantageous. This model-based membrane systems engineering approach is proposed for the synthesis of efficient and cost-effective multi-stage membrane networks. © 2012 The Institution of Chemical Engineers.

  3. Solvothermal synthesis and electrochemical performance of hollow LiFePO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhenmiao [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Pang, Wei Kong [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Tang, Xincun, E-mail: tangxincun@163.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Jia, Dianzeng; Huang, Yudai [Institute of Applied Chemistry, Xinjiang University, Urumqi 840046 (China); Guo, Zaiping [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-08-15

    Highlights: • Hollow LiFePO{sub 4} nanoparticles were successfully synthesized via solvothermal method. • The shorter b lattice parameter allows the shorter diffusion path of lithium ion. • Hollow LiFePO{sub 4} nanoparticles show better rate capability than solid LiFePO{sub 4}. - Abstract: Hollow LiFePO{sub 4} nanoparticles were synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning and transmission electron microscopies, and Brunauer–Emmett–Teller specific surface area measurements. The electrochemical properties of the LiFePO{sub 4} cathode were examined in coin-type cell configuration and the cathode exhibited excellent rate capability (i.e., discharge capacity of 120.9 mA h g{sup −1} at 10 C) and cycling performance (i.e., >98% of capacity retention rate after 50 cycles). It is believed that the enhanced performance is correlated to the hollow structure, small crystallite and particle sizes, and relatively shorter lattice parameter b.

  4. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.; Adams, Ryan T.; Miller, Stephen J.; Koros, William J.

    2010-01-01

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2

  5. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas

    KAUST Repository

    Lively, Ryan P.

    2012-12-01

    Using a process-guided approach, a new 6FDA-based polyimide - 6FDA-DAM:DABA(4:1) - has been developed in the form of hollow fiber membranes for CO 2 recovery from post-combustion flue gas streams. Dense film studies on this polymer reveal a CO 2 permeability of 224 Barrers at 40°C at a CO 2 feed pressure of 10psia. The dense films exhibit an ideal CO 2/N 2 permselectivity of 20 at 40°C, which permits their use in a two-step counter-flow/sweep membrane process. Dry-jet, wet-quench, non-solvent-induced phase inversion spinning was used to create defect-free hollow fibers from 6FDA-DAM:DABA(4:1). Membranes with defect-free skin layers, approximately 415nm thick, were obtained with a pure CO 2 permeance of 520GPU at 30°C and an ideal CO 2/N 2 permselectivity of 24. Mixed gas permeation and wet gas permeation are presented for the fibers. The CO 2 permeance in the fibers was reduced by approximately a factor of 2 in feeds with 80% humidity. As a proof-of-concept path forward to increase CO 2 flux, we incorporated microporous ZIF-8 fillers into 6FDA-DAM:DABA(4:1) dense films. Our 6FDA-DAM:DABA(4:1)/ZIF-8 dense film composites (20wt% ZIF-8) had a CO 2 permeability of 550 Barrers and a CO 2/N 2 selectivity of 19 at 35°C. Good adhesion between the ZIF and the 6FDA-DAM:DABA(4:1) matrix was observed. CO 2 capture costs of $27/ton of CO 2 using the current, "non-optimized" membrane are estimated using a custom counterflow membrane model. Hollow fiber membrane modules were estimated to have order-of-magnitude reductions in system footprint relative to spiral-wound modules, thereby making them attractive in current space-constrained coal-fired power stations. © 2012 Elsevier B.V.

  6. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  7. Numerical Study on Flow Characteristics of Hollow Fiber Membrane Module for Water Recovery Cooling Tower

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Cheol; Shin, Weon Gyu [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Park, Hyun Seol; Lee, Hyung Keun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2017-08-15

    The purpose of this study is to analyze the flow characteristics when a staggered hollow fiber membrane module is modeled as a porous medium. The pressure-velocity equation was used for modeling the porous medium, using pressure drop data. In terms of flow characteristics, we compared the case of the 'porous medium' when the membrane module was modeled as a porous medium with the case of the 'membrane module' when considering the original shape of the membrane module. The difference in pressure drop between the 'porous medium' and 'membrane module' was less than 0.6%. However, the maximum flow velocity and mean turbulent kinetic energy of the 'porous medium' were 2.5 and 95 times larger than those of the 'membrane module,' respectively. Our results indicate that modeling the hollow fiber module as a porous medium is useful for predicting pressure drop, but not sufficient for predicting the maximum flow velocity and mean turbulent kinetic energy.

  8. Preparation of Pr-doped SnO{sub 2} hollow nanofibers by electrospinning method and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.Q.; Ma, S.Y., E-mail: lwq19891013@126.com; Li, Y.F.; Li, X.B.; Wang, C.Y.; Yang, X.H.; Cheng, L.; Mao, Y.Z.; Luo, J.; Gengzang, D.J.; Wan, G.X.; Xu, X.L.

    2014-08-25

    Highlights: • Pr-doped SnO{sub 2} hollow nanofibers were fabricated by electrospinning. • The crystal structures, surface morphology, chemical state and gas sensing performance were investigated. • The Pr-doped SnO{sub 2} hollow structure exhibited good gas-sensing properties to ethanol at 300 °C. • The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. • A sensor mechanism of hollow nanofibers depend on temperature was discussed. - Abstract: Pure and Pr-doped SnO{sub 2} hollow nanofibers were fabricated through a facile single capillary electrospinning and followed by calcination. The properties of as-synthesized nanofibers were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Compared with pure fibers, Pr-doped SnO{sub 2} nanofibers exhibited excellent ethanol sensing properties at the optimum temperature of 300 °C. Maximum sensing response to ethanol was received in the fibers with 0.6 wt% Pr. The relationships between response time (recovery time) and temperature, response time (recovery time) and concentration were investigated. The results demonstrated that the high response and relatively short response/recovery time were related to surface area, adsorbed oxygen species and oxygen vacancies.

  9. Integrated Energetic Ion Mitigation for High Power Plasma Cathodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed is a hollow cathode that integrates mitigation methods to suppress wear to the keeper. Recent advances in the magnetic topology in Hall...

  10. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    International Nuclear Information System (INIS)

    Kozlovskij, K I; Shikanov, A E; Vovchenko, E D; Shatokhin, V L; Isaev, A A; Martynenko, A S

    2016-01-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10 -3 -10 -1 Torr and at the accelerating voltage up to 200 kV was observed. (paper)

  11. Effect of N{sub 2} and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, Igor, E-mail: igozh@ifm.liu.se; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oks, Efim [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation)

    2015-06-07

    DC arc plasma from Ti, Al, and Ti{sub 1−x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N{sub 2} pressures in the range 10{sup −6} to 3 × 10{sup −2} Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N{sub 2} above ∼5 × 10{sup −3} Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N{sub 2} atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions.

  12. Origin of microplasma instabilities during DC operation of silicon based microhollow cathode devices

    International Nuclear Information System (INIS)

    Felix, Valentin; Lefaucheux, Philippe; Aubry, Olivier; Dussart, Rémi; Golda, Judith; Schulz-von der Gathen, Volker; Overzet, Lawrence J

    2016-01-01

    The failure mechanisms of micro hollow cathode discharges (MHCD) in silicon have been investigated using their I-V characteristics, high speed photography and scanning electron microscopy. Experiments were carried out in helium. We observed I–V instabilities in the form of rapid voltage decreases associated with current spikes. The current spikes can reach values more than 100 times greater than the average MHCD current. (The peaks can be more than 1 Ampere for a few 10’s of nanoseconds.) These current spikes are correlated in time with 3–10 μm diameter optical flashes that occur inside the cavities. The SEM characterizations indicated that blister-like structures form on the Si surface during plasma operation. Thin Si layers detach from the surface in localized regions. We theorize that shallow helium implantation occurs and forms the ‘blisters’ whenever the Si is biased as the cathode. These blisters ‘explode’ when the helium pressure inside them becomes too large leading to the transient micro-arcs seen in both the optical emission and the I–V characteristics. We noted that blisters were never found on the metal counter electrode, even when it was biased as the cathode (and the Si as the anode). This observation led to a few suggestions for delaying the failure of Si MHCDs. One may coat the Si cathode (cavities) with blister resistant material; design the MHCD array to operate with the Si as the anode rather than as the cathode; or use a gas additive to prevent surface damage. Regarding the latter, tests using SF 6 as the gas additive successfully prevented blister formation through rapid etching. The result was an enhanced MHCD lifetime. (paper)

  13. Study of the use of an electric discharge for hollow cathodes used as optical excitation sources in the spectrographic measurement of fluorine in thorium, uranium and plutonium; Etude de l'utilisation de la decharge electrique en cathode creuse comme source d'excitation optique pour le dosage spectrographique du fluor dans le thorium, l'uranium et le plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Bufpereau, M; Crehange, G; Poublan, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Previous works and phenomena concerned with a hollow cathode excitation are reviewed. Experiments aimed specially on the determination of the best conditions for an analysis of fluorine in oxides-metals and solutions. In that purpose, several factors have been pointed out. One started some researches about others elements that fluorine. Carrying fluorine into discharge and excitation have been more specially studied. A quantitative analysis method is given. The analysis limit is 45 ppm about but the detection limit is 5 ppm about. As a conclusion, various ways for optical excitation of fluorine are reviewed as other analytical possibilities a hollow cathode discharge offers. (authors) [French] On rappelle les travaux effectues jusqu'alors ainsi que les phenomenes mis en jeu dans l'excitation cathode creuse. Les experiences effectuees ont eu pour but essentiel la determination des conditions optima du dosage du fluor dans les oxydes, metaux et solutions. Pour cela de nombreux facteurs ont ete mis en evidence. Certaines etudes concernant d'autres elements que le fluor ont ete amorcees. Le passage du fluor dans la decharge et son excitation ont ete plus particulierement etudies. Une methode d'analyse quantitative est degagee, la limite de dosage est de l'ordre de 45 ppm, la limite de detection de 5 ppm. En conclusion, on passe en revue les differentes methodes d'excitation optique du fluor ainsi que les autres possibilites analytiques que peut offrir la cathode creuse. (auteurs)

  14. Gas separating

    Science.gov (United States)

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  15. Production of a large area diffuse arc plasma with multiple cathode

    International Nuclear Information System (INIS)

    Wang Cheng; Cui Hai-Chao; Li Wan-Wan; Liao Meng-Ran; Xia Wei-Dong; Xia Wei-Luo

    2017-01-01

    An arc channel at atmospheric pressure tends to shrink generally. In this paper, a non-transferred DC arc plasma device with multiple cathode is introduced to produce a large area arc plasma at atmospheric pressure. This device is comprised of a 42-mm diameter tubular chamber, multiple cathode which is radially inserted into the chamber, and a tungsten anode with a nozzle in its center. In argon/helium atmosphere, a large area and circumferential homogenous diffuse arc plasma, which fills the entire cross section surrounded by the cathode tips, is observed. Results show that the uniformity and stability of diffuse arc plasma are strongly related to the plasma forming gas. Based on these experimental results, an explanation to the arc diffusion is suggested. Moreover, the electron excitation temperature and electron density measured in diffuse helium plasma are much lower than those of constricted arc column, which indicates the diffuse helium plasma probably deviates from the local thermodynamic equilibrium state. Unlike the common non-transferred arc plasma devices, this device can provide a condition for axial-fed feedstock particles. The plasma device is attempted to spheroidize alumina powders by using the central axis to send the powder. Results show that the powder produced is usually a typical hollow sphere. (paper)

  16. Reliability centred maintenance of the cathodic protection system of the Bolivia-Brazil gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [Transportadora Brasileira Gasoduto, TBG, Bolivia-Brasil S.A (Brazil)

    2004-07-01

    This paper presents the results of the Reliability-Centred Maintenance study performed on the Cathodic Protection System of the Bolivia -Brazil Gas Pipeline. The Cathodic Protection installation for the north spread (from Corumba to Guararema, 1413 km) was commissioned in March 1999 and for the south spread (from Campinas to Porto Alegre, 1180 km) one year after. The protection against corrosion of the buried external surface of our gas pipeline is provided, primarily, by an high-efficient external coating, complemented by a impressed current cathodic protection system consisting of: - Forty-one rectifiers and respective anodes ground beds; - One solar panel and respective anodes ground beds; - Fifty-nine insulating joints and respective protective devices; - Nine hundred and ninety pipe-to-soil test stations; - Thirty-six pipe-to-soil remote monitoring devices; - Forty-one electrical power feeder network to the rectifiers. The rectifiers/anodes ground beds are installed at each 50 km approximately, including the solar panel, and the pipe-to-soil test stations at each 2.5 km, under different environment conditions. The insulating joints and theirs protective devices are installed inside stations (launch and receive scrapers, compression and metering) and city-gates, as well, the pipe-to-soil remote monitoring devices. The cathodic protection system and electrical power feeder network are inspected and maintained by a TBG third part Contractor.

  17. Tool successfully detects changes in cathodic protection system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-05-15

    A new oil and gas industry tool has been developed to check if an operator's cathodic protection (CP) is effective. This inline inspection tool developed, by Baker Hughes, is called cathodic protection current measurement (CPCM). It measures how much CP current the pipeline is receiving and shows the direction of the current flowing back to the CP source. This system was used to successfully perform a full CP current inspection on a 43 mile-long pipeline in the Eastern United States. Tests identified that one rectifier was flowing current in the reverse direction from that expected and that a few areas had high current densities. The operator then changed the CP system to test the tool and results showed that the tool correctly detected the changes.

  18. The effect of channel flow pattern on internal properties distribution of a proton exchange membrane fuel cell for cathode starvation conditions

    International Nuclear Information System (INIS)

    Ko, Dong Soo; Kang, Young Min; Yang, Jang Sik; Jeong, Ji Hwan; Choi, Gyung Min; Kim, Duck Jool

    2010-01-01

    The effect of channel flow pattern on the internal properties distribution of a proton exchange membrane fuel cell (PEMFC) for cathode starvation conditions in a unit cell was investigated through numerical studies and experiments. The polarization curves of a lab-scale mixed serpentine PEMFC were measured with increasing current loads for different cell temperatures (40, 50, and 60 .deg. C) at a relative humidity of 100%. To study the local temperature on the membrane, the water content in the MEA, and the gas velocity in terms of the channel type of the PEMFC with operating characteristics, numerical studies using the es-pemfc module of STAR-CD, which have been matched to the experimental data, were conducted in detail. The water content and velocity at the cathode channel bend of the mixed serpentine channel were relatively higher than those at the single and double channels. Conversely, the local temperature and mean temperature on the membrane of a single serpentine channel were the highest among all channels. These results can be used to design the PEMFC system, the channel flow field, and the cooling device

  19. Linear perturbation of spherically symmetric flows: a first-order upwind scheme for the gas dynamics equations in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Clarisse, J.M.

    2007-01-01

    A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)

  20. Ultrabright multikilovolt x-ray source: saturated amplification on noble gas transition arrays from hollow atom states

    Science.gov (United States)

    Rhodes, Charles K.; Boyer, Keith

    2004-02-17

    An apparatus and method for the generation of ultrabright multikilovolt x-rays from saturated amplification on noble gas transition arrays from hollow atom states is described. Conditions for x-ray amplification in this spectral region combine the production of cold, high-Z matter, with the direct, selective multiphoton excitation of hollow atoms from clusters using ultraviolet radiation and a nonlinear mode of confined, self-channeled propagation in plasmas. Data obtained is consistent with the presence of saturated amplification on several transition arrays of the hollow atom Xe(L) spectrum (.lambda..about.2.9 .ANG.). An estimate of the peak brightness achieved is .about.10.sup.29 .gamma..multidot.s.sup.-1.multidot.mm.sup.-2.multidot.mr.sup.-2 (0.1% Bandwidth).sup.-1, that is .about.10.sup.5 -fold higher than presently available synchotron technology.

