WorldWideScience

Sample records for holes high speed

  1. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  2. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  3. Relationship between coronal holes and high speed streams at L1: arrival times, durations, and intensities

    Science.gov (United States)

    Luo, B.; Bu, X.; Liu, S.; Gong, J.

    2017-12-01

    Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.

  4. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  5. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  6. Ulysses observations of a 'density hole' in the high-speed solar wind

    International Nuclear Information System (INIS)

    Riley, P.; Gosling, J.T.; McComas, D.J.; Forsyth, R.J.

    1998-01-01

    Ulysses observations at mid and high heliographic latitudes have revealed a solar wind devoid of the large variations in density, temperature, and speed that are commonly observed at low latitudes. One event, however, observed on May 1, 1996, while Ulysses was located at ∼3.7AU and 38.5 degree, stands out in the plasma data set. The structure, which is unique in the Ulysses high-latitude data set, is seen as a drop in proton density of almost an order of magnitude and a comparable rise in proton temperature. The event lasts ∼3(1)/(2) hours giving the structure a size of ∼9.6x10 6 km (0.06 AU) along the spacecraft trajectory. Minimum variance analysis of this interval indicates that the angle between the average magnetic field direction and the minimum variance direction is ∼92 degree, suggesting that the 'density hole' may be approximated by a series of planar slabs separated by several tangential discontinuities. We discuss several possible explanations for the origin of this structure, but ultimately the origin of the density hole remains unknown. copyright 1998 American Geophysical Union

  7. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  8. ESA's XMM-Newton sees matter speed-racing around a black hole

    Science.gov (United States)

    2005-01-01

    other characteristics that have long eluded them. Dr Jane Turner (NASA Goddard Space Flight Center, Greenbelt, USA and University of Maryland Baltimore County, USA) presents this result today at a press conference at the American Astronomical Society in San Diego together with Dr Lance Miller (University of Oxford, United Kingdom). "For years we have seen only the general commotion caused by massive black holes, that is, a terrific outpouring of light," said Turner. "We could not track the specifics. Now, with XMM-Newton, we can filter through all that light and find patterns that reveal information about black holes never seen before in such clarity." Miller noted that if this black hole were placed in our Solar System, it would appear like a dark abyss spread out nearly as wide as Mercury's orbit. And the three clumps of matter detected would be as far out as Jupiter. They orbit the black hole in a lightning-quick 27 hours (compared to the 12 years it takes Jupiter to orbit the Sun). Black holes are regions in space in which gravity prevents all matter and light from escaping. What scientists see is not the black hole itself but rather the light emitted close to it as matter falls towards the black hole and heats to extremely high temperatures. Turner's team observed a well-known galaxy named Markarian 766, located about 170 million light years away in the constellation Coma Berenices (Bernice's Hair). The black hole in Markarian 766 is relatively small although highly active. Its mass is a few million times that of the Sun; other central black hole systems are over 100 million solar masses. Matter funnels into this black hole like water swirling down a drain, forming what scientists call an accretion disc. Flares erupt on this disc most likely when magnetic field lines emanating from the central black hole interact with regions on the disc. To measure the speed of the flares and the black hole mass, scientists used a technique that involves measuring the Doppler

  9. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak...... statistically to zero, indicating that the associated high‐speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret...

  10. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    Science.gov (United States)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  11. Gravitational radiation from the radial infall of highly relativistic point particles into Kerr black holes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe

  12. Speed of gravitational waves and black hole hair

    Science.gov (United States)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-04-01

    The recent detection of GRB 170817A and GW170817 constrains the speed of gravity waves cT to be that of light, which severely restricts the landscape of modified gravity theories that impact the cosmological evolution of the Universe. In this work, we investigate the presence of black hole hair in the remaining viable cosmological theories of modified gravity that respect the constraint cT=1 . We focus mainly on scalar-tensor theories of gravity, analyzing static, asymptotically flat black holes in Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet, and Chern-Simons theories. We find that in all of the cases considered here, theories that are cosmologically relevant and respect cT=1 do not allow for hair, or have negligible hair. We further comment on vector-tensor theories including Einstein-Yang-Mills, Einstein-Aether, and generalized Proca theories, as well as bimetric theories.

  13. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; Benthem, Klaus van

    2016-01-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO_3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  14. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hihath, Sahar [Department of Materials Science and Engineering, University of California, Davis, 1 Shields Ave., Davis, California 95616 (United States); Department of Physics, University of California, Davis, 1 Shields Ave., Davis, California 95616 (United States); Santala, Melissa K.; Campbell, Geoffrey [Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Benthem, Klaus van, E-mail: benthem@ucdavis.edu [Department of Materials Science and Engineering, University of California, Davis, 1 Shields Ave., Davis, California 95616 (United States)

    2016-08-28

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO{sub 3} substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  15. Orbiting binary black hole evolutions with a multipatch high order finite-difference approach

    International Nuclear Information System (INIS)

    Pazos, Enrique; Tiglio, Manuel; Duez, Matthew D.; Kidder, Lawrence E.; Teukolsky, Saul A.

    2009-01-01

    We present numerical simulations of orbiting black holes for around 12 cycles, using a high order multipatch approach. Unlike some other approaches, the computational speed scales almost perfectly for thousands of processors. Multipatch methods are an alternative to adaptive mesh refinement, with benefits of simplicity and better scaling for improving the resolution in the wave zone. The results presented here pave the way for multipatch evolutions of black hole-neutron star and neutron star-neutron star binaries, where high resolution grids are needed to resolve details of the matter flow.

  16. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat......High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...

  17. The southern high-speed stream: results from the SWICS instrument on Ulysses.

    Science.gov (United States)

    Geiss, J; Gloeckler, G; von Steiger, R; Balsiger, H; Fisk, L A; Galvin, A B; Ipavich, F M; Livi, S; McKenzie, J F; Ogilvie, K W

    1995-05-19

    The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind.

  18. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  19. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  20. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  1. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    Science.gov (United States)

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  2. Design, development and testing of a high speed door for a blast containment fixture

    International Nuclear Information System (INIS)

    Shapiro, C.

    1991-01-01

    This paper reports that the concept of a large door able to close over a three foot diameter hole in less than 50 milliseconds evolved during the design of a test containment fixture at the Idaho National Engineering laboratory (INEL). This facility was designed for use at the Aberdeen Proving Ground (APG) in Aberdeen, Maryland. EPA regulations required new technologies for blast containment at APG, which culminated in the design of the blast chamber with a high speed door at its entrance. The main requirement of the fixture is to contain large explosion pressure pulses and explosive by-products during a variety of test scenarios. The door was designed to allow entrance of test projectiles and then to close over the entrance hole to contain explosive by-products inside the fixture. The speed of the projectile and the resultant blast pressure pulse required door closure within 56 msec. Analytical modelling of the door closure indicated velocities of up to 150 ft/sec before impact, for closure within the required time. Lightweight materials were used for the moving parts to minimize this impact force, including aluminum honeycomb composite panels and energy absorbers. Actuation was accomplished with a standard explosive bolt. High pressure nitrogen accelerated the door during closure. Time measurement for the door closer were obtained using high speed video equipment

  3. High precision, rapid laser hole drilling

    Science.gov (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  4. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Energy Technology Data Exchange (ETDEWEB)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M. [City University London, School of Mathematics Computer Science and Engineering, London (United Kingdom); Santini, M. [University of Bergamo, Department of Engineering, Bergamo (Italy)

    2016-11-15

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  5. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Science.gov (United States)

    Mitroglou, N.; Lorenzi, M.; Santini, M.; Gavaises, M.

    2016-11-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions.

  6. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    International Nuclear Information System (INIS)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M.; Santini, M.

    2016-01-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  7. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  8. DOE HIGH-POWER SLIM-HOLE DRILLING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. William C. Maurer; John H. Cohen; J. Chris Hetmaniak; Curtis Leitko

    1999-09-01

    This project used a systems approach to improve slim-hole drilling performance. A high power mud motor, having a double-length power section, and hybrid PDC/TSP drill bit were developed to deliver maximum horsepower to the rock while providing a long life down hole. This high-power slim-hole drilling system drills much faster than conventional slim-hole motor and bit combinations and holds significant potential to reduce slim-hole drilling costs. The oil and gas industries have been faced with downward price pressures since the 1980s. These pressures are not expected to be relieved in the near future. To maintain profitability, companies have had to find ways to reduce the costs of producing oil and gas. Drilling is one of the more costly operations in the production process. One method to reduce costs of drilling is to use smaller more mobile equipment. Slim holes have been drilled in the past using this principle. These wells can save money not only from the use of smaller drilling equipment, but also from reduced tubular costs. Stepping down even one casing size results in significant savings. However, slim holes have not found wide spread use for three reasons. First, until recently, the price of oil has been high so there were no forces to move the industry in this direction. Second, small roller bits and motors were not very reliable and they drilled slowly, removing much of the economic benefit. The third and final reason was the misconception that large holes were needed everywhere to deliver the desired production. Several factors have changed that will encourage the use of slim holes. The industry now favors any method of reducing the costs of producing oil and gas. In addition, the industry now understands that large holes are not always needed. Gas, in particular, can have high production rates in smaller holes. New materials now make it possible to manufacture improved bits and motors that drill for long periods at high rates. All that remains is to

  9. High-speed micro-electro-discharge machining.

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  10. Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders

    Science.gov (United States)

    Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.

    2017-12-01

    Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.

  11. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  12. Accretion onto some well-known regular black holes

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2016-01-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  13. Accretion onto some well-known regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes. (orig.)

  14. Accretion onto some well-known regular black holes

    Science.gov (United States)

    Jawad, Abdul; Shahzad, M. Umair

    2016-03-01

    In this work, we discuss the accretion onto static spherically symmetric regular black holes for specific choices of the equation of state parameter. The underlying regular black holes are charged regular black holes using the Fermi-Dirac distribution, logistic distribution, nonlinear electrodynamics, respectively, and Kehagias-Sftesos asymptotically flat regular black holes. We obtain the critical radius, critical speed, and squared sound speed during the accretion process near the regular black holes. We also study the behavior of radial velocity, energy density, and the rate of change of the mass for each of the regular black holes.

  15. High speed all-silicon optical modulator

    International Nuclear Information System (INIS)

    Marris-Morini, Delphine; Le Roux, Xavier; Pascal, Daniel; Vivien, Laurent; Cassan, Eric; Fedeli, Jean Marc; Damlencourt, Jean Francois; Bouville, David; Palomo, Jose; Laval, Suzanne

    2006-01-01

    Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P + layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P + layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product V π L π , determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that V π L π as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps

  16. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  17. Do coronal holes influence cosmic ray daily harmonics

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1977-01-01

    Coronal holes are identified by their low emissivity in either EUV (Munro and Withrobe, 1973) or in X-rays (Krieger et al, 1973). They are seats of unidirectional magnetic fields. Also, high speed solar wind streams originate in them. Also, high speed solar wind streams originate in then (Krieger et al, 1973; Neupert and Pizzo, 1974; Nolte et al, 1976). Coronal holes often extend over a wide range of heliolatitudes (Timothy et al, 1975). Elsewhere in the Proceedings we have presented results on the long term changes observed in the amplitudes and the times of maximum of the diurnal, the semidiurnal and the tridiurnal variations of cosmic rays, at low (neutrons) and at high (underground muons) primary rigidities (Ahluwalia, 1977). We have shown that a dramatic shift to early hours is noticeable in the times of maxima of the harmonics during 1971-72 period. In this paper we examine the nature of the contributions of off-ecliptic cosmic rays of high enough rigidity, streaming under the influence of large scale ordered interplanetary magnetic field set up by the coronal holes, to the cosmic ray daily harmonics. Some models are presented and discussed in a preliminary fashion. (author)

  18. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  19. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Science.gov (United States)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  20. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Directory of Open Access Journals (Sweden)

    Temmer Manuela

    2018-01-01

    Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  1. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  2. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  3. High-lying neutron hole strengths observed in pick-up reactions

    International Nuclear Information System (INIS)

    Gales, S.

