WorldWideScience

Sample records for holes q-deformed 2d

  1. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  2. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  3. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  4. q-deformed Poincare algebra

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1992-01-01

    The q-differential calculus for the q-Minkowski space is developed. The algebra of the q-derivatives with the q-Lorentz generators is found giving the q-deformation of the Poincare algebra. The reality structure of the q-Poincare algebra is given. The reality structure of the q-differentials is also found. The real Laplaacian is constructed. Finally the comultiplication, counit and antipode for the q-Poincare algebra are obtained making it a Hopf algebra. (orig.)

  5. q-deformed Weinberg-Salam model and q-deformed Maxwell equations

    International Nuclear Information System (INIS)

    Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.

    2000-01-01

    We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)

  6. Differential calculus for q-deformed twistors

    International Nuclear Information System (INIS)

    Akulov, V.P.; Duplij, S.A.; Chitov, V.V.

    1998-01-01

    Brief type of q-deformed differential calculus at light cone with using of twistor representation is suggested. Commutative relations between coordinates and moments are obtained. Considered quasiclassical limit gives exact form of vanish from mass shell

  7. A q-deformed nonlinear map

    International Nuclear Information System (INIS)

    Jaganathan, Ramaswamy; Sinha, Sudeshna

    2005-01-01

    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors-a phenomenon rare in one-dimensional maps

  8. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  9. q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

    OpenAIRE

    He, Jingsong; Li, Yinghua; Cheng, Yi

    2006-01-01

    Using the determinant representation of gauge transformation operator, we have shown that the general form of $au$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represent...

  10. Boundary counterterms and the thermodynamics of 2-D black holes

    International Nuclear Information System (INIS)

    Davis, Joshua L.; McNees, Robert

    2005-01-01

    We utilize a novel method to study the thermodynamics of two dimensional type 0A black holes with constant RR flux. Our approach is based on the Hamilton-Jacobi method of deriving boundary counterterms. We demonstrate this approach by recovering the standard results for a well understood example, Witten's black hole. Between this example and the 0A black hole we find universal expressions for the entropy and black hole mass, as well as the infra-red divergence of the partition function. As a non-trivial check of our results we verify the first law of thermodynamics for these systems. Our results for the mass disagree with the predictions of a proposed matrix model dual of the 0A black hole

  11. Beyond the singularity of the 2-D charged black hole

    International Nuclear Information System (INIS)

    Giveon, Amit; Rabinovici, Eliezer; Sever, Amit

    2003-01-01

    Two dimensional charged black holes in string theory can be obtained as exact SL(2,R) x U(1)/U(1) quotient CFTs. The geometry of the quotient is induced from that of the group, and in particular includes regions beyond the black hole singularities. Moreover, wavefunctions in such black holes are obtained from gauge invariant vertex operators in the SL(2,R) CFT, hence their behavior beyond the singularity is determined. When the black hole is charged we find that the wavefunctions are smooth at the singularities. Unlike the uncharged case, scattering waves prepared beyond the singularity are not fully reflected; part of the wave is transmitted through the singularity. Hence, the physics outside the horizon of a charged black hole is sensitive to conditions set behind the past singularity. (author)

  12. Q-deformed algebras and many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.

  13. A q-deformed Lorentz algebra

    International Nuclear Information System (INIS)

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  14. q-deformed oscillators and D-branes on conifold

    International Nuclear Information System (INIS)

    Okuyama, Kazumi

    2009-01-01

    We study the q-deformed oscillator algebra acting on the wavefunctions of non-compact D-branes in the topological string on conifold. We find that the mirror B-model curve of conifold appears from the commutation relation of the q-deformed oscillators

  15. q-deformed conformal superalgebra and its Hopf subalgebras

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Lukierski, J.; Sobczyk, J.; Tolstoy, V.N.

    1992-07-01

    We present in detail a Hopf superalgebra U q (su(2,2/2)) which is a q-deformation of the conformal superalgebra su(2,2/1). The superalgebra U q (su(2,2/1)) contains as a subalgebra a q-deformed super-Poincare algebra and as Hopf subalgebras two conjugate 16-generator q-deformed super-Weyl algebras, which are q-deformation of parabolic subalgebras of su(2,2/1). We use several (anti-) involutions, including the standard Cartan involution and a *-antiinvolution under which the super-Weyl algebras are *-subalgebras of U q (su(2,2/1)). The q-deformed Lorentz algebra is Hopf subalgebra of both Weyl algebras and is preserved by all (anti-) involutions considered. (author). 26 refs

  16. q-deformations of noncompact Lie (super-) algebras: The examples of q-deformed Lorentz, Weyl, Poincare' and (super-) conformal algebras

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1992-01-01

    We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs

  17. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, L; Grumiller, D; Kummer, W [Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2004-03-26

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way.

  18. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    International Nuclear Information System (INIS)

    Bergamin, L; Grumiller, D; Kummer, W

    2004-01-01

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way

  19. On massless representations of the Q-deformed Poincare algebra

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.

    1993-01-01

    This talk is devoted to the construction of massless representations of the q-deformed Poincare algebra. In section 2 we give Hilbert space representations of the SL q (2, C)-covariant quantum space. We then show in the next section how the generators of the q-Poincare algebra can be expressed in terms of operators which live in the light cone. The q-deformed massless one-particle states are considered in section 4. (orig.)

  20. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  1. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  2. A SPITZER c2d LEGACY SURVEY TO IDENTIFY AND CHARACTERIZE DISKS WITH INNER DUST HOLES

    International Nuclear Information System (INIS)

    Merin, Bruno; Brown, Joanna M.; Herczeg, Gregory J.; Van Dishoeck, Ewine F.; Oliveira, Isa; Lahuis, Fred; Bottinelli, Sandrine; Augereau, Jean-Charles; Olofsson, Johan; Evans, Neal J.; Harvey, Paul M.; Cieza, Lucas; Spezzi, Loredana; Prusti, Timo; Alcala, Juan M.; Blake, Geoffrey A.; Bayo, Amelia; Geers, Vincent G.; Walter, Frederick M.; Chiu, Kuenley

    2010-01-01

    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 μm feature strength above the continuum declines for holes with radii larger than ∼7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases.

  3. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  4. Phosphorene: an unexplored 2D semiconductor with a high hole mobility.

    Science.gov (United States)

    Liu, Han; Neal, Adam T; Zhu, Zhen; Luo, Zhe; Xu, Xianfan; Tománek, David; Ye, Peide D

    2014-04-22

    We introduce the 2D counterpart of layered black phosphorus, which we call phosphorene, as an unexplored p-type semiconducting material. Same as graphene and MoS2, single-layer phosphorene is flexible and can be mechanically exfoliated. We find phosphorene to be stable and, unlike graphene, to have an inherent, direct, and appreciable band gap. Our ab initio calculations indicate that the band gap is direct, depends on the number of layers and the in-layer strain, and is significantly larger than the bulk value of 0.31-0.36 eV. The observed photoluminescence peak of single-layer phosphorene in the visible optical range confirms that the band gap is larger than that of the bulk system. Our transport studies indicate a hole mobility that reflects the structural anisotropy of phosphorene and complements n-type MoS2. At room temperature, our few-layer phosphorene field-effect transistors with 1.0 μm channel length display a high on-current of 194 mA/mm, a high hole field-effect mobility of 286 cm(2)/V·s, and an on/off ratio of up to 10(4). We demonstrate the possibility of phosphorene integration by constructing a 2D CMOS inverter consisting of phosphorene PMOS and MoS2 NMOS transistors.

  5. Effective interactions from q-deformed quark fields

    International Nuclear Information System (INIS)

    Timoteo, V. S.; Lima, C. L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed

  6. The NJL interaction from q-deformed inspired transformations

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2007-01-01

    From the mass term for q-deformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting deformed fields into quarks interacting via NJL contact terms is discussed. (author)

  7. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    International Nuclear Information System (INIS)

    Morrison, C.; Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.

    2014-01-01

    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10 −28   eVm 3 and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  8. Matrix formulation of fractional supersymmetry and q-deformation

    Energy Technology Data Exchange (ETDEWEB)

    Benkaddour, I.

    2006-02-24

    Supersymmetry, which is the only non-trivial Z{sub 2} extension of the Poincare algebra, can be generalized to fractional supersymmetry, when the space time is smaller than 3. Since symmetries play an important role in physics; the principal task of quantum groups consist in extanding these standard symmetries to the deformed ones, which might be used in physics as well. This two aspects will be the main focus of this thesis. In this work, we discuss the matrix formulation of fractional supersymmetry, the q-deformation of KdV hierarchy systems and noncommutative geometry. In the first part fractional supersymmetry generated by more than one charge operator and those which can be described as a matrix model are studied. Using parafermionic field-theoretical methods, the fundamentals of two-dimensional fractional supersymmetry Q{sup k}=P are set up. Known difficulties induced by methods based on the U{sub q}(sl(2)) quantum group representations and noncommutative geometry are avoided in the parafermionic approach. Moreover, we find that fractional supersymmetric algebras are naturally realized as matrix models. The k=3 case is studied in detail. In the second part we will study the q-deformed algebra and the q-analogues of the generalised KdV hierarchy. We construct in this part the algebra of q-deformed pseudo-differential operators, shown to be an essential step toward setting up a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular on the first leading orders of this q-deformed hierarchy, namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u{sub n}, n{>=}2, and discuss the primary condition of the fields w{sub n}, n{>=}2, by using the Volterra gauge group transformations for the q-covariant Lax operators. In the last part we will discuss quantum groups and

  9. CERTAIN INEQUALITIES INVOLVING THE Q-DEFORMED GAMMA FUNCTION

    Directory of Open Access Journals (Sweden)

    K. Nantomah

    2014-11-01

    Full Text Available This paper in inspired by the work of J.Sándor in 2006. In paper, the authors establish some double inequalities involving the ratio (Γq(x+1/(Γq(x+1/2, where Γq(x is the q-deformation of the classical Gamma function denoted by Γ(x. The method employed in presenting the results makes use of Jackson׳s q-integral representation of the q-deformed Gamma function. In addition, Hőlder׳s inequality for the q-integral, as well as some basic analytical techniques involving the q-analogue of the psi function are used. As a consequence, q-analogues of the classical Wendel׳s asymptotic relation are obtained. At the end, sharpness of the inequalities established in this paper is investigated.

  10. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    Science.gov (United States)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  11. Formation of 2D-PhCs with missing holes based on Si-layers by EBL

    Science.gov (United States)

    Utkin, D. E.; Shklyev, A. A.; Tsarev, A. V.; Latyshev, A. V.

    2017-11-01

    The fabrication of the periodic structures, that is two-dimensional photonic crystals (2D PhCs) based on Si-materials by electron beam lithography (EBL) technique has been studied. We have investigated basic lithography processes such as designing, exposition, development, etching and others. The developed top-down approach allows close-packed arrays of elements and holes to be formed in nanometre range. This can be used to produce 2D PhCs with emitting micro-cavities (missing holes) with lateral size parameters with an accuracy of about 2% in the Si (100) substrate and in silicon-on-insulator structures. Such accuracy is expected to be sufficient for obtaining the cavities-coupling radiation interference from large areas of 2D PhCs.

  12. A q-deformed logistic map and its implications

    International Nuclear Information System (INIS)

    Banerjee, Subhashish; Parthasarathy, R

    2011-01-01

    A new q-deformed logistic map is proposed and it is found to have concavity in parts of the x-space. Its one-cycle and two-cycle non-trivial fixed points are obtained which are found to be qualitatively and quantitatively different from those of the usual logistic map. The stability of the proposed q-logistic map is studied using the Lyapunov exponent, and with a change in the value of the deformation parameter q, one is able to go from the chaotic to regular dynamical regime. The implications of this q-logistic map on Parrondo's paradox are examined.

  13. q-deformation and semidualization in 3D quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Majid, S [School of Mathematical Sciences, Queen Mary, University of London, 327 Mile End Rd, London E1 4NS (United Kingdom); Schroers, B J [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)], E-mail: s.majid@qmul.ac.uk, E-mail: bernd@ma.hw.ac.uk

    2009-10-23

    We explore in detail the role in euclidean 3D quantum gravity of quantum Born reciprocity or 'semidualization'. The latter is an algebraic operation defined using quantum group methods that interchanges position and momentum. Using this we are able to clarify the structural relationships between the effective noncommutative geometries that have been discussed in the context of 3D gravity. We show that the spin model based on D(U(su{sub 2})) for quantum gravity without cosmological constant is the semidual of a quantum particle on a 3-sphere, while the bicrossproduct (DSR) model is the semidual of a quantum particle on hyperbolic space. We show further how the different models are all specific limits of q-deformed models with q=e{sup -{Dirac_h}}{sup {radical}}{sup (-{lambda})/m{sub p}}, where m{sub p} is the Planck mass and {lambda} is the cosmological constant, and argue that semidualization interchanges m{sub p} {r_reversible} l{sub c}, where l{sub c} is the cosmological length scale l{sub c}=1/{radical}(|{lambda}|). We investigate the physics of semidualization by studying representation theory. In both the spin model and its semidual we show that irreducible representations have a physical picture as solutions of a respectively noncommutative/curved wave equation. We explain, moreover, that the q-deformed model, at a certain algebraic level, is self-dual under semidualization.

  14. BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2015-09-29

    We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.

  15. Sugawara construction and the q-deformation of Virasoro (super)algebra

    Energy Technology Data Exchange (ETDEWEB)

    Chaichian, M. (Theory Div., CERN, Geneva (Switzerland)); Presnajder, P. (Dept. of Theoretical Physics, Comenius Univ., Bratislava (Czechoslovakia))

    1992-02-27

    The q-deformed Virasoro algebra is obtained using the bosonic annihilation and creation operators of the q-deformed infinite Heisenberg algebra H({infinity}){sub q}, which has the Hopf structure. The generators of the q-deformed Virasoro algebra are expressed as a Sugawara construction in terms of normal ordered binomials in these annihilation and creation operators and become double indexed as the reminiscence of a degeneracy removal. The obtained q-deformed Virasoro algebra with central extension reduces to the standard one in the non-deformed limit and in special representations (but not in general) possesses a simple (cocommutative) Hopf structure (not related to the one in H({infinity}){sub q}). The fermionic annihilation and creation operators corresponding to the q-deformed infinite Heisenberg superalgebra s-H({infinity}){sub q} necessary for a similar construction of the q-deformed Virasoro superalgebra are presented. (orig.).

  16. First, Second Quantization and Q-Deformed Harmonic Oscillator

    International Nuclear Information System (INIS)

    Van Ngu, Man; Vinh, Ngo Gia; Lan, Nguyen Tri; Viet, Nguyen Ai; Thanh, Luu Thi Kim

    2015-01-01

    Relations between the first, the second quantized representations and deform algebra are investigated. In the case of harmonic oscillator, the axiom of first quantization (the commutation relation between coordinate and momentum operators) and the axiom of second quantization (the commutation relation between creation and annihilation operators) are equivalent. We shown that in the case of q-deformed harmonic oscillator, a violence of the axiom of second quantization leads to a violence of the axiom of first quantization, and inverse. Using the coordinate representation, we study fine structures of the vacuum state wave function depend in the deformation parameter q. A comparison with fine structures of Cooper pair of superconductivity in the coordinate representation is also performed. (paper)

  17. Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum

    International Nuclear Information System (INIS)

    Cai, Shukuan; Su, Guozhen; Chen, Jincan

    2007-01-01

    The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums

  18. Classical and quantum aspects of BPS black holes in N=2,D=4 heterotic string compactifications

    International Nuclear Information System (INIS)

    Rey, S.-J.

    1997-01-01

    We study classical and quantum aspects of D=4, N=2 BPS black holes for T 2 compactification of D=6, N=1 heterotic string vacua. We extend dynamical relaxation phenomena of moduli fields to a background consisting of a BPS soliton or a black hole and provide a simpler but more general derivation of the Ferrara-Kallosh extremized black hole mass and entropy. We study quantum effects to the BPS black hole mass spectra and to their dynamical relaxation. We show that, despite non-renormalizability of string effective supergravity, the quantum effect modifies BPS mass spectra only through coupling constant and moduli field renormalizations. Based on target-space duality, we establish a perturbative non-renormalization theorem and obtain the exact BPS black hole mass and entropy in terms of the renormalized string loop-counting parameter and renormalized moduli fields. We show that a similar conclusion holds, in the large T 2 limit, for leading non-perturbative correction. We finally discuss implications to type-I and type-IIA Calabi-Yau black holes. (orig.)

  19. Near-horizon of 5D rotating black holes from 2D perspective

    International Nuclear Information System (INIS)

    Soltanpanahi, Hesam

    2014-01-01

    We study the CFT dual to five-dimensional extremal rotating black holes, by investigating the two-dimensional perspective of their near-horizon geometry. From the two-dimensional point of view, we show that both gauge fields, related to the two rotations, appear in the same manner in the asymptotic symmetry and in the associated central charge. We find that our results are in perfect agreement with the generalization of the Kerr/CFT approach to five-dimensional extremal rotating black holes. (orig.)

  20. 2> for a scalar field in 2D black holes: A new uniform approximation

    International Nuclear Information System (INIS)

    Frolov, V.; Sushkov, S.V.; Zelnikov, A.

    2003-01-01

    We study nonconformal quantum scalar fields and averages of their local observables (such as 2 > ren and μν > ren ) in the spacetime of a two-dimensional black hole. In order to get an analytical approximation for these expressions the WKB approximation is often used. We demonstrate that at the horizon the WKB approximation is violated for a nonconformal field, that is, when the field mass or/and the parameter of nonminimal coupling does not vanish. We propose a new 'uniform approximation' which solves this problem. We use this approximation to obtain an improved analytical approximation for 2 > ren in the two-dimensional black hole geometry. We compare the results obtained with numerical calculations

  1. Strain-induced fermi contour anisotropy of GaAs 2D holes.

    Science.gov (United States)

    Shabani, J; Shayegan, M; Winkler, R

    2008-03-07

    We report measurements of magnetoresistance commensurability peaks, induced by a square array of antidots, in GaAs (311)A two-dimensional holes as a function of applied in-plane strain. The data directly probe the shapes of the Fermi contours of the two spin subbands that are split thanks to the spin-orbit interaction and strain. The experimental results are in quantitative agreement with the predictions of accurate energy band calculations, and reveal that the majority spin subband has a severely distorted Fermi contour whose anisotropy can be tuned with strain.

  2. Interactions in 2D electron and hole systems in the intermediate and ballistic regimes

    International Nuclear Information System (INIS)

    Proskuryakov, Y Y; Savchenko, A K; Safonov, S S; Li, L; Pepper, M; Simmons, M Y; Ritchie, D A; Linfield, E H; Kvon, Z D

    2003-01-01

    In different 2D semiconductor systems we study the interaction correction to the Drude conductivity in the intermediate and ballistic regimes, where the parameter k B Tτ/ h-bar changes from 0.1 to 10 (τ is momentum relaxation time). The temperature dependence of the resistance and magnetoresistance in parallel and perpendicular magnetic fields is analysed in terms of the recent theories of electron-electron interactions in systems with different degree of disorder and different character of the fluctuation potential. Generally, good agreement is found between the experiments and the theories

  3. Ratchet Effects and Domain Wall Energy Landscapes in Amorphous Magnetic Films with 2D Arrays of Asymmetric Holes

    Science.gov (United States)

    Martin, J. I.; Alija, A.; Sobrado, I.; Perez-Junquera, A.; Rodriguez-Rodriguez, G.; Velez, M.; Alameda, J. M.; Marconi, V. I.; Kolton, A. B.; Parrondo, J. M. R.