  1. Erythrocyte-like hollow carbon capsules and their application in proton exchange membrane fuel cells.

    Science.gov (United States)

    Kim, Jung Ho; Yu, Jong-Sung

    2010-12-14

    Hierarchical nanostructured erythrocyte-like hollow carbon (EHC) with a hollow hemispherical macroporous core of ca. 230 nm in diameter and 30-40 nm thick mesoporous shell was synthesized and explored as a cathode catalyst support in a proton exchange membrane fuel cell (PEMFC). The morphology control of EHC was successfully achieved using solid core/mesoporous shell (SCMS) silica template and different styrene/furfuryl alcohol mixture compositions by a nanocasting method. The EHC-supported Pt (20 wt%) cathodes prepared have demonstrated markedly enhanced catalytic activity towards oxygen reduction reactions (ORRs) and greatly improved PEMFC polarization performance compared to carbon black Vulcan XC-72 (VC)-supported ones, probably due to the superb structural characteristics of the EHC such as uniform size, well-developed porosity, large specific surface area and pore volume. In particular, Pt/EHC cathodes exhibited ca. 30-60% higher ORR activity than a commercial Johnson Matthey Pt catalyst at a low catalyst loading of 0.2 mg Pt cm(-2).

  2. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Science.gov (United States)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max L.; Christensen, Lance E.; Kelly, James F.

    2017-05-01

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of 2 picomoles at a 1 Hz data rate.

  3. Versatile, ultra-low sample volume gas analyzer using a rapid, broad-tuning ECQCL and a hollow fiber gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Kriesel, Jason M.; Makarem, Camille N.; Phillips, Mark C.; Moran, James J.; Coleman, Max; Christensen, Lance; Kelly, James F.

    2017-05-05

    We describe a versatile mid-infrared (Mid-IR) spectroscopy system developed to measure the concentration of a wide range of gases with an ultra-low sample size. The system combines a rapidly-swept external cavity quantum cascade laser (ECQCL) with a hollow fiber gas cell. The ECQCL has sufficient spectral resolution and reproducibility to measure gases with narrow features (e.g., water, methane, ammonia, etc.), and also the spectral tuning range needed to measure volatile organic compounds (VOCs), (e.g., aldehydes, ketones, hydrocarbons), sulfur compounds, chlorine compounds, etc. The hollow fiber is a capillary tube having an internal reflective coating optimized for transmitting the Mid-IR laser beam to a detector. Sample gas introduced into the fiber (e.g., internal volume = 0.6 ml) interacts strongly with the laser beam, and despite relatively modest path lengths (e.g., L ~ 3 m), the requisite quantity of sample needed for sensitive measurements can be significantly less than what is required using conventional IR laser spectroscopy systems. Example measurements are presented including quantification of VOCs relevant for human breath analysis with a sensitivity of ~2 picomoles at a 1 Hz data rate.

  4. Difference-frequency laser spectroscopy of molecular ions with a hollow-cathode cell: extended analysis of the ν1 band of H2D+

    International Nuclear Information System (INIS)

    Amano, T.

    1985-01-01

    A cooled hollow-cathode cell was used for observation of the infrared spectra of positive ions in the 3-μm region with a difference-frequency laser as a radiation source. About an order-of-magnitude enhancement of the signal intensity was attained, compared with the similar signals obtained with our previous glow-discharge cell. Ten more weaker lines of the ν 1 fundamental band of H 2 D + , which could not be observed in our previous experiment [J. Chem. Phys. 81, 2869 (1984)] were measured. Improved molecular constants were obtained from a least-squares fit including the infrared lines and the two millimeter-and submillimeter-wave lines in the ground state

  5. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  6. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  7. Effects of spray parameters on the microstructure and property of Al2O3 coatings sprayed by a low power plasma torch with a novel hollow cathode

    International Nuclear Information System (INIS)

    Li Changjiu; Sun Bo

    2004-01-01

    Al 2 O 3 coating is deposited using a low power plasma torch with a novel hollow cathode through axial powder injection under a plasma power up to several kilowatts. The effects of the main processing parameters including plasma arc power, operating gas flow and spray distance on particle velocity during spraying, and the microstructure and property of the coating are investigated. The microstructure of the Al 2 O 3 coating is examined using optical microscopy and X-ray diffraction analysis. The property of the coating is characterized by dry rubber wheel abrasive wear test. The velocity of in-flight particle is measured using a velocity/temperature measurement system for spray particle based on thermal radiation from the particle. The dependency of the microstructure and property of the coating on spray particle conditions are examined by comparing the particle velocity, and microstructure and abrasive wear weight loss of subsequent coating deposited by low power plasma spray with those of the coating by conventional plasma spray at a power one order higher. X-ray diffraction analysis of the coating revealed that Al 2 O 3 particles during low power plasma spraying reach to sufficiently melting state prior to impact on the substrate with a velocity comparable to that in conventional plasma spraying. The experiment results have shown that processing parameters have significant influence on the particle conditions and performance of deposited Al 2 O 3 coating. The coating of comparable microstructure and properties to that deposited by conventional plasma spray can be produced under a power one order lower. From the present study, it can be suggested that a comparable coating can be produced despite plasma power level if the comparable particle velocity and molten state are achieved

  8. Absorber rod driving into a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Elter, C.; Schmitt, H.; Schoening, J.

    1987-01-01

    The absorber rod consists of a hollow cylinder which has a layer of absorber material applied on its inside circumferential surface. The absorber rod is held via a guide sleeve, which is supported centrally in a hole in the side reflector. The guidance within the sleeve is provided by flanges on the hollow cylinder. The movement of the hollow cylinder is carried out hydraulically or pneumatically. A flow of cooling gas is used for cooling, which is passed through the inner central areas of the hollow cylinder and the guide sleeve. (DG) [de

  9. [The comparative assessment of the wound-healing effects of the treatment with the use of Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (experimental study)].

    Science.gov (United States)

    Sharipova, M M; Voronova, S N; Rukin, E M; Vasilenko, A M

    2011-01-01

    The objective of the present experimental study was the comparative assessment of the wound-healing effects of radiation emitted from Bioptron, Minitag, Orion+ apparatuses and hollow cathode lamps (HCL). The emitters of any type were shown to be equally efficacious in that they accelerated wound epithelization by 30% on the average compared with control. Based on the difference between spectral and power characteristics of different sources of radiation and dynamics of their wound-healing efficacy (including that of two types of HCL), the authors arrived at the conclusion that the further development of the proposed approach to wound healing is a promising line of research in the field of spectral phototherapy.

  10. Synthesis and characterization hollow spherical La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT for cathode of solid oxide fuel cell (SOFC

    Directory of Open Access Journals (Sweden)

    H. H. Yu

    2016-10-01

    Full Text Available Hollow spheres structures of La0.7Sr0.2Ca0.1Co0.9Fe0.1O3–δ (LSCCT have been synthesized via hydrothermal method using carbon spheres as template. The structure and electrical conductivity of obtained samples are characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM and direct current (DC four-probe method respectively. The results show that hollow spheres structures of LSCCT with the mean particle size of 0,9 - 1,2 μm is single perovskite. The electrical conductivity of the samples is higher than 100 S/cm from 600 to 800 ℃ and can meet the demand of the electrical properties for the cathode materials.

  11. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    Science.gov (United States)

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Absorption Spectroscopy in Hollow-Glass Waveguides Using Infrared Diode Lasers[4817-25

    International Nuclear Information System (INIS)

    Blake, Thomas A.; Kelly, James F.; Stewart, Timothy L.; Hartman, John S.; Sharpe, Steven W.; Sams, Robert L.; Alan Fried

    2002-01-01

    Near- and mid-infrared diode lasers combined with flexible, hollow waveguides hold the promise of light weight, field portable, fast response gas sensors. The advantages of using the waveguides compared to White or Herriott multireflection cells include a small gas volume, a high photon fill factor in the waveguide, which increases molecule-light interactions, and reduction or elimination of optical fringing, which usually sets the practical limit of detectivity in absorption spectroscopy. Though hollow waveguides have been commercially available for several years, relatively few results have been reported in the literature. We present here results from our laboratory where we have injected infrared laser light into straight and coiled lengths of hollow waveguides and performed direct and wavelength modulated absorption spectroscopy on nitrous oxide, ethylene, and nitric oxide. Using a 1 mm bore, 3 meter long coiled waveguide coated for the near infrared, nitrous oxide transitions near 6595 cm-1 were observed under flowing conditions. Signal-to-noise ratios on the order of 1500:1 with RMS noise equal to 2 X 10-5 were measured. In the mid-infrared light from either a 10.1 or 5.3 micron lead salt diode laser was injected into a three meter length of 1 mm bore hollow waveguide coated for the mid-infrared. The waveguide was coiled with one loop at a diameter of 52 cm. Ethylene transitions were observed in the vicinity of 985 cm-1 with a static fill of 0.2 Torr of pure ethylene in the waveguide and nitric oxide transitions were observed in the vicinity of 1906 cm-1 using either a flow or a static fill of 1 ppm NO in nitrogen. In direct absorption the NO transitions are observed to have a signal-to-noise of approximately 5:1 for transitions with absorbances on the order of 10-3. Using wavelength modulated techniques the signal-to-noise ratio improves at least an order of magnitude. These encouraging results indicate that waveguides can be used for in situ gas monitoring

  13. Simulation of oscillatory processes in a beam-plasma system with a virtual cathode in gas-filled interaction space

    International Nuclear Information System (INIS)

    Filatov, R. A.; Hramov, A. E.

    2011-01-01

    Physical processes occurring in an intense electron beam with a virtual cathode in an interaction space filled with neutral gas are studied in a two-dimensional model. A mathematical model is proposed for investigating complicated self-consistent processes of neutral gas ionization by the beam electrons and the dynamics of an electron beam and heavy positive ions in the common space charge field with allowance for the two-dimensional motion of charged particles. Three characteristic dynamic regimes of the system are revealed: complete suppression of oscillations of the virtual cathode as a result of neutralizing its space charge by positive ions; the pulsed generation regime, in which the ions dynamics repeatedly suppresses and restores the virtual cathode oscillations; and the continuous generation regime with an anomalously high level of noisy oscillations.

  14. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    Science.gov (United States)

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (Premoval by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (Premoval increased by 109% (411 mL/min/m(2)) (Premoval, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal

  15. Effect of the prominent catalyst layer surface on reactant gas transport and cell performance at the cathodic side of a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2010-01-01

    The cell performance enhancement of a proton exchange membrane fuel cell (PEMFC) has been numerically investigated with the prominence-like form catalyst layer surface of the same composition at the cathodic half-cell of a PEMFC. The geometries of the prominence-like form catalyst layer surface are assigned as one prominence, three prominences, and five prominences catalyst layer surfaces with constant distance between two prominences in the same gas diffusion layer (GDL) for the purpose of investigating the cell performance. To confine the current investigation to two-dimensional incompressible flows, we assume that the fluid flow is laminar with a low Reynolds number 15. The results indicate that the prominence-like form catalyst layer surface can effectively enhance the local cell performance of a PEMFC.

  16. Method for improved gas-solids separation

    Science.gov (United States)

    Kusik, C.L.; He, B.X.

    1990-11-13

    Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

  17. Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing.

    Science.gov (United States)

    Zhang, Dongzhi; Fan, Xin; Yang, Aijun; Zong, Xiaoqi

    2018-08-01

    In this paper, we fabricated a high-performance ethanol sensor using layer-by-layer self-assembled urchin-like alpha-iron oxide (α-Fe 2 O 3 ) hollow microspheres/molybdenum disulphide (MoS 2 ) nanosheets heterostructure as sensitive materials. The nanostructural, morphological, and compositional properties of the as-prepared α-Fe 2 O 3 /MoS 2 heterostructure were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS), which confirmed its successful preparation and rationality. The α-Fe 2 O 3 /MoS 2 nanocomposite sensor shows good selectivity, excellent reproducibility, fast response/recovery time and low detection limit towards ethanol gas at room temperature, which is superior to the single component of α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. Furthermore, the response of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor as a function of ethanol gas concentration was also demonstrated. The enhanced ethanol sensing properties of the α-Fe 2 O 3 /MoS 2 nanocomposite sensor were ascribed to the synergistic effect and heterojunction between the urchin-Like α-Fe 2 O 3 hollow microspheres and MoS 2 nanosheets. This work verifies that the hierarchical α-Fe 2 O 3 /MoS 2 nanoheterostructure is a potential candidate for fabricating room-temperature ethanol gas sensor. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  19. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Trabold, Barbara M; Hupfer, Robert J R; Abdolvand, Amir; St J Russell, Philip

    2017-09-01

    We report the use of coherent anti-Stokes Raman spectroscopy (CARS) in gas-filled hollow-core photonic crystal fiber (HC-PCF) for trace gas detection. The long optical path-lengths yield a 60 dB increase in the signal level compared with free-space arrangements. This enables a relatively weak supercontinuum (SC) to be used as Stokes seed, along with a ns pump pulse, paving the way for broadband (>4000  cm -1 ) single-shot CARS with an unprecedented resolution of ∼100  MHz. A kagomé-style HC-PCF provides broadband guidance, and, by operating close to the pressure-tunable zero dispersion wavelength, we can ensure simultaneous phase-matching of all gas species. We demonstrate simultaneous measurement of the concentrations of multiple trace gases in a gas sample introduced into the core of the HC-PCF.

  20. Advances in gas-liquid flows 1990

    International Nuclear Information System (INIS)

    Kim, J.M.; Hashemi, A.

    1990-01-01

    Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows

  1. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  2. Electron beam produced in a transient hollow cathode discharge: beam electron distribution function, X-ray emission and solid target ablation

    International Nuclear Information System (INIS)

    Nistor, Magdalena

    2000-01-01

    This research thesis aims at a better knowledge of phenomena occurring during transient hollow cathode discharges. The author first recalls the characteristics of such a discharge which make it different from conventional pseudo-spark discharges. The objective is to characterise the electron beam produced within the discharge, and the phenomena associated with its interaction with a solid or gaseous target, leading to the production of an X ray or visible radiation. Thus, the author reports the measurement (by magnetic deflection) of the whole time-averaged electronic distribution function. Such a knowledge is essential for a better use of the electron beam in applications such as X-ray source or material ablation. As high repetition frequency pulse X ray sources are very interesting tools, he reports the development and characterisation of Bremsstrahlung X rays during a beam-target interaction. He finally addresses the implementation of a spectroscopic diagnosis for the filamentary plasma and the ablation of a solid target by the beam [fr

  3. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  4. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  5. Potential profiles in the central core of the cathode in the star mode operation in an inertial-electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Toku, H.

    2003-01-01

    After the successful measurements of the localized electric fields in the center-spot mode operation with relatively large space-charge effects by the laser-induced fluorescence (LIF) method, measurements of potential profiles in the star mode operation with small space-charge effects on helium gas are made in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron source, which is most suitable to neutron calibration in the fusion devices. Since the high-voltage is required to the star mode operation on deuterium gas, it is predicted to bring about very small beam space charge-related potential. To increase accuracy, we adopted n=4 (2 1 S to 4 1 D:HeI) transition, instead of previous n=3, which is most sensitive to the local electric fields in the Stark transition, and verified using the well-known U-shaped hollow cathode potential. The localized electric fields thus measured by LIF method using n=4 transition show negligible electric fields in the star mode compared with the center-spot mode. (author)

  6. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  7. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    Science.gov (United States)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  8. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    Science.gov (United States)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  9. Gas separation performance of a hollow-filament type polyimide membrane module for a compact tritium removal system

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi; Matsuda, Yuji; Okuno, Kenji

    1995-01-01

    A new tritium removal system using gas separation membranes has been studied to develop more compact and cost-effective system for a fusion reactor. To obtain necessary parameters, which are directly scalable to the ITER Atmospheric Detritiation System, the basic tritium recovery performance was investigated with a scaled polyimide membrane module (hollow-filament type : 10 m 3 /hr) loop. The result shows that the H 2 recovery ratio from N 2 or air was more than 99% or about 97%, respectively, at flow rate ratio of permeated/feed = 0.1, feed ampersand permeated side pressures = 2580 ampersand 80 torr, and module temp. = 293 K. Tritium (HT) recovery function was almost the same as H 2 recovery, even though the total hydrogen concentration was a few ppm in the feed of module. H 2 O recovery performance was better than hydrogen recovery. These recovery functions were improved effectively decreasing the pressure ratio of permeated/feed of module. 5 refs., 11 figs

  10. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  11. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    Science.gov (United States)

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  12. On the subtle balance between competitive sorption and plasticization effects in asymmetric hollow fiber gas separation membranes

    NARCIS (Netherlands)

    Visser, Tymen; Koops, G.H.; Wessling, Matthias

    2005-01-01

    The paper describes the influence of a varying feed composition of CO2/CH4 and CO2/N2 mixtures on the gas separation performance of integrally skinned asymmetric PES/PI hollow fibers with an effective skin thickness of 0.27 ¿m. Normally, thin membrane structures (<3 ¿m) show accelerated

  13. Portable optical frequency standard based on sealed gas-filled hollow-core fiber using a novel encapsulation technique

    DEFF Research Database (Denmark)

    Triches, Marco; Brusch, Anders; Hald, Jan

    2015-01-01

    A portable stand-alone optical frequency standard based on a gas-filled hollow-core photonic crystal fiber is developed to stabilize a fiber laser to the 13C2H2 P(16) (ν1 + ν3) transition at 1542 nm using saturated absorption. A novel encapsulation technique is developed to permanently seal...