    1980-01-01

    Neutron-hole states in orbits well below the Fermi surface have been observed in a number of medium-heavy nuclei from A=90 to 209 using one nucleon pick-up reactions. The excitation energies, angular distributions of such broad and enhanced structures will be discussed. The fragmentation of the neutron-hole strengths as well as the spreading of such simple mode of excitations into more complex states are compared to recent calculations within the quasiparticle-phonon or the single particle-vibration coupling nuclear models. We report on recent measurements of J for inner-hole states in 89 Zr and 115 Sn 119 Sn using the analyzing power of the (p,d) and (d,t) reactions. Large enhancement of cross-sections are observed at high excitation energy in the study of the (p,t) reactions on Zr, Cd, Sn, Te and Sm isotopes. The systematic features of such high-lying excitation are related to the ones observed in one neutron pick-up experiments. The origin of such concentration of two neutron-hole strengths in Cd and Sn isotopes will be discussed. Preliminary results obtained in the study of the (α, 6 He) reaction at 218 MeV incident energy on 90 Zr, 118 Sn and 208 Pb targets are presented and compared to the (p,t) results. Finally the properties of hole-analog states populated in neutron pick-up reactions (from 90 Zr to 208 Pb) will be presented

  4. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  5. Observation of plasma hole in a rotating plasma

    International Nuclear Information System (INIS)

    Nagaoka, Kenichi; Ishihara, Tatsuzo; Okamoto, Atsushi; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2001-01-01

    Plasma hole, a cylindrical density cavity, formed in a rotating plasma has been investigated experimentally. The plasma hole is characterized by large aspect ratio (length/radius ≥ 30), steep boundary layer between the hole and the ambient plasma (10 ion Larmor radius), and extremely high positive potential (130 V). The flow velocity field associated with plasma hole structure has been measured, and is found to have interesting features: (1) plasma rotates in azimuthal direction at a maximum velocity of order of ion sound speed, (2) plasma flows radially inward across the magnetic field line, (3) there present an axial flow reversal between core and peripheral region. It is found that the flow pattern of the plasma hole is very similar to the that of well-developed typhoon with core. (author)

  6. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  7. Experimental Visualization of the Flow Structure for Jet in Crossflow with a Curved Hole Passage

    Directory of Open Access Journals (Sweden)

    Jun Yu Liang

    2012-01-01

    Full Text Available The objective of this paper is to investigate the influence of a hole curvature on the flow structure and characteristics downstream of JICF (jet in cross-Flow by means of smoke visualization and particle image velocimetry (PIV. The experiment was performed in a low speed wind tunnel with Reynolds numbers of about 480 and 1000, based on the hole diameter and main flow speed. Two geometries were tested: a circular hole with 90° curvature and a circular straight hole for comparison, under blowing ratios 0.5 and 1.0. The measurements were done in the symmetric plane and four cross-sections. The results show that the curved hole could decrease the mixing behavior of jet flow with the main flow as the hole leading edge also increases the chance of transportingthecoolant to the wall surface and the transverse coverage. The curved hole shows a high potential to increase the cooling effectiveness once it is applied to the turbine blades.

  8. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    Science.gov (United States)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  9. Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams

    Science.gov (United States)

    Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil

    2018-05-01

    Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.

  10. Problem of mathematical deduction of the existence of black holes

    Directory of Open Access Journals (Sweden)

    Yuan-Shun Chin

    1990-01-01

    Full Text Available The mathematical proof of existence of Black Hole is based on the assumption of mass being independent of speed. Considering the effect of special relativity of the dependence of mass with speed there is no Black hole.

  11. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  12. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    Science.gov (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  13. Designing a robust high-speed CMOS-MEMS capacitive humidity sensor

    International Nuclear Information System (INIS)

    Lazarus, N; Fedder, G K

    2012-01-01

    In our previous work (Lazarus and Fedder 2011 J. Micromech. Microeng. 21 0650281), we demonstrated a CMOS-MEMS capacitive humidity sensor with a 72% improvement in sensitivity over the highest previously integrated on a CMOS die. This paper explores a series of methods for creating a faster and more manufacturable high-sensitivity capacitive humidity sensor. These techniques include adding oxide pillars to hold the plates apart, spin coating polymer to allow sensors to be fabricated more cheaply, adding a polysilicon heater and etching away excess polymer in the release holes. In most cases a tradeoff was found between sensitivity and other factors such as response time or robustness. A robust high-speed sensor was designed with a sensitivity of 0.21% change in capacitance per per cent relative humidity, while dropping the response time constant from 70 to 4s. Although less sensitive than our design, the sensor remains 17% more sensitive than the most sensitive interdigitated designs successfully integrated with CMOS. (paper)

  14. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  15. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  16. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole's temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking's black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is "no cosmic temperature" if there is "no cosmic rotation". Starting from the Planck scale it is assumed that universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation "rate of decrease" in temperature or "rate of increase" in cosmic red shift is a measure of "rate of cosmic expansion". Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to $2.726^circ$ K, smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is $2.726^circ$ K, present value of obtained angular velocity is $2.17 imes 10^{-18}$ rad/sec $cong$ 67 Km/sec$imes$Mpc. Present cosmic mass density and cosmic time are fitted with a $ln (volume ratio$ parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  17. Black-hole galactic nuclei: a high-energy perspective

    CERN Document Server

    Boldt, E; Loewenstein, M

    2002-01-01

    The gravitational radiation signals to be anticipated from events involving black-hole galactic nuclei depend on the spin of the underlying object. To obtain evidence about the spin of Seyfert AGN black holes, we can rely on future ultra-high resolution spectral/spatial x-ray studies of iron K line fluorescence from the innermost regions of accreting matter. Normal galaxies present more of a challenge. To account for the highest energy cosmic rays, we propose that ultra-relativistic particle acceleration can occur near the event horizons of spun-up supermassive black-holes at the non-active nuclei of giant elliptical galaxies. This conjecture about the black hole spin associated with such nuclei is subject to verification via the characteristic TeV curvature radiation expected to be detected with upcoming gamma-ray observatories.

  18. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  19. Featured Image: Making a Rapidly Rotating Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  20. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  1. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  2. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  3. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  4. The high speed civil transport and NASA's High Speed Research (HSR) program

    Science.gov (United States)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  5. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak velocit...

  6. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  7. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  8. Laboratory Observation of Electron Phase-Space Holes during Magnetic Reconnection

    International Nuclear Information System (INIS)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.

    2008-01-01

    We report the observation of large-amplitude, nonlinear electrostatic structures, identified as electron phase-space holes, during magnetic reconnection experiments on the Versatile Toroidal Facility at MIT. The holes are positive electric potential spikes, observed on high-bandwidth (∼2 GHz) Langmuir probes. Investigations with multiple probes establish that the holes travel at or above the electron thermal speed and have a three-dimensional, approximately spherical shape, with a scale size ∼2 mm. This corresponds to a few electron gyroradii, or many tens of Debye lengths, which is large compared to holes considered in simulations and observed by satellites, whose length scale is typically only a few Debye lengths. Finally, a statistical study over many discharges confirms that the holes appear in conjunction with the large inductive electric fields and the creation of energetic electrons associated with the magnetic energy release

  9. Holes generation in glass using large spot femtosecond laser pulses

    Science.gov (United States)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  10. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  11. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  12. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  13. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  14. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  15. Plasma electron hole kinematics. I. Momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, I. H.; Zhou, C. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  16. Validation of CFD simulation of recoilless EOD water cannon by firing experiments with high speed camera

    Science.gov (United States)

    Chantrasmi, Tonkid; Hongthong, Premsiri; Kongkaniti, Manop

    2018-01-01

    Water cannon used by Explosive Ordnance Disposal (EOD) were designed to propel a burst of water jet moving at high speed to target and disrupt an improvised explosive device (IED). The cannon could be mounted on a remotely controlled robot, so it is highly desirable for the cannon to be recoilless in order not to damage the robot after firing. In the previous work, a nonconventional design of the water cannon was conceived. The recoil was greatly reduced by backward sprays of water through a ring of slotted holes around the muzzle. This minimizes the need to manufacture new parts by utilizing all off-the-shelf components except the tailor-made muzzle. The design was then investigated numerically by a series of Computational Fluid Dynamics (CFD) simulations. In this work, high speed camera was employed in firing experiments to capture the motion of the water jet and the backward sprays. It was found that the experimental data agreed well with the simulation results in term of averaged exit velocities.

  17. Physics of Rotating and Expanding Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Seshavatharam U. V. S.

    2010-04-01

    Full Text Available Throughout its journey universe follows strong gravity. By unifying general theory of relativity and quantum mechanics a simple derivation is given for rotating black hole’s temperature. It is shown that when the rotation speed approaches light speed temperature approaches Hawking’s black hole temperature. Applying this idea to the cosmic black hole it is noticed that there is “no cosmic temperature” if there is “no cosmic rotation”. Starting from the Planck scale it is assumed that- universe is a rotating and expanding black hole. Another key assumption is that at any time cosmic black hole rotates with light speed. For this cosmic sphere as a whole while in light speed rotation “rate of decrease” in temperature or “rate of increase” in cosmic red shift is a measure of “rate of cosmic expansion”. Since 1992, measured CMBR data indicates that, present CMB is same in all directions equal to 2 : 726 K ; smooth to 1 part in 100,000 and there is no continuous decrease! This directly indicates that, at present rate of decrease in temperature is practically zero and rate of expansion is practically zero. Universe is isotropic and hence static and is rotating as a rigid sphere with light speed. At present galaxies are revolving with speeds proportional to their distances from the cosmic axis of rotation. If present CMBR temperature is 2 : 726 K, present value of obtained angular velocity is 2 : 17 10 Present cosmic mass density and cosmic time are fitted with a ln ( volume ratio parameter. Finally it can be suggested that dark matter and dark energy are ad-hoc and misleading concepts.

  18. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  19. Chicago-St. Louis high speed rail plan

    International Nuclear Information System (INIS)

    Stead, M.E.

    1994-01-01

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team's analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor

  20. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  1. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  2. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  3. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  4. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  5. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  6. Hawking radiation of a high-dimensional rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ren; Zhang, Lichun; Li, Huaifan; Wu, Yueqin [Shanxi Datong University, Institute of Theoretical Physics, Department of Physics, Datong (China)

    2010-01-15

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy {omega} is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation. (orig.)