    2009-03-01

    The driven motion of domain walls in extended magnetic films patterned with 2D arrays of asymmetric holes has been found to be subject to two different crossed ratchet effects [1] which results in an inversion of the sign of domain wall motion rectification as a function of the applied magnetic field. This effect can be understood in terms of the competition between drive, elasticity and asymmetric pinning as revealed by a simple 4̂-model. In order to optimize the asymmetric hole design, the relevant energy landscapes for domain wall motion across the array of asymmetric holes have been calculated by micromagnetic simulations as a function of array geometrical characteristics. The effects of a transverse magnetic field on these two crossed ratchet effects will also be discussed in terms of the decrease in domain wall energy per unit area and of the modifications in the magnetostatic barriers for domain wall pinning at the asymmetric inclusions. Work supported by Spanish MICINN.[1] A. Perez-Junquera et al, Phys. Rev. Lett. 100 (2008) 037203

  4. Relativistic Energy Analysis of Five-Dimensional q-Deformed Radial Rosen-Morse Potential Combined with q-Deformed Trigonometric Scarf Noncentral Potential Using Asymptotic Iteration Method

    International Nuclear Information System (INIS)

    Pramono, Subur; Suparmi, A.; Cari, Cari

    2016-01-01

    We study the exact solution of Dirac equation in the hyperspherical coordinate under influence of separable q-deformed quantum potentials. The q-deformed hyperbolic Rosen-Morse potential is perturbed by q-deformed noncentral trigonometric Scarf potentials, where all of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equation l_D_-_1 have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Matlab, and the increase of radial quantum number n causes the increase of bound state relativistic energy level in both dimensions D=5 and D=3. The bound state relativistic energy level decreases with increasing of both deformation parameter q and orbital quantum number n_l.

  5. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    Science.gov (United States)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  6. Analysis of D Dimensional Dirac equation for q -deformed Posch-Teller combined with q -deformed trigonometric Manning Rosen Non-Central potential using Asymptotic Iteration Method (AIM)

    International Nuclear Information System (INIS)

    Alam, Y.; Suparmi; Cari; Anwar, F.

    2016-01-01

    In this study, we used asymptotic iteration method (AIM) to obtain the relativistic energy spectra and wavefunctions for D Dimensional Dirac equation. Solution of the D Dimensional Dirac equation using asymptotic iteration method was done by four steps. The first step, we substitutied q deformed Poschl-Teller potential plus q-deformed Manning Rosen Non-Central potential into D dimensional Dirac equation. And then, general term of D dimensioanl Dirac equation for q deformed Poschl-Teller potential plus q-deformed Manning Rosen Non-Central potential was reduced into one dimensioanal Dirac equation, consist of radial part and angular part. The second step, both of one dimensional part must be reduced to hypergeometric type differential equation by suitable parameter change. And then, hypergeometric type differential equation was transformed into AIM type differential equation. For the last step, AIM type differential equation can be solved to obtain the relativistic energy and wavefunctions of Dirac equation. Relativistic energy and wavefunctions were visualized by using Matlab software. (paper)

  7. The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons

    International Nuclear Information System (INIS)

    Lin Runliang; Peng Hua; Manas, Manuel

    2010-01-01

    Based on the eigenfunction symmetry constraint of the q-deformed modified KP hierarchy, a q-deformed mKP hierarchy with self-consistent sources (q-mKPHSCSs) is constructed. The q-mKPHSCSs contain two types of q-deformed mKP equation with self-consistent sources. By the combination of the dressing method and the method of variation of constants, a generalized dressing approach is proposed to solve the q-deformed KP hierarchy with self-consistent sources (q-KPHSCSs). Using the gauge transformation between the q-KPHSCSs and the q-mKPHSCSs, the q-deformed Wronskian solutions for the q-KPHSCSs and the q-mKPHSCSs are obtained. The one-soliton solutions for the q-deformed KP (mKP) equation with a source are given explicitly.

  8. Energy spectrum inverse problem of q -deformed harmonic oscillator and WBK approximation

    International Nuclear Information System (INIS)

    Sang, Nguyen Anh; Thuy, Do Thi Thu; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-01-01

    Using the connection between q-deformed harmonic oscillator and Morse-like anharmonic potential we investigate the energy spectrum inverse problem. Consider some energy levels of energy spectrum of q -deformed harmonic oscillator are known, we construct the corresponding Morse-like potential then find out the deform parameter q . The application possibility of using the WKB approximation in the energy spectrum inverse problem was discussed for the cases of parabolic potential (harmonic oscillator), Morse-like potential ( q -deformed harmonic oscillator). so we consider our deformed-three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. For practical problems, we propose the deformed- three-levels simple model, where the set-parameters of Morse potential and the corresponding set-parameters of level deformations are easily and explicitly defined. (paper)

  9. Thermostatistical properties of q-deformed bosons trapped in a D-dimensional power-law potential

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Jincan; Chen Lixuan

    2003-01-01

    The thermostatistical properties of an ideal gas of q-deformed bosons trapped in a D-dimensional power-law potential are studied, based on the q-deformed Bose-Einstein distribution. The effects of q-deformation on the properties of the system are discussed. It is shown that q-deformed bosons (q ≠ 1) possess many different characteristics from those of ordinary bosons, which include the condition that Bose-Einstein condensation (BEC) occurs, the critical temperature and the continuity of heat capacity

  10. q-deformed differential operator algebra and new braid group representation

    International Nuclear Information System (INIS)

    Wang Luyu; Dai Jianghui; Zhang Jun

    1991-01-01

    It is proved that the q-deformed differential operator algebra introduced is consistent with quantum hyperplane described by Wess and Zumino. At the same time, a new braid group representation associated with sl q (2) is obtained by adding the terms of weight conservation to the standard universal R-matrix. (author). 10 refs

  11. About the functions of the Wigner distribution for the q-deformed harmonic oscillator model

    International Nuclear Information System (INIS)

    Atakishiev, N.M.; Nagiev, S.M.; Djafarov, E.I.; Imanov, R.M.

    2005-01-01

    Full text : A q-deformed model of the linear harmonic oscillator in the Wigner phase-space is studied. It was derived an explicit expression for the Wigner probability distribution function, as well as the Wigner distribution function of a thermodynamic equilibrium for this model

  12. Algebraic structure of the Green's ansatz and its q-deformed analogue

    International Nuclear Information System (INIS)

    Palev, T.D.

    1994-08-01

    The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs

  13. Chiral symmetry restoration and pion properties in a q-deformed NJL model

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    We review the implementation of a q-deformed fermionic algebra in the Nambu-Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temperature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied. (author)

  14. Maths-type q-deformed coherent states for q>1

    International Nuclear Information System (INIS)

    Quesne, C.; Penson, K.A.; Tkachuk, V.M.

    2003-01-01

    Maths-type q-deformed coherent states with q>1 allow a resolution of unity in the form of an ordinary integral. They are sub-Poissonian and squeezed. They may be associated with a harmonic oscillator with minimal uncertainties in both position and momentum and are intelligent coherent states for the corresponding deformed Heisenberg algebra

  15. q-trace for quantum groups and q-deformed Yang-Mills theory

    International Nuclear Information System (INIS)

    Isaev, A.P.; Popowicz, Z.

    1992-01-01

    The definitions of orbits and q-trace for the quantum groups are introduced. Then the q-trace is used to construct the invariants for the quantum group orbits and to formulate the q-deformed Yang-Mills theory. The amusing formal relation of the Weinberg type mixing angle with the quantum group deformation parameter is discussed. (orig.)

  16. Interacting Dark Matter and q-Deformed Dark Energy Nonminimally Coupled to Gravity

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emerging q-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of the q-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.

  17. A q-Schroedinger algebra, its lowest weight representations and generalized q-deformed heat equations

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Doebner, H.D.; Mrugalla, C.

    1995-12-01

    We give a q-deformation S-perpendicular q of the centrally extended Schroedinger algebra. We construct the lowest weight representations of S-perpendicular q , starting from the Verma modules over S-perpendicular q , finding their singular vectors and factoring the Verma submodules built on the singular vectors. We also give a vector-field realization of S-perpendicular q which provides polynomial realization of the lowest weight representations and an infinite hierarchy of q-difference equations which may be called generalized q-deformed heat equations. We also apply our methods to the on-shell q-Schroedinger algebra proposed by Floreanini and Vinet. (author). 12 refs

  18. On the q-deformation of certain infinite dimensional Lie algebras

    International Nuclear Information System (INIS)

    El Kinani, E.H.; Zakkari, M.

    1995-07-01

    A representation of the q-deformed centreless Virasoro algebra in terms of the Gauss derivatives D x and D y on the quantum plane C q [x,y] is given. Moreover, we obtain the deformed version of the algebra of the area-preserving diffeomorphisms of the torus T 2 . In the end, the correspondence between Psd(q,p,r) and the a-bar ∞ algebra is pointed out. (author). 11 refs

  19. Solutions of q-deformed equations with quantum conformal symmetry and nonzero spin

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Gushterski, R.I.; Petrov, S.T.

    1998-09-01

    We consider the construction of explicit solutions of a hierarchy of q-deformed equations which are (conditionally) quantum conformal invariant. We give two types of solutions - polynomial solutions and solutions in terms of q-deformations of the plane wave. We use two q-deformations of the plane wave as a formal power series in the noncommutative coordinates of q-Minkowski space-time and four-momenta. One q-plane wave was proposed earlier by the first named author and B.S. Kostadinov, the other is new. The difference between the two is that they are written in conjugated bases. These q-plane waves are used here for the construction of solutions of the massless Dirac equation - one is used for the neutrino, the other for the antineutrino. It is also interesting that the neutrino solutions are deformed only through the q-pane wave, while the prefactor is classical. Thus, we can speak of a definite left-right asymmetry of the quantum conformal deformation of the neutrino-antineutrino system. (author)

  20. BFV-BRST analysis of the classical and quantum q-deformations of the sl(2) algebra

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1993-01-01

    BFV-BRST charge for q-deformed algebras is not unique. Different constructions of it in the classical as well as in the quantum phase space for the q-deformed algebra sl q (2) are discussed. Moreover, deformation of the phase space without deforming the generators of sl(2) is considered. h -q-deformation of the phase space is shown to yield the Witten's second deformation. To study the BFV-BRST cohomology problem when both the quantum phase space and the group are deformed, a two parameter deformation of sl(2) is proposed, and its BFV-BRST charge is given. (author). 21 refs

  1. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  2. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: c.morrison.2@warwick.ac.uk; Casteleiro, C.; Leadley, D. R.; Myronov, M. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-09-05

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm{sup 2}/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m{sub 0}. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  3. Complex quantum transport in a modulation doped strained Ge quantum well heterostructure with a high mobility 2D hole gas

    Science.gov (United States)

    Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.

    2016-09-01

    The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.

  4. q-deformed conformal and Poincare algebras on quantum 4-spinors

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Uematsu, Tsuneo

    1993-01-01

    We investigate quantum deformation of conformal algebras by constructing the quantum space for sl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformed su(2, 2) algebra from the deformed sl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector in so q (4, 2) is constructed as a tensor product of two sets of 4-spinors. We obtain the q-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincare algebra is derived through a contraction procedure. (orig.)

  5. The q-deformed SU(2) Heisenberg model in 3-dimensions

    International Nuclear Information System (INIS)

    Lu Zhongyi; Yan Hong.

    1991-07-01

    A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs

  6. Energy spectrum inverse problem of q-deformed harmonic oscillator and entanglement of composite bosons

    Science.gov (United States)

    Sang, Nguyen Anh; Thu Thuy, Do Thi; Loan, Nguyen Thi Ha; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    Using the simple deformed three-level model (D3L model) proposed in our early work, we study the entanglement problem of composite bosons. Consider three first energy levels are known, we can get two energy separations, and can define the level deformation parameter δ. Using connection between q-deformed harmonic oscillator and Morse-like anharmonic potential, the deform parameter q also can be derived explicitly. Like the Einstein’s theory of special relativity, we introduce the observer e˙ects: out side observer (looking from outside the studying system) and inside observer (looking inside the studying system). Corresponding to those observers, the outside entanglement entropy and inside entanglement entropy will be defined.. Like the case of Foucault pendulum in the problem of Earth rotation, our deformation energy level investigation might be useful in prediction the environment e˙ect outside a confined box.

  7. Integrable N dimensional systems on the Hopf algebra and q deformations

    International Nuclear Information System (INIS)

    Lisitsyn, Ya.V.; Shapovalov, A.V.

    2000-01-01

    The class of integrable classic and quantum systems on the Hopf algebra, describing the n of interacting particles, is plotted. The general structure of the integrable Hamiltonian system for the Hopf algebra A(g) of the Lee simple algebra g is obtained, wherefrom it follows, that motion integrals depend on the linear combinations k of the phase space coordinates. The q-deformation standard procedure is carried out and the corresponding integrable system is obtained. The general scheme is illustrated by the examples of the sl(2), sl(3) and o(3, 1) algebras. The exact solution is achieved for the N-dimensional Hamiltonian system quantum analog on the Hopf algebra A (sl(2)) through the method of noncommutative integration of linear differential equations [ru

  8. q-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field

    Science.gov (United States)

    Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.

    2018-01-01

    We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of θ in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.

  9. 2D hole gas seen

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini

    2018-01-01

    A p-type metallic sheet forms between two oxide insulators, LaAlO3 and SrTiO3. Suppression of oxygen vacancies in SrTiO3 plays a critical role in forming this sheet.......A p-type metallic sheet forms between two oxide insulators, LaAlO3 and SrTiO3. Suppression of oxygen vacancies in SrTiO3 plays a critical role in forming this sheet....

  10. An experimental investigation of the efficacy of perforated holes on unsteady aerodynamic force reduction for a 2D cylinder in uniform incoming flow

    Science.gov (United States)

    Sudalaimuthu, Vignesh; Liu, Xiaofeng

    2017-11-01

    A series of wind tunnel aerodynamic force measurements have been conducted on a 2D hollow cylinder with perforated holes uniformly-distributed on its surface to evaluate the efficacy of perforation as a means of passive flow control in reducing unsteady aerodynamic forces. Both smooth and perforated cylinders were tested for comparison at Reynolds numbers ranging from 50,000 to 200,000 corresponding to free stream velocities varying from 5 to 20 m/s (at an increment of 5 m/s) and a cylinder diameter of 0.152 m. The aerodynamic forces acting on the testing model were measured using a 6-component load cell. For each tunnel speed, the test has been repeated for 10 runs at a sampling rate of 10 kHz for 60 seconds each, with a total of 6,000,000 samples acquired for each test. Both mean and r.m.s. values of the lift and drag coefficients were calculated. Power spectral density distributions of the unsteady aerodynamic force loading was analyzed to investigate the effect of the perforation on the frequency composition. Comparisons indicate that the perforated cylinder with a 8% porosity and a hole diameter of about 2% of that of the cylinder gives both substantially less unsteady drag and lift than those of the smooth cylinder for the entire Reynolds number range tested, with the r.m.s. force reduction from 8% to 82% for the drag and 64% to 85% for the lift, confirming a corresponding beneficial reduction in flow-induced cylinder vibration as observed during the experiments. Sponsor: San Diego State University.

  11. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    Science.gov (United States)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  12. Representations of the q-deformed algebras Uq (so2,1) and Uq (so3,1)

    International Nuclear Information System (INIS)

    Gavrilik, O.M.; Klimyk, A.U.

    1993-01-01

    Representations of algebra U q (so 2 ,1) are studied. This algebra is a q-deformation of the universal enveloping algebra U(so 2 ,1) of the Lie algebra of the group SO 0 (2,1) and differs from the quantum algebra U q (SU 1 ,1). Classifications of irreducible representations and of infinitesimally irreducible representations of U q (SU 1 ,1). The sets of irreducible representations and of infinitesimally unitary irreducible representations of the algebra U q (so 3 ,1) are given. We also consider representations of U q (so n ,1) which are of class 1 with respect to subalgebra U q (so n ). (author). 22 refs

  13. Effects of cosmic-string framework on the thermodynamical properties of anharmonic oscillator using the ordinary statistics and the q-deformed superstatistics approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); Chung, Won Sang [Gyeongsang National University, Department of Physics and Research Institute of Natural Science, College of Natural Science, Jinju (Korea, Republic of)

    2018-02-15

    In this article, we determine the thermodynamical properties of the anharmonic canonical ensemble within the cosmic-string framework. We use the ordinary statistics and the q-deformed superstatistics for this study. The q-deformed superstatistics is derived by modifying the probability density in the original superstatistics. The Schroedinger equation is rewritten in the cosmic-string framework. Next, the anharmonic oscillator is investigated in detail. The wave function and the energy spectrum of the considered system are derived using the bi-confluent Heun functions. In the next step, we first determine the thermodynamical properties for the canonical ensemble of the anharmonic oscillator in the cosmic-string framework using the ordinary statistics approach. Also, these quantities have been obtained in the q-deformed superstatistics. For vanishing deformation parameter, the ordinary results are obtained. (orig.)

  14. On the deformed Einstein equations and quantum black holes

    International Nuclear Information System (INIS)

    Dil, E; Ersanli, C C; Kolay, E

    2016-01-01

    Recently q -deformed Einstein equations have been studied for extremal quantum black holes which have been proposed to obey deformed statistics by Strominger. In this study, we give the solutions of deformed Einstein equations by considering these equations for the charged black holes. Also we present the implications of the solutions, such as the deformation parameters lead the charged black holes to have a smaller mass than the classical Reissner- Nordstrom black holes. The reduction in mass of a classical black hole can be viewed as a transition from classical to quantum black hole regime. (paper)

  15. Analytical Solution of Dirac Equation for q-Deformed Hyperbolic Manning-Rosen Potential in D Dimensions using SUSY QM and its Thermodynamics Application

    International Nuclear Information System (INIS)

    Cari, C; Suparmi, A; Yunianto, M; Pratiwi, B N

    2016-01-01

    The Dirac equation of q-deformed hyperbolic Manning Rosen potential in D dimension was solved by using Supersymmetric Quantum Mechanics (SUSY QM). The D dimensional relativistic energy spectra were obtained by using SUSY QM and shape invariant properties and D dimensional wave functions of q-deformed hyperbolic Manning Rosen potential were obtained by using the SUSY raising and lowering operators. In the nonrelativistic limit, the relativistic energy spectra for exact spin symmetry case reduced into nonrelativistic energy spectra and so for the wave functions. In the classical regime, the partition function, the vibrational specific heat, and the vibrational mean energy of some diatomic molecules were calculated from the non-relativistic energy spectra with the help of error function and imaginary error function. (paper)

  16. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-11-02

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  17. Small polarons in 2D perovskites

    KAUST Repository

    Cortecchia, Daniele; Yin, Jun; Birowosuto, Muhammad D.; Lo, Shu-Zee A.; Gurzadyan, Gagik G.; Bruno, Annalisa; Bredas, Jean-Luc; Soci, Cesare

    2017-01-01

    We demonstrate that white light luminescence in two-dimensional (2D) perovskites stems from photoinduced formation of small polarons confined at specific sites of the inorganic framework in the form of self-trapped electrons and holes. We discuss their application in white light emitting devices and X-ray scintillators.

  18. Relativistic bound states in the presence of spherically ring-shaped q-deformed Woods–Saxon potential with arbitrary l-states

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.

    2013-01-01

    Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)

  19. A novel SUSY energy bound-states treatment of the Klein-Gordon equation with PT-symmetric and q-deformed parameter Hulthén potential

    Science.gov (United States)

    Aktas, M.

    2018-01-01

    In this study, we focus on investigating the exact relativistic bound-state spectra for supersymmetric, PT-supersymmetric and non-Hermitian versions of the q-deformed parameter Hulthén potential. The Hamiltonian hierarchy mechanism, namely the factorization method, is adopted within the framework of SUSYQM. This algebraic approach is used in solving the Klein-Gordon equation with the potential cases. The results obtained analytically by executing the straightforward calculations are in consistent forms for certain values of q. Achieving the results may have a particular interest for such applications. That is, they can be involved in determining the quantum structural properties of molecules for ro-vibrational states, and optical spectra characteristics of semiconductor devices with regard to the lattice dynamics. They are also employed to construct the broken or unbroken case of the supersymmetric particle model concerning the interaction between the elementary particles.

  20. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    Science.gov (United States)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  1. PERICLES 2D experiment

    International Nuclear Information System (INIS)

    Morel, Christophe

    2001-01-01

    Scope of the lecture was the modelling of severe reactor accidents. The PERICLES 2D experiment was compared to CATHARE 3D simulation results considering progression of a quench front inside the reactor core, steam flow rates, heat conduction, cladding temperature. (uke)

  2. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  3. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  4. The Role of screening in the strongly correlated 2D systems

    CERN Document Server

    Hwang, E H

    2003-01-01

    We investigate recently observed experiments in the strongly correlated 2D systems (r sub s >> 1) (low-density 2D plasmons, metallic behaviour of 2D systems and frictional drag resistivity between two 2D hole layers). We compare them with our theoretical results calculated within a conventional Fermi liquid theory with RPA screening.