  14. A Study of the Influence of Gas Channel Parameters on HT-PEM Fuel Cell Performance Using FEM Analysis

    Directory of Open Access Journals (Sweden)

    Ionescu Viorel

    2016-01-01

    Full Text Available Proton Exchange Membrane Fuel Cells (PEMFC are highly efficient power generators, achieving up to 50–60% conversion efficiency, even in sizes of a few kilowatts. Comsol Multiphysics, a commercial solver based on the Finite Element Method (FEM was used for developing a three dimensional model of a high temperature PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. Cathode gas flow velocity influence on the cell performance was investigated at first. Polarization curves for three different channel widths (0.8, 1.6 and 2.4 mm and three different channel depths (1, 2 and 3 mm were computed at a cathode inlet flow velocity of 0.06 m/s. Oxygen molar concentration at cathode catalyst layer-GDL channel interface and local current density variation along the cell length were also studied for specific gas channel geometries.

  15. Verification of high efficient broad beam cold cathode ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N.13759, Cairo (Egypt); Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt); Abdelhamid, M. M.; Ashour, A. H. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  16. Facile synthesis of aluminum-doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres and their electrochemical performance for high-voltage Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolin, E-mail: liu_x_l@sina.cn [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Li, Dan; Mo, Qiaoling; Guo, Xiaoyu; Yang, Xiaoxiao [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China); Chen, Guoxin, E-mail: gxchen@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang (China); Zhong, Shengwen [College of Material Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi (China)

    2014-10-01

    Graphical abstract: LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes are prepared by templated transformation method using monodisperse MnCO{sub 3} microspheres as precursor. As a cathodic material for high voltage lithium ion batteries, the as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres are investigated by galvanostatic cycling (GC) approach to evaluate their electrochemical properties in the range of 2.7–4.8 V vs. Li/Li{sup +} at the current rate 1 C. - Highlights: • LNMO and LANMO hollow microspheres are synthesized by template method. • The as-synthesized hollow microspheres have particle-size of 2 μm. • The hollow structure is responsible for improved electrochemical performance. - Abstract: This paper presents the preparation of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and aluminum (Al) doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres as 5 V cathodes using monodisperse MnCO{sub 3} microspheres as precursor and template, which were synthesized using MnSO{sub 4}·H{sub 2}O, NaHCO{sub 3} and ethanol in water at room temperature. XRD and morphology characterization results indicated that the as-prepared LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} were both spinel structure, and have particle sizes of 2–3 μm. The cathode electrochemical properties of LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} and Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow microspheres (as 5 V cathodes) were evaluated and compared by galvanostatic cycling (GC) vs. Li/Li{sup +} at the current rate 1 C in 2.7–4.8 V. The specific initial capacities of all samples were in the range of 70–120 mA h g{sup −1}. Compared to undoped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4}, Al doped LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} hollow structures can effectively improve discharge capacity (up to 140 (±5) mA h g{sup −1}) and cycling stability (70

  17. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells

    International Nuclear Information System (INIS)

    Whipple, Devin T.; Jayashree, Ranga S.; Egas, Daniela; Alonso-Vante, Nicolas; Kenis, Paul J.A.

    2009-01-01

    This paper reports the incorporation of a cluster-like Ru x Se y as a methanol tolerant cathode catalyst in a laminar flow fuel cell. The effect on cell performance of several concentrations of methanol in the cathode stream was investigated for the Ru x Se y catalyst and compared to a conventional platinum catalyst. While the Pt catalyst exhibited up to ∼80% drop in power density, the Ru x Se y catalyst showed no decrease in performance when the cathode was exposed to methanol. At several methanol concentrations the Ru x Se y catalyst performed better than the Pt catalyst. This demonstration of a methanol tolerant catalyst in a laminar flow fuel cell opens up the way for further miniaturization of the cell design and simplification of its operation as the need for an electrolyte stream to prevent fuel crossover has been eliminated.

  18. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  19. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  20. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.

    Science.gov (United States)

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2015-02-01

    Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848  cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.

  1. Method for the production of fabricated hollow microspheroids

    Science.gov (United States)

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  2. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  3. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  4. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  5. Effects of CO 2 on a High Performance Hollow-Fiber Membrane for Natural Gas Purification

    KAUST Repository

    Omole, Imona C.

    2010-05-19

    A 6FDA-based, cross-linkable polyimide was characterized in the form of a defect-free asymmetric hollow-fiber membrane. The novel membrane was cross-linked at various temperatures and tested for natural gas purification in the presence of high CO2 partial pressures. The cross-linked membrane material shows high intrinsic separation performance for CO2 and CH4 (selectivity ∼49, CO2 permeability ∼161 barrer, with a feed at 65 psia, 35 °C, and 10% CO2). Cross-linked asymmetric hollow-fiber membranes made from the material show good resistance to CO2-induced plasticization. Carbon dioxide partial pressures as high as ∼400 psia were employed, and the membrane was shown to be promisingly stable under these aggressive conditions. The performance of the membrane was also analyzed using the dual-mode sorption/transport model. © 2010 American Chemical Society.

  6. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Alevli, Mustafa; Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi

    2016-01-01

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor

  7. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr [Department of Physics, Marmara University, Göztepe Kadıköy, 34722 İstanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  8. Modelling of cross-flow membrane contactors : Physical mass transfer processes

    NARCIS (Netherlands)

    Dindore, V. Y.; Brilman, D. W. F.; Versteeg, G. F.

    2005-01-01

    Traditionally, hollow fiber membrane contactors used for gas-liquid contacting were designed in a shell and tube configuration with shell-side fluid flowing parallel to the fiber-side fluid, either in co-current or counter-current pattern. The primary limitations of these so-called 'parallel flow'

  9. Humidification of base flow gas during adult high-frequency oscillatory ventilation: an experimental study using a lung model.

    Science.gov (United States)

    Shiba, Naoki; Nagano, Osamu; Hirayama, Takahiro; Ichiba, Shingo; Ujike, Yoshihito

    2012-01-01

    In adult high-frequency oscillatory ventilation (HFOV) with an R100 artificial ventilator, exhaled gas from patient's lung may warm the temperature probe and thereby disturb the humidification of base flow (BF) gas. We measured the humidity of BF gas during HFOV with frequencies of 6, 8 and 10 Hz, maximum stroke volumes (SV) of 285, 205, and 160 ml at the respective frequencies, and, BFs of 20, 30, 40 l/min using an original lung model. The R100 device was equipped with a heated humidifier, Hummax Ⅱ, consisting of a porous hollow fiber in circuit. A 50-cm length of circuit was added between temperature probe (located at 50 cm proximal from Y-piece) and the hollow fiber. The lung model was made of a plastic container and a circuit equipped with another Hummax Ⅱ. The lung model temperature was controlled at 37℃. The Hummax Ⅱ of the R100 was inactivated in study-1 and was set at 35℃ or 37℃ in study-2. The humidity was measured at the distal end of the added circuit in study-1 and at the proximal end in study-2. In study-1, humidity was detected at 6 Hz (SV 285 ml) and BF 20 l/min, indicating the direct reach of the exhaled gas from the lung model to the temperature probe. In study-2 the absolute humidity of the BF gas decreased by increasing SV and by increasing BF and it was low with setting of 35℃. In this study setting, increasing the SV induced significant reduction of humidification of the BF gas during HFOV with R100.

  10. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; James, Christine [Michigan State Univ., East Lansing, MI (United States). Chemical Engineering and Materials Science Dept.; Gaines, Linda G. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division

    2014-09-30

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  11. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  12. Deposition of thin film of titanium on ceramic substrate using the discharge for hollow cathode for Al2O3/Al2O3 indirect brazing

    Directory of Open Access Journals (Sweden)

    Mary Roberta Meira Marinho

    2009-01-01

    Full Text Available Thin films of titanium were deposited onto Al2O3 substrate by hollow cathode discharge method for the formation of a ceramic-ceramic joint using indirect brazing method. An advantage of using this technique is that a relatively small amount of titanium is required for the metallization of the ceramic surface when compared with other conventional methods. Rapidly solidified brazing filler of Cu49Ag45Ce6 in the form of ribbons was used. The thickness of deposited titanium layer and the brazing temperature/time were varied. The quality of the brazed joint was evaluated through the three point bending flexural tests. The brazed joints presented high flexural resistance values up to 176 MPa showing the efficiency of the technique.

  13. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  14. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  15. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.

    2015-12-22

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  16. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    KAUST Repository

    Werner, Craig M.; Katuri, Krishna; Rao, Hari Ananda; Chen, Wei; Lai, Zhiping; Logan, Bruce E.; Amy, Gary L.; Saikaly, Pascal

    2015-01-01

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  17. Method for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  18. Facile synthesis of hollow Co3O4 microspheres and its use as a rapid responsive CL sensor of combustible gases.

    Science.gov (United States)

    Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa

    2008-09-15

    The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.

  19. Study on the water flooding in the cathode of direct methanol fuel cells.

    Science.gov (United States)

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  20. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres

    KAUST Repository

    Shi, Huanhuan

    2016-11-29

    Herein we report the control synthesis of lepidocrocite VOOH hollow nanospheres and further their applications in electrocatalytic water splitting for the first time. By tuning the surface area of the nanospheres, the optimal performance can be achieved with low overpotentials of 270 mV for the oxygen evolution reaction (OER) and 164 mV for the hydrogen evolution reaction (HER) at 10 mA cm-2 in 1 m KOH, respectively. Furthermore, when used as both the anode and cathode for overall water splitting, a low cell voltage of 1.62 V is required to reach the current density of 10 mA cm-2 , making the VOOH hollow nanospheres an efficient alternative to water splitting.

  1. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  2. Fabrication of Functionalized MOFs Incorporated Mixed Matrix Hollow Fiber Membrane for Gas Separation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2017-01-01

    Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.

  3. Basic studies of a gas-jet-coupled ion source for on-line isotope separation

    International Nuclear Information System (INIS)

    Anderl, R.A.; Novick, V.J.; Greenwood, R.C.

    1980-01-01

    A hollow-cathode ion source was used in a gas-jet-coupled configuration to produce ion beams of fission products transported to it from a 252 Cf fission source. Solid aerosols of NaCl and Ag were used effectively as activity carriers in the gas-jet system. Flat-plate skimmers provided an effective coupling of the ion source to the gas jet. Ge(Li) spectrometric measurements of the activity deposited on an ion-beam collector relative to that deposited on a pre-skimmer collector were used to obtain separation efficiencies ranging from 0.1% to > 1% for Sr, Y, Tc, Te, Cs, Ba, Ce, Pr, Nd and Sm. The use of CCl 4 as a support gas resulted in a significant enhancement of the alkaline-earth and rare-earth separation efficiencies

  4. A simulation model for transient response of a gas separation module using a hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takahiko, E-mail: t-sugiyama@nucl.nagoya-u.ac.jp [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Miyahara, Naoya [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Tanaka, Masahiro [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan); Munakata, Kenzo [Akita University, Tegata Gakuen-cho 1-1, Akita-shi, Akita 010-8502 (Japan); Yamamoto, Ichiro [Nagoya University, Fro-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2011-10-15

    A simulation model has been developed for transient response of a gas separation module using a hollow fiber membrane for the removal of tritium from the atmosphere of the confinement space. The mass transfer process such as sorption and desorption of gases at the surface of the dense layer and the porous support layer, diffusive transfer in the both layers are treated in the model. Sorption isotherm, mass transfer rate and permeance are estimated through step-wise transient response experiments. The present model represents well not only separation factors and recovery ratio at the steady state but also responses to the multi-step wise change in the sweep gas rate.

  5. Interfacial Reaction Dependent Performance of Hollow Carbon Nanosphere – Sulfur Composite as a Cathode for Li-S Battery

    International Nuclear Information System (INIS)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-01-01

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness, and environmental friendliness of sulfur. However, there are still a number of technical challenges, such as low Coulombic efficiency and poor long-term cycle life, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species, which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li 2 S 2 /Li 2 S), which limits the reversibility of the interfacial reactions and results in poor electrochemical performances. These findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.

  6. Interfacial Reaction Dependent Performance of Hollow Carbon Nanosphere – Sulfur Composite as a Cathode for Li-S Battery

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng [Pacific Northwest National Laboratory, Richland, WA (United States); Wagner, Michael J.; Hays, Kevin A. [The George Washington University, Washington, DC (United States); Chen, Junzheng; Li, Xiaohong; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie, E-mail: jie.xiao@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness, and environmental friendliness of sulfur. However, there are still a number of technical challenges, such as low Coulombic efficiency and poor long-term cycle life, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species, which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li{sub 2}S{sub 2}/Li{sub 2}S), which limits the reversibility of the interfacial reactions and results in poor electrochemical performances. These findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.

  7. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  8. 1st European Conference on Gas Micro Flows (GasMems 2012)

    NARCIS (Netherlands)

    Frijns, A.J.H.; Valougeorgis, D.; Colin, S.; Baldas, L.

    2012-01-01

    PREFACE The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch

  9. Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface

    Energy Technology Data Exchange (ETDEWEB)

    Masson, R., E-mail: roland.masson@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France); Trenty, L., E-mail: laurent.trenty@andra.fr [Andra, Chatenay Malabry (France); Zhang, Y., E-mail: yumeng.zhang@unice.fr [LJAD, University Nice Sophia Antipolis, CNRS UMR 7351 (France); Team COFFEE INRIA Sophia Antipolis Méditerranée (France)

    2016-09-15

    This paper proposes an efficient splitting algorithm to solve coupled liquid gas Darcy and free gas flows at the interface between a porous medium and a free-flow domain. This model is compared to the reduced model introduced in [6] using a 1D approximation of the gas free flow. For that purpose, the gas molar fraction diffusive flux at the interface in the free-flow domain is approximated by a two point flux approximation based on a low-frequency diagonal approximation of a Steklov–Poincaré type operator. The splitting algorithm and the reduced model are applied in particular to the modelling of the mass exchanges at the interface between the storage and the ventilation galleries in radioactive waste deposits.

  10. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    Science.gov (United States)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  11. Gage for gas flow measurement especially in gas-suction pipes

    International Nuclear Information System (INIS)

    Renner, K.; Stegmanns, W.

    1978-01-01

    The gage utilizes the differential pressure given by a differential pressure producer to generate, in a bypass, a partial gas flow measured by means of a direct-reading anemometer of windmill type. The partial gas flow is generated between pressure pick-up openings in the gas-suction pipe in front of a venturi insert and pressure pick-up openings at the bottleneck of the venturi insert. The reading of the anemometer is proportional to the main gas flow and independent of the variables of state and the properties of the gases to be measured. (RW) [de

  12. Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines

    Science.gov (United States)

    Kolmakova, D.; Popov, G.