  7. Deep-hole and high-lying particle states in heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1985-01-01

    Our present knowledge on single-particle strength functions from one nucleon transfer reactions is reviewed. Results on deeply-bound neutron hole states in the Sn and Pb region are discussed with emphasis on the investigation of a very large excitation energy range. The first measurements on the γ-decay of deeply-bound hole states in the Sn isotopes are reported. High energy neutron and proton stripping reactions are used to study the particle response function. These reactions are particularly well suited to the study of high-spin outer subshells. For the proton states, the behaviour of the 1h 11/2 and 1i 13/2 strength distributions, as a function of deformation in the Sm region, is discussed. Strong transitions to high-lying neutron states are observed in the 112, 116, 118, 120, 122, 124 Sn and 208 Pb nuclei. The empirical systematics for both proton and neutron particle strength distributions are compared to the predictions from the quasi particle-phonon and the single-particle vibration coupling nuclear models. (orig.)

  8. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  9. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  10. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  11. A Systematic Approach to Identify Sources of Abnormal Interior Noise for a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2018-01-01

    Full Text Available A systematic approach to identify sources of abnormal interior noise occurring in a high-speed train is presented and applied in this paper to resolve a particular noise issue. This approach is developed based on a number of previous dealings with similar noise problems. The particular noise issue occurs in a Chinese high-speed train. It is measured that there is a difference of 7 dB(A in overall Sound Pressure Level (SPL between two nominally identical VIP cabins at 250 km/h. The systematic approach is applied to identify the root cause of the 7 dB(A difference. Well planned measurements are performed in both the VIP cabins. Sound pressure contributions, either in terms of frequency band or in terms of facing area, are analyzed. Order analysis is also carried out. Based on these analyses, it is found that the problematic frequency is the sleeper passing frequency of the train, and an area on the roof contributes the most. In order to determine what causes that area to be the main contributor without disassembling the structure of the roof, measured noise and vibration data for different train speeds are further analyzed. It is then reasoned that roof is the main contributor caused by sound pressure behind the panel. Up to this point, panels of the roof are removed, revealing that a hole of 300 cm2 for running cables is presented behind the red area without proper sound insulation. This study can provide a basis for abnormal interior noise analysis and control of high-speed trains.

  12. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  13. ESA's high-energy observatories spot doughnut-shaped cloud with a black-hole filling

    Science.gov (United States)

    2004-07-01

    enshrouding torus. However, Beckmann's group took the path less trodden and studied the central black hole by peering through the torus. With XMM-Newton and Integral, they could detect some of the X-rays and gamma rays, emitted by the accretion disc, which partially penetrate the torus. "By peering right into the torus, we see the black hole phenomenon in a whole new light, or lack of light, as the case may be here," Beckmann said. Beckmann's group saw how different processes around a black hole produce light at different wavelengths. For example, some of the gamma rays produced close to the black hole get absorbed by iron atoms in the torus and are re-emitted at a lower energy. This in fact is how the scientists knew they were seeing `reprocessed’ light farther out. Also, because of the line of sight towards NGC 4388, they knew this iron was from a torus on the same plane as the accretion disk, and not from gas clouds `above’ or `below’ the accretion disk. This new view through the haze has provided valuable insight into the relationship between the black hole, its accretion disc and the doughnut, and supports the torus model in several ways. Gas in the accretion disc close to the black hole reaches high speeds and temperatures (over 100 million degrees, hotter than the Sun) as it races toward the void. The gas radiates predominantly at high energies, in the X-ray wavelengths. According to Beckmann, this light is able to escape the black hole because it is still outside of its border, but ultimately collides with matter in the torus. Some of it is absorbed; some of it is reflected at different wavelengths, like sunlight penetrating a cloud; and the very energetic gamma rays pierce through. "This torus is not as dense as a real doughnut or a true German Krapfen, but it is far hotter - up to a thousand degrees - and loaded with many more calories," Beckmann said. The new observations also pinpoint the origin of the high-energy emission from NGC 4388. While the lower

  14. New view about black holes. [Tachyon--bradyon transformation at horizon

    Energy Technology Data Exchange (ETDEWEB)

    De Sabbata, V; Pavsic, M; Recami, E

    1977-01-01

    For a Schwarzschild black-hole, as reference frame is chosen the frame sigma at rest with respect to the Schwarzschild metric. In this locally non-inertial frame, a freely falling body is shown to reach the speed of light on the horizon and then to travel faster than light inside the horizon. The usual Szekeres--Kruskal (SK) coordinates represent themselves frames that (with respect to the frames sigma) travel at subluminal speed outside, at luminal speed on, and at superluminal speed inside the horizon (so that SK frames always describe any free falling body as a standard, slower-than-light object). Finally, black-holes are shown to be possible sources of tachyons.

  15. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  16. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  17. Observation of preformed electron-hole Cooper pairs in highly excited ZnO

    NARCIS (Netherlands)

    Versteegh, M.A.M.; van Lange, A.J.; Stoof, H.T.C.; Dijkhuis, J.I.

    2012-01-01

    Electrons and holes in a semiconductor form hydrogen-atom-like bound states, called excitons. At high electron-hole densities the attractive Coulomb force becomes screened and excitons can no longer exist. Bardeen-Cooper-Schrieffer theory predicts that at such high densities co-operative many-body

  18. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  19. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  20. Production of high stellar-mass primordial black holes in trapped inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Shu-Lin; Lee, Wolung [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Ng, Kin-Wang [Institute of Physics, Academia Sinica,Taipei 11529, Taiwan (China); Institute of Astronomy and Astrophysics, Academia Sinica,Taipei 11529, Taiwan (China)

    2017-02-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We show that primordial black holes are naturally produced during inflation with a steep trapping potential. In particular, we have given a recipe for an inflaton potential with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be dark matter observed by the LIGO detectors through a binary black-hole merger. At the end, we have given an attempt to realize the required inflaton potential in the axion monodromy inflation, and discussed the gravitational waves sourced by the particle production.

  1. Hydrogen incorporation in high hole density GaN:Mg

    Science.gov (United States)

    Zvanut, M. E.; Uprety, Y.; Dashdorj, J.; Moseley, M.; Doolittle, W. Alan

    2011-03-01

    We investigate hydrogen passivation in heavily doped p-type GaN using electron paramagnetic resonance (EPR) spectroscopy. Samples include both conventionally grown GaN (1019 cm-3 Mg, 1017 cm-3 holes) and films grown by metal modulation epitaxy (MME), which yielded higher Mg (1- 4 x 1020 cm-3) and hole (1- 40 x 1018 cm-3) densities than found in conventionally grown GaN. The Mg acceptor signal is monitored throughout 30 minute annealing steps in N2 :H2 (92%:7%)) and subsequently pure N2 . N2 :H2 heat treatments of the lower hole density films begin to reduce the Mg EPR intensity at 750 o C, but quench the signal in high hole density films at 600 o C. Revival of the signal by subsequent N2 annealing occurs at 800 o C for the low hole density material and 600 o C in MME GaN. The present work highlights chemical differences between heavily Mg doped and lower doped films; however, it is unclear whether the difference is due to changes in hydrogen-Mg complex formation or hydrogen diffusion. The work at UAB is supported by the NSF.

  2. Magnetic Origin of Black Hole Winds Across the Mass Scale

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2017-01-01

    Black hole accretion disks appear to produce invariably plasma outflows that result in blue-shifted absorption features in their spectra. The X-ray absorption-line properties of these outflows are quite diverse, ranging in velocity from non-relativistic (approx. 300 km/sec) to sub-relativistic (approx. 0.1c where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma. We report here that semi-analytic, self-similar magnetohydrodynamic (MHD) wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes, also fit well the high-resolution X-ray spectrum of the accreting stellar-mass black hole, GRO J1655-40. This provides an explicit theoretical argument of their MHD origin (aligned with earlier observational claims) and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

  3. A High-Speed Design of Montgomery Multiplier

    Science.gov (United States)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  4. High-speed photographic methods for compression dynamics investigation of laser irradiated shell target

    International Nuclear Information System (INIS)

    Basov, N.G.; Kologrivov, A.A.; Krokhin, O.N.; Rupasov, A.A.; Shikanov, A.S.

    1979-01-01

    Three methods are described for a high-speed diagnostics of compression dynamics of shell targets being spherically laser-heated on the installation ''Kal'mar''. The first method is based on the direct investigation of the space-time evolution of the critical-density region for Nd-laser emission (N sub(e) asymptotically equals 10 21 I/cm 3 ) by means of the streak photography of plasma image in the second-harmonic light. The second method involves investigation of time evolution of the second-harmonic spectral distribution by means of a spectrograph coupled with a streak camera. The use of a special laser pulse with two time-distributed intensity maxima for the irradiation of shell targets, and the analysis of the obtained X-ray pin-hole pictures constitute the basis of the third method. (author)

  5. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  6. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  7. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  8. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  9. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  10. Early Growth and Efficient Accretion of Massive Black Holes at High Redshift

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2003-01-01

    Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates and the ......Black-hole masses of the highest redshift quasars (4 ~ 4 quasars are very massive (>~ 10^9 solar masses). It is argued that the mass estimates of the high-z quasars are not subject to larger uncertainties than those for nearby quasars. Specifically, the large masses are not overestimates...... and the lack of similarly large black-hole masses in the nearby Universe does not rule out their existence at high-z. However, AGN host galaxies do not typically appear fully formed or evolved at these early epochs. This supports scenarios in which black holes build up mass very fast in a radiatively...... inefficient (or obscured) phase relative to the stars in their galaxies. Additionally, upper envelopes of black-hole mass of approximately 10^{10} solar masses and bolometric luminosity of ~ 10^{48} erg/s are observed at all redshifts....

  11. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  12. High-speed photography. Technique and evolution

    International Nuclear Information System (INIS)

    Sanchez-Tembleque, R.

    1981-01-01

    It is intended to present some general considerations about ''Higg-speed photography'' as a tool of work common in mos research laboratories in the world. ''High-speed photography'' relies on the principles of photography of actions, that change rapidly with the time. The evolution of this technique goes along with the discovering of new phenomena in wich higher speeds are involved. At present is normal to deal with changing rates involving picoseconds times (10 -12 s) and new developments on the field of femtosecond (10 -15 s) theoretically are contemplated. (author)

  13. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  14. High-Speed Videography Instrumentation And Procedures

    Science.gov (United States)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  15. High surface hole concentration p-type GaN using Mg implantation

    International Nuclear Information System (INIS)

    Long Tao; Yang Zhijian; Zhang Guoyi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 17 cm -3 ) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  16. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  17. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  18. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  19. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  20. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  1. Characterizing speed-independence of high-level designs

    DEFF Research Database (Denmark)

    Kishinevsky, Michael; Staunstrup, Jørgen

    1994-01-01

    This paper characterizes the speed-independence of high-level designs. The characterization is a condition on the design description ensuring that the behavior of the design is independent of the speeds of its components. The behavior of a circuit is modeled as a transition system, that allows data...... types, and internal as well as external non-determinism. This makes it possible to verify the speed-independence of a design without providing an explicit realization of the environment. The verification can be done mechanically. A number of experimental designs have been verified including a speed-independent...