  5. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  6. Supersymmetric black holes

    OpenAIRE

    de Wit, Bernard

    2005-01-01

    The effective action of $N=2$, $d=4$ supergravity is shown to acquire no quantum corrections in background metrics admitting super-covariantly constant spinors. In particular, these metrics include the Robinson-Bertotti metric (product of two 2-dimensional spaces of constant curvature) with all 8 supersymmetries unbroken. Another example is a set of arbitrary number of extreme Reissner-Nordstr\\"om black holes. These black holes break 4 of 8 supersymmetries, leaving the other 4 unbroken. We ha...

  7. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    Ginsparg, P.; Moore, G.

    1992-01-01

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  8. 2D-hahmoanimaation toteuttamistekniikat

    OpenAIRE

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  9. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  10. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun; Li, Hong; Cortecchia, Daniele; Soci, Cesare; Bredas, Jean-Luc

    2017-01-01

    calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level

  11. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  12. SES2D user's manual

    International Nuclear Information System (INIS)

    Johnson, J.D.; Lyon, S.P.

    1982-04-01

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  13. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database......., and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  14. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  15. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    African Journals Online (AJOL)

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  16. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  17. Unparticle Example in 2D

    International Nuclear Information System (INIS)

    Georgi, Howard; Kats, Yevgeny

    2008-01-01

    We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles

  18. Statistics of 2D solitons

    International Nuclear Information System (INIS)

    Brekke, L.; Imbo, T.D.

    1992-01-01

    The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions

  19. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  20. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  1. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  2. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  3. Integer channels in nonuniform non-equilibrium 2D systems

    Science.gov (United States)

    Shikin, V.

    2018-01-01

    We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.

  4. FEM-2D - Input description and performance

    International Nuclear Information System (INIS)

    Schmidt, F.A.R.

    1975-03-01

    FEM-2D solves the 2d diffusion equation by the Finite Element Method. This version of the code was written for x-y geometry, triangular elements with first and second order flux approximations, and has a solution routine which is based on a modified Cholesky procedure. FEM-2D is fully integrated into the modular system RSYST. However, we have developed a simulation program RSIMK which simulates some of the functions of RSYST and allows to run FEM-2D independently. (orig.) [de

  5. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  6. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  7. Tamoxifen and CYP2D6

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P.; Damkier, Per

    2018-01-01

    Tamoxifen reduces the rate of breast cancer recurrence by about one-half. It is converted to more active metabolites by enzymes encoded by polymorphic genes, including cytochrome P450 2D6 (CYP2D6) and transported by ATP-binding cassette transporters. Genetic polymorphisms that confer reduced CYP2...

  8. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    Strachan, J.D.; Corrigan, G.

    2005-01-01

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  9. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  10. Light field morphing using 2D features.

    Science.gov (United States)

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field.

  11. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2011-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  12. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  13. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  14. Matrix models of 2d gravity

    International Nuclear Information System (INIS)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date

  15. A companion matrix for 2-D polynomials

    International Nuclear Information System (INIS)

    Boudellioua, M.S.

    1995-08-01

    In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs

  16. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  17. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  18. 2d index and surface operators

    International Nuclear Information System (INIS)

    Gadde, Abhijit; Gukov, Sergei

    2014-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role

  19. Ruppeiner theory of black hole thermodynamics

    International Nuclear Information System (INIS)

    Aman, Jan E; Bedford, James; Grumiller, Daniel; Pidokrajt, Narit; Ward, John

    2007-01-01

    The Ruppeiner metric as determined by the Hessian of the Gibbs surface provides a geometric description of thermodynamic systems in equilibrium. An interesting example is a black hole in equilibrium with its own Hawking radiation. In this article, we present results from the Ruppeiner study of various black hole families from different gravity theories e.g. 2D dilaton gravity, BTZ, general relativity and higher-dimensional Einstein-Maxwell gravity

  20. Orthotropic Piezoelectricity in 2D Nanocellulose.

    Science.gov (United States)

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  1. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  2. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  3. Explorative analysis of 2D color maps

    OpenAIRE

    Steiger, Martin; Bernard, Jürgen; Thum, Simon; Mittelstädt, Sebastian; Hutter, Marco; Keim, Daniel A.; Kohlhammer, Jörn

    2015-01-01

    Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-inter...

  4. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  5. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  6. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  7. 2-D model for electrokinetic remediation

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J.M.; Garcia Delgado, R.A.; Gomez Lahoz, C.; Garcia Herruzo, F. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain); Vereda Alonso, C. [Dept. de Ingenieria Quimica, Univ. de Malaga (Spain)]|[Inst. for Geologi and Geoteknik, Danmarks Tekniske Univ., Lyngby (Denmark)

    2001-07-01

    A simple two-dimensional numerical model is presented in this work. In this case, the model is used to examine the enhanced method of the electrokinetic remediation technique in a 2-D arrangement. Nevertheless the model with minor changes can also be used to study the effect of the electrode configuration in the performance of this technique. (orig.)

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. 2D-deformaatio-animaatio peligrafiikassa

    OpenAIRE

    Falck, Tia

    2017-01-01

    Opinnäytetyössä tavoitteena oli esitellä deformaatio-animaation hyötyjä peligrafiikassa. Esimerkillisenä pelinä käytettiin pääasiassa Vanillawaren Dragon’s Crownian, koska siinä yhdistyvät perinteinen sprite sheet -animaatiota käyttävä peligrafiikka ja animaatiotyyli, jonka pystyisi tekemään helpommin kokonaan 2D-mesh-deformaatiota ja luurankoanimaatiota käyttäen. Projektityön osuudessa käytiin läpi animoidun 2D-hahmon työvaiheet kahdessa eri ohjelmassa, joissa molemmissa pystyi teke...

  10. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  11. Fano-type coupling of a bound paramagnetic state with 2D continuum

    International Nuclear Information System (INIS)

    Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2013-01-01

    We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas

  12. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  13. Design of 2-D rational digital filters

    International Nuclear Information System (INIS)

    Harris, D.B

    1981-01-01

    A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization

  14. Quasiparticle interference in unconventional 2D systems.

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-15

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe 2 ), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  15. Thermodynamics of 2D string theory

    International Nuclear Information System (INIS)

    Alexandrov, Sergei Yu.; V.A. Fock Department of Theoretical Physics, St. Petersburg University

    2003-01-01

    We calculate the free energy, energy and entropy in the matrix quantum mechanical formulation of 2D string theory in a background strongly perturbed by tachyons with the imaginary minkowskian momentum ±i/R ('Sine-Liouville' theory). The system shows a thermodynamical behaviour corresponding to the temperature T={1/(2π R)}. We show that the microscopically calculated energy of the system satisfies the usual thermodynamical relations and leads to a non-zero entropy. (author)

  16. 2D materials: Graphene and others

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal [Deptt. of Mech Engg, UIET, Panjab University, Chandigarh (India); Kumar, Suresh [Deptt. of Applied Sciences, UIET, Panjab University, Chandigarh (India)

    2016-05-06

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  17. Simulation of 2D Granular Hopper Flow

    Science.gov (United States)

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  18. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  19. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  20. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien; Kang, Jeongseuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsinping; Roy, Tania; Eggleston, Michael S.; Wu, Ming C.; Dubey, Madan; Lee, Sichen; He, Jr-Hau; Javey, Ali

    2015-01-01

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  1. From 2D to 3D turbulence through 2D3C configurations

    Science.gov (United States)

    Buzzicotti, Michele; Biferale, Luca; Linkmann, Moritz

    2017-11-01

    We study analytically and numerically the geometry of the nonlinear interactions and the resulting energy transfer directions of 2D3C flows. Through a set of suitably designed Direct Numerical Simulations we also study the coupling between several 2D3C flows, where we explore the transition between 2D and fully 3D turbulence. In particular, we find that the coupling of three 2D3C flows on mutually orthogonal planes subject to small-scale forcing leads to a stationary 3D out-of-equilibrium dynamics at the energy containing scales where the inverse cascade is directly balanced by a forward cascade carried by a different subsets of interactions. ERC AdG Grant No 339032 NewTURB.

  2. 2D non-separable linear canonical transform (2D-NS-LCT) based cryptography

    Science.gov (United States)

    Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.

    2017-05-01

    The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.

  3. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun

    2017-01-20

    We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.

  4. Magnetometry and transport studies of 2D systems

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.P

    1999-06-01

    This thesis presents measurements of the magnetisation and magnetotransport of two-dimensional electron and hole systems, at low temperatures and high magnetic fields. When the magnetic field is swept through a resistivity minimum associated with the quantum Hall effect, circulating 'eddy' currents are induced in the 2D electron system. These currents may be large enough to cause breakdown of the quantum Hall effect. Breakdown has been examined in high-mobility electron and hole samples, by recording the magnetic moments associated with these eddy currents, and the results have been compared to breakdown models. Eddy currents observed at fractional quantum Hall effect (FQHE) filling factors have been used to determine the FQHE gap energy. The measured value is far closer to theoretical predictions than the results of conventional measurements: this is thought to be because breakdown arises through inter-Landau-level tunnelling, which is local on the scale of the disorder. A series of quantum Hall effect measurements have been performed on a low density sample. Depopulating the Landau levels by applying an increasing gate voltage allowed the numbers of localised and extended states to be counted at each magnetic field. The number of extended states may the be plotted as a function of reducing magnetic field. In certain circumstances, the number of extended states drops to zero before the magnetic field is zero: the system is entirely localised for a range of small fields, consistent with the theories of levitation of extended states. The idea that each Landau level contains only one extended state is also challenged. Measurements of the equilibrium magnetisation of a 2DES may be used to give insight into the shape of the electron density of states. Results are presented of the de Haas - van Alphen oscillations of a very high mobility, low density sample, in which magnetisation oscillations are observed at odd as well as even integer filling factors. The

  5. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  6. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...... diameter to water depth ratio and the wave hight to water depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles....

  7. Gluon amplitudes as 2 d conformal correlators

    Science.gov (United States)

    Pasterski, Sabrina; Shao, Shu-Heng; Strominger, Andrew

    2017-10-01

    Recently, spin-one wave functions in four dimensions that are conformal primaries of the Lorentz group S L (2 ,C ) were constructed. We compute low-point, tree-level gluon scattering amplitudes in the space of these conformal primary wave functions. The answers have the same conformal covariance as correlators of spin-one primaries in a 2 d CFT. The Britto-Cachazo-Feng-Witten (BCFW) recursion relation between three- and four-point gluon amplitudes is recast into this conformal basis.

  8. 2D gravity and random matrices

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1990-01-01

    Recent progress in 2D gravity coupled to d ≤ 1 matter, based on a representation of discrete gravity in terms of random matrices, is reported. The matrix problem can be solved in many cases by the introduction of suitable orthogonal polynomials. Alternatively in the continuum limit the orthogonal polynomial method can be shown to be equivalent to the construction of representation of the canonical commutation relations in terms of differential operators. In the case of pure gravity or discrete Ising-like matter the sum over topologies is reduced to the solution of non-linear differential equations. The d = 1 problem can be solved by semiclassical methods

  9. 2-d spectroscopic imaging of brain tumours

    International Nuclear Information System (INIS)

    Ferris, N.J.; Brotchie, P.R.

    2002-01-01

    Full text: This poster illustrates the use of two-dimensional spectroscopic imaging (2-D SI) in the characterisation of brain tumours, and the monitoring of subsequent treatment. After conventional contrast-enhanced MR imaging of patients with known or suspected brain tumours, 2-D SI is performed at a single axial level. The level is chosen to include the maximum volume of abnormal enhancement, or, in non-enhancing lesions. The most extensive T2 signal abnormality. Two different MR systems have been used (Marconi Edge and GE Signa LX); at each site, a PRESS localisation sequence is employed with TE 128-144 ms. Automated software is used to generate spectral arrays, metabolite maps, and metabolite ratio maps from the spectroscopic data. Colour overlays of the maps onto anatomical images are produced using manufacturer software or the Medex imaging data analysis package. High grade gliomas showed choline levels higher than those in apparently normal brain, with decreases in NAA and creatine. Some lesions showed spectral abnormality extending into otherwise normal appearing brain. This was also seen in a case of CNS lymphoma. Lowgrade lesions showed choline levels similar to normal brain, but with decreased NAA. Only a small number of metastases have been studied, but to date no metastasis has shown spectral abnormality beyond the margins suggested by conventional imaging. Follow-up studies generally show spectral heterogeneity. Regions with choline levels higher than those in normal-appearing brain are considered to represent recurrent high-grade tumour. Some regions show choline to be the dominant metabolite, but its level is not greater than that seen in normal brain. These regions are considered suspicious for residual / recurrent tumour when the choline / creatine ratio exceeds 2 (lower ratios may represent treatment effect). 2-D SI improves the initial assessment of brain tumours, and has potential for influencing the radiotherapy treatment strategy. 2-D SI also

  10. Homogenization models for 2-D grid structures

    Science.gov (United States)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  11. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-06-01

    Full Text Available The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes, and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays.

  12. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Science.gov (United States)

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  13. Is 'bosonic matter' unstable in 2D?

    CERN Document Server

    Manoukian, E B

    2003-01-01

    An upper bound is derived for the exact ground-state energy in 2D, E sub N <= -(me sup 4 /2 h-bar sup 2)(N sup 3 sup / sup 2 /50 pi sup 2), of 'bosonic matter' consisting of N positive and N negative charges with Coulombic interactions. This is to be compared with the classic N sup 7 sup / sup 5 3D-law of Dyson and gives rise to a more 'violent' collapse of such matter in 2D for large N. The derivation is based on a rigorous analysis which, in the process, controls the negative part of the Hamiltonian over its positive kinetic energy part and detailed estimates needed for counting trial wavefunctions of arbitrary states. A formal dimensional analysis in the style of Dyson alone shows, in arbitrary dimensions of space d = 1, 2, ..., that E sub N approx = -(me sup 4 /2 h-bar sup 2)C sub d N suprho, rho = (d + 4)/(d + 2), where C sub d is a positive constant depending on d, consistent with our rigorous bound, and we are led to conjecture that 'bosonic matter' is unstable in all dimensions.

  14. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  15. Topological Toughening of graphene and other 2D materials

    Science.gov (United States)

    Gao, Huajian

    It has been claimed that graphene, with the elastic modulus of 1TPa and theoretical strength as high as 130 GPa, is the strongest material. However, from an engineering point of view, it is the fracture toughness that determines the actual strength of materials, as crack-like flaws (i.e., cracks, holes, notches, corners, etc.) are inevitable in the design, fabrication, and operation of practical devices and systems. Recently, it has been demonstrated that graphene has very low fracture toughness, in fact close to that of ideally brittle solids. These findings have raised sharp questions and are calling for efforts to explore effective methods to toughen graphene. Recently, we have been exploring the potential use of topological effects to enhance the fracture toughness of graphene. For example, it has been shown that a sinusoidal graphene containing periodically distributed disclination quadrupoles can achieve a mode I fracture toughness nearly twice that of pristine graphene. Here we report working progresses on further studies of topological toughening of graphene and other 2D materials. A phase field crystal method is adopted to generate the atomic coordinates of material with specific topological patterns. We then perform molecular dynamics simulations of fracture in the designed samples, and observe a variety of toughening mechanisms, including crack tip blunting, crack trapping, ligament bridging, crack deflection and daughter crack initiation and coalescence.

  16. Horizon strings and interior states of a black hole

    Directory of Open Access Journals (Sweden)

    K.P. Yogendran

    2015-11-01

    Full Text Available We provide an explicit construction of classical strings that have endpoints on the horizons of the 2D Lorentzian black hole. We argue that this is a dual description of geodesics that are localized around the horizon which are the Lorentzian counterparts of the winding strings of the Euclidean black hole (the cigar geometry. Identifying these with the states of the black hole, we can expect that issues of black hole information loss can be posed sharply in terms of a fully quantizable string theory.

  17. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  18. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  19. 2D quantum gravity from quantum entanglement.

    Science.gov (United States)

    Gliozzi, F

    2011-01-21

    In quantum systems with many degrees of freedom the replica method is a useful tool to study the entanglement of arbitrary spatial regions. We apply it in a way that allows them to backreact. As a consequence, they become dynamical subsystems whose position, form, and extension are determined by their interaction with the whole system. We analyze, in particular, quantum spin chains described at criticality by a conformal field theory. Its coupling to the Gibbs' ensemble of all possible subsystems is relevant and drives the system into a new fixed point which is argued to be that of the 2D quantum gravity coupled to this system. Numerical experiments on the critical Ising model show that the new critical exponents agree with those predicted by the formula of Knizhnik, Polyakov, and Zamolodchikov.

  20. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    Socolar, J.E.S.

    1990-01-01

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  1. Nonlinear Optics with 2D Layered Materials.

    Science.gov (United States)

    Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei

    2018-03-25

    2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  3. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    ). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  4. Full revivals in 2D quantum walks

    International Nuclear Information System (INIS)

    Stefanak, M; Jex, I; Kollar, B; Kiss, T

    2010-01-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  5. Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.

    Science.gov (United States)

    Montagnini, Anna; Spering, Miriam; Masson, Guillaume S

    2006-12-01

    Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.

  6. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  7. The ionic versus metallic nature of 2D electrides: a density-functional description.

    Science.gov (United States)

    Dale, Stephen G; Johnson, Erin R

    2017-10-18

    The two-dimensional (2D) electrides are a highly unusual class of materials, possessing interstitial electron layers sandwiched between cationic atomic layers of the solid. In this work, density-functional theory, with the exchange-hole dipole moment dispersion correction, is used to investigate exfoliation and interlayer sliding of the only two experimentally known 2D electrides: [Ca 2 N] + e - and [Y 2 C] 2+ (2e - ). Examination of the valence states during exfoliation identifies intercalated electrons in the bulk and weakly-bound surface-states in the fully-expanded case. The calculated exfoliation energies for the 2D electrides are found to be much higher than for typical 2D materials, which is attributed to the ionic nature of the electrides and the strong Coulomb forces governing the interlayer interactions. Conversely, the calculated sliding barriers are found to be quite low, comparable to those for typical 2D materials, and are effectively unchanged by exclusion of dispersion. We conjecture that the metallic nature of the interstitial electrons allows the atomic layers to move relative to each other without significantly altering the interlayer binding. Finally, comparison with previous works reveals the importance of a system-dependent dispersion correction in the density-functional treatment.

  8. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  9. Photovoltaic Effect of 2D Homologous Perovskites

    International Nuclear Information System (INIS)

    Jung, Mi-Hee

    2017-01-01

    Highlights: • The mixed perovskite was prepared by exposure of MAI gas on the BAPbI_4 film. • The increased dimensional perovskite shows a smaller band gap than 2D perovskite. • The mixed perovskite system shows the vertical crystal orientation. • The mixed perovskite cell exhibits the higher Jsc and FF than 2D perovskite cell. - Abstract: The controlled growth of mixed dimensional perovskite structures, (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1, through the introduction of CH_3NH_3I molecule vapor into the two-dimensional perovskite C_6H_5CH_2NH_3PbI_4 structure and its application in photovoltaic devices is reported. The dimensionality of (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 is controlled using the exposure time to the CH_3NH_3I vapor on the C_6H_5CH_2NH_3PbI_4 perovskite film. As the stacking of the lead iodide lattice increases, the crystallographic planes of the inorganic perovskite compound exhibit vertical growth in order to facilitate efficient charge transport. Furthermore, the devices have a smaller band gap, which offers broader absorption and the potential to increase the photocurrent density in the solar cell. As a result, the photovoltaic device based on the (C_6H_5CH_2NH_2)(CH_3NH_3)_n_-_1Pb_nI_3_n_+_1 perovskite exhibits a power conversion efficiency of 5.43% with a short circuit current density of 14.49 mA cm"−"2, an open circuit voltage of 0.85 V, and a fill factor of 44.30 for the best power conversion efficiency under AM 1.5G solar irradiation (100 mW cm"−"2), which is significantly higher than the 0.34% of the pure two-dimensional BAPbI_4 perovskite-based solar cell.