    2018-01-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  13. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  14. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Varanusupakul, Pakorn [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)], E-mail: pakorn.v@chula.ac.th; Vora-adisak, Narongchai; Pulpoka, Bancha [Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand)

    2007-08-15

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na{sub 2}SO{sub 4}. The linear calibration curves were observed for the concentrations ranging from 1 to 300 {mu}g L{sup -1} with the correlation coefficients (R{sup 2}) being greater than 0.99. The method detection limits of most analytes were below 1 {mu}g L{sup -1} except DCAA and MCAA that were 2 and 18 {mu}g L{sup -1}, respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water.

  15. In situ derivatization and hollow fiber membrane microextraction for gas chromatographic determination of haloacetic acids in water

    International Nuclear Information System (INIS)

    Varanusupakul, Pakorn; Vora-adisak, Narongchai; Pulpoka, Bancha

    2007-01-01

    An alternative method for gas chromatographic determination of haloacetic acids (HAAs) in water using direct derivatization followed by hollow fiber membrane liquid-phase microextraction (HF-LPME) has been developed. The method has improved the sample preparation step according to the conventional US EPA Method 552.2 by combining the derivatization and the extraction into one step prior to determination by gas chromatography electron captured detector (GC-ECD). The HAAs were derivatized with acidic methanol into their methyl esters and simultaneously extracted with supported liquid hollow fiber membrane in headspace mode. The derivatization was attempted directly in water sample without sample evaporation. The HF-LPME was performed using 1-octanol as the extracting solvent at 55 deg. C for 60 min with 20% Na 2 SO 4 . The linear calibration curves were observed for the concentrations ranging from 1 to 300 μg L -1 with the correlation coefficients (R 2 ) being greater than 0.99. The method detection limits of most analytes were below 1 μg L -1 except DCAA and MCAA that were 2 and 18 μg L -1 , respectively. The recoveries from spiked concentration ranged from 97 to 109% with %R.S.D. less than 12%. The method was applied for determination of HAAs in drinking water and tap water samples. The method offers an easy one step high sample throughput sample preparation for gas chromatographic determination of haloacetic acids as well as other contaminants in water

  16. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production

    KAUST Repository

    Ambler, Jack R.; Logan, Bruce E.

    2011-01-01

    Microbial electrolysis cells (MECs) are often examined for hydrogen production using non-sustainable phosphate buffered solutions (PBS), although carbonate buffers have been shown to work in other bioelectrochemical systems with a platinum (Pt) catalyst. Stainless steel (SS) has been shown to be an effective catalyst for hydrogen evolution in MECs, but it has not been tested with carbonate buffers. We evaluated the combined using of SS cathodes and a bicarbonate buffer (BBS) at the applied voltages of 0.5, 0.7 and 0.9 V using a new inexpensive method for measuring gas production called the gas bag method (GBM). This method achieved an average error of only 5.0% based on adding known volumes of gas to the bag. Using the GBM, hydrogen production with SS and a BBS was 26.6 ± 1.8 mL which compared well to 26.4 ± 2.8 mL using Pt and BBS, and 26.8 ± 2.5 mL with a Pt cathode and PBS. Electrical energy efficiency was highest with a SS cathode and BBS at 159 ± 17%, compared to 126 ± 14% for the Pt cathode and BBS, and 134 ± 17% for a Pt cathode and PBS. The main disadvantage of the SS was a lower gas production rate of 1.1 ± 0.3 m3 H2-m-3 d-1 with BBS and 1.2 ± 0.3 m3 H2-m-3 d -1 with PBS, compared to 1.7 ± 0.4 m3 H 2-m-3 d-1 with Pt and PBS. These results show that the GBM is an effective new method for measuring gas production of anaerobic gas production processes, and that SS and bicarbonate buffers can be used to effectively produce hydrogen in MECs. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  17. Effect of porous material heating on the drag force of a cylinder with gas-permeable porous inserts in a supersonic flow

    Science.gov (United States)

    Mironov, S. G.; Poplavskaya, T. V.; Kirilovskiy, S. V.

    2017-10-01

    The paper presents the results of an experimental investigation of supersonic flow around a solid cylinder with a gas-permeable porous insert on its front end and of supersonic flow around a hollow cylinder with internal porous inserts in the presence of heating of the porous material. The experiments were performed in a supersonic wind tunnel with Mach number 4.85 and 7 with porous inserts of cellular-porous nickel. The results of measurements on the filtration stand of the air filtration rate through the cellular-porous nickel when it is heated are also shown. For a number of experiments, numerical modeling based on the skeletal model of a cellular-porous material was carried out.

  18. Design of carbon nanotube-based gas-diffusion cathode for O{sub 2} reduction by multicopper oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Carolin; Adkins, Emily R.; Atanassov, Plamen [University of New Mexico, Center for Emerging Energy Technologies, Albuquerque, NM (United States); Ramasamy, Ramaraja P. [Microbiology and Applied Biochemistry, Airbase Sciences, Air Force Research Laboratory, Tyndall Air Force Base, FL (United States); Nano-Electrochemistry Laboratory, Faculty of Engineering, University of Georgia, Athens, GA (United States); Luckarift, Heather R.; Johnson, Glenn R. [Microbiology and Applied Biochemistry, Airbase Sciences, Air Force Research Laboratory, Tyndall Air Force Base, FL (United States)

    2012-01-15

    Multicopper oxidases, such as laccase or bilirubin oxidase, are known to reduce molecular oxygen at very high redox potentials, which makes them attractive biocatalysts for enzymatic cathodes in biological fuel cells. By designing an enzymatic gas-diffusion electrode, molecular oxygen can be supplied through the gaseous phase, avoiding solubility and diffusion limitations typically associated with liquid electrolytes. In doing so, the current density of enzymatic cathodes can theoretically be enhanced. This publication presents a material study of carbon/Teflon composites that aim to optimize the functionality of the gas-diffusion and catalytic layers for application in enzymatic systems. The modification of the catalytic layer with multiwalled carbon nanotubes, for example, creates the basis for stronger {pi}-{pi} stacking interactions through tethered enzymatic linkers, such as pyrenes or perylene derivates. Cyclic voltammograms show the effective direct electron contact of laccase with carbon nanotube-modified electrodes via tethered crosslinking molecules as a model system. The polarization behavior of laccase-modified gas-diffusion electrodes reveals open-circuit potentials of +550 mV (versus Ag/AgCl) and current densities approaching 0.5 mA cm{sup 2} (at zero potential) in air-breathing mode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Inert gas thrusters

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  20. Computational Screening for Design of Optimal Coating Materials to Suppress Gas Evolution in Li-Ion Battery Cathodes.

    Science.gov (United States)

    Min, Kyoungmin; Seo, Seung-Woo; Choi, Byungjin; Park, Kwangjin; Cho, Eunseog

    2017-05-31

    Ni-rich layered oxides are attractive materials owing to their potentially high capacity for cathode applications. However, when used as cathodes in Li-ion batteries, they contain a large amount of Li residues, which degrade the electrochemical properties because they are the source of gas generation inside the battery. Here, we propose a computational approach to designing optimal coating materials that prevent gas evolution by removing residual Li from the surface of the battery cathode. To discover promising coating materials, the reactions of 16 metal phosphates (MPs) and 45 metal oxides (MOs) with the Li residues, LiOH, and Li 2 CO 3 are examined within a thermodynamic framework. A materials database is constructed according to density functional theory using a hybrid functional, and the reaction products are obtained according to the phases in thermodynamic equilibrium in the phase diagram. In addition, the gravimetric efficiency is calculated to identify coating materials that can eliminate Li residues with a minimal weight of the coating material. Overall, more MP and MO materials react with LiOH than with Li 2 CO 3 . Specifically, MPs exhibit better reactivity to both Li residues, whereas MOs react more with LiOH. The reaction products, such as Li-containing phosphates or oxides, are also obtained to identify the phases on the surface of a cathode after coating. On the basis of the Pareto-front analysis, P 2 O 5 could be an optimal material for the reaction with both Li residuals. Finally, the reactivity of the coating materials containing 3d/4d transition metal elements is better than that of materials containing other types of elements.

  1. A Gas Cell Based on Hollow-Core Photonic Crystal Fiber (PCF and Its Application for the Detection of Greenhouse Gas (GHG: Nitrous Oxide (N2O

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2016-01-01

    Full Text Available The authors report the detection of nitrous oxide gas using intracavity fiber laser absorption spectroscopy. A gas cell based on a hollow-core photonic crystal fiber was constructed and used inside a fiber ring laser cavity as an intracavity gas cell. The fiber laser in the 1.55 μm band was developed using a polarization-maintaining erbium-doped fiber as the gain medium. The wavelength of the laser was selected by a fiber Bragg grating (FBG, and it matches one of the absorption lines of the gas under investigation. The laser wavelength contained multilongitudinal modes, which increases the sensitivity of the detection system. N2O gas has overtones of the fundamental absorption bands and rovibrational transitions in the 1.55 μm band. The system was operated at room temperature and was capable of detecting nitrous oxide gas at sub-ppmv concentration level.

  2. Fabrication of polymeric hollow nanospheres, hollow nanocubes and hollow plates

    Science.gov (United States)

    Cheng, Daming; Xia, Haibing; Chan, Hardy Sze On

    2006-03-01

    A facile strategy for fabricating polypyrrole-chitosan (PPy-CS) hollow nanostructures with different shapes (sphere, cube and plate) and a wide range of sizes (from 35 to 600 nm) is described. These hollow structures have been fabricated using silver bromide as a single template material for polymer nucleation and growth. PPy-CS hollow nanostructures are formed by reaction with an etching agent to remove the core. These hollow nanostructures have been extensively characterized using various techniques such as TEM, FT-IR, UV-vis, and XRD.

  3. Gas-liquid flow filed in agitated vessels

    International Nuclear Information System (INIS)

    Hormazi, F.; Alaie, M.; Dabir, B.; Ashjaie, M.

    2001-01-01

    Agitated vessels in form of sti reed tank reactors and mixed ferment ors are being used in large numbers of industry. It is more important to develop good, and theoretically sound models for scaling up and design of agitated vessels. In this article, two phase flow (gas-liquid) in a agitated vessel has been investigated numerically. A two-dimensional computational fluid dynamics model, is used to predict the gas-liquid flow. The effects of gas phase, varying gas flow rates and variation of bubbles shape on flow filed of liquid phase are investigated. The numerical results are verified against the experimental data

  4. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  5. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes.

    Science.gov (United States)

    Wang, Xinran; Bi, Xuanxuan; Wang, Shaona; Zhang, Yi; Du, Hao; Lu, Jun

    2018-05-16

    The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.

  6. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    Science.gov (United States)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Moritz, Jr., Joel A. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  7. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina

    2017-09-18

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  8. Electrochemically Active Polymeric Hollow Fibers based on Poly(ether- b -amide)/Carbon Nanotubes

    KAUST Repository

    Cuevas, Carolina; Kim, Dooli; Katuri, Krishna; Saikaly, Pascal; Nunes, Suzana Pereira

    2017-01-01

    A simple and effective method to incorporate catalytic activity to a hollow fiber membrane is reported. Polyetherimide hollow fiber membranes were coated with a solution containing carboxyl-functionalized multi-walled carbon nanotubes and poly(ether-b-amide). Electron microscopy images confirmed the presence of a layer of percolating carbon nanotubes on the surface of the membranes. Cyclic voltammetry and linear swept voltammetry experiments showed that these membranes are able to drive the reactions of hydrogen evolution, and oxygen reduction, making them a cheaper, and greener substitute for platinum based cathodes in microbial bioelectrochemical systems. Water flux and molecular weight cut off experiments indicated that the electrochemically active coating layer does not affect the ultrafiltration performance of the membrane.

  9. Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition

    NARCIS (Netherlands)

    Culfaz, P.Z.; Haddad, M.; Wessling, Matthias; Lammertink, Rob G.H.

    2011-01-01

    The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared

  10. Mechanistic modelling of a cathode-supported tubular solid oxide fuel cell

    Science.gov (United States)

    Suwanwarangkul, R.; Croiset, E.; Pritzker, M. D.; Fowler, M. W.; Douglas, P. L.; Entchev, E.

    A two-dimensional mechanistic model of a tubular solid oxide fuel cell (SOFC) considering momentum, energy, mass and charge transport is developed. The model geometry of a single cell comprises an air-preheating tube, air channel, fuel channel, anode, cathode and electrolyte layers. The heat radiation between cell and air-preheating tube is also incorporated into the model. This allows the model to predict heat transfer between the cell and air-preheating tube accurately. The model is validated and shows good agreement with literature data. It is anticipated that this model can be used to help develop efficient fuel cell designs and set operating variables under practical conditions. The transport phenomena inside the cell, including gas flow behaviour, temperature, overpotential, current density and species concentration, are analysed and discussed in detail. Fuel and air velocities are found to vary along flow passages depending on the local temperature and species concentrations. This model demonstrates the importance of incorporating heat radiation into a tubular SOFC model. Furthermore, the model shows that the overall cell performance is limited by O 2 diffusion through the thick porous cathode and points to the development of new cathode materials and designs being important avenues to enhance cell performance.

  11. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  12. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  13. Inhalational anaesthesia with low fresh gas flow

    Directory of Open Access Journals (Sweden)

    Christian Hönemann

    2013-01-01

    Full Text Available During the inhalation of anaesthesia use of low fresh gas flow (0.35-1 L/min has some important advantages. There are three areas of benefit: pulmonary - anaesthesia with low fresh gas flow improves the dynamics of inhaled anaesthesia gas, increases mucociliary clearance, maintains body temperature and reduces water loss. Economic - reduction of anaesthesia gas consumption resulting in significant savings of > 75% and Ecological - reduction in nitrous oxide consumption, which is an important ozone-depleting and heat-trapping greenhouse gas that is emitted. Nevertheless, anaesthesia with high fresh gas flows of 2-6 L/min is still performed, a technique in which rebreathing is practically negligible. This special article describes the clinical use of conventional plenum vaporizers, connected to the fresh gas supply to easily perform low (1 L/min, minimal (0.5 L/min or metabolic flow anaesthesia (0.35 L/min with conventional Primus Draeger® anaesthesia machines in routine clinical practice.

  14. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  15. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  16. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    Science.gov (United States)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel; Jayaweera, Palitha; Bhamidi, Srinivas

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  17. Flow regimes in vertical gas-solid contact systems

    Energy Technology Data Exchange (ETDEWEB)

    Yerushalmi, J.; Cankurt, N. T.; Geldart, D.; Liss, B.

    1976-01-01

    The flow characteristics in fluidized beds, i.e., gas-solid systems, was studied to determine the flow regimes, the interaction of gas and solid in the various flow regimes and the dependence of this interaction and of transition between flow regimes on the properties of the gas and solid, on the gas and solid flow rates, and on the containing vessel. Fluidized beds with both coarse and fine particles are considered. Test results using high speed photography to view the operation of a 2-dimensional bed are discussed. (LCL)

  18. Active combustion flow modulation valve

    Science.gov (United States)

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  19. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  20. Heavy ion source support gas mixing experiments

    International Nuclear Information System (INIS)

    Hudson, E.D.; Mallory, M.L.

    1977-01-01

    Experiments on mixing an easily ionized support gas with the primary ion source gas have produced large beam enhancements for high charge state light ions (masses less than or equal to 20). In the Oak Ridge Isochronous Cyclotron (ORIC), the beam increase has been a factor of 5 or greater, depending on ion species and charge state. Approximately 0.1 cc/min of the easily ionized support gas (argon, krypton, or xenon) is supplied to the ion source through a separate gas line and the primary gas flow is reduced by approximately 30 percent. The proposed mechanism for increased intensity is as follows: The heavier support gas ionizes readily to a higher charge state, providing increased cathode heating. The increased heating permits a reduction in primary gas flow (lower pressure) and the subsequent beam increase

  1. New design of a PEFC cathode separator of for water management

    Science.gov (United States)

    Sugiura, K.; Takahashi, N.; Kamimura, T.