  2. Development of ultra high speed photographic system using high repetition rate visible laser

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Byung Hun; Kim, Sung Ho; Kim, Jung Bog; Lim, Chang Hwan; Cha, Hyung Ki; Song, Kyu Seok; Lee, Byung Deok; Rhi, Jong Hoon; Baik, Dae Hyun; Han, Jae Min; Rho, Si Pyo; Lee, Byung Cheol; Jeong, Do Yung; Choi, An Seong; Jeong, Chan Ik; Park, Dae Ung; Jeong, Sung Min; Lee, Sang Kil; Kim, Heon Jun; Jang, Rae gak; Jo, Do Hun; Park, Min Young

    1992-12-01

    The goal of this project is to develop and commercialize a high speed photographic system equipped with a high repetition rate visible laser. The developed system provides the characteristics of high time resolution and large number of frames. The system consists of 10 W air cooled CVL or a 30 W water cooled CVL, a rotating drum-type high speed camera with the framing rate of 35,000 fps, and a automatic control device. The system has the performance of 10 nsec time resolution, 35,000 fps framing rate, and 250 picture frames. The high speed photographic systems are widely applied to the fields such as high-efficient engine development, high-speed vibration analysis, shock wave propagation study, flow visualization analysis, weapon development, etc. (Author)

  3. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  4. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  5. High energy effects on D-brane and black hole emission rates

    International Nuclear Information System (INIS)

    Das, S.; Dasgupta, A.; Sarkar, T.

    1997-01-01

    We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society

  6. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  7. The large scale and long term evolution of the solar wind speed distribution and high speed streams

    International Nuclear Information System (INIS)

    Intriligator, D.S.

    1977-01-01

    The spatial and temporal evolution of the solar wind speed distribution and of high speed streams in the solar wind are examined. Comparisons of the solar wind streaming speeds measured at Earth, Pioneer 11, and Pioneer 10 indicate that between 1 AU and 6.4 AU the solar wind speed distributions are narrower (i.e. the 95% value minus the 5% value of the solar wind streaming speed is less) at extended heliocentric distances. These observations are consistent with one exchange of momentum in the solar wind between high speed streams and low speed streams as they propagate outward from the Sun. Analyses of solar wind observations at 1 AU from mid 1964 through 1973 confirm the earlier results reported by Intriligator (1974) that there are statistically significant variations in the solar wind in 1968 and 1969, years of solar maximum. High speed stream parameters show that the number of high speed streams in the solar wind in 1968 and 1969 is considerably more than the predicted yearly average, and in 1965 and 1972 less. Histograms of solar wind speed from 1964 through 1973 indicate that in 1968 there was the highest percentage of elevated solar wind speeds and in 1965 and 1972 the lowest. Studies by others also confirm these results although the respective authors did not indicate this fact. The duration of the streams and the histograms for 1973 imply a shifting in the primary stream source. (Auth.)

  8. High-performance dual-speed CCD camera system for scientific imaging

    Science.gov (United States)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  9. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  10. Interaction between bubble and air-backed plate with circular hole

    Science.gov (United States)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  11. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  12. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  13. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  14. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  15. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  16. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  17. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  18. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  19. Hole-assisted fiber based fiber fuse terminator supporting 22 W input

    Science.gov (United States)

    Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide

    2018-05-01

    We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.

  20. Black hole emission process in the high energy limit

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B [Observatoire de Paris, Section de Meudon, 92 (France). Groupe d' Astrophysique Relativiste; Gibbons, G W; Lin, D N.C.; Perry, M J [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics; Cambridge Univ. (UK). Inst. of Astronomy)

    1976-11-01

    The ultimate outcome of the Hawking process of particle emission by small black holes is discussed in terms of the various conceivable theories of the behaviour of matter in the ultra-high temperature limit. It is shown that if high temperature matter is described by a relatively hard equation of state with an adiabatic index GAMMA greater than 6/5 then interactions between particles can probably be ignored so that the rate of creation will continue to be describable by Hawking's method. On the other hand for softer equations of state (including those of the ultra soft Hagedorn type) the created matter will almost certainly be highly opaque and a hydrodynamic model of the emission process will be more appropriate. Actual astronomical detection of the final emission products might in principle have provided valuable information about the correct theory of ultra high energy physics but it is shown that in practice the black hole death rate is so low that observational distinction of the resulting high energy decay products from the background would require high resolution detectors.

  1. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  2. Balancing High-Speed Rotors at Low Speed

    Science.gov (United States)

    Giordano, J.; Zorzi, E.

    1986-01-01

    Flexible balancing reduces vibrations at operating speeds. Highspeed rotors in turbomachines dynamically balanced at fraction of operating rotor speed. New method takes into account rotor flexible rather than rigid.

  3. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    Science.gov (United States)

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  4. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    Science.gov (United States)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  5. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  6. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  7. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  8. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  9. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  10. High-speed readout of high-Z pixel detectors with the LAMBDA detector

    International Nuclear Information System (INIS)

    Pennicard, D.; Smoljanin, S.; Sheviakov, I.; Xia, Q.; Rothkirch, A.; Yu, Y.; Struth, B.; Hirsemann, H.; Graafsma, H.

    2014-01-01

    High-frame-rate X-ray pixel detectors make it possible to perform time-resolved experiments at synchrotron beamlines, and to make better use of these sources by shortening experiment times. LAMBDA is a photon-counting hybrid pixel detector based on the Medipix3 chip, designed to combine a small pixel size of 55 μm, a large tileable module design, high speed, and compatibility with ''high-Z'' sensors for hard X-ray detection. This technical paper focuses on LAMBDA's high-speed-readout functionality, which allows a frame rate of 2000 frames per second with no deadtime between successive images. This takes advantage of the Medipix3 chip's ''continuous read-write'' function and highly parallelised readout. The readout electronics serialise this data and send it back to a server PC over two 10 Gigabit Ethernet links. The server PC controls the detector and receives, processes and stores the data using software designed for the Tango control system. As a demonstration of high-speed readout of a high-Z sensor, a GaAs LAMBDA detector was used to make a high-speed X-ray video of a computer fan

  11. Contribution of High-Mass Black Holes to Mergers of Compact Binaries

    International Nuclear Information System (INIS)

    Bethe, H.A.; Brown, G.E.

    1999-01-01

    We consider the merging of compact binaries consisting of a high-mass black hole and a neutron star. From stellar evolutionary calculations that include mass loss, we estimate that a zero-age main sequence (ZAMS) mass of approx-gt 80 M circle-dot is necessary before a high-mass black hole can result from a massive O star progenitor. We first consider how Cyg X-1, with its measured orbital radius of ∼17 R circle-dot , might evolve. Although this radius is substantially less than the initial distance of two O stars, it is still so large that the resulting compact objects will merge only if an eccentricity close to unity results from a high kick velocity of the neutron star in the final supernova explosion. We estimate the probability of the necessary eccentricity to be ∼1%; i.e., 99% of the time the explosion of a Cyg X-1 endash type object will end as a binary of compact stars, which will not merge in Hubble time (unless the orbit is tightened in common envelope evolution, which we discuss later). Although we predict ∼7 massive binaries of Cyg X-1 type, we argue that only Cyg X-1 is narrow enough to be observed, and that only Cyg X-1 has an appreciable chance of merging in Hubble time. This gives us a merging rate of ∼3x10 -8 yr -1 in the galaxy, the order of magnitude of the merging rate found by computer-driven population syntheses, if extrapolated to our mass limit of 80 M circle-dot ZAMS mass for high-mass black hole formation. Furthermore, in both our calculation and in those of population syntheses, almost all of the mergings involve an eccentricity close to unity in the final explosion of the O star. From this first part of our development we obtain only a negligible contribution to our final results for mergers, and it turns out to be irrelevant for our final results. In our main development, instead of relying on observed binaries, we consider the general evolution of binaries of massive stars. The critical stage is when the more massive star A has

  12. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  13. Different Techniques For Producing Precision Holes (>20 mm) In Hardened Steel—Comparative Results

    Science.gov (United States)

    Coelho, R. T.; Tanikawa, S. T.

    2009-11-01

    High speed machining (HSM), or high performance machining, has been one of the most recent technological advances. When applied to milling operations, using adequate machines, CAM programs and tooling, it allows cutting hardened steels, which was not feasible just a couple of years ago. The use of very stiff and precision machines has created the possibilities of machining holes in hardened steels, such as AISI H13 with 48-50 HRC, using helical interpolations, for example. Such process is particularly useful for holes with diameter bigger than normal solid carbide drills commercially available, around 20 mm, or higher. Such holes may need narrow tolerances, fine surface finishing, which can be obtained just by end milling operations. The present work compares some of the strategies used to obtain such holes by end milling, and also some techniques employed to finish them, by milling, boring and also by fine grinding at the same machine. Results indicate that it is possible to obtain holes with less than 0.36 m in circularity, 7.41 m in cylindricity and 0.12 m in surface roughness Ra. Additionally, there is less possibilities of obtaining heat affected layers when using such technique.

  14. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  15. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  16. Ulysses' rapid crossing of the polar coronal hole boundary

    International Nuclear Information System (INIS)

    McComas, D.J.; Riley, P.; Gosling, J.T.; Balogh, A.; Forsyth, R.

    1998-01-01

    The Ulysses spacecraft crossed from the slow dense solar wind characteristic of the solar streamer belt into the fast, less dense flow from the northern polar coronal hole over a very short interval (several days) in late March 1995. The spacecraft, which was at 1.35 AU and ∼19 degree north heliographic latitude, moving northward in its orbit, remained in the fast solar wind from then through summer 1996. This boundary crossing is unique in that the combination of the spacecraft motion and rotation of the structure past the spacecraft caused Ulysses to move smoothly and completely from one regime into the other. In this study we examine this crossing in detail. The crossing is marked by a region of enhanced pressure, typical of stream interaction regions, which extends ∼2x10 7 km across. We find that the transition between the slow and fast regimes occurs on several temporal, and hence spatial, scales. On the shortest scale ( 4 km) the stream interface is a tangential discontinuity where the proton and core electron densities and ion and electron pressures all drop while the magnetic pressure jumps to maintain a rough pressure balance. The alpha to proton ratio also jumps across the stream interface to reach the comparatively constant polar hole value of ∼4.3%. On larger scales (a few x10 6 km) the proton and alpha temperatures rise to their high-speed wind values. Finally, on the largest scale (∼10 8 km) the solar wind speed ramps up from ∼400kms -1 to ∼750kms -1 , typical of polar hole flows. While it seems likely that the stream interface maps back to a sharp boundary near the Sun, the large region of increasing flow speed suggests that there is also an extended gradient in solar wind source speed close to the Sun. copyright 1998 American Geophysical Union

  17. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  18. Galaxy evolution. Black hole feedback in the luminous quasar PDS 456.

    Science.gov (United States)

    Nardini, E; Reeves, J N; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J

    2015-02-20

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband x-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10(46) ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution. Copyright © 2015, American Association for the Advancement of Science.

  19. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-01-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  20. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    Science.gov (United States)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  1. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  2. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  3. Characterization of string cavitation in large-scale Diesel nozzles with tapered holes

    Science.gov (United States)

    Gavaises, M.; Andriotis, A.; Papoulias, D.; Mitroglou, N.; Theodorakakos, A.