  10. Parallelization of 2-D lattice Boltzmann codes

    International Nuclear Information System (INIS)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)

  11. Multimodal 2D Brain Computer Interface.

    Science.gov (United States)

    Almajidy, Rand K; Boudria, Yacine; Hofmann, Ulrich G; Besio, Walter; Mankodiya, Kunal

    2015-08-01

    In this work we used multimodal, non-invasive brain signal recording systems, namely Near Infrared Spectroscopy (NIRS), disc electrode electroencephalography (EEG) and tripolar concentric ring electrodes (TCRE) electroencephalography (tEEG). 7 healthy subjects participated in our experiments to control a 2-D Brain Computer Interface (BCI). Four motor imagery task were performed, imagery motion of the left hand, the right hand, both hands and both feet. The signal slope (SS) of the change in oxygenated hemoglobin concentration measured by NIRS was used for feature extraction while the power spectrum density (PSD) of both EEG and tEEG in the frequency band 8-30Hz was used for feature extraction. Linear Discriminant Analysis (LDA) was used to classify different combinations of the aforementioned features. The highest classification accuracy (85.2%) was achieved by using features from all the three brain signals recording modules. The improvement in classification accuracy was highly significant (p = 0.0033) when using the multimodal signals features as compared to pure EEG features.

  12. FILM ANIMASI 2D (DIMENSI PENYULUHAN KB

    Directory of Open Access Journals (Sweden)

    Tri Hidayatul Ahmad Ismail

    2013-02-01

    Full Text Available Multimedia Animation is an attempt to make a live presentation of static or moving, the animation may consist of images and music to blend together and become alive. In this case Multimedia Animation designed by using multimedia-based information technology. From year to year Multimedia Animation Film Animation shaped more advanced, both in coloring, and in concep movement. With the community Animation Film spoiled by progress dazzling animation creation. Later in the era of globalization in Indonesia's population penetration rate can be calculated very rapidly. So the authors designed an Animated Film to Family Planning Counseling to promote family planning in the community.Data collection methods used to make this application is the method of interview and literature study. For the development of the system in this paper by using development techniques Luther systems development models - Sutopo which consists of six stages: concept, design, collecting materials, assembly, testing and distribution. The results of this study are 2D Animation Film as a medium of socialization to Family Planning Department with extension. Avi and will be distributed via CD media and aired on Social Media such as Facebook, Twitter and YouTube. This animation movie aims to be one choice as the media reduces the increase in the number of residents is too drastic. Keywords: movies, animation, family planning, Luther-Sutopo

  13. 2D conformal field theories and holography

    International Nuclear Information System (INIS)

    Freidel, Laurent; Krasnov, Kirill

    2004-01-01

    It is known that the chiral part of any 2D conformal field theory defines a 3D topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3D topological theory that arises is a certain 'square' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3D gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting 'holographic' perspective on conformal field theories in two dimensions

  14. 2D electromagnetic modelling of superconductors

    International Nuclear Information System (INIS)

    Morandi, Antonio

    2012-01-01

    Some issues concerning the numerical analysis of superconductors are discussed and a novel approach to 2D modelling is proposed. Both axial and translational symmetric as well as current driven and voltage driven systems are examined in detail. The E–J power law is chosen instead of the critical state model as a constitutive relation of the material and the need to modify this relation in order to account for the normal state transition at high currents is discussed. A linear space reconstruction of the current density by means of nodal shape functions is used in order to build the finite dimensional model. A method to relax the tangential continuity of the current density, which is inherent to the discretization method used, is discussed. The performance of the proposed approach, both in terms of current distribution and AC loss, is evaluated with reference to some cases of practical interest involving composite materials. The role of the electric field as a natural state variable for superconducting problems is also pointed out. The use of the method as an alternative to the circuit approach or edge elements for modelling the superconductors is finally discussed. (paper)

  15. Parallelization of 2-D lattice Boltzmann codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo

    1996-03-01

    Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).

  16. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  17. Glory scattering by black holes

    International Nuclear Information System (INIS)

    Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.

    1985-01-01

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  18. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  19. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  20. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  1. A self-assembled 2D/2D-type protonated carbon nitride-modified graphene oxide nanocomposite with improved photocatalytic activity

    Science.gov (United States)

    Xie, Linfang; Ni, Jie; Tang, Bo; He, Guangyu; Chen, Haiqun

    2018-03-01

    A surface charge modified g-C3N4 was successfully prepared by protonation of nitric acid. Combination of the protonated g-C3N4 (pCN) and graphene oxide (GO) layers created a 2D/2D-type composite (pCN/GO) under the synergistic effect of sonication-exfoliation and self-assembly. The obtained 2D nanostructure of pCN/GO was explored by electron microscopy analysis. The photocatalytic degradation of rhodamine B (RhB) and ciprofloxacin (CIP) showed a distinctly high efficiency of pCN/GO-5% with excellent stability, which is superior not only to that of g-C3N4, pCN and g-C3N4/GO-5% nanocomposites we prepared, but also to what was reported previously. The optimized combination of GO and pCN afforded the pCN/GO composite intimate interfacial contact within the heterojunction, which promoted the separation of photogenerated electron-hole pairs as evidenced by zeta potential, photoluminescence and photocurrent measurements. A visible-light photocatalytic degradation mechanism associated with pCN/GO nanocomposites was also proposed.

  2. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  3. How to create a two-dimensional black hole

    International Nuclear Information System (INIS)

    Frolov, V.; Hendy, S.; Larsen, A.L.

    1996-01-01

    The interaction of a cosmic string with a four-dimensional stationary black hole is considered. If a part of an infinitely long string passes close to a black hole it can be captured. The final stationary configurations of such captured strings are investigated. It is shown that the minimal 2D surface Σ describing a captured stationary string coincides with a principal Killing surface, i.e., a surface formed by Killing trajectories passing through a principal null ray of the Kerr-Newman geometry. A uniqueness theorem is proved, namely, it is shown that the principal Killing surfaces are the only stationary solutions of the string equations which enter the ergosphere and remain timelike and regular at the static limit surface. Geometrical properties of principal Killing surfaces are investigated and it is shown that the internal geometry of Σ coincides with the geometry of a 2D black or white hole (string hole). The equations for propagation of string perturbations are shown to be identical with the equations for a coupled pair of scalar fields open-quote open-quote living close-quote close-quote in the spacetime of a 2D string hole. Some interesting features of the physics of 2D string holes are described. In particular, it is shown that the existence of the extra dimensions of the surrounding spacetime makes interaction possible between the interior and exterior of a string black hole; from the point of view of the 2D geometry this interaction is acausal. Possible application of this result to the information loss puzzle is briefly discussed. copyright 1996 The American Physical Society

  4. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  5. The supersymmetric configurations of N=2, d=4 supergravity coupled to vector supermultiplets

    CERN Document Server

    Meessen, P

    2006-01-01

    We classify all the supersymmetric configurations of ungauged N=2,d=4 supergravity coupled to n vector multiplets and determine under which conditions they are also classical solutions of the equations of motion. The supersymmetric configurations fall into two classes, depending on the timelike or null nature of the Killing vector constructed from Killing spinor bilinears. The timelike class configurations are essentially the ones found by Behrndt, Luest and Sabra, which exhaust this class and are the ones that include supersymmetric black holes. The null class configurations include pp-waves and cosmic strings.

  6. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  7. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications

    Science.gov (United States)

    Chen, Pengfei; Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; Zhao, Xiujian

    2018-01-01

    Black phosphorus, which is a relatively rare allotrope of phosphorus, was first discovered by Bridgman in 1914. Since the advent of two-dimensional (2D) black phosphorus (which is known as phosphorene due to its resembling graphene sheets) in early 2014, research interest in the arena of black phosphorus was reignited in the scientific and technological communities. Henceforth, a myriad of research studies on this new member of the 2D world have been extensively emerged. Fascinatingly, 2D black phosphorus exhibits a distinctive wrinkled structure with the high hole mobility up to 1000 cm2 V-1 s-1, excellent mechanical properties, tunable band structures, anisotropic thermal, electrical and optical properties, thus leading to its marvelous prospects in device applications. This review firstly introduces the state-of-the-art development, structural properties and preparation routes of black phosphorus. In particular, anisotropy involved in mechanical properties, thermal conductivity, carrier transport as well as optical properties is comprehensively discussed. Apart from discussing the recent progress in black phosphorus which is applied to devices (i.e. field effect transistors and optoelectronic), the review also highlights the bottlenecks encountered by the society and finally casts an invigorating perspective and insightful outlook on the future direction of the next-generation 2D black phosphorus by harnessing its remarkable characteristics for energy production.

  8. Positron annihilation 2D-ACAR study of irradiation-induced defects in Si

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Tang, Z.; Kawasuso, Atsuo; Suezawa, Masashi; Yamaguchi, Sadaei; Sumino, Koji [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Chiba, T.

    1996-04-01

    A positron annihilation method constitutes the most characteristic feature to demonstrate directly the lattice vacancy (hereinafter referred to vacancy) independent of the added elements, the electrical conductance and the charge state of them. The method can detect hole, divacancy and vacancy cluster. The divacancy is introduced into the single crystal sample by using the electron radiation with 15 MeV at room temperature. For 2D-ACAR spectrum of the perfect crystal,the maximum peak to valley showed 12.3% of the peak height of 2D-ACAR spectrum. It was clear from the measurement results of sample with the neutral divacancy (V2deg) that 2D-ACAR spectra of divacancy are isotropic and stable at the different charged states. 2D-ACAR spectra are calculated by using the first principle to the neutral divacancy. The results of the theoretical calculation are very agreed with those of observation and they are very isotropic. (S.Y.)

  9. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  10. NKG2D and its ligands in cancer.

    Science.gov (United States)

    Dhar, Payal; Wu, Jennifer D

    2018-04-01

    NKG2D is an activating immune receptor expressed by NK and effector T cells. Induced expression of NKG2D ligand on tumor cell surface during oncogenic insults renders cancer cells susceptible to immune destruction. In advanced human cancers, tumor cells shed NKG2D ligand to produce an immune soluble form as a means of immune evasion. Soluble NKG2D ligands have been associated with poor clinical prognosis in cancer patients. Harnessing NKG2D pathway is considered a viable avenue in cancer immunotherapy over recent years. In this review, we will discuss the progress and perspectives. Copyright © 2018. Published by Elsevier Ltd.

  11. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  12. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  13. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  14. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  15. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  16. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  17. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  18. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  19. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  20. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  1. Collective properties of 2D magnetoexcitons interacting with plasmons

    International Nuclear Information System (INIS)

    Dumanov, Evghenij

    2009-01-01

    shown that in the electron-hole system exists a possibility of different virtual quasi-energy complexes with different free energies and rates damping formation, which in fact depend on their free energies. We have found out such equations of motion for operators of density fluctuations which permits obtain plasma oscillations without damping in our approximation for the Green function. The intra-Landau level excitations of the two-dimensional electron-hole liquid are characterized by two branches of the energy spectrum. One of them is the acoustical plasmon type branch with the linear dispersion law in the range of small wave vectors and monotonically increasing with saturation behavior at higher wave vectors. The second branch of the elementary excitations is an optical-plasmon branch with quadratic dispersion law at small wave vectors with a roton-type dispersion at intermediary wave vectors and with a similar behavior as the acoustical branch at higher wave vectors. It is essential that there exist density oscillations within the LLL, even though 2D system is under the influence of strong perpendicular magnetic field and quasi-particles have no kinetic energy. Energy spectrum of collective elementary excitations in the ground state of the system, representing the Bose-Einstein condensation of magnetoexcitons, consists of excitonic energy branches accompanied by plasmon satellites and pure plasma branches. It is important to note, that concentration corrections of excitonic branches of spectrum appear in the form of plasmon satellites and actually the system has exciton-plasmon branches and pure plasma branches of spectrum. Excitonic component of exciton-plasmon branches has an energy gap defined by the value of chemical potential, which in conditions of metastable dielectric liquid phase has negative values, depending on the filling factor. An energy gap in the spectrum results from the energy required for detachment of magnetic exciton from the composition of

  2. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  3. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56⁺ T, and CD8⁺ T cells. Activation of NKG2D triggers cellular proliferation, cytokine...... production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...... expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance...

  4. Perturbative string thermodynamics near black hole horizons

    International Nuclear Information System (INIS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2015-01-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work http://dx.doi.org/10.1007/JHEP03(2014)086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α ′ -corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynamical quantities in black hole spacetimes.

  5. 2D or Not 2D? Testing the Utility of 2D Vs. 3D Landmark Data in Geometric Morphometrics of the Sculpin Subfamily Oligocottinae (Pisces; Cottoidea).

    Science.gov (United States)

    Buser, Thaddaeus J; Sidlauskas, Brian L; Summers, Adam P

    2018-05-01

    We contrast 2D vs. 3D landmark-based geometric morphometrics in the fish subfamily Oligocottinae by using 3D landmarks from CT-generated models and comparing the morphospace of the 3D landmarks to one based on 2D landmarks from images. The 2D and 3D shape variables capture common patterns across taxa, such that the pairwise Procrustes distances among taxa correspond and the trends captured by principal component analysis are similar in the xy plane. We use the two sets of landmarks to test several ecomorphological hypotheses from the literature. Both 2D and 3D data reject the hypothesis that head shape correlates significantly with the depth at which a species is commonly found. However, in taxa where shape variation in the z-axis is high, the 2D shape variables show sufficiently strong distortion to influence the outcome of the hypothesis tests regarding the relationship between mouth size and feeding ecology. Only the 3D data support previous studies which showed that large mouth sizes correlate positively with high percentages of elusive prey in the diet. When used to test for morphological divergence, 3D data show no evidence of divergence, while 2D data show that one clade of oligocottines has diverged from all others. This clade shows the greatest degree of z-axis body depth within Oligocottinae, and we conclude that the inability of the 2D approach to capture this lateral body depth causes the incongruence between 2D and 3D analyses. Anat Rec, 301:806-818, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  7. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  8. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  9. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  10. Spectral inverse problem for q-deformed harmonic oscillator

    Indian Academy of Sciences (India)

    The supersymmetric quantization condition is used to study the wave functions of SWKB equivalent -deformed harmonic oscillator which are obtained by using only the knowledge of bound-state spectra of -deformed harmonic oscillator. We have also studied the nonuniqueness of the obtained interactions by this ...

  11. Effective interactions from q-deformed inspired transformations

    International Nuclear Information System (INIS)

    Timoteo, V.S.; Lima, C.L.

    2006-01-01

    From the mass term for the transformed quark fields, we obtain effective contact interactions of the NJL type. The parameters of the model that maps a system of non-interacting transformed fields into quarks interacting via NJL contact terms are discussed

  12. Spectral inverse problem for q-deformed harmonic oscillator

    Indian Academy of Sciences (India)

    - out direct ... concepts, exact knowledge of the spectrum is not enough for the reconstruction of ..... As the superpotential is related to the ground-state wave function, we demand ..... q-hypergeometric function multiplied by some weight factor.

  13. q-deformed phase-space and its lattice structure

    International Nuclear Information System (INIS)

    Wess, J.

    1998-01-01

    Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)

  14. On q-deformed supersymmetric classical mechanical models

    International Nuclear Information System (INIS)

    Colatto, L.P.; Matheus Valle, J.L.

    1995-10-01

    Based on the idea of quantum groups and paragrassmann variables, we present a generalization of supersymmetric classical mechanics with a deformation parameter q=exp 2πi/k dealing with the k=3 case. The coordinates of the q-superspace are a commuting parameter t and a paragrassmann variable θ, where θ 3 =0. The generator and covariant derivative are obtained, as well as the action for some possible superfields. (author). 13 refs

  15. A q deformation of Gell-Mann-Okubo mass formula

    International Nuclear Information System (INIS)

    Bagchi, B.; Biswas, S.N.

    1996-01-01

    We explore the possibility of deforming Gell-Mann-Okubo (GMO) mass formula within the framework of a quantized enveloping algebra. A small value of the deformation parameter is found to provide a good fit to the observed mass spectra of the π, K and η, mesons. (author). 13 refs

  16. Tsallis p, q-deformed Touchard polynomials and Stirling numbers

    Science.gov (United States)

    Herscovici, O.; Mansour, T.

    2017-01-01

    In this paper, we develop and investigate a new two-parametrized deformation of the Touchard polynomials, based on the definition of the NEXT q-exponential function of Tsallis. We obtain new generalizations of the Stirling numbers of the second kind and of the binomial coefficients and represent two new statistics for the set partitions.

  17. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  18. The quantum group structure of 2D gravity and minimal models. Pt. 1

    International Nuclear Information System (INIS)

    Gervais, J.L.

    1990-01-01

    On the unit circle, an infinite family of chiral operators is constructed, whose exchange algebra is given by the universal R-matrix of the quantum group SL(2) q . This establishes the precise connection between the chiral algebra of two dimensional gravity or minimal models and this quantum group. The method is to relate the monodromy properties of the operator differential equations satisfied by the generalized vertex operators with the exchange algebra of SL(2) q . The formulae so derived, which generalize an earlier particular case worked out by Babelon, are remarkably compact and may be entirely written in terms of 'q-deformed' factorials and binomial coefficients. (orig.)

  19. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  20. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  1. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  2. Structural Theory and Classification of 2D Adinkras

    International Nuclear Information System (INIS)

    Iga, Kevin; Zhang, Yan X.

    2016-01-01

    Adinkras are combinatorial objects developed to study (1-dimensional) supersymmetry representations. Recently, 2D Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2D Adinkras, confirming a conjecture of T. Hübsch. Along the way, we obtain other structural results, including a simple characterization of Hübsch’s even-split doubly even codes.

  3. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    1999-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a

  4. 2D gravity, random surfaces and all that

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1990-11-01

    I review the recent progress in 2d gravity and discuss the new numerical simulations for 2d gravity and for random surfaces in d>2. The random surface theories of interest in d>2 have extrinsic curvature terms, and for a finite value of the extrinsic curvature coupling there seems to be a second order phase transition where the string tension scales. (orig.)

  5. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  6. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  7. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  8. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  9. Exchange electron-hole interaction of two-dimensional magnetoexcitons under the influence of the Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    Moskalenko, S.A.; Podlesny, I.V.; Lelyakov, I.A.; Novikov, B.V.; Kiselyova, E.S.; Gherciu, L.

    2011-01-01

    The Rashba spin-orbit coupling (RSOC) in the case of two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field was studied. The spinor-type wave functions are characterized by different numbers of Landau levels in different spin projections. For electrons they differ by 1 as was established earlier by Rashba, whereas for holes they differ by 3. Two lowest electron states and four lowest hole states of Landau quantization give rise to eight 2D magnetoexciton states. The exchange electron-hole interaction in the frame of these states is investigated.

  10. 2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment

    Science.gov (United States)

    Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-02-01

    PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.

  11. From 3 d duality to 2 d duality

    Science.gov (United States)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  12. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  13. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  14. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  15. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  16. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  17. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  18. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  19. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  20. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  1. Effective viscosity of 2D suspensions - Confinement effects

    OpenAIRE

    Doyeux , Vincent; Priem , Stephane; Jibuti , Levan; Farutin , Alexander; Ismail , Mourad; Peyla , Philippe

    2016-01-01

    International audience; We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions in the presence of walls, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. Thanks to the direct visualization of the whole 2D flow (th...

  2. Wearable energy sources based on 2D materials.

    Science.gov (United States)

    Yi, Fang; Ren, Huaying; Shan, Jingyuan; Sun, Xiao; Wei, Di; Liu, Zhongfan

    2018-05-08

    Wearable energy sources are in urgent demand due to the rapid development of wearable electronics. Besides flexibility and ultrathin thickness, emerging 2D materials present certain extraordinary properties that surpass the properties of conventional materials, which make them advantageous for high-performance wearable energy sources. Here, we provide a comprehensive review of recent advances in 2D material based wearable energy sources including wearable batteries, supercapacitors, and different types of energy harvesters. The crucial roles of 2D materials in the wearable energy sources are highlighted. Based on the current progress, the existing challenges and future prospects are outlined and discussed.