    2017-11-01

    Generally, polymer electrolyte fuel cells (PEFCs) need humidifiers to prevent the drying of the membrane, but this use of humidifiers creates water management issues, such as the flooding/plugging phenomena and decreased system efficiency because of an increase in the electric energy needed for auxiliary equipment. Although most researchers have developed high-temperature membranes that do not need humidifiers, a lot of time is necessary for the development of these membranes, and these membranes drive up costs. Therefore, we propose a new cathode separator design that can recycle water generated by power generation in the same cell and a stack structure that can redistribute water collected in the cathode outlet manifold to drying cells. Because the new cathode separator has a bypass channel from the gas outlet to the gas inlet to transport excess water, a dry part in the gas inlet is supplied with excess water in the gas outlet through the bypass channel even if the PEFC is operated under dry conditions. Excess water in the PEFC stack can be transported from the cell with excess water to the drying cell through the cathode outlet manifold with a porous wall. Therefore, we confirm the influence of the plugging phenomenon in the cathode gas outlet manifold on the cell performance of each cell in the stack. As a result, the cell performance of the new cathode separator design is better than that of the standard separator under the low humidity conditions. We confirm that the plugging phenomenon in the cathode outlet manifold affects the cell performance of each cell in the stack.

  2. Staggered-electromagnetophoresis with a Split-flow System for the Separation of Microparticles by a Hollow Fiber-embedded PDMS Microchip.

    Science.gov (United States)

    Iiguni, Yoshinori; Tanaka, Ayaka; Kitagawa, Shinya; Ohtani, Hajime

    2016-01-01

    A novel microchip separation system for microparticles based on electromagnetophoresis (EMP) was developed. In this system, focusing and separation of flowing microparticles in a microchannel could be performed by staggered-EMP by controlling the electric current applied to the channel locally combined with the split-flow system for fractionation of eluates. To apply the electric current through the flushing medium in the microchannel, a hollow fiber-embedded microchip with multiple electrodes was fabricated. The hollow fiber was made by a semi-permeable membrane and could separate small molecules. This microchip allowed us to apply the electric current to a part of the microchannel without any pressure control device because a main channel contacted with the subchannels that had electrodes through the semi-permeable membrane. Moreover, the separation using this microchip was combined with the split-flow system at two outlets to improve separation efficiency. Using this system, with the split-flow ratio of 10:1, 87% of 3 μm polystyrene (PS) latex particles were isolated from a mixture of 3 and 10 μm particles. Even the separation of 6 and 10 μm PS particles was achieved with about 77% recovery and 100% purity. In addition, by controlling the applied current, size fractionation of polypropylene (PP) particles was demonstrated. Moreover, biological particles such as pollens could be separated with high separation efficiency by this technique.

  3. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    OpenAIRE

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chavez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few {\\mu}J energy generate vacuum ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to ...

  4. Modeling of proton exchange membrane fuel cell with variable distance gas flow in anode and cathode

    International Nuclear Information System (INIS)

    Mohd Shahbudin Masdar; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    A number of fundamental studies have been directed towards increasing our understanding of PEM fuel cell and their performance. Mathematical modeling is one of the way and very essential component in the development of this fuel cell. Model validation is presented, the validated model is then used to investigate the behavior of mole fraction of gases, current density, and the performances of stack using polarization curve depending on distance gases flow in channel. The model incorporates a complete cell with both the membrane electrode assembly (MEA) and the serpentine gas distributor channel. Finally, the parametric studies in single stack design are illustrated

  5. Modified Gold Electrode and Hollow Mn3O4 Nanoparticles as Electrode Materials for Microbial Fuel Cell Applications

    Science.gov (United States)

    Dhungana, Pramod

    Microbial fuel cell (MFC) technology has attracted great attention in the scientific community as it offers the possibility of extraction of electricity from wide range of soluble and dissolved organic waste or renewable biomass, including sludge, waste water and cellulosic biomass. Microbial fuel cells are devices that utilize microbial metabolic processes to convert chemical energy via the oxidation of organic substances to produce electric current. MFCs consist of two chambers, an anode and cathode, separated by ion-permeable materials. The efficiency of producing electricity using the MFC depends on several factors such as immobilization of microorganisms on anode, mode of electron transfer, types of substrate/fuel and effectiveness of cathode materials for oxygen reduction reaction (ORR). In this work, in order to immobilize the microorganisms on anode materials, we have investigated the surface modification of gold electrode (anode) using alkyl dithiol and aryl thiol with glucose. The modification processes were characterized by using contact angle measurements and proton nuclear magnetic resonance (NMR). In order to study the effectiveness of cathode materials for ORR, we have synthesized hollow Mn3O 4 nanoparticles which are electrically very poor. Therefore, the hollow nanoparticles were mixed with electrically conductive multi-walled carbon nanotube as support and optimized the mixing process. This composite material shows enhanced ORR activity in all types of pH conditions. In future, we will focus to integrate anode and cathode in MFC to check its efficiency to produce electricity.

  6. Nanocrystalline diamond film as cathode for gas discharge sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jou, Shyankay, E-mail: sjou@mail.ntust.edu.t [Graduate Institute of Materials Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Huang, Bohr-Ran [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Wu, Meng-Chang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Touliu 640, Taiwan (China)

    2010-05-31

    Nanocrystalline diamond (NCD) film was deposited on a silicon substrate utilizing microwave plasma-enhanced chemical vapor deposition in a mixed flow of methane, hydrogen and argon. The deposited film had a cauliflower-like morphology, and was composed of NCD, carbon clusters and mixed sp{sup 2}- and sp{sup 3}-bonded carbon. Electron field emission (EFE) in vacuum and electrical discharges in Ar, N{sub 2} and O{sub 2} using the NCD film as the cathode were characterized. The turn-on field for EFE and the geometric enhancement factor for the NCD film were 8.5 V/{mu}m and 668, respectively. The breakdown voltages for Ar, N{sub 2} and O{sub 2} increased with pressures from 1.33 x 10{sup 4} Pa to 1.01 x 10{sup 5} Pa, following the right side of the normal Paschen curve.

  7. Effect of bore fluid flow rate on formation and properties of hollow fibers

    Science.gov (United States)

    Alobaidy, Asrar A.; Sherhan, Bashir Y.; Barood, Areej D.; Alsalhy, Qusay F.

    2017-12-01

    In this work, for high performance and wide range of ultrafiltration applications, the effects of the most widely used values of internal coagulant flow rates (ICFR) (i.e., 2.6, 3.6, 4, 5, 7, 9, 11, and 13 ml/min) on the different features of the polyvinylchloride hollow fiber have been investigated. Both the idealized straight and the cylindrical pore with small effect of tortuosity were approximately obtained through the effect of ICFR. Atomic force microscope (AFM), scanning electron microscope (SEM), and ultrafiltration measurements were utilized to characterize the hollow fibers. The SEM and AFM results indicated that the cross-sectional morphology of the fibers is changed significantly with various ICFR. The structure of the inner surface was also changed from an open cellular structure to a porous structure by means of high pore density and small pore diameter. In addition, the membrane thickness was reduced by 314% with an increase in the ICFR from 2.6 to 13 ml/min. The pure water permeation flux was improved 17 times when ICFR was increased to 13 ml/min, while the BSA rejection remained within the acceptable range (from 93.4 to 90.4) when the ICFR was increased from 2.6 to 9 ml/min.

  8. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  9. Effect of wall wettability on flow characteristics of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Uematsu, Junichi; Abe, Kazuya; Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi

    2007-01-01

    To evaluate the effect of surface wettability in pipe wall on flow characteristics in a vertical upward gas-liquid to-phase flow, visualization study was performed using three test pipes, namely an acrylic pipe, a hydrophilic pipe, a hydrophobic pipe. Such basic flow characteristics as flow patterns and void fraction were investigated in these three pipes. In the hydrophilic pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity condition at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity condition at a given liquid velocity. In the hydrophobic pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was observed in the acrylic pipe. At high-gas flow rate condition, the mean void fraction in the hydrophobic pipe took relatively higher value to that in the acrylic pipe. (author)

  10. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  11. Impact of cathode evaporation on a free-burning arc

    International Nuclear Information System (INIS)

    Etemadi, K.

    1990-01-01

    In the center of a free-burning, high intensity argon arc at atmospheric pressure, a highly ionized vapor beam of copper has been generated by a continuous feeding of a thin (0.5 and 1 mm diameter) copper wire to the hot surface region of the cathode in the vicinity of the plasma attachment. The copper vapor is carried into the plasma column between the electrodes by the self-magnetic induced plasma flow caused by the conical shape of the cathode. In order to study the vapor beam, the arc is modeled at atmospheric pressure, with a current of 150 A, a gap spacing of 1 cm, a cathode tip of 60 degrees and a copper vapor flow of 1 mg/s. The temperature, mass flow, current flow and Cu concentration are calculated for the entire plasma region. The intensity distribution of CuI spectral line at 5218.2 angstrom is also recorded by emission spectroscopy and compared with the calculated values. The copper vapor in the cathode region has velocities of 210 m/s with a mass concentration of above 90% within 0.5 mm from the arc axis. The vapor passes from the cathode toward the anode with a slight diffusion in the argon plasma. Higher temperatures and current densities in the core of the arc, caused by the cathode evaporation, are calculated

  12. Web-Based Cathode Strip Chamber Data Display

    CERN Multimedia

    Firmansyah, M

    2013-01-01

    Cathode Strip Chamber (CSC) is a detector that uses gas and high electric field to detect particles. When a particle goes through CSC, it will ionize gas particles and generate electric signal in the anode and cathode of the detector. Analysis of the electric signal data can help physicists to reconstruct path of the particles and determine what happen inside the detector. Using data display, analysis of CSC data becomes easier. One can determine which data is interesting, unusual, or maybe only contain noise.\

  13. Gas flow headspace liquid phase microextraction.

    Science.gov (United States)

    Yang, Cui; Qiu, Jinxue; Ren, Chunyan; Piao, Xiangfan; Li, Xifeng; Wu, Xue; Li, Donghao

    2009-11-06

    There is a trend towards the use of enrichment techniques such as microextraction in the analysis of trace chemicals. Based on the theory of ideal gases, theory of gas chromatography and the original headspace liquid phase microextraction (HS-LPME) technique, a simple gas flow headspace liquid phase microextraction (GF-HS-LPME) technique has been developed, where the extracting gas phase volume is increased using a gas flow. The system is an open system, where an inert gas containing the target compounds flows continuously through a special gas outlet channel (D=1.8mm), and the target compounds are trapped on a solvent microdrop (2.4 microL) hanging on the microsyringe tip, as a result, a high enrichment factor is obtained. The parameters affecting the enrichment factor, such as the gas flow rate, the position of the microdrop, the diameter of the gas outlet channel, the temperatures of the extracting solvent and of the sample, and the extraction time, were systematically optimized for four types of polycyclic aromatic hydrocarbons. The results were compared with results obtained from HS-LPME. Under the optimized conditions (where the extraction time and the volume of the extracting sample vial were fixed at 20min and 10mL, respectively), detection limits (S/N=3) were approximately a factor of 4 lower than those for the original HS-LPME technique. The method was validated by comparison of the GF-HS-LPME and HS-LPME techniques using data for PAHs from environmental sediment samples.

  14. Method and apparatus for producing small hollow spheres

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1979-01-01

    A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants

  15. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    Kroon, J.P.C.

    1985-01-01

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 2 1 S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 2 1 S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  16. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  17. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  18. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-04-01

    Full Text Available The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction state, while it decreases sharply at the high gas volume fraction state and then decreases with the increasing gas quantity. There is an obvious asymmetric blade vapor density on the blade suction side under each cavitation state. The cavities can be weakened obviously by increasing the inlet gas volume fraction within a certain range. It has little influence on the internal unsteady flow of the mixed-flow pump when the gas volume fraction is less than 10%, but the pump starts to operate with a great unsteady characteristic when the inlet gas volume fraction increases to 15%.

  19. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui, E-mail: huaguinie@126.com; Gu, Cancan; Liu, Ming; Yang, Zhi, E-mail: yang201079@126.com; Yang, Keqin; Chen, Xi’an; Huang, Shaoming, E-mail: smhuang@wzu.edu.cn [Wenzhou University, Nanomaterials and Chemistry Key Laboratory (China)

    2016-06-15

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO{sub 2} spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO{sub 2} spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction.

  20. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    International Nuclear Information System (INIS)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui; Gu, Cancan; Liu, Ming; Yang, Zhi; Yang, Keqin; Chen, Xi’an; Huang, Shaoming

    2016-01-01

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO_2 spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO_2 spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction

  1. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  2. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    Science.gov (United States)

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  3. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jamroz, Piotr, E-mail: piotr.jamroz@pwr.wroc.pl; Zyrnicki, Wieslaw; Pohl, Pawel

    2012-07-15

    A stable direct current atmospheric pressure glow microdischarge (dc-{mu}APGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N{sub 2}, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N{sub 2} bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N{sub 2}, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N{sub 2} (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the H{sub {beta}} line and equals to (0.25-1.1) Multiplication-Sign 10{sup 15} cm{sup -3} and (0.68-1.2) Multiplication-Sign 10{sup 15} cm{sup -3} in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation

  4. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    International Nuclear Information System (INIS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-01-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N 2 , H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000–2600 K) and N 2 bands (1600–1950 K) were significantly lower than the excitation temperatures of Ar (7400 K–7800 K) and H (11 000–15 500 K) atoms. Vibrational temperatures of N 2 , OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350–1750 K) and N 2 (400–1350 K) and excitation temperatures of Ar (5200–5500 K) and H (3600–12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the H β line and equals to (0.25–1.1) × 10 15 cm −3 and (0.68–1.2) × 10 15 cm −3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of

  5. Evaluation of Cathode Air Flow Transients in a SOFC/GT Hybrid System Using Hardware in the Loop Simulation.

    Science.gov (United States)

    Zhou, Nana; Yang, Chen; Tucker, David

    2015-02-01

    Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.

  6. Gas and Oil Flow through Wellbore Flaws

    Science.gov (United States)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  7. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  8. Void fraction fluctuations in two-phase gas-liquid flow

    International Nuclear Information System (INIS)

    Ulbrich, R.

    1987-01-01

    Designs of the apparatus in which two-phase gas-liquid flow occurs are usually based on the mean value of parameters such as pressure drop and void fraction. The flow of two-phase mixtures generally presents a very complicated flow structure, both in terms of the unsteady formation on the interfacial area and in terms of the fluctuations of the velocity, pressure and other variables within the flow. When the gas void fraction is near 0 or 1 / bubble or dispersed flow regimes / then oscillations of void fraction are very small. The intermittent flow such as plug and slug/ froth is characterized by alternately flow portions of liquid and gas. It influences the change of void fractions in time. The results of experimental research of gas void fraction fluctuations in two-phase adiabatic gas-liquid flow in a vertical pipe are presented

  9. Stirling Engine with Unidirectional Gas Flow

    OpenAIRE

    Blumbergs, Ilmars

    2014-01-01

    In this study, a Stirling engine with unidirectional gas flow configuration of beta type Stirling engine is described and studied from kinematic and thermodynamics points of view. Some aspects of the Stirling engine with unidirectional gas flow engine are compared to classic beta type Stirling engines. The aim of research has been to develop a new type of Stirling engine, using SolidWorks 3D design software and Flow Simulation software. In the development process, special attention has been d...

  10. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  11. Statistical parameter characteristics of gas-phase fluctuations for gas-liquid intermittent flow

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, G.; Monji, H.; Takaguchi, M. [Univ. of Tsukuba (Japan)

    1995-09-01

    This study deals with theoretical analysis on the general behaviour of statistical parameters of gas-phase fluctuations and comparison of statistical parameter characteristics for the real void fraction fluctuations measured with those for the wave form modified the real fluctuations. In order to investigate the details of the relation between the behavior of the statistical parameters in real intermittent flow and analytical results obtained from information on the real flow, the distributions of statistical parameters for general fundamental wave form of gas-phase fluctuations are discussed in detail. By modifying the real gas-phase fluctuations to a trapezoidaly wave, the experimental results can be directly compared with the analytical results. The analytical results for intermittent flow show that the wave form parameter, and the total amplitude of void fraction fluctuations, affects strongly on the statistical parameter characteristics. The comparison with experiment using nitrogen gas-water intermittent flow suggests that the parameters of skewness and excess may be better as indicators of flow pattern. That is, the macroscopic nature of intermittent flow can be grasped by the skewness and the excess, and the detailed flow structure may be described by the mean and the standard deviation.