    2009-05-01

    The cavitation structures formed inside enlarged transparent replicas of tapered Diesel valve covered orifice nozzles have been characterized using high speed imaging visualization. Cavitation images obtained at fixed needle lift and flow rate conditions have revealed that although the conical shape of the converging tapered holes suppresses the formation of geometric cavitation, forming at the entry to the cylindrical injection hole, string cavitation has been found to prevail, particularly at low needle lifts. Computational fluid dynamics simulations have shown that cavitation strings appear in areas where large-scale vortices develop. The vortical structures are mainly formed upstream of the injection holes due to the nonuniform flow distribution and persist also inside them. Cavitation strings have been frequently observed to link adjacent holes while inspection of identical real-size injectors has revealed cavitation erosion sites in the area of string cavitation development. Image postprocessing has allowed estimation of their frequency of appearance, lifetime, and size along the injection hole length, as function of cavitation and Reynolds numbers and needle lift.

  4. Analysis and topology optimization design of high-speed driving spindle

    Science.gov (United States)

    Wang, Zhilin; Yang, Hai

    2018-04-01

    The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.

  5. HIGH SPEED RAILWAY LINES – FUTURE PART OF CZECH RAILWAY NETWORK?

    Directory of Open Access Journals (Sweden)

    Lukáš Týfa

    2017-08-01

    Full Text Available The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network. The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.

  6. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  7. Application of Fabry-Perot velocimeter to high-speed experiments

    International Nuclear Information System (INIS)

    Chaw, H.H.; McMillan, C.F.; Osher, J.E.

    1988-01-01

    The Fabry-Perot (F-P) velocimeter is a useful instrument for measuring the velocity of objects at speeds ranging from fractions of a kilometer per second to a few tens of kilometers per second and up. Because of its immunity to electromagnetic interference and its velocity resolution, it has become the prime diagnostic tool in our electric-gun facility. Examples of its application to high speed experiments are discussed, including: electric-gun flyer studies, spallation of materials under high-speed impact, momentum-transfer studies, pressure pulse created by high-velocity impact, and detonation-wave studies in high-explosive experiments

  8. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  9. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  10. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  11. High-speed Maglev studies in Canada

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.

    1974-01-01

    This paper reports on Canadian studies of superconducting magnetic levitation and variable-speed linear synchronous motor propulsion for high-speed inter-city guided ground transport. Levitation is obtained by the interaction of vehicle-mounted superconducting magnets and the eddy currents induced in aluminium strip conductors on the guideway. Non-contact propulsion by linear synchronous motor (LSM) is obtained by using vehicle-borne superconducting magnets and powered guideway coils. A suggested guidance scheme uses a flat guideway with 'null-flux' loops overlying the LSM windings. The propulsion magnets interact with the loops and the edges of the levitation strips to provide lateral stabilization. The test facility is a 7.6m wheel, rotating with a peripheral speed of 33m/s. (author)

  12. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    Science.gov (United States)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  13. High-speed nonvolatile CMOS/MNOS RAM

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Dodson, W.D.; Sokel, R.J.

    1979-01-01

    A bulk silicon technology for a high-speed static CMOS/MNOS RAM has been developed. Radiation-hardened, high voltage CMOS circuits have been fabricated for the memory array driving circuits and the enhancement-mode p-channel MNOS memory transistors have been fabricated using a native tunneling oxide with a 45 nm CVD Si 3 N 4 insulator deposited at 750 0 C. Read cycle times less than 350 ns and write cycle times of 1 μs are projected for the final 1Kx1 design. The CMOS circuits provide adequate speed for the write and read cycles and minimize the standby power dissipation. Retention times well in excess of 30 min are projected

  14. High-speed cryptography and cryptanalysis

    NARCIS (Netherlands)

    Schwabe, P.

    2011-01-01

    Modern digital communication relies heavily on cryptographic protection to ensure data integrity and privacy. In order to deploy state-of-the art cryptographic primitives and protocols in real-world scenarios, one needs to highly optimize software for both speed and security. This requires careful

  15. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  16. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  17. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  18. Three-dimensional structure of the coronal magnetic field and the solar wind speed distribution projected on the photosphere in 1974

    International Nuclear Information System (INIS)

    Hakamada, K.

    1987-01-01

    Since the solar wind and coronal holes were relatively steady in 1974, the average distribution of the solar wind speed on the source surface and that of the line-of-sight component of the photospheric magnetic fields (B 1 ) can be constructed, with fair accuracy, by the superposed epoch analysis. The three-dimensional structure of the coronal magnetic fields is then computed from this average map of B 1 based on the potential model. The average distribution of the solar wind speed on the source surface, obtained from interplanetary scintillation observations, is then projected onto the photosphere along the open field lines in the corona. The high-speed regions thus projected are compared with the He I (1083 nm) coronal holes and are found to have a similar geometry. The results are also suggestive that the solar wind does not blow out uniformly from the vicinity of a coronal hole and that the speed is higher at the east side in that region than at the west side. The slower speed regions on the source surface have a sinusoidal structure in heliographic latitude-longitude coordinates and are similar to the brightness distribution of the K corona and the structure of closed field line regions projected onto the photosphere. copyrightAmerican Geophysical Union 1987

  19. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  20. High-speed microjet generation using laser-induced vapor bubbles

    Science.gov (United States)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  1. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections

    Science.gov (United States)

    Antonini, Fabio; Rasio, Frederic A.

    2016-11-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of (stellar-mass) black holes in galactic nuclei, where massive star clusters reside. With masses of ˜ {10}7 {M}⊙ and sizes of only a few parsecs, nuclear star clusters (NSCs) are the densest stellar systems observed in the local universe and represent a robust environment where black hole binaries can dynamically form, harden, and merge. We show that due to their large escape speeds, NSCs can retain a large fraction of their merger remnants. Successive mergers can then lead to significant growth and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need to invoke extremely low metallicity environments. We use a semi-analytical approach to describe the dynamics of black holes in massive star clusters. Our models give a black hole binary merger rate of ≈ 1.5 {{Gpc}}-3 {{yr}}-1 from NSCs, implying up to a few tens of possible detections per year with Advanced LIGO. Moreover, we find a local merger rate of ˜ 1 {{Gpc}}-3 {{yr}}-1 for high mass black hole binaries similar to GW150914; a merger rate comparable to or higher than that of similar binaries assembled dynamically in globular clusters (GCs). Finally, we show that if all black holes receive high natal kicks, ≳ 50 {km} {{{s}}}-1, then NSCs will dominate the local merger rate of binary black holes compared to either GCs or isolated binary evolution.

  2. Black-hole production from ultrarelativistic collisions

    International Nuclear Information System (INIS)

    Rezzolla, Luciano; Takami, Kentaro

    2013-01-01

    Determining the conditions under which a black hole can be produced is a long-standing and fundamental problem in general relativity. We use numerical simulations of colliding self-gravitating fluid objects to study the conditions of black-hole formation when the objects are boosted to ultrarelativistic speeds. Expanding on the previous work, we show that the collision is characterized by a type-I critical behaviour, with a black hole being produced for masses above a critical value, M c , and a partially bound object for masses below the critical one. More importantly, we show for the first time that the critical mass varies with the initial effective Lorentz factor 〈γ〉 following a simple scaling of the type M c ∼ K〈γ〉 −1.0 , thus indicating that a black hole of infinitesimal mass is produced in the limit of a diverging Lorentz factor. Furthermore, because a scaling is present also in terms of the initial stellar compactness, we provide a condition for black-hole formation in the spirit of the hoop conjecture. (fast track communication)

  3. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  4. The Radial Variation of the Solar Wind Temperature-Speed Relationship

    Science.gov (United States)

    Elliott, H. A.; McComas, D. J.

    2010-12-01

    Generally, the solar wind temperature (T) and speed (V) are well correlated except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We have shown that at 1 AU the speed-temperature relationship is often well represented by a linear fit for a speed range spanning both the slow and fast wind. By examining all of the ACE and OMNI measurements, we found that when coronal holes are large the fast wind can have a different T-V relationship than the slow wind. The best example of this was in 2003 when there was a very large and long-lived outward polarity coronal hole at low latitudes. The long-lived nature of the hole made it possible to clearly distinguish that large holes can have a different T-V relationship. We found it to be rare that holes are large enough and last long enough to have enough data points to clearly demonstrate this effect. In this study we compare the 2003 coronal hole observations from ACE with the Ulysses polar coronal hole measurements. In an even earlier ACE study we found that both the compressions and rarefactions curves are linear, but the compression curve is shifted to higher temperatures. In this presentation we use Helios, Ulysses, and ACE measurements to examine how the T-V relationship varies with distance. The dynamic evolution of the solar wind parameters is revealed when we first separate compressions and rarefactions and then determine the radial profiles of the solar wind parameters. We find that T-V relationship varies with distance and in particular beyond 3 AU the differences between the compressions and rarefactions are quite important and at such distances a simple linear fit does not represent the T-V distribution very well.

  5. Graded Heterojunction Engineering for Hole-Conductor-Free Perovskite Solar Cells with High Hole Extraction Efficiency and Conductivity.

    Science.gov (United States)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-10-01

    Despite great progress in the photovoltaic conversion efficiency (PCE) of inorganic-organic hybrid perovskite solar cells (PSCs), the large-scale application of PSCs still faces serious challenges due to the poor-stability and high-cost of the spiro-OMeTAD hole transport layer (HTL). It is of great fundamental importance to rationally address the issues of hole extraction and transfer arising from HTL-free PSCs. Herein, a brand-new PSC architecture is designed by introducing multigraded-heterojunction (GHJ) inorganic perovskite CsPbBr x I 3- x layers as an efficient HTL. The grade adjustment can be achieved by precisely tuning the halide proportion and distribution in the CsPbBr x I 3- x film to reach an optimal energy alignment of the valance and conduction band between MAPbI 3 and CsPbBr x I 3- x . The CsPbBr x I 3- x GHJ as an efficient HTL can induce an electric field where a valance/conduction band edge is leveraged to bend at the heterojunction interface, boosting the interfacial electron-hole splitting and photoelectron extraction. The GHJ architecture enhances the hole extraction and conduction efficiency from the MAPbI 3 to the counter electrode, decreases the recombination loss during the hole transfer, and benefits in increasing the open-circuit voltage. The optimized HTL-free PCS based on the GHJ architecture demonstrates an outstanding thermal stability and a significantly improved PCE of 11.33%, nearly 40% increase compared with 8.16% for pure HTL-free devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Relationship between high-energy absorption cross section and strong gravitational lensing for black hole

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng

    2011-01-01

    In this paper, we obtain a relation between the high-energy absorption cross section and the strong gravitational lensing for a static and spherically symmetric black hole. It provides us a possible way to measure the high-energy absorption cross section for a black hole from strong gravitational lensing through astronomical observation. More importantly, it allows us to compute the total energy emission rate for high-energy particles emitted from the black hole acting as a gravitational lens. It could tell us the range of the frequency, among which the black hole emits the most of its energy and the gravitational waves are most likely to be observed. We also apply it to the Janis-Newman-Winicour solution. The results suggest that we can test the cosmic censorship hypothesis through the observation of gravitational lensing by the weakly naked singularities acting as gravitational lenses.