  3. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  4. Warped AdS3 black holes

    International Nuclear Information System (INIS)

    Anninos, Dionysios; Li Wei; Padi, Megha; Song Wei; Strominger, Andrew

    2009-01-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l -2 and positive Newton constant G admits an AdS 3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,R) x U(1)-invariant warped AdS 3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS 3 . We show that these black holes are discrete quotients of warped AdS 3 just as BTZ black holes are discrete quotients of ordinary AdS 3 . Moreover new solutions of this type, relevant to any theory with warped AdS 3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS 3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c R -formula and c L -formula.

  5. 32 CFR 1639.4 - Exclusion from Class 2-D.

    Science.gov (United States)

    2010-07-01

    ... recognized; or (c) He ceases to be a full-time student; or (d) He fails to maintain satisfactory academic... Class 2-D when: (a) He fails to establish that the theological or divinity school is a recognized school...

  6. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... protein spots were identified by mass spectrometric analysis. The cDNA of the ..... sensitivity, dynamic range and reproducibility vs the conventional 2-D ... linkage, and also has molecular chaperones activity for inhibiting the ...

  7. MERRA DAS 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0NXASM or const_2d_asm_Nx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native resolution. MERRA, or the Modern Era...

  8. MERRA CHM 2D Constants V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAC0FXCHM or const_2d_chm_Fx data product is the MERRA Data Assimilation System 2-Dimensional Constants at native Fv resolution. MERRA, or the Modern Era...

  9. Optical identification using imperfections in 2D materials

    Science.gov (United States)

    Cao, Yameng; Robson, Alexander J.; Alharbi, Abdullah; Roberts, Jonathan; Woodhead, Christopher S.; Noori, Yasir J.; Bernardo-Gavito, Ramón; Shahrjerdi, Davood; Roedig, Utz; Fal'ko, Vladimir I.; Young, Robert J.

    2017-12-01

    The ability to uniquely identify an object or device is important for authentication. Imperfections, locked into structures during fabrication, can be used to provide a fingerprint that is challenging to reproduce. In this paper, we propose a simple optical technique to read unique information from nanometer-scale defects in 2D materials. Imperfections created during crystal growth or fabrication lead to spatial variations in the bandgap of 2D materials that can be characterized through photoluminescence measurements. We show a simple setup involving an angle-adjustable transmission filter, simple optics and a CCD camera can capture spatially-dependent photoluminescence to produce complex maps of unique information from 2D monolayers. Atomic force microscopy is used to verify the origin of the optical signature measured, demonstrating that it results from nanometer-scale imperfections. This solution to optical identification with 2D materials could be employed as a robust security measure to prevent counterfeiting.

  10. Soluble NKG2D ligands: prevalence, release, and functional impact.

    Science.gov (United States)

    Salih, Helmut Rainer; Holdenrieder, Stefan; Steinle, Alexander

    2008-05-01

    Natural Killer (NK) cells are capable to recognize and eliminate malignant cells. Anti-tumor responses of NK cells are promoted by the tumor-associated expression of cell stress-inducible ligands of the activating NK receptor NKG2D. Current evidence suggests that established tumors subvert NKG2D-mediated tumor immunosurveillance by releasing NKG2D ligands (NKG2DL). Release of NKG2DL has been observed in a broad variety of human tumor entities and is thought to interfere with NKG2D-mediated tumor immunity in several ways. Further, levels of soluble NKG2DL (sNKG2DL) were also found to be elevated under various non-malignant conditions, although the functional implications remain largely unclear. Here we review and discuss the available data on the prevalence, release, functional impact, and potential clinical value of sNKG2DL.

  11. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie

    2011-01-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse

  12. Excitons in atomically thin 2D semiconductors and their applications

    Science.gov (United States)

    Xiao, Jun; Zhao, Mervin; Wang, Yuan; Zhang, Xiang

    2017-06-01

    The research on emerging layered two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), reveals unique optical properties generating significant interest. Experimentally, these materials were observed to host extremely strong light-matter interactions as a result of the enhanced excitonic effect in two dimensions. Thus, understanding and manipulating the excitons are crucial to unlocking the potential of 2D materials for future photonic and optoelectronic devices. In this review, we unravel the physical origin of the strong excitonic effect and unique optical selection rules in 2D semiconductors. In addition, control of these excitons by optical, electrical, as well as mechanical means is examined. Finally, the resultant devices such as excitonic light emitting diodes, lasers, optical modulators, and coupling in an optical cavity are overviewed, demonstrating how excitons can shape future 2D optoelectronics.

  13. Tailored Assembly of 2D Heterostructures beyond Graphene

    Science.gov (United States)

    2017-05-11

    attainable. Here we propose our synthetic approach to construct graphene-based 3D heterostructures composed of 2D layered materials with finely tunable...DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force Research ...Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid progress in graphene research has attracted further research attentions for other 2D layered

  14. Proteasome modulator 9 and macrovascular pathology of T2D

    Directory of Open Access Journals (Sweden)

    Gragnoli Claudia

    2011-04-01

    Full Text Available Abstract Aims Coronary artery disease (CAD and stroke share a major linkage at the chromosome 12q24 locus. The same chromosome region entails at least a major risk gene for type 2 diabetes (T2D within NIDDM2, the non-insulin-dependent-diabetes 2 locus. The gene of Proteasome Modulator 9 (PSMD9 lies in the NIDDM2 region and is implicated in diabetes in mice. PSMD9 mutations rarely cause T2D and common variants are linked to both late-onset T2D and maturity-onset-diabetes of the young (MODY3. In this study, we aimed at determining whether PSMD9 is linked to macrovascular pathology of T2D. Methods and Results In our 200 T2D families from Italy, we characterized the clinical phenotype of macrovascular pathology by defining the subjects for presence or absence of CAD, stroke and/or transitory ischemic attacks (TIA, plaques of the large arterial vessels (macro-vasculopathy and arterial angioplasty performance. We then screened 200 T2D siblings/families for PSMD9 +nt460A/G, +nt437C/T and exon E197G A/G single nucleotide polymorphisms (SNPs and performed a non-parametric linkage study to test for linkage for coronary artery disease, stroke/TIA, macro-vasculopathy and macrovascular pathology of T2D. We performed 1,000 replicates to test the power of our significant results. Our results show a consistent significant LOD score in linkage with all the above-mentioned phenotypes. Our 1000 simulation analyses, performed for each single test, confirm that the results are not due to random chance. Conclusions In summary, the PSMD9 IVS3+nt460A/G, +nt437C/T and exon E197G A/G SNPs are linked to CAD, stroke/TIA and macrovascular pathology of T2D in Italians.

  15. Photonics of 2D gold nanolayers on sapphire surface

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Nabatov, B. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation); Konovko, A. A.; Belov, I. V.; Gizetdinov, R. M.; Andreev, A. V. [Moscow State University (Russian Federation); Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics” (Russian Federation)

    2017-03-15

    Gold layers with thicknesses of up to several nanometers, including ordered and disordered 2D nanostructures of gold particles, have been formed on sapphire substrates; their morphology is described; and optical investigations are carried out. The possibility of increasing the accuracy of predicting the optical properties of gold layers and 2D nanostructures using quantum-mechanical models based on functional density theory calculation techniques is considered. The application potential of the obtained materials in photonics is estimated.

  16. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng

    2017-06-20

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  17. Large scale 2D spectral compressed sensing in continuous domain

    KAUST Repository

    Cai, Jian-Feng; Xu, Weiyu; Yang, Yang

    2017-01-01

    We consider the problem of spectral compressed sensing in continuous domain, which aims to recover a 2-dimensional spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500 × 500, whereas traditional approaches only handle signals of size around 20 × 20.

  18. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  19. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  20. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  1. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  2. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  3. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  4. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  5. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  6. Optimization of FIBMOS Through 2D Silvaco ATLAS and 2D Monte Carlo Particle-based Device Simulations

    OpenAIRE

    Kang, J.; He, X.; Vasileska, D.; Schroder, D. K.

    2001-01-01

    Focused Ion Beam MOSFETs (FIBMOS) demonstrate large enhancements in core device performance areas such as output resistance, hot electron reliability and voltage stability upon channel length or drain voltage variation. In this work, we describe an optimization technique for FIBMOS threshold voltage characterization using the 2D Silvaco ATLAS simulator. Both ATLAS and 2D Monte Carlo particle-based simulations were used to show that FIBMOS devices exhibit enhanced current drive ...

  7. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  8. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  9. Do Hypervolumes Have Holes?

    Science.gov (United States)

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  10. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  11. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  12. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  13. 2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR

    Science.gov (United States)

    Lampert, M.; Zoletnik, S.; Bak, J. G.; Nam, Y. U.; Kstar Team

    2018-04-01

    Intermittent events in the scrape-off layer (SOL) of magnetically confined plasmas, often called blobs and holes, contribute significantly to the particle and heat loss across the magnetic field lines. In this article, the results of the scrape-off layer and edge turbulence measurements are presented with the two-dimensional Deuterium Beam Emission Spectroscopy system (DBES) at KSTAR (Korea Superconducting Tokamak Advanced Research). The properties of blobs and holes are determined in an L-mode and an H-mode shot with statistical tools and conditional averaging. These results show the capabilities and limitations of the SOL turbulence measurement of a 2D BES system. The results from the BES study were compared with the analysis of probe measurements. It was found that while probes offer a better signal-to-noise ratio and can measure blobs down to 3 mm size, BES can monitor the two-dimensional dynamics of larger events continuously during full discharges, and the measurement is not limited to the SOL on KSTAR.

  14. White dwarfs - black holes

    International Nuclear Information System (INIS)

    Sexl, R.; Sexl, H.

    1975-01-01

    The physical arguments and problems of relativistic astrophysics are presented in a correct way, but without any higher mathematics. The book is addressed to teachers, experimental physicists, and others with a basic knowledge covering an introductory lecture in physics. The issues dealt with are: fundamentals of general relativity, classical tests of general relativity, curved space-time, stars and planets, pulsars, gravitational collapse and black holes, the search for black holes, gravitational waves, cosmology, cosmogony, and the early universe. (BJ/AK) [de

  15. Magnonic black holes

    OpenAIRE

    Roldán-Molina, A.; Nunez, A.S.; Duine, R. A.

    2017-01-01

    We show that the interaction between spin-polarized current and magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons - the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the imp...

  16. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  17. 2-D Clinostat for Simulated Microgravity Experiments with Arabidopsis Seedlings

    Science.gov (United States)

    Wang, Hui; Li, Xugang; Krause, Lars; Görög, Mark; Schüler, Oliver; Hauslage, Jens; Hemmersbach, Ruth; Kircher, Stefan; Lasok, Hanna; Haser, Thomas; Rapp, Katja; Schmidt, Jürgen; Yu, Xin; Pasternak, Taras; Aubry-Hivet, Dorothée; Tietz, Olaf; Dovzhenko, Alexander; Palme, Klaus; Ditengou, Franck Anicet

    2016-04-01

    Ground-based simulators of microgravity such as fast rotating 2-D clinostats are valuable tools to study gravity related processes. We describe here a versatile g-value-adjustable 2-D clinostat that is suitable for plant analysis. To avoid seedling adaptation to 1 g after clinorotation, we designed chambers that allow rapid fixation. A detailed protocol for fixation, RNA isolation and the analysis of selected genes is described. Using this clinostat we show that mRNA levels of LONG HYPOCOTYL 5 (HY5), MIZU-KUSSEI 1 (MIZ1) and microRNA MIR163 are down-regulated in 5-day-old Arabidopsis thaliana roots after 3 min and 6 min of clinorotation using a maximal reduced g-force of 0.02 g, hence demonstrating that this 2-D clinostat enables the characterization of early transcriptomic events during root response to microgravity. We further show that this 2-D clinostat is able to compensate the action of gravitational force as both gravitropic-dependent statolith sedimentation and subsequent auxin redistribution (monitoring D R5 r e v :: G F P reporter) are abolished when plants are clinorotated. Our results demonstrate that 2-D clinostats equipped with interchangeable growth chambers and tunable rotation velocity are suitable for studying how plants perceive and respond to simulated microgravity.

  18. Recent mathematical developments in 2D correlation spectroscopy

    Science.gov (United States)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  19. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.

    Science.gov (United States)

    Wang, Z F; Liu, Feng

    2015-07-10

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6)  m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  20. Excitonic Properties of Chemically Synthesized 2D Organic-Inorganic Hybrid Perovskite Nanosheets.

    Science.gov (United States)

    Zhang, Qi; Chu, Leiqiang; Zhou, Feng; Ji, Wei; Eda, Goki

    2018-05-01

    2D organic-inorganic hybrid perovskites (OIHPs) represent a unique class of materials with a natural quantum-well structure and quasi-2D electronic properties. Here, a versatile direct solution-based synthesis of mono- and few-layer OIHP nanosheets and a systematic study of their electronic structure as a function of the number of monolayers by photoluminescence and absorption spectroscopy are reported. The monolayers of various OIHPs are found to exhibit high electronic quality as evidenced by high quantum yield and negligible Stokes shift. It is shown that the ground exciton peak blueshifts by ≈40 meV when the layer thickness reduces from bulk to monolayer. It is also shown that the exciton binding energy remains effectively unchanged for (C 6 H 5 (CH 2 ) 2 NH 3 ) 2 PbI 4 with the number of layers. Similar trends are observed for (C 4 H 9 NH 3 ) 2 PbI 4 in contrast to the previous report. Further, the photoluminescence lifetime is found to decrease with the number of monolayers, indicating the dominant role of surface trap states in nonradiative recombination of the electron-hole pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures

    Science.gov (United States)

    Karpiak, Bogdan; Dankert, André; Cummings, Aron W.; Power, Stephen R.; Roche, Stephan; Dash, Saroj P.

    2018-03-01

    We report the fabrication of one-dimensional (1D) ferromagnetic edge contacts to two-dimensional (2D) graphene/h-BN heterostructures. While aiming to study spin injection/detection with 1D edge contacts, a spurious magnetoresistance signal was observed, which is found to originate from the local Hall effect in graphene due to fringe fields from ferromagnetic edge contacts and in the presence of charge current spreading in the nonlocal measurement configuration. Such behavior has been confirmed by the absence of a Hanle signal and gate-dependent magnetoresistance measurements that reveal a change in sign of the signal for the electron- and hole-doped regimes, which is in contrast to the expected behavior of the spin signal. Calculations show that the contact-induced fringe fields are typically on the order of hundreds of mT, but can be reduced below 100 mT with careful optimization of the contact geometry. There may be an additional contribution from magnetoresistance effects due to tunneling anisotropy in the contacts, which needs further investigation. These studies are useful for optimization of spin injection and detection in 2D material heterostructures through 1D edge contacts.

  2. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  3. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  4. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...... are then inverted with 1D models to produce a 1D model section. This section is the convolution kernel for the deconvolution. Within its limitations, the approximate 2D inversion performs well. Theoretical modeling shows that it delivers model sections that are a definite improvement over 1D model sections...

  5. Graphene based 2D-materials for supercapacitors

    International Nuclear Information System (INIS)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-01-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed. (topical review)

  6. Effective viscosity of 2D suspensions - Confinement effects

    Science.gov (United States)

    Peyla, Philippe; Priem, Stephane; Vincent, Doyeux; Farutin, Alexander; Ismail, Mourad

    2014-11-01

    We study the rheology of a sheared 2D suspension of non-Brownian disks in presence of walls. Although, it is of course possible today with modern computers and powerful algorithms to perform direct numerical simulations that fully account for multiparticle 3D interactions, the analysis of the simple case of a 2D suspension, provides valuable insights and helps to understand 3D results. For instance, we examine the role of particle-wall and particle-particle interactions in determining the rheology of confined sheared suspensions. In addition we evaluate the intrinsic viscosity as well as the contribution of hydrodynamic interactions to the dissipation as a function of a wide range of confinements. Thanks to the direct visualisation of the whole 2D Stokes flow, we are able to give a clear interpretation about the rheology of semi-dilute confined suspensions.

  7. Theory of Magnetoelectric Properties of 2D Systems

    Science.gov (United States)

    Chen, S. C.; Wu, J. Y.; Lin, C. Y.; Lin, M. F.

    2017-12-01

    This book addresses important advances in diverse quantization phenomena. 'Theory of Magnetoelectric Properties of 2D Systems' develops the generalized tight-binding model in order to comprehend the rich quantization phenomena in 2D materials. The unusual effects, taken into consideration simultaneously, mainly come from the multi-orbital hybridization, the spin-orbital coupling, the intralayer and interlayer atomic interactions, the layer number, the stacking configuration, the site-energy difference, the magnetic field, and the electric field. The origins of the phenomena are discussed in depth, particularly focusing on graphene, tinene, phosphorene and MoS2, with a broader model also drawn. This model could be further used to investigate electronic properties of 1D and 3D condensed-matter systems, and this book will prove to be a valuable resource to researchers and graduate students working in 2D materials science.

  8. MESH2D Grid generator design and use

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-31

    Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].

  9. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Science.gov (United States)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  10. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  11. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  12. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  13. Quantum process tomography by 2D fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-01-01

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed

  14. Melting of 2D monatomic solids: Lennard-Jones system

    International Nuclear Information System (INIS)

    Yi, Y.M.; Guo, Z.C.

    1987-09-01

    The Lennard-Jones interaction has been introduced into the Collins mix lattice of 2D liquids. By means of rigorous calculation of the total potential and the free area, the Gibbs functions for 2D liquid and solid have been derived. The melting line obtained from the phase transition equation agrees quite well with the result of recent computer simulation experiments. The obtained reduced temperature of the triple point T* t =0.438 agrees with the data measured in experiments of some inert gas monolayers adsorbed on graphite as well as in computer simulation experiments. (author). 11 refs, 7 figs, 3 tabs

  15. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  16. 2-D emittance equation with acceleration and compression

    International Nuclear Information System (INIS)

    Hahn, K.D.; Smith, L.

    1988-10-01

    Since both acceleration and compression are required for an Inertial Fusion Driver, the understanding of their effect on the beam quality, emittance, is important. This report attempts to generalize the usual emittance formula for the drifting beam to include these effects. The derivation of the 2-D emittance equation is carried out and a comparison with the particle code results is given. The 2-D emittance at a given axial location is reasonable to consider for a long beam, particularly with velocity tilt; transverse emittance averaged over the entire bunch is not a useful quantity. 6 refs., 2 figs., 1 tab

  17. Real-time 2-D Phased Array Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon; Hansen, Kristoffer Lindskov; Fogh, Nikolaj

    2018-01-01

    Echocardiography examination of the blood flow is currently either restricted to 1-D techniques in real-time or experimental off-line 2-D methods. This paper presents an implementation of transverse oscillation for real-time 2-D vector flow imaging (VFI) on a commercial BK Ultrasound scanner....... A large field-of-view (FOV) sequence for studying flow dynamics at 11 frames per second (fps) and a sequence for studying peak systolic velocities (PSV) with a narrow FOV at 36 fps were validated. The VFI sequences were validated in a flow-rig with continuous laminar parabolic flow and in a pulsating flow...

  18. Radiative heat transfer in 2D Dirac materials

    International Nuclear Information System (INIS)

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-01-01

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials. (paper)

  19. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  20. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  1. Design and production of a short 2D animated film

    OpenAIRE

    Prusnik, Petra

    2014-01-01

    Design and production of a short 2D animated film The thesis aims at analysing animation, the process of creating an ani- mated film with its technical and compositional details as well as show the process of making a short 2D animated movie with Toon Boom Studio. It is composed of theoretical and practical part. The theoretical part of this thesis consists of the definition of the term "animation", a quick overview of its history and evolution, and an in-depth look into var...

  2. 2D director calculation for liquid crystal optical phased array

    International Nuclear Information System (INIS)

    Xu, L; Zhang, J; Wu, L Y

    2005-01-01

    A practical numerical model for a liquid crystal cell is set up based on the geometrical structure of liquid crystal optical phased arrays. Model parameters include width and space of electrodes, thickness of liquid crystal layer, alignment layers and glass substrates, pre-tilted angles, dielectric constants, elastic constants and so on. According to electrostatic field theory and Frank-Oseen elastic continuum theory, 2D electric potential distribution and 2D director distribution are calculated by means of the finite difference method on non-uniform grids. The influence of cell sizes on director distribution is analyzed. The fringe field effect between electrodes is also discussed

  3. Spreading dynamics of 2D dipolar Langmuir monolayer phases.

    Science.gov (United States)

    Heinig, P; Wurlitzer, S; Fischer, Th M

    2004-07-01

    We study the spreading of a liquid 2D dipolar droplet in a Langmuir monolayer. Interfacial tensions (line tensions) and microscopic contact angles depend on the scale on which they are probed and obey a scaling law. Assuming rapid equilibration of the microscopic contact angle and ideal slippage of the 2D solid/liquid and solid/gas boundary, the driving force of spreading is merely expressed by the shape-dependent long-range interaction integrals. We obtain good agreement between experiment and numerical simulations using this theory.