  12. Statistical parameter characteristics of gas-phase fluctuations for gas-liquid intermittent flow

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Takaguchi, M.

    1995-01-01

    This study deals with theoretical analysis on the general behaviour of statistical parameters of gas-phase fluctuations and comparison of statistical parameter characteristics for the real void fraction fluctuations measured with those for the wave form modified the real fluctuations. In order to investigate the details of the relation between the behavior of the statistical parameters in real intermittent flow and analytical results obtained from information on the real flow, the distributions of statistical parameters for general fundamental wave form of gas-phase fluctuations are discussed in detail. By modifying the real gas-phase fluctuations to a trapezoidaly wave, the experimental results can be directly compared with the analytical results. The analytical results for intermittent flow show that the wave form parameter, and the total amplitude of void fraction fluctuations, affects strongly on the statistical parameter characteristics. The comparison with experiment using nitrogen gas-water intermittent flow suggests that the parameters of skewness and excess may be better as indicators of flow pattern. That is, the macroscopic nature of intermittent flow can be grasped by the skewness and the excess, and the detailed flow structure may be described by the mean and the standard deviation

  13. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    OpenAIRE

    Qiang Fu; Fan Zhang; Rongsheng Zhu; Xiuli Wang

    2016-01-01

    The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction st...

  14. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  15. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  16. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    International Nuclear Information System (INIS)

    Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)

  17. Ion source with plasma cathode

    International Nuclear Information System (INIS)

    Yabe, E.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production

  18. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  19. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  20. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    Science.gov (United States)

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Rarefield gas dynamics fundamentals, simulations and micro flows

    CERN Document Server

    Shen, Ching

    2006-01-01

    This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.

  2. In-vitro evaluation of limitations and possibilities for the future use of intracorporeal gas exchangers placed in the upper lobe position.

    Science.gov (United States)

    Schumer, Erin; Höffler, Klaus; Kuehn, Christian; Slaughter, Mark; Haverich, Axel; Wiegmann, Bettina

    2018-03-01

    The lack of donor organs has led to the development of alternative "destination therapies", such as a bio-artificial lung (BA) for end-stage lung disease. Ultimately aiming at a fully implantable BA, general capabilities and limitations of different oxygenators were tested based on the model of BA positioning at the right upper lobe. Three different-sized oxygenators (neonatal, paediatric, and adult) were tested in a mock circulation loop regarding oxygenation and decarboxylation capacities for three respiratory pathologies. Blood flows were imitated by a roller pump, and respiration was imitated by a mechanical ventilator with different FiO 2 applications. Pressure drops across the oxygenators and the integrity of the gas-exchange hollow fibers were analyzed. The neonatal oxygenator proved to be insufficient regarding oxygenation and decarboxylation. Despite elevated pCO 2 levels, the paediatric and adult oxygenators delivered comparable sufficient oxygen levels, but sufficient decarboxylation across the oxygenators was ensured only at flow rates of 0.5 L min. Only the adult oxygenator indicated no significant pressure drops. For all tested conditions, gas-exchange hollow fibers remained intact. This is the first study showing the general feasibility of delivering sufficient levels of gas exchange to an intracorporeal BA via patient's breathing, without damaging gas-exchange hollow fiber membranes.

  3. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    Science.gov (United States)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  4. Application of Compressible Volume of Fluid Model in Simulating the Impact and Solidification of Hollow Spherical ZrO2 Droplet on a Surface

    Science.gov (United States)

    Safaei, Hadi; Emami, Mohsen Davazdah; Jazi, Hamidreza Salimi; Mostaghimi, Javad

    2017-12-01

    Applications of hollow spherical particles in thermal spraying process have been developed in recent years, accompanied by attempts in the form of experimental and numerical studies to better understand the process of impact of a hollow droplet on a surface. During such process, volume and density of the trapped gas inside droplet change. The numerical models should be able to simulate such changes and their consequent effects. The aim of this study is to numerically simulate the impact of a hollow ZrO2 droplet on a flat surface using the volume of fluid technique for compressible flows. An open-source, finite-volume-based CFD code was used to perform the simulations, where appropriate subprograms were added to handle the studied cases. Simulation results were compared with the available experimental data. Results showed that at high impact velocities ( U 0 > 100 m/s), the compression of trapped gas inside droplet played a significant role in the impact dynamics. In such velocities, the droplet splashed explosively. Compressibility effects result in a more porous splat, compared to the corresponding incompressible model. Moreover, the compressible model predicted a higher spread factor than the incompressible model, due to planetary structure of the splat.

  5. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  6. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    Science.gov (United States)

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  7. Engineering Porous Polymer Hollow Fiber Microfluidic Reactors for Sustainable C-H Functionalization.

    Science.gov (United States)

    He, Yingxin; Rezaei, Fateme; Kapila, Shubhender; Rownaghi, Ali A

    2017-05-17

    Highly hydrophilic and solvent-stable porous polyamide-imide (PAI) hollow fibers were created by cross-linking of bare PAI hollow fibers with 3-aminopropyl trimethoxysilane (APS). The APS-grafted PAI hollow fibers were then functionalized with salicylic aldehyde for binding catalytically active Pd(II) ions through a covalent postmodification method. The catalytic activity of the composite hollow fiber microfluidic reactors (Pd(II) immobilized APS-grafted PAI hollow fibers) was tested via heterogeneous Heck coupling reaction of aryl halides under both batch and continuous-flow reactions in polar aprotic solvents at high temperature (120 °C) and low operating pressure. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses of the starting and recycled composite hollow fibers indicated that the fibers contain very similar loadings of Pd(II), implying no degree of catalyst leaching from the hollow fibers during reaction. The composite hollow fiber microfluidic reactors showed long-term stability and strong control over the leaching of Pd species.

  8. Effect of nitrogen gas flow rate on the tribological properties of TiN coated HSS using CAE PVD technique

    International Nuclear Information System (INIS)

    Mubarak, A.; Hamzah, E.; Toff, M.R.M.

    2005-01-01

    High-Speed Steel (HSS) is a material that used in various Hi-Tech industries for many reasons. The aim of this study is to investigate the tribological properties of TiN (Titanium Nitride)-coated HSS. Using Physical Vapour Deposition (PVD) Cathodic Arc Evaporation (CAE) technique coated samples. The goal of this work is to determine usefulness of TiN coatings in order to improve tribological properties of HSS, as vastly use in cutting tool industry for various applications. A Pin-on-Disc test showed that the minimum value recorded for friction coefficient was reduced from 0.294 to 0.239 when the nitrogen gas flow rate was increased from 100 sccm to 200 sccm. The decrease in friction coefficient resulted from the reduction in macrodroplets by increasing the nitrogen gas flow rate during deposition. The worn surface morphology of the TiN coated HSS was observed on a Field Emission Scanning Electron Microscope (FE-SEM), and the elemental composition on the wear scar were investigated by means of EDXS. (Author)

  9. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  10. Modelling current transfer to cathodes in metal halide plasmas

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D; Naidis, G V

    2005-01-01

    This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped

  11. Real gas flow simulation in damaged distribution pipelines

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Skorek, Janusz

    2012-01-01

    The paper discusses chosen issues concerning damaged gas pipelines. Attention is paid to modelling the steady-state flow of natural gas in distribution pipelines, and the most commonly applied models of isothermal and adiabatic flow are evaluated for both the ideal and the real gas properties. A method of accounting for a leakage by means of a reference flow equation with a discharge coefficient is presented, and the dependency of the discharge coefficient on pressure is demonstrated both with literature data and the authors' experimental results. A relevant computational study of a pipeline failure is presented for a high- and a medium pressure pipeline. The importance of an appropriate choice of the flow model (isothermal or adiabatic flow of real or ideal gas) is demonstrated by the results of the study. It is shown that accounting for the variability of the discharge coefficient is required if medium pressure pipelines are analysed. However, it is eventually shown that the impact of the discharge coefficient on the predicted outflow rate is of lesser importance than that of the applied flow model. -- Highlights: ► Comparison of real/ideal gas, isothermal/adiabatic gas flow in a damaged pipeline. ► Variability of the discharge coefficient with pressure is demonstrated. ► Isothermal model predicts wrong values of downstream pressure, not just temperature. ► Isothermal model may cause significant error (for 2 case studies is >20%). ► Error in the discharge coefficient has a weak influence on the predicted flow rate.

  12. Method for confirming flow pattern of gas-water flow in horizontal tubes under rolling state

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2008-01-01

    An experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state. It was found that the pressure drop of two phase flow was with an obvious periodical characteristic. The flow pattern of the gas-water flow was distinguished according to the characteristics of the pressure drop in this paper. It was proved that the characteristics of the pressure drop can distinguish the flow pattern of gas-water flow correctly through comparing with the result of careful observation and high speed digital camera. (authors)

  13. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  14. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    International Nuclear Information System (INIS)

    Gilchrist, B.E.; Banks, P.M.; Neubert, T.; Williamson, P.R.; Myers, N.B.; Raitt, W.J.; Sasaki, Susumu

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode

  15. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  16. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying; Johnson, J.R.; Karvan, Oğuz; Sholl, David S.; Koros, W.J.

    2012-01-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  17. Gas chromatographic determination of polycyclic aromatic hydrocarbons in water and smoked rice samples after solid-phase microextraction using multiwalled carbon nanotube loaded hollow fiber.

    Science.gov (United States)

    Matin, Amir Abbas; Biparva, Pourya; Gheshlaghi, Mohammad

    2014-12-29

    A novel solid-phase microextraction fiber was prepared based on multiwalled carbon nanotubes (MWCNTs) loaded on hollow fiber membrane pores. Stainless steel wire was used as unbreakable support. The major advantages of the proposed fiber are its (a) high reproducibility due to the uniform structure of the hollow fiber membranes, (b) high extraction capacity related to the porous structure of the hollow fiber and outstanding adsorptive characteristics of MWCNTs. The proposed fiber was applied for the microextraction of five representative polycyclic aromatic hydrocarbons (PAHs) from aqueous media (river and hubble-bubble water) and smoked rice samples followed by gas chromatographic determination. Analytical merits of the method, including high correlation coefficients [(0.9963-0.9992) and (0.9982-0.9999)] and low detection limits [(9.0-13.0ngL(-1)) and (40.0-150.0ngkg(-1))] for water and rice samples, respectively, made the proposed method suitable for the ultra-trace determination of PAHs. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Hollow-core fiber sensing technique for pipeline leak detection

    Science.gov (United States)

    Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy

    2018-02-01

    Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.

  19. Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers

    Energy Technology Data Exchange (ETDEWEB)

    Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel

    2017-04-18

    A hollow fiber fluid separation device includes a hollow fiber cartridge, comprising a plurality of hollow fiber membranes arranged around a central tubular core, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fiber membrane. In at least one of the tubesheets, the boreholes are formed radially and are in communication with the central tubular core. The hollow fiber fluid separation device can be utilized in liquid separation applications such as ultrafiltration and in gas separation processes such as air separation. The design disclosed herein is light weight and compact and is particularly advantageous at high operating temperatures when the pressure of the feed fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.

  20. Hollow wall to stabilize and enhance ignition hohlraums

    Science.gov (United States)

    Vandenboomgaerde, M.; Grisollet, A.; Bonnefille, M.; Clérouin, J.; Arnault, P.; Desbiens, N.; Videau, L.

    2018-01-01

    In the context of the indirect-drive scheme of the inertial-confinement fusion, performance of the gas-filled hohlraums at the National Ignition Facility appears to be reduced. Experiments ascertain a limited efficacy of the laser beam propagation and x-ray conversion. One identified issue is the growth of the gold plasma plume (or bubble) which is generated near the ends of the hohlraum by the impact of the laser beams. This bubble impedes the laser propagation towards the equator of the hohlraum. Furthermore, for high foot or low foot laser pulses, the gold-gas interface of the bubble can be unstable. If this instability should grow to mixing, the x-ray conversion could be degraded. A novel hollow-walled hohlraum is designed, which drastically reduces the growth of the gold bubble and stabilizes the gold-gas interface. The hollow walls are built from the combination of a thin gold foil and a gold domed-wall. We theoretically explain how the bubble expansion can be delayed and the gold-gas interface stabilized. This advanced design lets the laser beams reach the waist of the hohlraum. As a result, the x-ray drive on the capsule is enhanced, and more spherical implosions are obtained. Furthermore, this design only requires intermediate gas fill density to be efficient.

  1. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  2. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  3. Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc

    International Nuclear Information System (INIS)

    Nemchinsky, Valerian

    2012-01-01

    The motion of an evaporated atom of the cathode material in a near-cathode plasma is considered. It is shown that the evaporated atom is ionized almost instantly. The created ion, under the influence of a strong electric field existing in the cathode proximity, has a high probability of returning to the cathode. A small fraction of evaporated atoms are able to diffuse away from the cathode to the region where they are involved in plasma flow and lose their chance to return to the cathode. The fraction of the total evaporated atoms, which do not return to the cathode, the escape factor, determines the net erosion rate. In order to calculate this factor, the distributions of the plasma parameters in the near-cathode plasma were considered. Calculations showed that the escape factor is on the order of a few per cent. Using experimental data on the plasma and cathode temperatures, we calculated the net erosion rate for a free-burning 200 A argon arc with a thoriated tungsten cathode. The calculated erosion rate is close to 1 µg s -1 , which is in agreement with available experimental data. (paper)

  4. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    Science.gov (United States)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  5. Low-flow CO₂ removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements.

    Science.gov (United States)

    Forster, Christian; Schriewer, Jens; John, Stefan; Eckardt, Kai-Uwe; Willam, Carsten

    2013-07-24

    Lung-protective ventilation in patients with ARDS and multiorgan failure, including renal failure, is often paralleled with a combined respiratory and metabolic acidosis. We assessed the effectiveness of a hollow-fiber gas exchanger integrated into a conventional renal-replacement circuit on CO₂ removal, acidosis, and hemodynamics. In ten ventilated critically ill patients with ARDS and AKI undergoing renal- and respiratory-replacement therapy, effects of low-flow CO₂ removal on respiratory acidosis compensation were tested by using a hollow-fiber gas exchanger added to the renal-replacement circuit. This was an observational study on safety, CO₂-removal capacity, effects on pH, ventilator settings, and hemodynamics. CO₂ elimination in the low-flow circuit was safe and was well tolerated by all patients. After 4 hours of treatment, a mean reduction of 17.3 mm Hg (-28.1%) pCO₂ was observed, in line with an increase in pH. In hemodynamically instable patients, low-flow CO₂ elimination was paralleled by hemodynamic improvement, with an average reduction of vasopressors of 65% in five of six catecholamine-dependent patients during the first 24 hours. Because no further catheters are needed, besides those for renal replacement, the implementation of a hollow-fiber gas exchanger in a renal circuit could be an attractive therapeutic tool with only a little additional trauma for patients with mild to moderate ARDS undergoing invasive ventilation with concomitant respiratory acidosis, as long as no severe oxygenation defects indicate ECMO therapy.

  6. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  7. The flows structure in unsteady gas flow in pipes with different cross-sections

    OpenAIRE

    Plotnikov Leonid; Nevolin Alexandr; Nikolaev Dmitrij

    2017-01-01

    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of com...