  7. Vitrectomy with internal limiting membrane peeling for macular hole in high myopia eyes

    Directory of Open Access Journals (Sweden)

    Chun-Mei Deng

    2015-08-01

    Full Text Available AIM: To compare the clinical effects between pars plana vitrectomy(PPVand PPV with internal limiting membrane peeling(ILMPfor macular hole in high myopia eyes. METHODS:The clinical data of 33 high myopia with macular hole patients(36 eyeswith or without retinal detachment caused by macular hole were retrospectively analyzed. The patients were divided into two groups according to different operation methods: 15 eyes in groupⅠhad undergone PPV; 21 eyes in groupⅡhad undergone PPV with ILMPP peeling. According to different conditions of patients,different auxiliary methods were accepted, such as silicone oil tamponade, C3F8 tamponade, photocoagulation, condensation, etc. The follow-up period was 3~12mo. Best corrected visual acuity(BCVA, macular hole closure rate and retinal reattachment rate were continuous checked after operation. Then we evaluated the outcome in the two groups by statistical analysis.RESULTS: The postoperative mean BCVA increased by 0.167 in group Ⅰand 0.456 in group Ⅱ than preoperative, the difference was significant(t=2.46,6.753; P=0.027,0.000. And the difference of BCVA improvement was significant between those two groups(t=-2.943, P=0.006. The macular hole closed in 7 eyes(46.67%in group Ⅰ,and 18 eyes(85.71%in group Ⅱ; The difference was significant between those two groups(χ2=6.287,P=0.025.Retinal reattachment was found in 11 eyes(91.67%in group Ⅰ and 19 eyes(94.73%in group Ⅱ. The difference was not significant between the two groups(χ2=0.856, P=0.418. CONCLUSION: PPV with ILMPP peeling for macular hole in high myopia eyes can obviously improve closure of macular hole and postoperative visual acuity. But the difference of retinal reattachment rate was not significant between peeling and unpeeling of ILMP.

  8. Ultra high hole mobilities in a pure strained Ge quantum well

    International Nuclear Information System (INIS)

    Mironov, O.A.; Hassan, A.H.A.; Morris, R.J.H.; Dobbie, A.; Uhlarz, M.; Chrastina, D.; Hague, J.P.; Kiatgamolchai, S.; Beanland, R.; Gabani, S.; Berkutov, I.B.; Helm, M.; Drachenko, O.; Myronov, M.; Leadley, D.R.

    2014-01-01

    Hole mobilities at low and room temperature (RT) have been studied for a strained sGe/SiGe heterostructure using standard Van der Pauw resistivity and Hall effect measurements. The range of magnetic field and temperatures used were − 14 T < B < + 14 T and 1.5 K < T < 300 K respectively. Using maximum entropy-mobility spectrum analysis (ME-MSA) and Bryan's algorithm mobility spectrum (BAMS) analysis, a RT two dimensional hole gas drift mobility of (3.9 ± 0.4) × 10 3 cm 2 /V s was determined for a sheet density (p s ) 9.8 × 10 10 cm −2 (by ME-MSA) and (3.9 ± 0.2) × 10 3 cm 2 /V s for a sheet density (p s ) 5.9 × 10 10 cm −2 (by BAMS). - Highlights: • Pure strained Ge channel grown by reduced pressure chemical vapor deposition • Maximum entropy-mobility spectrum analysis • Bryan's algorithm mobility spectrum analysis • High room temperature hole drift mobility of (3.9 ± 0.4) × 10 3 cm 2 /V s • Extremely high hole mobility of 1.1 × 10 6 cm 2 /V s at 12 K

  9. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  10. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  11. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  12. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  13. High Speed Photomicrography

    Science.gov (United States)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  14. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  15. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  16. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  17. Ejection of massive black holes from galaxies

    International Nuclear Information System (INIS)

    Kapoor, R.C.

    1976-01-01

    Gravitational recoil of a gigantic black hole (M approximately 10 8-9 M) formed in the nonspherical collapse of the nuclear part of a typical galaxy can take place with an appreciable speed as a consequence of the anisotropic emission of gravitational radiation. Accretion of gaseous matter during its flight through the galaxy results in the formation of a flowing shock front. The accompanying stellar captures can lead to the formation of an accretion disk-star system about the hole. Consequently, the hole can become 'luminous' enough to be observable after it emerges out of the galaxy. The phenomenon seems to have an importance in relation to the observations of quasar-galaxy association in a number of cases. (author)

  18. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  19. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  20. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  1. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... monorail systems operating primarily on dedicated rail (i.e., not used by freight trains) or guideway, in...

  2. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  3. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    announced that it will expand the capacity on its aging high speed line between Tokyo and Osaka, the most heavily traveled intercity rail segment in the...United States, in most of these countries intercity rail travel (including both conventional and high speed rail) represents less than 10% of all...that is sometimes mentioned by its advocates. Intercity passenger rail transport is relatively safe, at least compared with highway travel . And HSR in

  4. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  5. EXPLORING THE UNUSUALLY HIGH BLACK-HOLE-TO-BULGE MASS RATIOS IN NGC 4342 AND NGC 4291: THE ASYNCHRONOUS GROWTH OF BULGES AND BLACK HOLES

    International Nuclear Information System (INIS)

    Bogdán, Ákos; Forman, William R.; Kraft, Ralph P.; Li, Zhiyuan; Vikhlinin, Alexey; Nulsen, Paul E. J.; Jones, Christine; Zhuravleva, Irina; Churazov, Eugene; Mihos, J. Christopher; Harding, Paul; Guo, Qi; Schindler, Sabine

    2012-01-01

    We study two nearby early-type galaxies, NGC 4342 and NGC 4291, that host unusually massive black holes relative to their low stellar mass. The observed black-hole-to-bulge mass ratios of NGC 4342 and NGC 4291 are 6.9 +3.8 –2.3 % and 1.9% ± 0.6%, respectively, which significantly exceed the typical observed ratio of ∼0.2%. As a consequence of the exceedingly large black-hole-to-bulge mass ratios, NGC 4342 and NGC 4291 are ≈5.1σ and ≈3.4σ outliers from the M . -M bulge scaling relation, respectively. In this paper, we explore the origin of the unusually high black-hole-to-bulge mass ratio. Based on Chandra X-ray observations of the hot gas content of NGC 4342 and NGC 4291, we compute gravitating mass profiles, and conclude that both galaxies reside in massive dark matter halos, which extend well beyond the stellar light. The presence of dark matter halos around NGC 4342 and NGC 4291 and a deep optical image of the environment of NGC 4342 indicate that tidal stripping, in which ∼> 90% of the stellar mass was lost, cannot explain the observed high black-hole-to-bulge mass ratios. Therefore, we conclude that these galaxies formed with low stellar masses, implying that the bulge and black hole did not grow in tandem. We also find that the black hole mass correlates well with the properties of the dark matter halo, suggesting that dark matter halos may play a major role in regulating the growth of the supermassive black holes.

  6. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  7. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  8. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  9. TECHNICAL APPROACH TO THE EFFICIENCY DETERMINATION OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    A. V. Momot

    2013-11-01

    Full Text Available Purpose. The aim of this article is to develop an approach and formulate arrangements concerning the definition of the economic appropriateness of high-speed movement implementation in Ukraine. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment into the construction. It will let get an annual profits from the passenger carriage. To solve such problems we use net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. Obtained studies can state the fact that the technical approach for full effectiveness definition of a construction and high-speed passenger trains service taking into account the cost of infrastructure, rolling stock, the impact of environmental factors, etc. was determined. Originality. We propose a scientific approach to determine the economic effectiveness of the construction and high-speed main lines service. It includes improved principles of defining the passenger traffic, the cost of high-speed rails construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and the external factors impact on the company. A technical approach for the calculation of future traffic volumes along the high-speed line was improved. It differs essentially from the European one proposed by the French firm «SYSTRA», as it allows taking into account additional transit traffic through Ukraine. It helps to distribute the passengers on separate sections proportionally to the number of cities population, which are combined by high-speed main line, subject to the average population mobility, travel time and the coefficient that takes into account the frequency of additional passenger trips on a given section, depending on the purpose (business trip, transfer to a plane, recreation, etc

  10. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  11. High-speed motion neutron radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Barton, J.P.; Robinson, A.H.

    1982-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is about 4 X 10 11 n/cm 2 X s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability

  12. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    International Nuclear Information System (INIS)

    Zhang, Ming; Xu, Min; Hung, David L S

    2014-01-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1–2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree. (paper)

  13. Experiments on the breakup of drop-impact crowns by Marangoni holes

    KAUST Repository

    Aljedaani, Abdulrahman Barakat

    2018-04-04

    We investigate experimentally the breakup of the Edgerton crown due to Marangoni instability when a highly viscous drop impacts on a thin film of lower-viscosity liquid, which also has different surface tension than the drop liquid. The presence of this low-viscosity film modifies the boundary condition, giving effective slip to the drop along the solid substrate. This allows the high-viscosity drop to form a regular bowl-shaped crown, which rises vertically away from the solid and subsequently breaks up through the formation of a multitude of Marangoni holes. Previous experiments have proposed that the breakup of the crown results from a spray of fine droplets ejected from the thin low-viscosity film on the solid, e.g. Thoroddsen et al. (J. Fluid Mech., vol. 557, 2006, pp. 63–72). These droplets can hit the inner side of the crown forming spots with lower surface tension, which drives a thinning patch leading to the hole formation. We test the validity of this assumption with close-up imaging to identify individual spray droplets, to show how they hit the crown and their lower surface tension drive the hole formation. The experiments indicate that every Marangoni-driven patch/hole is promoted by the impact of such a microdroplet. Surprisingly, in experiments with pools of higher surface tension, we also see hole formation. Here the Marangoni stress changes direction and the hole formation looks qualitatively different, with holes and ruptures forming in a repeatable fashion at the centre of each spray droplet impact. Impacts onto films of the same liquid, or onto an immiscible liquid, do not in general form holes. We furthermore characterize the effects of drop viscosity and substrate-film thickness on the overall evolution of the crown. We also measure the three characteristic velocities associated with the hole formation: i.e. the Marangoni-driven growth of the thinning patches, the rupture speed of the resulting thin films inside these patches and finally the

  14. Ultraspinning limits and super-entropic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hennigar, Robie A. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Kubizňák, David [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada); Mann, Robert B. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Musoke, Nathan [Perimeter Institute, 31 Caroline St. N., Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-06-16

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermodynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer possible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  15. Ultraspinning limits and super-entropic black holes

    Science.gov (United States)

    Hennigar, Robie A.; Kubizňák, David; Mann, Robert B.; Musoke, Nathan

    2015-06-01

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  16. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  17. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  18. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    Science.gov (United States)

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    Science.gov (United States)

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  20. Black hole lasers in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Finazzi, S; Parentani, R

    2010-01-01

    We consider elongated condensates that cross twice the speed of sound. In the absence of periodic boundary conditions, the phonon spectrum possesses a discrete and finite set of complex frequency modes that induce a laser effect. This effect constitutes a dynamical instability and is due to the fact that the supersonic region acts as a resonant cavity. We numerically compute the complex frequencies and density-density correlation function. We obtain patterns with very specific signatures. In terms of the gravitational analogy, the flows we consider correspond to a pair of black hole and white hole horizons, and the laser effect can be conceived as self-amplified Hawking radiation. This is verified by comparing the outgoing flux at early time with the standard black hole radiation.