  4. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  5. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  6. Design of the LRP airfoil series using 2D CFD

    International Nuclear Information System (INIS)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N; Vronsky, Tomas; Gaudern, Nicholas

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils

  7. Thermodynamics of an Attractive 2D Fermi Gas

    Science.gov (United States)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  8. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  9. How Mucosal Epithelia Deal with Stress: Role of NKG2D/NKG2D Ligands during Inflammation

    Directory of Open Access Journals (Sweden)

    Fabrizio Antonangeli

    2017-11-01

    Full Text Available Mucosal epithelia encounter both physicochemical and biological stress during their life and have evolved several mechanisms to deal with them, including regulation of immune cell functions. Stressed and damaged cells need to be cleared to control local inflammation and trigger tissue healing. Engagement of the activating NKG2D receptor is one of the most direct mechanisms involved in the recognition of stressed cells by the immune system. Indeed, injured cells promptly express NKG2D ligands that in turn mediate the activation of lymphocytes of both innate and adaptive arms of the immune system. This review focuses on different conditions that are able to modulate NKG2D ligand expression on the epithelia. Special attention is given to the mechanisms of immunosurveillance mediated by natural killer cells, which are finely tuned by NKG2D. Different types of stress, including viral and bacterial infections, chronic inflammation, and cigarette smoke exposure, are discussed as paradigmatic conditions for NKG2D ligand modulation, and the implications for tissue homeostasis are discussed.

  10. Fermi surface in La/sub 2/CuO/sub 4-δ/ determine by positron 2D-ACAR

    International Nuclear Information System (INIS)

    Tanigawa, S.; Mizuhara, Y.; Hidaka, Y.; Oda, M.; Suzuki, M.; Murakami, T.

    1988-01-01

    The topology of the Fermi surface in La/sub 2/CuO/sub 4-δ/ is determined by two dimensional angular correlation measurements of annihilation radiations (2D-ACAR) at room temperature. The determined Fermi surface is two dimensional and has a slender electron pillar along ΓZ and two kinds of hole pillars along PX and along NN direction parallel to ΓZ, respectively. It is concluded that the Fermi surface is not a simple half filled one and this compound should be metallic at least at room temperature in the band picture

  11. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  12. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...

  13. 2-D fluid transport simulations of gaseous/radiative divertors

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Brown, P.N.; Campbell, R.B.; Kaiser, T.B.; Knoll, D.A.; McHugh, P.R.; Porter, G.D.; Rensink, M.E.; Smith, G.R.

    1994-01-01

    The features of the fully implicit 2-D fluid code UEDGE are described. The utility of the code is demonstrated by showing bifurcations or multiple solutions of the tokamak edge plasma for both deuterium and impurity injection in the divertor. (orig.)

  14. 2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Augustyn, Veronica [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering, A. J. Drexel Nanomaterials Inst.

    2017-10-11

    In the quest to develop energy storage with both high power and high energy densities, and while maintaining high volumetric capacity, recent results show that a variety of 2D and layered materials exhibit rapid kinetics of ion transport by the incorporation of nanoconfined fluids.

  15. Interactive exploratory visualization of 2D vector fields

    NARCIS (Netherlands)

    Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh

    In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom design glyphs (arrows, lines, etc.) that best reveal patterns of the

  16. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  17. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented

  18. 2-D tiles declustering method based on virtual devices

    Science.gov (United States)

    Li, Zhongmin; Gao, Lu

    2009-10-01

    Generally, 2-D spatial data are divided as a series of tiles according to the plane grid. To satisfy the effect of vision, the tiles in the query window including the view point would be displayed quickly at the screen. Aiming at the performance difference of real storage devices, we propose a 2-D tiles declustering method based on virtual device. Firstly, we construct a group of virtual devices which have same storage performance and non-limited capacity, then distribute the tiles into M virtual devices according to the query window of 2-D tiles. Secondly, we equably map the tiles in M virtual devices into M equidistant intervals in [0, 1) using pseudo-random number generator. Finally, we devide [0, 1) into M intervals according to the tiles distribution percentage of every real storage device, and distribute the tiles in each interval in the corresponding real storage device. We have designed and realized a prototype GlobeSIGht, and give some related test results. The results show that the average response time of each tile in the query window including the view point using 2-D tiles declustering method based on virtual device is more efficient than using other methods.

  19. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Discrepant Results in a 2-D Marble Collision

    Science.gov (United States)

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  1. Validation and testing of the VAM2D computer code

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, ''Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs

  2. ENVIRONMENTAL EFFECTS OF DREDGING AND DISPOSAL (E2-D2)

    Science.gov (United States)

    US Army Corps of Engineers public web site for the "Environmental Effects of Dredging and Disposal" ("E2-D2") searchable database of published reports and studies about environmental impacts associated with dredging and disposal operations. Many of the reports and studies are ava...

  3. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming-Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Reorientation of magnetization with temperature in 2D ferromagnets

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Spirin, D.V.; Klevets, Ph. N.

    2002-01-01

    We investigated 2D Heisenberg ferromagnet (monolayer) with the account of dipolar forces and uniaxial anisotropy and found a reorientation phase transition in temperature from out-of-plane to in-plane phase. This phase transition is of the first order with hysteresis. We estimated the temperatures of switching both analytically and numerically

  5. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...

  6. Spontaneous bending of 2D molecular bottle-brush

    NARCIS (Netherlands)

    Subbotin, A; Jong, J; ten Brinke, G

    Using a scaling approach we consider a 2D comb copolymer brush under bending deformations. We show that the rectilinear brush is locally stable and can be characterized by a persistence length lambda increasing with the molecular weight of grafting side chains as lambda similar to M-3. A bending

  7. Lattice simulation of 2d Gross-Neveu-type models

    International Nuclear Information System (INIS)

    Limmer, M.; Gattringer, C.; Hermann, V.

    2006-01-01

    Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)

  8. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  9. Validation of minor species of the MIPAS2D database

    Directory of Open Access Journals (Sweden)

    Enzo Papandrea

    2014-01-01

    Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […

  10. 2D MR angiography of the aortic aneurysm

    International Nuclear Information System (INIS)

    Amanuma, Makoto; Hasegawa, Makoto; Watabe, Tsuneya; Heshiki, Atsuko

    1992-01-01

    2D time-of-flight MR angiography was performed in 6 cases of thoracic aortic aneurysm. Oblique saturation pulses were used to suppress the signals of the pulmonary artery and SVC, providing excellent selective MR aortograms. Three dimensional extension of the aneurysm and its relation with cervical branches were easily assessed. It could be possible to replace invasive aortography by this technique. (author)

  11. 2D Toda chain and associated commutator identity

    OpenAIRE

    Pogrebkov, A. K.

    2007-01-01

    Developing observation made in \\cite{commut} we show that simple identity of the commutator type on an associative algebra is in one-to-one correspondence to 2D (infinite) Toda chain. We introduce representation of elements of associative algebra that, under some generic conditions, enables derivation of the Toda chain equation and its Lax pair from the given commutator identity.

  12. ELLIPT2D: A Flexible Finite Element Code Written Python

    International Nuclear Information System (INIS)

    Pletzer, A.; Mollis, J.C.

    2001-01-01

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  13. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  14. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  15. w∞ algebras, conformal mechanics and black holes

    Science.gov (United States)

    Cacciatori, Sergio; Klemm, Dietmar; Zanon, Daniela

    2000-04-01

    We discuss BPS solitons in gauged icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 2, D = 4 supergravity. The solitons represent extremal black holes interpolating between different vacua of anti-de Sitter spaces. The isometry superalgebras are determined and the motion of a superparticle in the extremal black hole background is studied and confronted with superconformal mechanics. We show that the Virasoro symmetry of conformal mechanics, which describes the dynamics of the superparticle near the horizon of the extremal black hole under consideration, extends to a symmetry under the wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> algebra of area-preserving diffeomorphisms. We find that a Virasoro subalgebra of wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> can be associated with the Virasoro algebra of the asymptotic symmetries of AdS 2 . In this way spacetime diffeomorphisms of AdS 2 translate into diffeomorphisms in phase space: our system offers an explicit realization of the AdS 2 /CFT 1 correspondence. Using the dimensionally reduced action, the central charge is computed. Finally, we also present generalizations of superconformal mechanics which are invariant under icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 1 and icons/Journals/Common/calN" ALT="calN" ALIGN="TOP"/> = 2 superextensions of wicons/Journals/Common/infty" ALT="infty" ALIGN="MIDDLE"/> .

  16. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  18. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per

    2017-01-01

    -infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association...... genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor...

  19. Flood hazard assessment using 1D and 2D approaches

    Science.gov (United States)

    Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi

    2013-04-01

    The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2

  20. Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation

    Science.gov (United States)

    Sahatiya, Parikshit; Jones, S. Solomon; Thanga Gomathi, P.; Badhulika, Sushmee

    2017-06-01

    Strain modulation is considered to be an effective way to modulate the electronic structure and carrier behavior in flexible semiconductors heterojunctions. In this work, 2D Graphene (Gr)/ZnO junction was successfully fabricated on flexible eraser substrate using simple, low-cost solution processed hydrothermal method and has been utilized for broadband photodetection in the UV to visible range at room temperature. Optimization in terms of process parameters were done to obtain 2D ZnO over 2D graphene which shows decrease in bandgap and broad absorption range from UV to visible. Under compressive strain piezopotential induced by the atoms displacements in 2D ZnO, 87% enhanced photosensing for UV light was observed under 30% strain. This excellent performance improvement can be attributed to piezopotential induced under compressive strain in 2D ZnO which results in lowering of conduction band energy and raising the schottky barrier height thereby facilitating electron-hole pair separation in 2D Gr/ZnO junction. Detailed mechanism studies in terms of density of surface states and energy band diagram is presented to understand the proposed phenomena. Results provide an excellent approach for improving the optoelectronic performance of 2D Gr/ZnO interface which can also be applied to similar semiconductor heterojunctions.

  1. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  2. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  3. Half-metallicity in 2D organometallic honeycomb frameworks

    International Nuclear Information System (INIS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-01-01

    Half-metallic materials with a high Curie temperature (T C ) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d – p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. (paper)

  4. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  5. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  6. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  7. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  8. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  9. Black holes go supersonic

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St. Andrews (United Kingdom)

    2001-02-01

    In modern physics, the unification of gravity and quantum mechanics remains a mystery. Gravity rules the macroscopic world of planets, stars and galaxies, while quantum mechanics governs the micro-cosmos of atoms, light quanta and elementary particles. However, cosmologists believe that these two disparate worlds may meet at the edges of black holes. Now Luis Garay, James Anglin, Ignacio Cirac and Peter Zoller at the University of Innsbruck in Austria have proposed a realistic way to make an artificial 'sonic' black hole in a tabletop experiment (L J Garay et al. 2000 Phys. Rev. Lett. 85 4643). In the February issue of Physics World, Ulf Leonhardt of the School of Physics and Astronomy, University of St. Andrews, UK, explains how the simulated black holes work. (U.K.)

  10. Black Hole Paradoxes

    International Nuclear Information System (INIS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-01-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals. (paper)

  11. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  12. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    International Nuclear Information System (INIS)

    Giaddui, T; Yu, J; Xiao, Y; Jacobs, P; Manfredi, D; Linnemann, N

    2015-01-01

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  13. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  14. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  15. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  16. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  17. Moulting Black Holes

    OpenAIRE

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that ...

  18. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  19. Dancing with Black Holes

    Science.gov (United States)

    Aarseth, S. J.

    2008-05-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  20. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  1. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  2. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  3. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  4. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  5. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  6. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    Science.gov (United States)

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  7. Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles

    Science.gov (United States)

    Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.

    2013-10-01

    In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to

  8. 2-D linear motion system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  9. MPEG-4-based 2D facial animation for mobile devices

    Science.gov (United States)

    Riegel, Thomas B.

    2005-03-01

    The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.

  10. Cluster algebras in scattering amplitudes with special 2D kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Marcus A.C. [Institut de Physique Theorique, CEA-Saclay, Gif-sur-Yvette Cedex (France)

    2014-02-15

    We study the cluster algebra of the kinematic configuration space Conf{sub n}(P{sup 3}P3) of an n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-point two-loop MHVremainder function in special 2D kinematics depends on a selection of the X-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercube beads in the corresponding Stasheff polytope. Furthermore at n = 12, the cluster algebra and the selection of theX-coordinates in special2Dkinematics replicates the cluster algebra and the selection of X-coordinates of the n = 6 two-loop MHV amplitude in 4D kinematics. (orig.)

  11. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  12. Room temperature Sieving of Hydrogen Isotopes Using 2-D Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Krentz, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Serkiz, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Velten, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Xiao, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-28

    Hydrogen isotope separation is critical to the DOE’s mission in environmental remediation and nuclear nonproliferation. Isotope separation is also a critical technology for the NNSA, and the ability to perform the separations at room temperature with a relatively small amount of power and space would be a major advancement for their respective missions. Recent work has shown that 2-D materials such as graphene and hexagonal boron nitride can act as an isotopic sieve at room temperature; efficiently separating hydrogen isotopes in water with reported separation ratios of 10:1 for hydrogen: deuterium separation for a single pass. The work performed here suggests that this technique has merit, and furthermore, we are investigating optimization and scale up of the required 2-D material based membranes.

  13. 2D-grafiikan käyttö peliprojektissa

    OpenAIRE

    Reimi-Orsa, Anniina

    2010-01-01

    Opinnäytetyö on projektikuvaus, jossa on käsitelty kaksiulotteisen grafiikan käyttöä peliprojektissa toteutettujen töiden kautta. Työharjoittelussani tuotin materiaalia peliprojektiin, jonka maailma luotiin pääasiassa 2D-grafiikan avulla. Projektikuvauksessa on käyty läpi työn kulkua alkuvalmisteluista valmiiseen pelissä käytettävään grafiikkaan sekä käytäntöjä tämän tyyppisen 2D-grafiikan tuotannossa. Alussa peliprojektia on käsitelty yleisluontoisesti sekä avattu työssä käytettyjä ja p...

  14. Two-particle microrheology of quasi-2D viscous systems.

    Science.gov (United States)

    Prasad, V; Koehler, S A; Weeks, Eric R

    2006-10-27

    We study the spatially correlated motions of colloidal particles in a quasi-2D system (human serum albumin protein molecules at an air-water interface) for different surface viscosities eta s. We observe a transition in the behavior of the correlated motion, from 2D interface dominated at high eta s to bulk fluid dependent at low eta s. The correlated motions can be scaled onto a master curve which captures the features of this transition. This master curve also characterizes the spatial dependence of the flow field of a viscous interface in response to a force. The scale factors used for the master curve allow for the calculation of the surface viscosity eta s that can be compared to one-particle measurements.

  15. 2D/3D Program work summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  16. 2-D and 3-D computations of curved accelerator magnets

    International Nuclear Information System (INIS)

    Turner, L.R.

    1991-01-01

    In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-θ coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs

  17. 2D/3D Program work summary report

    International Nuclear Information System (INIS)

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)

  18. The 2-D lattice theory of Flower Constellations

    Science.gov (United States)

    Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele

    2013-08-01

    The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.

  19. Beam test of the 2D position sensitive neutron detector

    International Nuclear Information System (INIS)

    Tian Lichao; Chen Yuanbo; Sun Zhijia; Tang Bin; Zhou Jianrong; Qi Huirong; Liu Rongguang; Zhang Jian; Yang Guian; Xu Hong

    2014-01-01

    China Spallation Neutron Source (CSNS), one of the Major scientific apparatuses of the national Eleventh Five-Year Plane, is under construction and three spectrumeters will be constructed in the first phase of the project. A 2D position sensitive neutron detector has been constructed for the Multifunctional Reflect spectrumeter (MR) in Institute of High Energy Physics (IHEP). The basic operation principle of the detector and the test on the residual stress diffractometer of Chinese Advanced Research Reactor (CARR) in China Institute of Atomic Energy (CIAE) is introduced in this paper. The results show that it has a good position resolution of l.18 mm (FWHM) for the neutrons of l.37 A and 2D imaging ability, which is consistent with the theory. It can satisfy the requirements of MR and lays the foundation for the construction of larger neutron detectors. (authors)

  20. A 2-D nucleation-growth model of spheroidal graphite

    International Nuclear Information System (INIS)

    Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus

    2017-01-01

    Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.

  1. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  2. The Ising model coupled to 2d orders

    Science.gov (United States)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  3. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  4. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  5. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  6. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  7. The black hole S-Matrix from quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University, Princetonplein 5, Utrecht, 3508 TD The (Netherlands)

    2016-11-22

    We revisit the old black hole S-Matrix construction and its new partial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string theory & c=1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.

  8. The black hole S-Matrix from quantum mechanics

    International Nuclear Information System (INIS)

    Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga

    2016-01-01

    We revisit the old black hole S-Matrix construction and its new partial wave expansion of ’t Hooft. Inspired by old ideas from non-critical string theory & c=1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.

  9. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  10. Spontaneous compactification in 2D induced quantum gravity

    International Nuclear Information System (INIS)

    Elizalde, E.; Odintsov, S.D.

    1992-01-01

    In this paper spontaneous compactification - on a R 1 x S 1 background - in 2D induced quantum gravity (considered as a toy model for more fundamental quantum gravity) is analyzed in the gauge-independent effective action formalism. It is shown that such compactification is stable, in contradistinction to multidimensional quantum gravity on a R degrees x S 1 (D-> 2) background - which is known to be one-loop unstable

  11. 2D/ 3D Quantitative Ultrasound of the Breast

    Science.gov (United States)

    Nasief, Haidy Gerges

    Breast cancer is the second leading cause of cancer death of women in the United States, so breast cancer screening for early detection is common. The purpose of this dissertation is to optimize quantitative ultrasound (QUS) methods to improve the specificity and objectivity of breast ultrasound. To pursue this goal, the dissertation is divided into two parts: 1) to optimize 2D QUS, and 2) to introduce and validate 3D QUS. Previous studies had validated these methods in phantoms. Applying our QUS analysis on subcutaneous breast fat demonstrated that QUS parameter estimates for subcutaneous fat were consistent among different human subjects. This validated our in vivo data acquisition methods and supported the use of breast fat as a clinical reference tissue for ultrasound BI-RADSRTM assessments. Although current QUS methods perform well for straightforward cases when assumptions of stationarity and diffuse scattering are well-founded, these conditions often are not present due to the complicated nature of in vivo breast tissue. Key improvements in QUS algorithms to address these challenges were: 1) applying a "modified least squares method (MLSM)" to account for the heterogeneous tissue path between the transducer and the region of interest, ROI; 2) detecting anisotropy in acoustic parameters; and 3) detecting and removing the echo sources that depart from diffuse and stationary scattering conditions. The results showed that a Bayesian classifier combining three QUS parameters in a biased pool of high-quality breast ultrasound data successfully differentiated all fibroadenomas from all carcinomas. Given promising initial results in 2D, extension to 3D acquisitions in QUS provided a unique capability to test QUS for the entire breast volume. QUS parameter estimates using 3D data were consistent with those found in 2D for phantoms and in vivo data. Extensions of QUS technology from 2D to 3D can improve the specificity of breast ultrasound, and thus, could lead to

  12. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  13. Report of the 1988 2-D Intercomparison Workshop, chapter 3

    Science.gov (United States)

    Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar

    1989-01-01

    Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.

  14. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  15. Energy transfer mechanisms in layered 2D perovskites.

    Science.gov (United States)

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  16. Energy transfer mechanisms in layered 2D perovskites

    Science.gov (United States)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  17. EDGE2D Simulations of JET 13C Migration Experiments

    International Nuclear Information System (INIS)

    Strachan, J.D.; Coad, J.P.; Corrigan, G.; Matthews, G.F.; Spence, J.