  8. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Science.gov (United States)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  9. Influence of Nitrogen Gas Flow Rate on The Microstructural and Mechanical Properties of Tin Deposited Carbon Steel Synthesized by Cae

    Directory of Open Access Journals (Sweden)

    A. Mubarak

    2017-11-01

    Full Text Available This paper reports on the preparation of titanium nitride (TiN thin films on carbon steel plates, using cathodic arc evaporation CAE PVD technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN-coated carbon steel plates. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM with energy dispersive X-ray (EDX, Xray diffraction (XRD with glazing incidence angle (GIA technique, scratch tester, hardness testing machine, surface roughness tester and atomic force microscope (AFM. SEM analyses showed that all the films had columnar and dense structures with clearly defined substrate-film interfacial layers. The hardness of TiN-coated carbon steel was noted six times more than the hardness of uncoated one. An increase in nitrogen gas flow rate showed; decrease in the formation of macro-droplets, average roughness (Ra and root-mean-square (RMS values in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Microhardness of TiN-coated carbon steel showed about six times increase in hardness than the uncoated one. Scratch tester results showed an average adhesion between the coating material and substrate. Thanks to the high resolution power could be observed that by increasing nitrogen gas flow rate there was percentage increase in the bearing ratio while percentage decrease in histogram.

  10. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    The impedance of technological relevant LSCF:CGO composite IT-SOFC cathodes was studied over a very wide performance range. This was experimentally achieved by impedance measurements on symmetrical cells with three different microstructures in the temperature range 550–850 °C. In order to account...... for the impedance spectra of the poor performing cathodes the Finite-Length-Gerischer (FLG) impedance was derived and applied to the impedance data. The FLG impedance describes for a given microstructure the situation where the cathode is made too thin from a cathode development point of view. The moderate...... performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  11. Membrane barriers for radon gas flow restrictions

    International Nuclear Information System (INIS)

    Archibald, J.F.

    1984-08-01

    Research was performed to assess the feasibility of barrier membrane substances, for use within mining or associated high risk environments, in restricting the diffusion transport of radon gas quantities. Specific tests were conducted to determine permeability parameters of a variety of membrane materials with reference to radon flow capabilities. Tests were conducted both within laboratory and in-situ emanation environments where concentrations and diffusion flows of radon gas were known to exist. Equilibrium radon gas concentrations were monitored in initially radon-free chambers adjacent to gas sources, but separated by specified membrane substances. Membrane barrier effectiveness was demonstrated to result in reduced emanation concentrations of radon gas within the sampling chamber atmosphere. Minimum gas concentrations were evidenced where the barrier membrane material was shown to exhibit lowest radon permeability characteristics

  12. Mathematical modelling of dextran filtration through hollow fibre membranes

    DEFF Research Database (Denmark)

    Vinther, Frank; Pinelo, Manuel; Brøns, Morten

    2014-01-01

    In this paper we present a mathematical model of an ultrafiltration process. The results of the model are produced using standard numerical techniques with Comsol Multiphysics. The model describes the fluid flow and separation in hollow fibre membranes. The flow of solute and solvent within the h...

  13. Experimental investigation two phase flow in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.

    2007-01-01

    Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)

  14. The Relation between Gas Flow and Combustibility using Actual Engine (Basic Experiment of Gas Flow and Combustibility under Low Load Condition)

    OpenAIRE

    田坂, 英紀; 泉, 立哉; 木村, 正寿

    2003-01-01

    Abstract ###Consideration of the global environment problems by exhaust gas is becoming important in recent years. ###Especially about internal combustion engine, social demand has been increasing about low pollution, high ###efficiency and so on. Controlling gas flow in cylinder becomes the key getting good combustion state in ###various driving states. ###The purpose of the research is analysis about the relation between gas flow and combustibility in the cylinder. ###So we measured gas flo...

  15. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    Science.gov (United States)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  16. Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A. Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Auguste, T.; D'Oliveira, P.; Hulin, S.; Monot, P.

    2000-01-01

    Double electron charge exchange is proposed for the formation of hollow He-like ions when laser field ionized nuclei penetrate into the residual gas. Using transitions from different configurations in hollow ions a method for the determination of the electron temperature in the long lasting recombination phase is developed

  17. A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Directory of Open Access Journals (Sweden)

    Huadong Fu

    2015-01-01

    Full Text Available The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on.

  18. Numerical studies of rock-gas flow in Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, B.; Amter, S.; Lu, Ning

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ''fresh-water head,'' a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface

  19. Effect of gas sparging on flux enhancement and phytochemical properties of clarified pineapple juice by microfiltration

    KAUST Repository

    Laorko, Aporn; Li, Zhenyu; Tongchitpakdee, Sasitorn; Youravong, Wirote

    2011-01-01

    of the membrane process. In this study, a 0.2 μm hollow fiber microfiltration membrane was used to study the effect of cross flow velocity (CFV) and gas injection factor () on the critical and limiting flux during microfiltration of pineapple juice. In addition

  20. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  1. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  2. Generator of the low-temperature heterogeneous plasma flow

    Science.gov (United States)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  3. Combined raman and IR fiber-based sensor for gas detection

    Science.gov (United States)

    Carter, Jerry C; Chan, James W; Trebes, James E; Angel, Stanley M; Mizaikoff, Boris

    2014-06-24

    A double-pass fiber-optic based spectroscopic gas sensor delivers Raman excitation light and infrared light to a hollow structure, such as a hollow fiber waveguide, that contains a gas sample of interest. A retro-reflector is placed at the end of this hollow structure to send the light back through the waveguide where the light is detected at the same end as the light source. This double pass retro reflector design increases the interaction path length of the light and the gas sample, and also reduces the form factor of the hollow structure.

  4. Coupling of a two phase gas liquid 3D Darcy flow in fractured porous media with a 1D free gas flow

    OpenAIRE

    Brenner , Konstantin; Masson , Roland; Trenty , Laurent; Zhang , Yumeng

    2015-01-01

    A model coupling a three dimensional gas liquid compositional Darcy flow in a frac-tured porous medium, and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermody-namical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. The fractures are represented as interfaces of codimens...

  5. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Directory of Open Access Journals (Sweden)

    Yu. M. Timofeev

    2016-01-01

    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  6. Heater Validation for the NEXT-C Hollow Cathodes

    Science.gov (United States)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  7. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  8. Simulations of overall flow in gas centrifuge considering feed jet

    International Nuclear Information System (INIS)

    He Liang; Jiang Dongjun; Ying Chuntong

    2010-01-01

    A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

  9. PIV Measurements of Gas Flow Fields from Burning End

    Science.gov (United States)

    Huang, Yifei; Wu, Junzhang; Zeng, Jingsong; Tang, Darong; Du, Liang

    2017-12-01

    To study the influence of cigarette gas on the environment, it is necessary to know the cigarette gas flow fields from burning end. By using PIV technique, in order to reveal velocity characteristics of gas flow fields, the velocities of cigarette gas flow fields was analyzed with different stepping motor frequencies corresponding to suction pressures, and the trend of velocity has been given with image fitting. The results shows that the velocities of the burning end increased with suction pressures; Between velocities of the burning end and suction pressures, the relations present polynomial rule; The cigarette gas diffusion in combustion process is faster than in the smoldering process.

  10. Observation of the bremsstrahlung generation in the process of the Rayleigh endash Taylor instability development at gas puff implosion

    International Nuclear Information System (INIS)

    Baksht, R.B.; Fedunin, A.V.; Labetsky, A.Y.; Rousskich, A.G.; Shishlov, A.V.

    1997-01-01

    The electron magnetohydrodynamic model predicts the appearance of anode endash cathode voltage in the process of Rayleigh endash Taylor instability development during gas puff implosions. The appearance of the anode endash cathode voltage should be accompanied by the accelerated electron flow and the generation of the bremsstrahlung radiation. Experiments with neon and krypton gas puffs were performed on the GIT-4 [S. P. Bugaev, et al., Plasma Sci. 18, 115 (1990)] generator (1.6 MA, 120 ns) to observe the bremsstrahlung radiation during the gas puff implosion. Two spikes of the bremsstrahlung radiation were observed in the experiments. The first spike is connected with the gas breakdown; the second one is connected with the final stage of the implosion. The development of the RT instabilities does not initiate the bremsstrahlung radiation, therefore, the absence of anode endash cathode voltage is demonstrated. copyright 1997 American Institute of Physics

  11. A study of multi-phase flow through the cathode side of an interdigitated flow field using a multi-fluid model

    DEFF Research Database (Denmark)

    Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen

    2010-01-01

    This work presents a study of multi-phase flow through the cathode side of a polymer electrolyte membrane fuel cell employing an interdigitated flow field plate. A previously published model has been extended in order to account for phase change kinetics, and a comparison between the interdigitated...... flow field design and a conventional straight channel design has been conducted. It is found that the parasitic pressure drop in the interdigitated design is in the range of a few thousand Pa and could be reduced to a few hundred Pa by choosing diffusion media with high in-plane permeability....... In the interdigitated design more product water is carried out of the cell in the vapor phase compared to the straight channel design which indicates that liquid water management might be less problematic. This effect also leads to the finding that in the interdigitated design more waste heat is carried out of the cell...

  12. The use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt

    International Nuclear Information System (INIS)

    Morgan, H.S.; Wawersik, W.R.

    1990-01-01

    Finite element simulations of two laboratory creep tests on thick-walled hollow cylinders of rock salt are evaluated to determine if such bench-scale experiments can be used to establish applicability of either von Mises or Tresca stress measures and associated flow conditions. In the tests, the cylinders were loaded axially and pressurized both internally and externally to produce stress fields similar to those found around underground excavations in rock salt. Several different loading stages were used in each test. The simulations show that for each of two creep models studied, quite different deformations of the cylinders are predicted with the Mises and Tresca flow criteria, especially if friction between the cylinders and axial loading platens is ignored. When friction is included in the simulations, the differences in deformation are changed but are sill clearly distinguishable. 10 refs., 10 figs

  13. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  14. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  15. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1989-01-01

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10 -5 Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  16. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  17. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  18. Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles

    International Nuclear Information System (INIS)

    Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun

    2007-01-01

    Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed

  19. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  20. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Bromberger, H.; Liu, H.; Chávez-Cervantes, M.; Gierz, I.; Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C.; Calegari, F.; Li, M. T.; Lin, C. T.; Cavalleri, A.

    2015-01-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi 2 Se 3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials

  1. Hollow-Fiber Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  2. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    Science.gov (United States)

    Zanoni, Carlo; Gobbi, Giorgia; Perini, Diego; Stancari, Giulio

    2017-07-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  3. Preliminary Mechanical Design Study of the Hollow Electron Lens for HL-LHC

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, Carlo [CERN; Gobbi, Giorgia [CERN; Perini, Diego [CERN; Stancari, Giulio [Fermilab

    2017-05-01

    A Hollow Electron Lens (HEL) has been proposed in order to improve performance of halo control and collimation in the Large Hadron Collider in view of its High Luminosity upgrade (HL-LHC). The concept is based on a hollow beam of electrons that travels around the protons for a few meters. The electron beam is produced by a cathode and then guided by a strong magnetic field. The first step of the design is the definition of the magnetic field that drives the electron trajectories. The estimation of such trajectories by means of a dedicated MATLAB tool is presented. The influence of the main geometrical and electrical parameters is analyzed and discussed. Then, the main mechanical design choices for the solenoids, cryostats gun and collector are described. The aim of this paper is to provide an overview of the feasibility study of the Electron Lens for LHC. The methods used in this study also serve as examples for future mechanical and integration designs of similar devices.

  4. Method and system for gas flow mitigation of molecular contamination of optics

    Science.gov (United States)

    Delgado, Gildardo; Johnson, Terry; Arienti, Marco; Harb, Salam; Klebanoff, Lennie; Garcia, Rudy; Tahmassebpur, Mohammed; Scott, Sarah

    2018-01-23

    A computer-implemented method for determining an optimized purge gas flow in a semi-conductor inspection metrology or lithography apparatus, comprising receiving a permissible contaminant mole fraction, a contaminant outgassing flow rate associated with a contaminant, a contaminant mass diffusivity, an outgassing surface length, a pressure, a temperature, a channel height, and a molecular weight of a purge gas, calculating a flow factor based on the permissible contaminant mole fraction, the contaminant outgassing flow rate, the channel height, and the outgassing surface length, comparing the flow factor to a predefined maximum flow factor value, calculating a minimum purge gas velocity and a purge gas mass flow rate from the flow factor, the contaminant mass diffusivity, the pressure, the temperature, and the molecular weight of the purge gas, and introducing the purge gas into the semi-conductor inspection metrology or lithography apparatus with the minimum purge gas velocity and the purge gas flow rate.

  5. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement

    International Nuclear Information System (INIS)

    Han, J; Dong, F; Xu, Y Y

    2009-01-01

    This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.

  6. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  7. Venturi Wet Gas Flow Modeling Based on Homogeneous and Separated Flow Theory

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2008-10-01

    Full Text Available When Venturi meters are used in wet gas, the measured differential pressure is higher than it would be in gas phases flowing alone. This phenomenon is called over-reading. Eight famous over-reading correlations have been studied by many researchers under low- and high-pressure conditions, the conclusion is separated flow model and homogeneous flow model performing well both under high and low pressures. In this study, a new metering method is presented based on homogeneous and separated flow theory; the acceleration pressure drop and the friction pressure drop of Venturi under two-phase flow conditions are considered in new correlation, and its validity is verified through experiment. For low pressure, a new test program has been implemented in Tianjin University’s low-pressure wet gas loop. For high pressure, the National Engineering Laboratory offered their reports on the web, so the coefficients of the new proposed correlation are fitted with all independent data both under high and low pressures. Finally, the applicability and errors of new correlation are analyzed.

  8. The explosive cathode on the base of carbon-fibrous plastic material

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1988-01-01

    Production process of exploseve cathodes on the base of carbon-fibrous plastic material of any geometric form and size is discussed. Experimental study of current take-off from cathodes with diameter 2 cm of 10 kV and 150-250 kV voltage are given. It is shown that ignition voltage of cathode plasma is 2 kV with 5 mm gap electrode of diode and 5 ·10 -5 Tor pressure of residual gas. It is shown that carbon-fibrous cathode, made by this technology, provides more stable current take-off electron beam (withoud oscillations) in comparison with other cathodes

  9. Large area dispenser cathode applied to high current linac

    International Nuclear Information System (INIS)

    Yang Anmin; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Liu Chenjun; Xia Liansheng; Wang Wendou; Zhang Kaizhi

    2005-01-01

    The paper introduced a dispenser cathode (411 M) which was 55 mm in diameter. A 200 kV long pulsed power generator with 2 μs flattop based on Marx-PEN and system with heat and voltage insulation were built. A 52 A space charge limited current was gained, when the temperature was 1165 degree C and the filament current was 18 A on the cathode and the voltage of the pulse was 75 kV at the cathode test stand. Experimental results show that the current values are consistent with the numerical simulation. The experiment reveals that the deflated gas will influence the cathode emission ability. (authors)

  10. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  11. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    Science.gov (United States)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  12. Confined dense particle-gas flow, application to nuclear fuel relocation

    International Nuclear Information System (INIS)

    Martin, A.

    2010-02-01

    In this work, we investigate particle-gas two-phase flows in the jamming regime where the flow stops in finite time. In this regime, which occurs quite often in nature and industrial applications, the flow is stochastic and needs therefore to be characterized by the jamming probability as well as the flow rate and its fluctuations that depend on the confining geometry, granular microstructure and gas properties. We developed a numerical approach based on the coupling of the Non Smooth Contact Dynamics for the solid phase and a mesoscopic method for the gas phase. We find that the flow rate as a function of the opening is well fit by a power law in agreement with reported experimental data. The presence of a gas affects only the mean flow rate, the flow statistics being sensibly the same as in the absence of the gas. We apply our quantitative statistical results in order to estimate the relocation rate of fragmented nuclear fuel inside its cladding tube as a result of a local balloon caused by an accident (loss-of-coolant accident). (author)

  13. Infrared Hollow Optical Fiber Probe for Localized Carbon Dioxide Measurement in Respiratory Tracts.

    Science.gov (United States)

    Katagiri, Takashi; Shibayama, Kyosuke; Iida, Takeru; Matsuura, Yuji

    2018-03-27

    A real-time gas monitoring system based on optical absorption spectroscopy is proposed for localized carbon dioxide (CO₂) measurement in respiratory tracts. In this system, a small gas cell is attached to the end of a hollow optical fiber that delivers mid-infrared light with small transmission loss. The diameters of the fiber and the gas cell are smaller than 1.2 mm so that the probe can be inserted into a working channel of common bronchoscopes. The dimensions of the gas cell are designed based on absorption spectra of CO₂ standard gases in the 4.2 μm wavelength region, which are measured using a Fourier-transform infrared spectrometer. A miniature gas cell that is comprised of a stainless-steel tube with slots for gas inlet and a micro-mirror is fabricated. A compact probing system with a quantum cascade laser (QCL) light source is built using a gas cell with a hollow optical fiber for monitoring CO₂ concentration. Experimental results using human breaths show the feasibility of the system for in-situ measurement of localized CO₂ concentration in human airways.