  1. Varying constants, black holes, and quantum gravity

    International Nuclear Information System (INIS)

    Carlip, S.

    2003-01-01

    Tentative observations and theoretical considerations have recently led to renewed interest in models of fundamental physics in which certain 'constants' vary in time. Assuming fixed black hole mass and the standard form of the Bekenstein-Hawking entropy, Davies, Davis and Lineweaver have argued that the laws of black hole thermodynamics disfavor models in which the fundamental electric charge e changes. I show that with these assumptions, similar considerations severely constrain 'varying speed of light' models, unless we are prepared to abandon cherished assumptions about quantum gravity. Relaxation of these assumptions permits sensible theories of quantum gravity with ''varying constants,'' but also eliminates the thermodynamic constraints, though the black hole mass spectrum may still provide some restrictions on the range of allowable models

  2. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  3. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  4. High performance multi-channel high-speed I/O circuits

    CERN Document Server

    Oh, Taehyoun

    2013-01-01

    This book describes design techniques that can be used to mitigate crosstalk in high-speed I/O circuits. The focus of the book is in developing compact and low power integrated circuits for crosstalk cancellation, inter-symbol interference (ISI) mitigation and improved bit error rates (BER) at higher speeds. This book is one of the first to discuss in detail the problem of crosstalk and ISI mitigation encountered as data rates have continued beyond 10Gb/s. Readers will learn to avoid the data performance cliff, with circuits and design techniques described for novel, low power crosstalk cancel

  5. Effects of the thickness of NiO hole transport layer on the performance of all-inorganic quantum dot light emitting diode

    International Nuclear Information System (INIS)

    Zhang, Xiao Li; Dai, Hai Tao; Zhao, Jun Liang; Li, Chen; Wang, Shu Guo; Sun, Xiao Wei

    2014-01-01

    All-inorganic quantum dot light emitting diodes (QLEDs) have recently gained great attention owing to their high stability under oxygenic, humid environment and higher operating currents. In this work, we fabricated all-inorganic CdSe/ZnS core-shell QLEDs composed of ITO/NiO/QDs/ZnO/Al, in which NiO and ZnO thin film deposited via all-solution method were employed as hole and electron transport layer, respectively. To achieve high light emitting efficiency, the balance transport between electrons and holes play a key role. In this work, the effects of the thickness of NiO film on the performance of QLEDs were explored experimentally in details. NiO layers with various thicknesses were prepared with different rotation speeds. Experimental results showed that thinner NiO layer deposited at higher rotation speed had higher transmittance and larger band gap. Four typical NiO thickness based QLEDs were fabricated to optimize the hole transport layer. Thinner NiO layer based device performs bright emission with high current injection, which is ascribed to the reduced barrier height between hole transport layer and quantum dot. - Highlights: • All-inorganic quantum dot light emitting diodes (QLEDs) were fabricated. • Thinner NiO film can effectively enhance on–off properties of devices. • Improved performance of QLEDs is mainly attributed to energy barrier reduction

  6. High-speed photography of light beams transmitted through pinhole targets

    International Nuclear Information System (INIS)

    Yaonan, D.; Haien, He.; Lian, C.; Huifang, Z.; Zhijian, Z.

    1988-01-01

    A method of high speed photography is presented. It was designed and performed in order to study temporal behaviors of plasma closure effects of pinhole targets in laser plasma experiments. A series of high speed photographs were taken for the laser beam transmitted through the pinhole targets. Spatially resolved and integrated temporal histories of closure effects were observed, respectively. Some physical information about closure effect and closure speed have been studied

  7. Black hole solution in the framework of arctan-electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    An arctan-electrodynamics coupled with the gravitational field is investigated. We obtain the regular black hole solution that at r →∞ gives corrections to the Reissner-Nordström solution. The corrections to Coulomb’s law at r →∞ are found. We evaluate the mass of the black hole that is a function of the dimensional parameter β introduced in the model. The magnetically charged black hole was investigated and we have obtained the magnetic mass of the black hole and the metric function at r →∞. The regular black hole solution is obtained at r → 0 with the de Sitter core. We show that there is no singularity of the Ricci scalar for electrically and magnetically charged black holes. Restrictions on the electric and magnetic fields are found that follow from the requirement of the absence of superluminal sound speed and the requirement of a classical stability.

  8. A high sensitivity 20Mfps CMOS image sensor with readout speed of 1Tpixel/sec for visualization of ultra-high speed phenomena

    Science.gov (United States)

    Kuroda, R.; Sugawa, S.

    2017-02-01

    Ultra-high speed (UHS) CMOS image sensors with on-chop analog memories placed on the periphery of pixel array for the visualization of UHS phenomena are overviewed in this paper. The developed UHS CMOS image sensors consist of 400H×256V pixels and 128 memories/pixel, and the readout speed of 1Tpixel/sec is obtained, leading to 10 Mfps full resolution video capturing with consecutive 128 frames, and 20 Mfps half resolution video capturing with consecutive 256 frames. The first development model has been employed in the high speed video camera and put in practical use in 2012. By the development of dedicated process technologies, photosensitivity improvement and power consumption reduction were simultaneously achieved, and the performance improved version has been utilized in the commercialized high-speed video camera since 2015 that offers 10 Mfps with ISO16,000 photosensitivity. Due to the improved photosensitivity, clear images can be captured and analyzed even under low light condition, such as under a microscope as well as capturing of UHS light emission phenomena.

  9. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  10. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  11. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  12. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  13. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    Science.gov (United States)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  14. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  15. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  16. Universal formula for the holographic speed of sound

    Science.gov (United States)

    Anabalón, Andrés; Andrade, Tomás; Astefanesei, Dumitru; Mann, Robert

    2018-06-01

    We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO (3) × SO (3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.

  17. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  18. High-speed optical feeder-link system using adaptive optics

    Science.gov (United States)

    Arimoto, Yoshinori; Hayano, Yutaka; Klaus, Werner

    1997-05-01

    We propose a satellite laser communication system between a ground station and a geostationary satellite, named high- speed optical feeder link system. It is based on the application of (a) high-speed optical devices, which have been developed for ground-based high-speed fiber-optic communications, and (b) the adaptive optics which compensates wavefront distortions due to atmospheric turbulences using a real time feedback control. A link budget study shows that a system with 10-Gbps bit-rate are available assuming the state-of-the-art device performance of the Er-doped fiber amplifier. We further discuss preliminary measurement results of the atmospheric turbulence at the telescope site in Tokyo, and present current study on the design of the key components for the feeder-link laser transceiver.

  19. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  20. Influence of coronal mass ejections on parameters of high-speed solar wind: a case study

    Science.gov (United States)

    Shugay, Yulia; Slemzin, Vladimir; Rodkin, Denis; Yermolaev, Yuri; Veselovsky, Igor

    2018-05-01

    We investigate the case of disagreement between predicted and observed in-situ parameters of the recurrent high-speed solar wind streams (HSSs) existing for Carrington rotation (CR) 2118 (December 2011) in comparison with CRs 2117 and 2119. The HSSs originated at the Sun from a recurrent polar coronal hole (CH) expanding to mid-latitudes, and its area in the central part of the solar disk increased with the rotation number. This part of the CH was responsible for the equatorial flank of the HSS directed to the Earth. The time and speed of arrival for this part of the HSS to the Earth were predicted by the hierarchical empirical model based on EUV-imaging and the Wang-Sheeley-Arge ENLIL semi-empirical replace model and compared with the parameters measured in-situ by model. The predicted parameters were compared with those measured in-situ. It was found, that for CR 2117 and CR 2119, the predicted HSS speed values agreed with the measured ones within the typical accuracy of ±100 km s-1. During CR 2118, the measured speed was on 217 km s-1 less than the value predicted in accordance with the increased area of the CH. We suppose that at CR 2118, the HSS overtook and interacted with complex ejecta formed from three merged coronal mass ejections (CMEs) with a mean speed about 400 km s-1. According to simulations of the Drag-based model, this complex ejecta might be created by several CMEs starting from the Sun in the period between 25 and 27 December 2011 and arriving to the Earth simultaneously with the HSS. Due to its higher density and magnetic field strength, the complex ejecta became an obstacle for the equatorial flank of the HSS and slowed it down. During CR 2117 and CR 2119, the CMEs appeared before the arrival of the HSSs, so the CMEs did not influence on the HSSs kinematics.

  1. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  2. 75 FR 16552 - High-Speed Intercity Passenger Rail (HSIPR) Program

    Science.gov (United States)

    2010-04-01

    ...; Enhancing intercity travel options; Ensuring a state of good repair of key intercity passenger rail assets... DEPARTMENT OF TRANSPORTATION Federal Railroad Administration High-Speed Intercity Passenger Rail... selections for the High-Speed Intercity Passenger Rail (HSIPR) Program. This notice builds on the program...

  3. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  4. Record high hole mobility in polymer semiconductors via side-chain engineering.

    Science.gov (United States)

    Kang, Il; Yun, Hui-Jun; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi

    2013-10-09

    Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm(2)/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π-π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature.

  5. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  6. Roundness and taper of holes during drilling composites of various thickness by HSS drill bit under dry condition

    Science.gov (United States)

    Sakib, M. S.; Rahman, Motiur; Ferdous, M.; Dhar, N. R.

    2017-12-01

    Polymer Matrix Composites are extending a wide range of applications in aviation in recent eras because of their better economics, well established processing, high temperature properties, high resistance to corrosion and fatigue. Directional properties of composites are dependent on the fibre orientation. Composites being anisotropic in nature are difficult to drill and machining and tooling of the composites remained a great challenge over time. This paper addresses the issues of various machining problems such as delamination, fibre pull-out, cracks on varying drilling parameters like feed rate and drilling speed. Experimental drilling was carried out on Fibre Reinforced Plastic composites with HSS drill bit. Results reveal that as the number of holes increases the entry and exit diameter and tapper of holes vary and also varying composite thickness results in a difference in hole roundness and tapper. This experiment summarizes that for achieving acceptable tool life and hole quality demands a drill designed with composites.

  7. Integrated High-Speed Torque Control System for a Robotic Joint

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  8. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  9. Extremely high hole concentrations in c-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Trybus, Elaissa; Moseley, Michael; Henderson, Walter; Billingsley, Daniel [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Namkoong, Gon [Old Dominion University, Applied Research Center, Newport News, VA (United States); Look, David C. [Wright State University, Semiconductor Research Center, Dayton, OH (United States); Doolittle, W.A.