    2004-01-01

    Material migration has received renewed interest due to tritium retention associated with carbon transport to remote vessel locations. Those results influence the desirability of carbon usage on ITER. Subsequently, additional experiments have been performed, including tracer experiments attempting to identify material migration from specific locations. In this paper, EDGE2D models a well-diagnosed JET 13 C tracer migration experiment. The role of SOL flows upon the migration patterns is identified

  18. Adaptyvaus 2d pozicionavimo metodo autonominiam robotui tyrimas

    OpenAIRE

    Senvaitis, Vytautas

    2016-01-01

    Overview SLAM algorithm, laser distance scanner working principle, EKF and UKF filters in analytical part. EKF mathematical models are implemented for autonomous robot whit two-wheel drive and for laser distance scanner. EKF and UKF filters are compared. 2D robot positioning with EKF filter are modeled and simulated in MATALB and STM32 microcontroller with DSP library. MATLAB and STM32 are compared in speed test. Analyzing EKF filter working. Design and construct autonomous robot experimental...

  19. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  20. MXene–2D layered electrode materials for energy storage

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2018-04-01

    Full Text Available As promising candidates of power resources, electrochemical energy storage (EES devices have drawn more and more attention due to their ease of use, environmental friendliness, and high transformation efficiency. The performances of EES devices, such as lithium-ion batteries, sodium-ion batteries, and supercapacitors, depend largely on the inherent properties of electrode materials. On account of the outstanding properties of graphene, a lot of studies have been carried out on two-dimensional (2D materials. Over the past few years, a new exfoliation method has been utilized to successfully prepare a new family of 2D transition metal carbides, nitrides, and carbonitrides, termed MXene, from layered precursors. Moreover, some unique EES properties of MXene have been discovered. With rapid research progress on this field, a timely account about the applications of MXene in the EES fields is highly necessary. In this article, the research progress on the preparation, electrochemical performance, and mechanism analysis of MXene is summarized and discussed. We also propose some personal prospects for the further development of this field. Keywords: MXene, 2D materials, Electrochemistry, Battery, Supercapacitor

  1. Exciton Dynamics of 2D Hybrid Perovskite Nanocrystal

    Science.gov (United States)

    Guo, Rui; Zhu, Zhuan; Boulesbaa, Abdelaziz; Venkatesan, Swaminathan; Xiao, Kai; Bao, Jiming; Yao, Yan; Li, Wenzhi

    Organic-inorganic hybrid perovskites have emerged as promising materials for applications in photovoltaic and optoelectronic devices. Among the perovskites, two dimensional (2D) perovskites are of great interests due to their remarkable optical and electrical properties as well as the flexibility of material selection for the organic and inorganic moieties. In this study, we demonstrate the solution-phase growth of large square-shaped single-crystalline 2D hybrid perovskites of (C6H5C2H4 NH3) 2 PbBr4 with a few unit cells thickness. Compared to the bulk crystal, a band gap shift and new photoluminescence (PL) peak are observed from the hybrid perovskite sheets. Color of the 2D crystals can be tuned by adjusting the sheet thickness. Pump-probe spectroscopy is used to investigate the exciton dynamics and exhibits a biexponential decay with an amplitude-weighted lifetime of 16.7 ps. Such high-quality (C6H5C2H4 NH3) 2 PbBr4 sheets are expected to have high PL quantum efficiency which can be adopted for light-emitting devices. National Science Foundation (Grant No. CMMI-1334417 and DMR-1506640).

  2. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  3. F-theory and 2d (0,2) theories

    Energy Technology Data Exchange (ETDEWEB)

    Schäfer-Nameki, Sakura [Department of Mathematics, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany)

    2016-05-11

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0,2) GLSM is realized via different T-branes or gluing data in F-theory.

  4. Black holes and quantum mechanics

    CERN Document Server

    Wilczek, Frank

    1995-01-01

    1. Qualitative introduction to black holes : classical, quantum2. Model black holes and model collapse process: The Schwarzschild and Reissner-Nordstrom metrics, The Oppenheimer-Volkov collapse scenario3. Mode mixing4. From mode mixing to radiance.

  5. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  6. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  7. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  8. Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Lenngren, N.; Abdellah, M.A.; Zheng, K.; Al-Marri, M.J.; Zigmantas, D.; Žídek, Karel; Pullerits, T.

    2016-01-01

    Roč. 18, č. 37 (2016), s. 26199-26204 ISSN 1463-9076 Institutional support: RVO:61389021 Keywords : quantum dots (QDs) * two-dimesional coherent spectroscopy * carrier relaxation * carrier trapping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.123, year: 2016

  9. Observations of electron vortex magnetic holes and related wave-particle interactions in the turbulent magnetosheath

    Science.gov (United States)

    Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.

    2017-12-01

    Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron

  10. Synthesis of MoS_2/g-C_3N_4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity

    International Nuclear Information System (INIS)

    Li, Juan; Liu, Enzhou; Ma, Yongning; Hu, Xiaoyun; Wan, Jun; Sun, Lin; Fan, Jun

    2016-01-01

    Graphical abstract: TEM image and schematic diagram of photocatalytic mechanism of 2D MoS_2/g-C_3N_4 composites. - Highlights: • g-C_3N_4 nanosheets coupled with MoS_2 nanosheets as 2D heterojunction photocatalysts were synthesized successfully. • The 2D MoS_2/g-C_3N_4 heterojunctions show higher photocatalytic activity than pure g-C_3N_4. • The photocatalytic mechanism of the 2D MoS_2/g-C_3N_4 heterojunction was described. - Abstract: g-C_3N_4 nanosheets coupled with MoS_2 nanosheets as 2D heteroconjuction were prepared via a facile impregnation and calcination method. The structure characterization clearly indicated that MoS_2 nanosheets were successfully horizontal loaded on g-C_3N_4 nanosheets. The investigation indicated that the formation of 2D heterojunction between the g-C_3N_4 nanosheets and MoS_2 nanosheets promoted the charge transfer and enhanced separation efficiency of photoinduced electron–hole pairs. Furthermore, the measurement of photocatalytic activity for the degradation of rhodamine B and methyl orange revealed that the as-prepared 2D MoS_2/g-C_3N_4 heterojunction exhibited the significantly enhanced photocatalytic activity and considerable stability under visible light irradiation. The 2D MoS_2/g-C_3N_4 heterojunction prepared with 3 wt% of MoS_2 exhibited the optimal photodegradable efficiency. The present work shows that the formation of 2D heterojunction should be a good strategy to design efficient photocatalysts.

  11. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  12. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  13. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  14. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  15. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  16. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    OpenAIRE

    Akca Irfan

    2016-01-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...

  17. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  18. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2004-02-01

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.

  19. 4D scattering amplitudes and asymptotic symmetries from 2D CFT

    Science.gov (United States)

    Cheung, Clifford; de la Fuente, Anton; Sundrum, Raman

    2017-01-01

    We reformulate the scattering amplitudes of 4D flat space gauge theory and gravity in the language of a 2D CFT on the celestial sphere. The resulting CFT structure exhibits an OPE constructed from 4D collinear singularities, as well as infinite-dimensional Kac-Moody and Virasoro algebras encoding the asymptotic symmetries of 4D flat space. We derive these results by recasting 4D dynamics in terms of a convenient foliation of flat space into 3D Euclidean AdS and Lorentzian dS geometries. Tree-level scattering amplitudes take the form of Witten diagrams for a continuum of (A)dS modes, which are in turn equivalent to CFT correlators via the (A)dS/CFT dictionary. The Ward identities for the 2D conserved currents are dual to 4D soft theorems, while the bulk-boundary propagators of massless (A)dS modes are superpositions of the leading and subleading Weinberg soft factors of gauge theory and gravity. In general, the massless (A)dS modes are 3D Chern-Simons gauge fields describing the soft, single helicity sectors of 4D gauge theory and gravity. Consistent with the topological nature of Chern-Simons theory, Aharonov-Bohm effects record the "tracks" of hard particles in the soft radiation, leading to a simple characterization of gauge and gravitational memories. Soft particle exchanges between hard processes define the Kac-Moody level and Virasoro central charge, which are thereby related to the 4D gauge coupling and gravitational strength in units of an infrared cutoff. Finally, we discuss a toy model for black hole horizons via a restriction to the Rindler region.

  20. 2D/3D/4D ULTRASOUND IN INFERTILITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Uršula Reš-Muravec

    2018-02-01

    Ultrasound in infertility diagnostics: Ultrasound is used for examination of uterus, tubes, ovaries and peritoneal cause of infertility. It can be used in different menstrual phases: proliferative, periovulatory and secretory phase. Examination of uterus: A 2D scan can measure the size of the uterus (length, width and depth and a 2D flow (colour and power doppler. With 3D technology we can measure the whole volume with VOCAL (virtual organ computer-aided analysis and 3D circulation with the index (VI – vascular index, FI – flow index and VFI – vascular flow index in the uterus. A 2D scan can help us define uterine malformations, fibroids and adenomyosis to a certain extent. However, a 3D scan offers more accurate diagnosis of these malformations. Endometrium is examined separately. With 2D the width is measured and morphology and focal lesions (polyp, fibroids, adhesions are examined. With 3D the real sagital plane for the width measurement can be defined . We can measure the volume of endometrium and subendometrium and 3D circulation in endometrium and subendometrium. The FIS (f luid instlation sonography is very useful when examining the endometrium; saline or gel can be used for uterine instalation. We can measure and define the position of the structures in the endometrium more accurately when they are surrouned by saline or gel. We can view these structures with a surface view, similar to the one used for hysteroscopy. With this information we can explain the pathology to the patient and easily plan the surgical procedures. Examination of the tubes: With 2D US we can see the tubes in the pelvis only if there are dilatations, but sometimes it is difficult to distinguish them from the neighbouring forma- tions. With a 3D ultrasound we can define the shape and continuity of the tube and we can view the tube from different angles (inversion mode. Different contrast media are used for determining tubal patency. Tubal patency can be diagnosed with 2D Hy

  1. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  2. 2D Seismic Reflection Data across Central Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Valerie; Leetaru, Hannes

    2014-09-30

    In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made

  3. Data of evolutionary structure change: 1ONAD-2D3PC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PC 1ONA 2D3P D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...14> 1ONA D 1ONAD

  4. Data of evolutionary structure change: 1ONAD-2D3PA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PA 1ONA 2D3P D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ONA D 1ONAD LTRVSSNGSPQ

  5. Data of evolutionary structure change: 1ONAD-2D3PB [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3PB 1ONA 2D3P D B ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ain> 1ONA D 1ONAD TR

  6. Data of evolutionary structure change: 1ONAD-2D3RA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RA 1ONA 2D3R D A ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT...ID>1ONA D 1ONAD TRVSSNGSPQG <

  7. Data of evolutionary structure change: 1ONAD-2D3RC [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RC 1ONA 2D3R D C ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLKT------NALHFMFNQFSKDQKDLILQGDAT... 1ONA D 1ONAD TRVSSN

  8. Data of evolutionary structure change: 1ONAD-2D3RD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ONAD-2D3RD 1ONA 2D3R D D ADTIVAVELDTYPNTDIGDPSYPHIGIDIKSVRSKKTAK...WNMQNGKVGTAHIIYNSVDKRLSAVVSYPNADSATVSYDVDLDNVLPEWVRVGLSASTGLYKETNTILSWSFTSKLK------TNALHFMFNQFSKDQKDLILQGDAT...n> 1ONA D 1ONAD TRVS

  9. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  10. 2D to 3D conversion implemented in different hardware

    Science.gov (United States)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  11. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  12. Novel 2D representation of vibration for local damage detection

    Directory of Open Access Journals (Sweden)

    Grzegorz Żak

    2014-07-01

    Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.

  13. Deep Cuboid Detection: Beyond 2D Bounding Boxes

    OpenAIRE

    Dwibedi, Debidatta; Malisiewicz, Tomasz; Badrinarayanan, Vijay; Rabinovich, Andrew

    2016-01-01

    We present a Deep Cuboid Detector which takes a consumer-quality RGB image of a cluttered scene and localizes all 3D cuboids (box-like objects). Contrary to classical approaches which fit a 3D model from low-level cues like corners, edges, and vanishing points, we propose an end-to-end deep learning system to detect cuboids across many semantic categories (e.g., ovens, shipping boxes, and furniture). We localize cuboids with a 2D bounding box, and simultaneously localize the cuboid's corners,...

  14. A new 2-d approach to iterative , learning control system

    International Nuclear Information System (INIS)

    Ashraf, S.; Muhammad, E.; Tasleem, M.

    2004-01-01

    The well known two-dimensional system theory is used to analyze and develop a class of learning control system. In this paper we first explore and test a method given by ZHENG and JAMSHIDI. In that paper all the input samples are treated at once. In comparison our paper presents a scheme in which one sample at a time is treated. The 2- D state-space model of proposed learning control scheme is given. An important consequence of the proposed scheme is that given the right choice of gain matrix and sampling time the system's output can be made to converge to any degree of accuracy. (author)

  15. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  16. 2D Inversion of Transient Electromagnetic Method (TEM)

    Science.gov (United States)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most

  17. The multicomponent 2D Toda hierarchy: dispersionless limit

    International Nuclear Information System (INIS)

    Mañas, Manuel; Alonso, Luis Martínez

    2009-01-01

    The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit

  18. Optical diffraction by ordered 2D arrays of silica microspheres

    Science.gov (United States)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  19. Rotational Invariance of the 2d Spin - Spin Correlation Function

    Science.gov (United States)

    Pinson, Haru

    2012-09-01

    At the critical temperature in the 2d Ising model on the square lattice, we establish the rotational invariance of the spin-spin correlation function using the asymptotics of the spin-spin correlation function along special directions (McCoy and Wu in the two dimensional Ising model. Harvard University Press, Cambridge, 1973) and the finite difference Hirota equation for which the spin-spin correlation function is shown to satisfy (Perk in Phys Lett A 79:3-5, 1980; Perk in Proceedings of III international symposium on selected topics in statistical mechanics, Dubna, August 22-26, 1984, JINR, vol II, pp 138-151, 1985).

  20. Hybrid animation integrating 2D and 3D assets

    CERN Document Server

    O'Hailey, Tina

    2010-01-01

    Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos

  1. A generalized 2-D Poincaré inequality

    Directory of Open Access Journals (Sweden)

    Crisciani Fulvio

    2000-01-01

    Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.

  2. DESAIN KOMUNIKASI DAKWAH VISUAL ANIMASI 2D UNTUK ANAK

    Directory of Open Access Journals (Sweden)

    Mokhamad Mahfud

    2017-04-01

    Full Text Available Dakwah activities as a communication process of delivering the teachings of Islam's ideal has no power to change people for the better. There are many causal factors, one of them is because of propagandas that has been done tends to be cold, impersonal, and is only informative sheer, yet using less effective communication ethics. A visual cultural revolution is now growing rapidly, unfortunately its dominated by capitalists and worshipers of lust. For example, nearly all visual ads is using the interest of sensuality and lust to lure customers. On the billboards, media newspapers, magazines, television and other media, visual communication seemed to be a valuable garbage, and this is very dangerous, especially if in the consumption of children who are mentally and immature psyche. The Effects of visual "value-free" communication can damage the sense of children as the next generation, we are slowly showed on-aurast which makes Muslims become stupid. This study aims to provide a creative space to explore the lives of children for the purpose of providing religious materials in SDN Monggang Pendowoharjo Sewon Bantul. 2D animation design is expected to give a message to children that religious material is not complicated but enjoyable. And the use of cartoon animation techniques in the making is in fact, expecting the material to be delivered to children to be light for their minds and appropriate with their entertainment media which is television. This research Visual Communication Design using 2d Animation For Children is using descriptive study which is a qualitative research method that analyze the words or sentences and separate it by category for the conclusion. Qualitative research aims to explain the phenomenon in detail and in-depth data collection that focuses on quality rather than the quantity of data. The results of this study is that the creation of 2D animation is effective to be a dakwah media for children that will be made with a

  3. Resolving power test of 2-D K+ K+ interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Roldao, Christiane G.

    1999-01-01

    Adopting a procedure previously proposed to quantitatively study pion interferometry 1 , an equivalent 2-D X 2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, when no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K + K + interferometry data from Si+Au collisions at 14.6 A GeV/c. Less sensitivity is achieved in the present case, although it is shown that it is still possible to distinguish two distinct decoupling geometries. (author)

  4. Survey of 1 1/2D transport codes

    International Nuclear Information System (INIS)

    Grad, H.

    1978-10-01

    A survey is given of a family of classical transport codes, recently termed ''1 1/2D'', which efficiently and accurately follow the evolution of plasma configurations on a long time scale, following coupled changes in plasma shape and topology with transport (but not wave motion). Codes have been constructed and operated (since 1974) which include various combinations of finite beta, general plasma cross-section and aspect, various topologies (Doublet, tearing, reversed-field mirror) including time dependent transitions in topology resulting from external coil variation and plasma transport, with models including (classical) tensor resistivity and heat flow as well as the adiabatic limiting case

  5. Conformal field theory and 2D quantum gravity

    International Nuclear Information System (INIS)

    Distler, J.; Kawai, Hikaru

    1989-01-01

    Inspired by the recent work of Knizhnik, Polyakov and Zamolodchikov on the solution of 2D quantum gravity in the 'light cone' gauge, we present a proposal for solving the theory in the usual conformal gauge. Our results for the critical exponents of the theory agree with the genus-zero results of KPZ. Since our formalism naturally generalizes to higher-genus Riemann surfaces, we obtain the critical exponents for all genera. The corresponding results for the supersymmetric case are presented. We also show how to calculate correlation functions in these theories. (orig.)

  6. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  7. GAIA: A 2-D Curvilinear moving grid hydrodynamic code

    International Nuclear Information System (INIS)

    Jourdren, H.

    1987-02-01

    The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension

  8. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  9. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  10. THGEM for Multi-Proposal 2-D Image Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Moon, Myungkook; Lee, Suhyun; Choi, Youghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jongyul [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Jongwon [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2014-05-15

    A GEM (Gas Electron Multiplier) based detector, which consists of the drift area, the electron multiplication area, and the induction area, was proposed by Fabio Sauli in 1977. A GEM is made of a thin polymer film that is perforated with a periodic array and is coated with a thin metallic film on both sides. Electron multiplication in a GEM based detector is performed by the electron avalanche inside the holes of a GEM. However, the standard GEM has problems of low electron multiplication and a high fabrication cost. The thick GEM-like (THGEM) was developed to compensate for such problem. When compared with a standard GEM, the electron gain is higher and the manufacturing cost is lower due to using a general purpose PCB (printed circuit board). In this study, we describe the signal response of the THGEM based detector that has THGEMs with holes of various sizes. In this study, we developed a THGEM based study of another research group. Although this was not the first time the THGEM has been developed, this is the first implementation in Korea. Through the THGEM development process, we tested the properties of a THGEM and measured a 2-dimensional image. Further, we will evaluate the performance based on the image resolution, uniformity, etc. Additionally, we will try to apply a THGEM based detector on various application fields.

  11. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  12. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  13. 2D arc-PIC code description: methods and documentation

    CERN Document Server

    Timko, Helga

    2011-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...

  14. 2-D Fractal Carpet Antenna Design and Performance

    Science.gov (United States)

    Barton, C. C.; Tebbens, S. F.; Ewing, J. J.; Peterman, D. J.; Rizki, M. M.

    2017-12-01

    A 2-D fractal carpet antenna uses a fractal (self-similar) pattern to increase its perimeter by iteration and can receive or transmit electromagnetic radiation within its perimeter-bounded surface area. 2-D fractals are shapes that, at their mathematical limit (infinite iterations) have an infinite perimeter bounding a finite surface area. The fractal dimension describes the degree of space filling and lacunarity which quantifies the size and spatial distribution of open space bounded by a fractal shape. A key aspect of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that are very compact, wideband and multiband. As the number of iterations increases, the antenna operates at higher and higher frequencies. Manifestly different from traditional antenna designs, a fractal antenna can operate at multiple frequencies simultaneously. We have created a MATLAB code to generate deterministic and stochastic modes of Sierpinski carpet fractal antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, number of iterations, and lacunarities have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance

  15. 2-D Fractal Wire Antenna Design and Performance

    Science.gov (United States)

    Tebbens, S. F.; Barton, C. C.; Peterman, D. J.; Ewing, J. J.; Abbott, C. S.; Rizki, M. M.