  14. Distributed gas detection system and method

    Science.gov (United States)

    Challener, William Albert; Palit, Sabarni; Karp, Jason Harris; Kasten, Ansas Matthias; Choudhury, Niloy

    2017-11-21

    A distributed gas detection system includes one or more hollow core fibers disposed in different locations, one or more solid core fibers optically coupled with the one or more hollow core fibers and configured to receive light of one or more wavelengths from a light source, and an interrogator device configured to receive at least some of the light propagating through the one or more solid core fibers and the one or more hollow core fibers. The interrogator device is configured to identify a location of a presence of a gas-of-interest by examining absorption of at least one of the wavelengths of the light at least one of the hollow core fibers.

  15. Two-component HLMC-gas flow instability and inhomogeneity phenomena in open-pool reactor

    International Nuclear Information System (INIS)

    Sergey I Shcherbakov

    2005-01-01

    Full text of publication follows: Consideration is being given to two-component gas-liquid flows with inhomogeneous gas content. The inhomogeneity of gas content over flow space can be caused by local mixing of gas and liquid, gas injection, gas-containing liquid jet penetration into the bulk of liquid without gas. The paper presents the computational results obtained using the direct non-stationary calculation with the TURBO-FLOW computer code. The results refer to flows near the liquid level, flows in downcomer gaps, collectors, elements with varying geometry (jet outlet into space, flow turn) for the pool-type reactors and experimental models. The following processes have been shown and discussed: formation of new liquid levels, entrainment of gas from the level, change in density composition of gas, flow stratification, effect of gas emergence rate and density convection on flow pattern. At gas phase transfer by liquid, two phenomena governing this transfer proceed: gas slip in liquid and density convection of non-uniformly aerated liquid. In horizontal flows, a vertical stratification of gas content always occurs. If the flow changes its direction to an upward one (collector at core inlet), the gas content maximum would be observed in channels nearest to the inlet. At the liquid level, the processes of gas separation from liquid and gas entrainment take place. The separation is a self-sustained process due to circulations arising near the level. The rate of gas entrainment is proportional to the rate of overflow and inversely proportional to the height of liquid level. At the downcomer region in case of its expansion, there occurs the instability of flow resulting in formation of liquid level and falling jet. The level is lower the more the gas content at inlet. The accumulation of gas occurs at sharp turns, encumbered regions (tube bundle), at all regions with upper (ceiling) constraints of flow. The flow instability being often observed in gas-liquid flows

  16. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  17. Diagnostics of N2 Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    Science.gov (United States)

    Saloum, S.; Naddaf, M.; Alkhaled, B.

    2008-02-01

    N2-x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 <= x <= 80), at a constant applied RF power of 300 W. N2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I_N/I_{N_2} of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N2, with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N_{2}^{+} density varies between 5 × 109 and 1.4 × 1010 cm-3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2Σ+-X 2Σ+) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased.

  18. Diagnostics of N2-Ar plasma mixture excited in A 13.56 MHz hollow cathode discharge system: Application to remote plasma treatment of polyamide surface

    International Nuclear Information System (INIS)

    Saloum, S.; Naddaf, M.; Al-khaled, B.

    2009-01-01

    N 2 -x % Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double langmuir probe, as a function of experimental parameters: Total pressure (5-33 Pa), and different fractions of argon (7≤ x ≤ 80), at a constant applied RF power of 300 W. N 2 dissociation degree has been investigated qualitatively by both actinometry method and the ratio of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N 2 second positive system at 337.1 nm. Both methods showed that the increase of argon fraction enhances the dissociation of N 2 , with a maximum at x=50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of N 2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 K and 12300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N 2 + density varies between 5.10 9 cm-3 and 1.4 10 10 cm -3 , and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide surface interaction, in the remote plasma zone, has been studied through optical emission spectroscopy analysis during plasma treatment of polyamide to monitor the possible emissions due to the polymer etching. An increase of atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from CN (B 2 Σ + -X 2 Σ + ) violet system were observed. The polyamide surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased. (author)

  19. Diagnostics of N2-Ar plasma mixture excited in a 13.56 MHz hollow cathode discharge system: application to remote plasma treatment of polyamide surface

    International Nuclear Information System (INIS)

    Saloum, S; Naddaf, M; Alkhaled, B

    2008-01-01

    N 2 -x% Ar plasma gas mixture, generated in a hollow cathode RF discharge system, has been characterized by both optical emission spectroscopy (OES) and double Langmuir probe, as a function of experimental parameters: total pressure (5-33 Pa), and different fractions of argon (7 ≤ x ≤ 80), at a constant applied RF power of 300 W. N 2 dissociation degree has been investigated qualitatively by both the actinometry method and the ratio I N /I N 2 of the atomic nitrogen line emission intensity at 672.3 nm to the vibrational band (0-0) of the N 2 second positive system at 337.1 nm. Both methods showed that the increase in argon fraction enhances the dissociation of N 2 , with a maximum at x = 50 for the pressure of 5 Pa, although the two methods give two opposite trends as a function of total pressure. Spectroscopic measurements showed that the vibrational temperature of the N 2 second positive system increases with both argon fraction and total pressure increase, it lies between 4900 and 12 300 K. Langmuir probe measurements showed that, in the remote zone, the electron temperature falls in the range 1.57-1.75 eV, the N 2 + density varies between 5 x 10 9 and 1.4 x 10 10 cm -3 and that both the plasma ionization degree and electron temperature increase towards the source. In addition, the process of plasma-polyamide (PA) surface interaction, in the remote plasma zone, has been studied through OES analysis during plasma treatment of PA to monitor the possible emissions due to the polymer etching. An increase in atomic nitrogen line (672.3 nm) intensity is obtained, atomic carbon line (833.52 nm) and the band emission (0-0) from the CN (B 2 Σ + -X 2 Σ + ) violet system were observed. The PA surface modification has been confirmed through the improvement of its hydrophilic character as the water contact angle measured after the plasma treatment significantly decreased

  20. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  1. Development of long lifetime-high current plasma cathode ion source

    International Nuclear Information System (INIS)

    Yabe, Eiji; Takayama, Kazuo; Fukui, Ryota.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma cathode is convergent, i.e. filament-like; in zero magnetic field, it turns divergent and spray-like. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 hours with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is eminently suitable for use in oxygen ion production. (author)

  2. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry.

    Science.gov (United States)

    Pitkänen, Leena; Striegel, André M

    2015-02-06

    Accurate characterization of the molar mass and size of polysaccharides is an ongoing challenge, oftentimes due to architectural diversity but also to the broad molar mass (M) range over which a single polysaccharide can exist and to the ultra-high M of many polysaccharides. Because of the latter, many of these biomacromolecules experience on-column, flow-induced degradation during analysis by size-exclusion and, even, hydrodynamic chromatography (SEC and HDC, respectively). The necessity for gentler fractionation methods has, to date, been addressed employing asymmetric flow field-flow fractionation (AF4). Here, we introduce the coupling of hollow-fiber flow field-flow fractionation (HF5) to multi-angle static light scattering (MALS) and differential refractometry (DRI) detection for the analysis of polysaccharides. In HF5, less stresses are placed on the macromolecules during separation than in SEC or HDC, and HF5 can offer a higher sensitivity, with less propensity for system overloading and analyte aggregation, than generally found in AF4. The coupling to MALS and DRI affords the determination of absolute, calibration-curve-independent molar mass averages and dispersities. Results from the present HF5/MALS/DRI experiments with dextrans, pullulans, and larch arabinogalactan were augmented with hydrodynamic radius (RH) measurements from off-line quasi-elastic light scattering (QELS) and by RH distribution calculations and fractogram simulations obtained via a finite element analysis implementation of field-flow fractionation theory by commercially available software. As part of this study, we have investigated analyte recovery in HF5 and also possible reasons for discrepancies between calculated and simulated results vis-à-vis experimentally determined data. Published by Elsevier B.V.

  3. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  4. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    Science.gov (United States)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  5. Fugitive methane leak detection using mid-infrared hollow-core photonic crystal fiber containing ultrafast laser drilled side-holes

    Science.gov (United States)

    Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan

    2016-05-01

    The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.

  6. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  7. Simulation of non-isothermal transient flow in gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Luis Carlos; Soares, Matheus; Lima, Enrique Luis; Pinto, Jose Carlos [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Quimica; Muniz, Cyro; Pires, Clarissa Cortes; Rochocz, Geraldo [ChemTech, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Modeling of gas pipeline usually considers that the gas flow is isothermal (or adiabatic) and that pressure changes occur instantaneously (quasi steady state approach). However, these assumptions are not valid in many important transient applications (changes of inlet and outlet flows/pressures, starting and stopping of compressors, changes of controller set points, among others). Besides, the gas properties are likely to depend simultaneously on the pipe position and on the operation time. For this reason, a mathematical model is presented and implemented in this paper in order to describe the gas flow in pipeline when pressure and temperature transients cannot be neglected. The model is used afterwards as a tool for reconciliation of available measured data. (author)

  8. Estimation of gas wall shear stress in horizontal stratified gas-liquid pipe flow

    International Nuclear Information System (INIS)

    Newton, C.H.; Behnia, M.

    1996-01-01

    Two-phase pipe flows occur in many industrial applications, such as condensers and evaporators, chemical processing equipment, nuclear reactors, and oil pipelines. A variety of basic mechanistic flow models for predicting the pressure gradient and liquid loading characteristics of these types of flows to assist in design calculations has emerged over the past two decades, especially for the stratified and slug flow regimes. These models generally rely on a number of basic assumptions and empirical closure equations. Possibly the most notable of these relates to the evaluation of interfacial shear stresses. However, one of the most important yet least discussed assumptions used in most of these models is that the phase wall shear stresses can be accurately estimated from correlations developed for single-phase pipe flows. The object of this article is to present measurements of gas wall shear up to locations in close proximity to the gas-liquid interface for a variety of interface conditions in developed flow, and to determine the effects of the interface on average gas wall friction factors. In this context the interface may be smooth, rippled or wavy

  9. Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

    Directory of Open Access Journals (Sweden)

    Mohammad Mesbah

    2017-10-01

    Full Text Available Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite element method (FEM. To ensure the accuracy of the developed model, the simulation results were validated using the reported experimental data for potassium glycinate (PG, monoethanol amine (MEA, and methyldiethanol amine (MDEA. The results of the proposed model indicated that PG absorbent has the highest removal efficiency of CO2, followed by potassium threonate (PT, MEA, amino-2-methyl-1-propanol (AMP, diethanol amine (DEA, and MDEA in sequence. In addition, the results revealed that the CO2 removal efficiency was favored by absorbent flow rate and liquid temperature, while the gas flow rate has a reverse effect. The simulation results proved that the hollow fiber membrane contactors have a good potential in the area of CO2 capture.

  10. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder. Then, at a room temperature, the complete separation of the reduction product from the cathode basket was achieved by inverting it without damaging or deforming the basket. Finally, the emptied cathode basket obtained after the separation was reused for the second OR run by loading a fresh simulated oxide fuel. We also succeeded in the separation of the metallic product from the reused cathode basket for the second OR run.

  11. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  12. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  13. Cathode fall parameters of a self-sustained normal glow discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Arkhipenko, V.I.; Zgirovskii, S.M.; Kirillov, A.A.; Simonchik, L.V.

    2002-01-01

    Results from comprehensive studies of a high-current self-sustained glow discharge in atmospheric-pressure helium are presented. The main parameters of the cathode fall, namely, the electric field profile, cathode fall thickness, current density, gas temperature, and heat flux to the cathode are determined. The results obtained are discussed using one-dimensional models of the cathode fall with allowance for volumetric heat release

  14. Realizing A Mid-Infrared Optically Pumped Molecular Gas Laser Inside Hollow-Core Photonic Crystal Fiber

    Science.gov (United States)

    2012-01-01

    structure resembling a star- of- David pattern can clearly be seen surrounding the hollow core region. The fiber’s hollow core is created by leaving out...O.R. Wood, An optically pumped CO2 laser. IEEE Journal of Quantum Electronics, 1972. 8(6): p. 598. 19. Schlossberg, H.R. and H.R. Fetterman

  15. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  16. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    Science.gov (United States)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  17. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  18. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    Science.gov (United States)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  19. Lattice gas automata simulations of flow through porous media

    International Nuclear Information System (INIS)

    Matsukuma, Yosuke; Abe, Yutaka; Adachi, Hiromichi; Takahashi, Ryoichi

    1998-01-01

    In the course of a severe accident, a debris bed may be formed from once- molten and fragmented fuel elements. In order to avoid further degradation of the reactor core, it is necessary to remove the heat from the debris bed since the debris bed still release the decay heat. So as to predict the coolability of the debris bed, it is important to precisely estimate flow patterns through complex geometry of debris bed in microscopic level. Lattice gas automata could be powerful tool to simulate such a complex geometry. As a first step of the study, fundamental numerical simulation were conducted in two dimensional systems by using the lattice gas automata method to clarify single phase flow patterns through porous media in mesoscopic level. Immiscible lattice gas model is one of the lattice gas automata method and utilized for spinodal decomposition simulation of binary fluids. This model was applied to generate the complex flow geometry simulating porous media. It was approved that the complex flow geometries were successfully generated by the present method. Flow concentration was observed in specified flow channels for lower Reynolds number. Two dimensional flow concentration was caused by the irregular flow geometry generated by the present method, since the flow selects the channels of lower friction. Two dimensional pressure distribution was observed relating to the concentrations of flow in specified channels. The simulating results of the flow through the porous media by the present method qualitatively agree with the Ergun's equation. Quantitatively, the present results approach to Ergun's equation in higher Reynolds number than 10, although concentration of the flow in a specified flow channels were observed in lower Reynolds number than 10. It can be concluded that this technique is useful is useful to simulate flow through complex geometry like porous media. (author)

  20. Measurements of gas permeability and non-Darcy flow in gas-water-hydrate systems

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, G.; Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Baldwin, B. [Green Country Petrophysics LLC, Dewey, OK (United States); Stevens, J.; Howard, J. [ConocoPhillips, OK (United States)

    2008-07-01

    Storage of carbon dioxide (CO{sub 2}) in natural gas hydrate reservoirs may offer stable long-term storage of a greenhouse gas while benefiting from methane production, without requiring heat. By exposing hydrate to a thermodynamically preferred hydrate former, CO{sub 2}, the hydrate may be maintained macroscopically in the solid state and retain the stability of the formation. However, there is concern over the flow capacity in such reservoirs. This depends on several factors, notably thermodynamic destabilization of hydrate in small pores due to capillary effects; the presence of liquid channels separating the hydrate from the mineral surfaces; and, the connectivity of gas or liquid filled pores and channels. This paper described a technique for measuring gas permeability in gas-water-hydrate systems. It reported on several experiments that measured gas permeability during stages of hydrate growth in sandstone core plugs. Interactions between minerals and surrounding molecules were also discussed. The formation of methane hydrate in porous media was monitored and quantified with magnetic resonance imaging (MRI). MRI images of hydrate growth within the porous rock were provided along with measurements of gas permeability and non-Darcy flow effects at various hydrate saturations. Gas permeability was measured at steady state flow of methane through the hydrate-bearing core sample. Significant gas permeability was recorded for porous sandstone even when hydrates occupied up to 60 per cent of the pore space. It was concluded that MRI imaging can be used effectively to map and quantify hydrate saturation in sandstone core plugs. 27 refs., 2 tabs., 10 figs.