    2017-12-01

    A 2-D fractal wire antenna uses a fractal (self-similar) pattern to increase its length by iteration and can receive or transmit electromagnetic radiation. 2-D fractals are shapes that, at their mathematical limit (of infinite iterations) have an infinite length. The fractal dimension describes the degree of space filling. A fundamental property of fractal antennas lies in iteration (repetition) of a fractal pattern over a range of length scales. Iteration produces fractal antennas that can be very compact, wideband and multiband. As the number of iterations increases, the antenna tends to have additional frequencies that minimize far field return loss. This differs from traditional antenna designs in that a single fractal antenna can operate well at multiple frequencies. We have created a MATLAB code to generate deterministic and stochastic modes of fractal wire antennas with a range of fractal dimensions between 1 and 2. Variation in fractal dimension, stochasticity, and number of iterations have been computationally tested using COMSOL Multiphysics software to determine their effect on antenna performance.

  16. The unitary conformal field theory behind 2D Asymptotic Safety

    Energy Technology Data Exchange (ETDEWEB)

    Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)

    2016-02-25

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.

  17. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    Science.gov (United States)

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  18. Syndrome identification based on 2D analysis software.

    Science.gov (United States)

    Boehringer, Stefan; Vollmar, Tobias; Tasse, Christiane; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar

    2006-10-01

    Clinical evaluation of children with developmental delay continues to present a challenge to the clinicians. In many cases, the face provides important information to diagnose a condition. However, database support with respect to facial traits is limited at present. Computer-based analyses of 2D and 3D representations of faces have been developed, but it is unclear how well a larger number of conditions can be handled by such systems. We have therefore analysed 2D pictures of patients each being affected with one of 10 syndromes (fragile X syndrome; Cornelia de Lange syndrome; Williams-Beuren syndrome; Prader-Willi syndrome; Mucopolysaccharidosis type III; Cri-du-chat syndrome; Smith-Lemli-Opitz syndrome; Sotos syndrome; Microdeletion 22q11.2; Noonan syndrome). We can show that a classification accuracy of >75% can be achieved for a computer-based diagnosis among the 10 syndromes, which is about the same accuracy achieved for five syndromes in a previous study. Pairwise discrimination of syndromes ranges from 80 to 99%. Furthermore, we can demonstrate that the criteria used by the computer decisions match clinical observations in many cases. These findings indicate that computer-based picture analysis might be a helpful addition to existing database systems, which are meant to assist in syndrome diagnosis, especially as data acquisition is straightforward and involves off-the-shelf digital camera equipment.

  19. Polymer ultrapermeability from the inefficient packing of 2D chains

    Science.gov (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.

    2017-09-01

    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  20. Predicting non-square 2D dice probabilities

    Science.gov (United States)

    Pender, G. A. T.; Uhrin, M.

    2014-07-01

    The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.

  1. Joint Secrecy for D2D Communications Underlying Cellular Networks

    KAUST Repository

    Hyadi, Amal

    2018-01-15

    In this work, we investigate the ergodic secrecy rate region of a block-fading spectrum-sharing system, where a D2D communication is underlying a cellular channel. We consider that both the primary and the secondary transmissions require their respective transmitted messages to be kept secret from a common eavesdropper under a joint secrecy constraint. The presented results are for three different scenarios, each corresponding to a particular requirement of the cellular system. First, we consider the case of a fair cellular system, and we show that the impact of jointly securing the transmissions can be balanced between the primary and the secondary systems. The second scenario examines the case when the primary network is demanding and requires the secondary transmission to be at a rate that is decodable by the primary receiver, while the last scenario assumes a joint transmission of artificial noise by the primary and the secondary transmitters. For each scenario, we present an achievable ergodic secrecy rate region that can be used as an indicator for the cellular and the D2D systems to agree under which terms the spectrum will be shared.

  2. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006. The......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006.......This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006....... The objective of the tests was to investigate the impact pressures generated on a horizontal platform and a cone platform for selected sea states calibrated by Lykke Andersen & Frigaard, 2006. The measurements should be used for assessment of slamming coefficients for the design of horizontal and cone...

  3. New Approach for 2D Readout of GEM Detectors

    International Nuclear Information System (INIS)

    Hasell, Douglas K.

    2011-01-01

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to ∼50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  4. DNN-state identification of 2D distributed parameter systems

    Science.gov (United States)

    Chairez, I.; Fuentes, R.; Poznyak, A.; Poznyak, T.; Escudero, M.; Viana, L.

    2012-02-01

    There are many examples in science and engineering which are reduced to a set of partial differential equations (PDEs) through a process of mathematical modelling. Nevertheless there exist many sources of uncertainties around the aforementioned mathematical representation. Moreover, to find exact solutions of those PDEs is not a trivial task especially if the PDE is described in two or more dimensions. It is well known that neural networks can approximate a large set of continuous functions defined on a compact set to an arbitrary accuracy. In this article, a strategy based on the differential neural network (DNN) for the non-parametric identification of a mathematical model described by a class of two-dimensional (2D) PDEs is proposed. The adaptive laws for weights ensure the 'practical stability' of the DNN-trajectories to the parabolic 2D-PDE states. To verify the qualitative behaviour of the suggested methodology, here a non-parametric modelling problem for a distributed parameter plant is analysed.

  5. The Usage of 2D Codes in Marketing Practices

    Directory of Open Access Journals (Sweden)

    Toni Podmanicki

    2011-07-01

    Full Text Available Barcodes, which are used for the labelling and identification of products, have been used as the foundation for the development of new symbols, two-dimensional barcodes (usually called 2D codes. These codes are capable of receiving large amounts of data in a small area, and data stored in them can be read by means of mobile devices. They usually contain information such as web addresses, text, contacts and similar data that encourage users to interact in order to obtain the desired information, entertainment, discount, reservation, and even do their shopping. The possibility of connecting the physical and digital world by means of 2D codes has led marketing professionals to face new challenges in the development of strategies in mobile marketing. Many companies recognized the potential of the above technology very early, in its initial phase, and they use it now in their activities. This paper aims to emphasize the importance of knowing this technology and its advantages by providing examples in marketing practices.

  6. Lagrangian MHD in 2D and 3D

    International Nuclear Information System (INIS)

    Oliphant, T.A.; Morel, J.E.; Gula, W.P.; Pfeufer, G.W.

    1997-01-01

    The cell-centered diffusion differencing scheme presented by Morel et al. has been applied to magnetic diffusion associated with Lagrangian hydrodynamic codes. Thus, the method applies to non-orthogonal meshes. Although the present application involves structured meshes, the method applies equally well to unstructured meshes. Morel's example of application is to 2D diffusion using Ficke's law. Thus, a volume integral approach is applied to the divergence operator. In 2D magnetic diffusion symmetry allows the use of an area integral approach involving the field components normal to the area, e.g. A-theta and B-theta. Instead of a divergence of a term proportional to the field gradient a curl of a term proportional to the curl of the field is used. An essential fact that allows this procedure is that the solenoidal property of the magnetic field is automatic. In the case of 3D it is necessary to return to the volumetric integral approach and to use rectangular components of the vector potential. Successful benchmarks have been run in comparison with the 1D code RAVEN. A typical example is that of a metal cylinder being compressed by a magnetic field applied at the outer boundary. So far, the 3D diffusion model has been tested in the orthogonal case and found to preserve the linear, homogeneous solution. Results of these and further tests are presented

  7. Soft tubular microfluidics for 2D and 3D applications

    Science.gov (United States)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  8. Magnetic gating of a 2D topological insulator

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  9. On the resolving power of 2-D interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)

    1996-12-31

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D {sub X}{sup 2} analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean {sub X}{sup 2} per degrees of freedom with respect to the range of the analysis in the ({sub qT}, {sub qL}) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high {omega}, {eta} resonance formation yields. (author) 24 refs., 5 figs.

  10. On the resolving power of 2-D interferometry

    International Nuclear Information System (INIS)

    Padula, Sandra S.

    1996-01-01

    A resonance gas model previously proposed is here briefly reviewed in order to illustrate some of the geometrical and dynamical effects that could distort the behavior of the two pion correlation function. The main of these effects - the resonance decaying into pions - has earlier been conceived as a possible means to probe resonance abundances at different energy ranges. However, reinforcing previous studies, we show here that the conventional 1-D projection of the correlation function does not allow for clear conclusions. Instead, we propose to use the 2-D projection associated to a 2-D X 2 analysis, which substantially enhances the resolving power of interferometry to differentiate decoupling geometries of distinct dynamical models. This result is achieved by studying the variation of the mean X 2 per degrees of freedom with respect to the range of the analysis in the ( qT , qL ) plane. The preliminary E802 data on Si + Au at 14.6 A GeV/c, used here for illustrating the method, seem to rule out dynamical models with high ω, η resonance formation yields. (author)

  11. 2D mesoscale colloidal crystal patterns on polymer substrates

    Science.gov (United States)

    Bredikhin, Vladimir; Bityurin, Nikita

    2018-05-01

    The development of nanosphere lithography relies on the ability of depositing 2D colloidal crystals comprising micro- and nano-size elements on substrates of different materials. One of the most difficult problems here is deposition of coatings on hydrophobic substrates, e.g. polymers, from aqueous colloidal solutions. We use UV photooxidation for substrate hydrophilization. We demonstrate a new method of producing a two-dimensional ordered array of polymer microparticles (polystyrene microspheres ∼1 μm in diameter) on a polymer substrate (PMMA). We show that implementation of the new deposition technique for directed self-assembly of microspheres on an UV irradiated surface provides an opportunity to obtain coatings on a hydrophilized PMMA surface of large area (∼5 cm2). UV irradiation of the surface through masks allows creating 2D patterns consisting of mesoscale elements formed by the deposited self-assembled microparticles owing to the fact that the colloidal particles are deposited only on the irradiated area leaving the non-irradiated sections intact.

  12. 2D magnetic texture analysis of Co-Cu films

    International Nuclear Information System (INIS)

    Bayirli, Mehmet; Karaagac, Oznur; Kockar, Hakan; Alper, Mursel

    2017-01-01

    The magnetic textures for the produced magnetic materials are important concepts in accordance with technical applications. Therefore, the aim of this article is to determine 2D magnetic textures of electrodeposited Co-Cu films by the measurement of hysteresis loops at the incremented angles. For that, Co-Cu films were deposited with different Co"2"+ in the electrolyte. In addition, the easy-axis orientation in the films from the squareness values of the angles, M_p(β) obtained by the hysteresis loops have been numerically studied using the Fourier series analysis. The differences observed in the magnetic easy-axis distributions were attributed to changes of the incorporation of Co in the films with the change of Co"2"+ in the electrolyte. The coefficients of Fourier series (A_0 and A_2_n) were also computed for 2D films. It is seen that a systematic and small decrease in A_0 and an obvious decrease in A_2_n (n=1) were observed with increasing incorporated Co in the films. Results imply that interactions cause slightly demagnetization effect accordance with higher incorporation of Co in the films. Furthermore, the crystal structure of the Co-Cu films analysed by X-ray diffraction revealed that the films have dominantly face-centred cubic structure. Film contents analysed by energy-dispersive X-ray spectroscopy and film morphologies observed by scanning electron microscope also support the magnetic texture analysis results found by numerical computation.

  13. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials

    Science.gov (United States)

    Shen, Xin-Wei; Tong, Wen-Yi; Gong, Shi-Jing; Duan, Chun-Gang

    2018-03-01

    The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal 2D materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that 2D orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.

  14. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  15. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  16. Modelling RF sources using 2-D PIC codes

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (''port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation

  17. 2D CFT partition functions at late times

    Science.gov (United States)

    Dyer, Ethan; Gur-Ari, Guy

    2017-08-01

    We consider the late time behavior of the analytically continued partition function Z( β + it) Z( β - it) in holographic 2 d CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic 2 d CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss gravitationally-motivated integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-perturbative saddles.

  18. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  19. Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-01-01

    A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.

  20. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    Science.gov (United States)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  1. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Science.gov (United States)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  2. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  3. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    International Nuclear Information System (INIS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors

  4. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  5. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  6. Interactive initialization of 2D/3D rigid registration

    International Nuclear Information System (INIS)

    Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv

    2013-01-01

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the

  7. Interactive initialization of 2D/3D rigid registration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on

  8. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4

    Directory of Open Access Journals (Sweden)

    Tobias Zöller

    2018-03-01

    Full Text Available Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous “self cells” by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB and six ULBP molecules (ULBP1–6, there are a total of eight human NKG2D ligands (NKG2DL. Since the discovery of the NKG2D–NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.

  9. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  10. Optical diffraction by ordered 2D arrays of silica microspheres

    International Nuclear Information System (INIS)

    Shcherbakov, A.A.; Shavdina, O.; Tishchenko, A.V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-01-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality. - Highlights: • High quality silica microsphere monolayer was fabricated. • Accurate measurements of diffraction efficiency angular dependencies. • Rigorous diffraction simulation of both ideal hexagonal and realistic microsphere arrangements. • Qualitative rationalization of the obtained results and the observed differences between the experiment and the theory.

  11. Persistent spin helices in 2D electron systems

    Science.gov (United States)

    Kozulin, A. S.; Malyshev, A. I.; Konakov, A. A.

    2017-03-01

    We present a theoretical investigation of persistent spin helices in two-dimensional electron systems with spin-orbit coupling. For this purpose, we consider a single-particle effective mass Hamiltonian with a generalized linear-in- k spin-orbit coupling term corresponding to a quantum well grown in an arbitrary crystallographic direction, and derive the general condition for the formation of the persistent spin helix. This condition applied for the Hamiltonians describing quantum wells with different growth directions indicates the possibility of existence of the persistent spin helix in a wide class of 2D systems apart from the [001] model with equal Rashba and Dresselhaus spin-orbit coupling strengths and the [110] Dresselhaus model.

  12. 2D supergravity and its connection to integrable models

    International Nuclear Information System (INIS)

    Arnaudov, L.N.; Prodanov, E.M.; Rashkov, R.C.

    1993-05-01

    In the recent work two different approaches for obtaining the covariant W 2 -action of 2-d quantum supergravity are considered. The first one is based on Hamiltonian reduction of flat Osp(2/1) connection in holomorphic polarization. Adding extra degrees of freedom with the help of gauging procedure the W 2 -action and the superconformal identities are obtained. It is shown that the super Virasoro transformations preserve the form of the Lax connection and therefore are symmetries of the sKdV equations. In the second approach starting with Chern-Simons theory and using non-canonical polarization the zero-curvature condition entails the same results. (author). 7 refs

  13. 2D quantum gravity at three loops: A counterterm investigation

    Directory of Open Access Journals (Sweden)

    Lætitia Leduc

    2016-02-01

    Full Text Available We analyze the divergences of the three-loop partition function at fixed area in 2D quantum gravity. Considering the Liouville action in the Kähler formalism, we extract the coefficient of the leading divergence ∼AΛ2(ln⁡AΛ22. This coefficient is non-vanishing. We discuss the counterterms one can and must add and compute their precise contribution to the partition function. This allows us to conclude that every local and non-local divergence in the partition function can be balanced by local counterterms, with the only exception of the maximally non-local divergence (ln⁡AΛ23. Yet, this latter is computed and does cancel between the different three-loop diagrams. Thus, requiring locality of the counterterms is enough to renormalize the partition function. Finally, the structure of the new counterterms strongly suggests that they can be understood as a renormalization of the measure action.

  14. Electronic Properties of Curved and Defective 2-D BN Nanostructures

    Science.gov (United States)

    Beach, Kory; Terrones, Humberto; Raeliarijaona, Aldo; Siegel, Ross; Florio, Fred

    Density functional theory (DFT) with local density approximation (LDA) pseudopotentials is used to calculate the band structure and density of states of various novel 2-D BN nanostructures. Three types of systems are studied: Schwarzites, a Haeckelite, and an h-BN monolayer. Schwarzites are negatively curved structures in which the curvature is due to the introduction of octagonal rings of alternating boron and nitrogen atoms. In particular, three families of Schwarzites are analyzed: P, G and IWP. The Haeckelites on the other hand, are flat layers composed of squares and octagons of BN. It is found that all these BN allotropes are metastable in which the band gap is direct and smaller than the most stable system, h-BN. National Science Foundation (EFRI-1433311).

  15. Solution structure of d-GAATTCGAATTC by 2D NMR

    International Nuclear Information System (INIS)

    Hosur, R.V.; Ravikumar, M.; Chary, K.V.R.; Sheth, A.; Govil, G.

    1986-01-01

    A new approach based on the correlated spectroscopy (COSY) in 2D NMR has been described for determination of sugar geometries in oligonucleotides. Under the usual low resolution conditions employed in COSY, the intensities of cross peaks depend on the magnitudes of coupling constants. There are five vicinal coupling constants in a deoxyribose ring which are sensitive to the sugar geometry. The presence, absence and rough comparison of relative intensities of COSY cross peaks arising from such coupling constants enable one to fix the sugar conformation to a fair degree of precision. The methodology has been applied to d-GAATTCGAATTC. It is observed that ten out of the twelve nucleotide units in this sequence exhibit a rare O1'-endo geometry. The EcoRI cleavage sites in the dodecanucleotide show an interesting variation in the conformation with the two sugars attached to the Gs acquiring a geometry between C2'-endo and C4'-endo. (Auth.)

  16. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  17. A reusable OSL-film for 2D radiotherapy dosimetry

    Science.gov (United States)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-11-01

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after

  18. Aerodynamic shape optimization of Airfoils in 2-D incompressible flow

    Science.gov (United States)

    Rangasamy, Srinivethan; Upadhyay, Harshal; Somasekaran, Sandeep; Raghunath, Sreekanth

    2010-11-01

    An optimization framework was developed for maximizing the region of 2-D airfoil immersed in laminar flow with enhanced aerodynamic performance. It uses genetic algorithm over a population of 125, across 1000 generations, to optimize the airfoil. On a stand-alone computer, a run takes about an hour to obtain a converged solution. The airfoil geometry was generated using two Bezier curves; one to represent the thickness and the other the camber of the airfoil. The airfoil profile was generated by adding and subtracting the thickness curve from the camber curve. The coefficient of lift and drag was computed using potential velocity distribution obtained from panel code, and boundary layer transition prediction code was used to predict the location of onset of transition. The objective function of a particular design is evaluated as the weighted-average of aerodynamic characteristics at various angles of attacks. Optimization was carried out for several objective functions and the airfoil designs obtained were analyzed.

  19. Charge Transport in 2D DNA Tunnel Junction Diodes

    KAUST Repository

    Yoon, Minho

    2017-11-06

    Recently, deoxyribonucleic acid (DNA) is studied for electronics due to its intrinsic benefits such as its natural plenitude, biodegradability, biofunctionality, and low-cost. However, its applications are limited to passive components because of inherent insulating properties. In this report, a metal-insulator-metal tunnel diode with Au/DNA/NiOx junctions is presented. Through the self-aligning process of DNA molecules, a 2D DNA nanosheet is synthesized and used as a tunneling barrier, and semitransparent conducting oxide (NiOx ) is applied as a top electrode for resolving metal penetration issues. This molecular device successfully operates as a nonresonant tunneling diode, and temperature-variable current-voltage analysis proves that Fowler-Nordheim tunneling is a dominant conduction mechanism at the junctions. DNA-based tunneling devices appear to be promising prototypes for nanoelectronics using biomolecules.

  20. Thermodynamics of the localized D2-D6 system

    International Nuclear Information System (INIS)

    Gomez-Reino, Marta; Naculich, Stephen G.; Schnitzer, Howard J.

    2005-01-01

    An exact fully-localized extremal supergravity solution for N 2 D2-branes and N 6 D6-branes, which is dual to 3-dimensional supersymmetric SU(N 2 ) gauge theory with N 6 fundamentals, was found by Cherkis and Hashimoto. In order to consider the thermal properties of the gauge theory we present the non-extremal extension of this solution to first order in an expansion near the core of the D6-branes. We compute the Hawking temperature and the black-brane horizon area/entropy. The leading-order entropy, which is proportional to N 2 3/2 N 6 1/2 T H 2 , is not corrected to first order in the expansion. This result is consistent with the analogous weak-coupling result at the correspondence point N 2 similar to N 6