    2009-06-15

    Metal Modulated Epitaxy (S. D. Burnham et al., J. Appl. Phys. 104, 024902 (2008)[1]) is extended to include modulation of both the shutters of Ga and Mg, the Mg being delivered from a Veeco corrosive series valved cracker (S. D. Burnham et al., Mater. Res. Soc. Proc. 798, Y8.11 (2003)[2]). The Ga fluxes used are sufficiently large that droplets rapidly form when the Ga shutter opens and are subsequently depleted when the Ga shutter closes. The result is the ability to limit surface faceting while predominantly growing under average N-rich growth conditions and thus, possibly reduce N-vacancy defects. N-vacancy defects are known to result in compensation. This ability to grow higher quality materials under N-rich conditions results in very high hole concentrations and low resistivity p-type materials. Hole concentrations as high as 2 x 10{sup 19} cm{sup -3} have been achieved on c-plane GaN resulting in resistivities as low as 0.38 ohm-cm. The dependence on Ga flux, shutter timing, the corresponding RHEED images for each condition is detailed and clearly show minimization of faceting and crystal quality variations as determined by X-ray diffraction. Quantification of the Mg incorporation and residual impurities such as hydrogen, oxygen, and carbon by SIMS, eliminates co-doping, while temperature dependent hall measurements show reduced activation energies. X-ray diffraction data compares crystalline quality with hole concentration. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  11. Design and application on experimental platform for high-speed bearing with grease lubrication

    Directory of Open Access Journals (Sweden)

    He Qiang

    2015-12-01

    Full Text Available The experimental platform for high-speed grease is an important tool for research and development of high-speed motorized spindle with grease lubrication. In this article, the experimental platform for high-speed grease is designed and manufactured which consists of the drive system, the test portion, the loading system, the lubrication system, the control system, and so on. In the meantime, the high-speed angular contact ceramic ball bearings B7005C/HQ1P4 as the research object are tested and contrasted in the grease lubrication and oil mist lubrication. The experimental platform performance is validated by contrast experiment, and the high-speed lubricated bearing performance is also studied especially in the relationship among the rotating speed,load and temperature rise. The results show that the experimental platform works steadily, accurate, and reliable in the experimental testing. And the grease lubrication ceramic ball bearings B7005C/HQ1P4 can be used in high-speed motorized spindle in the circular water cooling conditions when the rotating speed is lower than 40,000 r/min or the DN value (the value of the bearing diameter times the rotating speed is lower than the 1.44 × 106 mm r/min. Grease lubrication instead of oil mist lubrication under high-speed rotating will simplify the structure design of the high-speed motorized spindle and reduce the pollution to the environment.

  12. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, van de N.; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  13. Benefits of sequential turbocharging in improving high torque/low speed operation of medium speed diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Danyluk, P.; Gutoski, G. [Coltec Industries Inc., Fairbanks Morse Engine Division (United States); Chen, S.K. [PEI Consultants (United States)

    1998-12-31

    This paper describes the benefits of sequential turbocharging in improving the operating envelope of a medium speed diesel engine. In particular, the high torque, low speed performance envelope can be greatly extended over that of a standard medium speed engine and, in addition, can offer improved operating range over what has been achieved with compressor air bypass/waste gate systems. This paper compares the three approaches on the basis of possible operating envelopes for a specific application, the new U.S. Navy LPD-17 amphibious assault ship, which has a very demanding requirement for high torque at low engine speed and low ambient temperatures. Comparison is made to the earlier approach to extend the operating envelope on the U.S. Navy LSD-41 class engines. The LSD-41 fleet has been in service since 1985 running with a compressor air bypass system developed jointly by Lockheed Shipyard and Coltec Industries for the U.S. Navy. (au)

  14. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  15. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  16. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  17. HDR 192Ir source speed measurements using a high speed video camera

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio; Podesta, Mark; Rubo, Rodrigo A.; Sales, Camila P. de; Reniers, Brigitte; Verhaegen, Frank

    2015-01-01

    Purpose: The dose delivered with a HDR 192 Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a 192 Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulating the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases

  18. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  19. Some Simple Black Hole Thermodynamics

    Science.gov (United States)

    Lopresto, Michael C.

    2003-05-01

    In his recent popular book The Universe in a Nutshell, Steven Hawking gives expressions for the entropy1 and temperature (often referred to as the ``Hawking temperature''2 ) of a black hole:3 S = kc34ℏG A T = ℏc38πkGM, where A is the area of the event horizon, M is the mass, k is Boltzmann's constant, ℏ = h2π (h being Planck's constant), c is the speed of light, and G is the universal gravitational constant. These expressions can be used as starting points for some interesting approximations on the thermodynamics of a Schwarzschild black hole, of mass M, which by definition is nonrotating and spherical with an event horizon of radius R = 2GMc2.4,5

  20. Assessment of left ventricular hemodynamics by Gd-DTPA enhanced high speed cine MRI

    International Nuclear Information System (INIS)

    Matsumura, Kentaro; Nakase, Emiko; Kawai, Ichiro

    1992-01-01

    To assess the validity of Gd-DTPA enhanced high speed cine MRI in left ventricular (LV) volumes and ejection fraction (EF), high speed cine MRI was compared with intra-venous digital subtraction left ventriculography (IV-DSA) in 14 patients. All patients underwent conventional cine MRI and Gd-DTPA enhanced high speed MRI, simultaneously. The pulse sequences of high speed MRI were TR 8 ms (TR 6 ms plus rewind pulse 2 ms), TE 3.2 ms, matrix 128, phase encode 8 or 6 and NEX 1. Comparison with LV-volume showed a high correlation (y = 0.854x + 1,699, r = 0.985) between high speed cine MRI and VI-DSA. To make left ventricular volume curve by area-length method in cine MRI, manual tracing of LV-cavity was more difficult in conventional cine MRI-method than enhanced high speed cine MRI-method. In conclusion, first pass-Gd-DTPA enhanced high speed cine MRI, using the horizontal long axis approach and the multiphase study, is a highly, accurate reproducible method of evaluating LV-volumetry. (author)

  1. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  2. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  3. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  4. Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings

    Directory of Open Access Journals (Sweden)

    Nathi Ram

    2016-06-01

    Full Text Available The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings under Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant.

  5. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  6. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Mane, Sandeep B; Sutanto, Albertus Adrian; Cheng, Chih-Fu; Xie, Meng-Yu; Chen, Chieh-I; Leonardus, Mario; Yeh, Shih-Chieh; Beyene, Belete Bedemo; Diau, Eric Wei-Guang; Chen, Chin-Ti; Hung, Chen-Hsiung

    2017-09-20

    The high performance of the perovskite solar cells (PSCs) cannot be achieved without a layer of efficient hole-transporting materials (HTMs) to retard the charge recombination and transport the photogenerated hole to the counterelectrode. Herein, we report the use of boryl oxasmaragdyrins (SM01, SM09, and SM13), a family of aromatic core-modified expanded porphyrins, as efficient hole-transporting materials (HTMs) for perovskite solar cells (PSCs). These oxasmaragdyrins demonstrated complementary absorption spectra in the low-energy region, good redox reversibility, good thermal stability, suitable energy levels with CH 3 NH 3 PbI 3 perovskite, and high hole mobility. A remarkable power conversion efficiency of 16.5% (V oc = 1.09 V, J sc = 20.9 mA cm -2 , fill factor (FF) = 72%) is achieved using SM09 on the optimized PSCs device employing a planar structure, which is close to that of the state-of-the-art hole-transporting materials (HTMs), spiro-OMeTAD of 18.2% (V oc = 1.07 V, J sc = 22.9 mA cm -2 , FF = 74%). In contrast, a poor photovoltaic performance of PSCs using SM01 is observed due to the interactions of terminal carboxylic acid functional group with CH 3 NH 3 PbI 3 .

  7. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  8. High speed motion-picture photography. Instrumentation and application

    International Nuclear Information System (INIS)

    Bertin-Maghit, G.; Delli, C.; Falgayrettes, M.

    1981-01-01

    Filming technology at 5,000 frames/second is presented in this paper for the determination of the volume and the expension speed of a gas bubble in water. The high speed 16 mm movie camera, fitted with ultra-wide angle lenses, is placed in front of a side light facing the bubble. Ten 60 ms fast flashes, released in succession, illuminate the bubble [fr

  9. Potential beneficial effects of electron-hole plasmas created in silicon sensors by XFEL-like high intensity pulses for detector development

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Joel T.; Becker, Julian; Shanks, Katherine S.; Philipp, Hugh T.; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    There is a compelling need for a high frame rate imaging detector with a wide dynamic range, from single x-rays/pixel/pulse to >10{sup 6} x-rays/pixel/pulse, that is capable of operating at both x-ray free electron laser (XFEL) and 3rd generation sources with sustained fluxes of > 10{sup 11} x-rays/pixel/s [1, 2, 3]. We propose to meet these requirements with the High Dynamic Range Pixel Array Detector (HDR-PAD) by (a) increasing the speed of charge removal strategies [4], (b) increasing integrator range by implementing adaptive gain [5], and (c) exploiting the extended charge collection times of electron-hole pair plasma clouds that form when a sufficiently large number of x-rays are absorbed in a detector sensor in a short period of time [6]. We have developed a measurement platform similar to the one used in [6] to study the effects of high electron-hole densities in silicon sensors using optical lasers to emulate the conditions found at XFELs. Characterizations of the employed tunable wavelength laser with picosecond pulse duration have shown Gaussian focal spots sizes of 6 ± 1 µm rms over the relevant spectrum and 2 to 3 orders of magnitude increase in available intensity compared to previous measurements presented in [6]. Results from measurements on a typical pixelated silicon diode intended for use with the HDR-PAD (150 µm pixel size, 500 µm thick sensor) are presented.

  10. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  11. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  12. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  13. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  14. Accuracy Assessment for the Three-Dimensional Coordinates by High-Speed Videogrammetric Measurement

    Directory of Open Access Journals (Sweden)

    Xianglei Liu

    2018-01-01

    Full Text Available High-speed CMOS camera is a new kind of transducer to make the videogrammetric measurement for monitoring the displacement of high-speed shaking table structure. The purpose of this paper is to validate the three-dimensional coordinate accuracy of the shaking table structure acquired from the presented high-speed videogrammetric measuring system. In the paper, all of the key intermediate links are discussed, including the high-speed CMOS videogrammetric measurement system, the layout of the control network, the elliptical target detection, and the accuracy validation of final 3D spatial results. Through the accuracy analysis, the submillimeter accuracy can be made for the final the three-dimensional spatial coordinates which certify that the proposed high-speed videogrammetric technique is a better alternative technique which can replace the traditional transducer technique for monitoring the dynamic response for the shaking table structure.

  15. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  16. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  17. Technical report of electronics shop characteristics of high speed electronics component, (1)

    International Nuclear Information System (INIS)

    Watanabe, Shin-ichi; Shiino, Kazuo.

    1975-01-01

    We must develop electronics circuits for high speed signals. The electronics components of the circuits make use of the special components. This report treats a pulse response of the electronics components (i.e. coaxial cable, connector, resistor, capacitor, diode, transistor) for high speed electronics. The results of this report was already applied constructions of high speed electronics circuits and experimental equipments of the High Energy Physics Division. (auth.)

  18. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  19. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  20. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    CERN Document Server

    Miao, Yan-Gang

    2016-01-01

    Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.

  1. Wavelet-OFDM Signal Transmission Characteristics with High-Speed PLC Modem

    Science.gov (United States)

    Nakagawa, Kenichi; Tokuda, Masamitsu; Igata, Yuji

    In this paper, we measured the interference immunity characteristics of high-speed PLC system using Wavelet-OFDM when the narrowband conducted interference wave signal was injected. As the results, it was clear that (1) measured PHY rate at the all frequency band hardly decreased in C/I (Carrier to Interference ratio) of above 20dB, but began to decrease rapidly in C/I of below 0dB when the interference signal was injected in the frequency band of high-speed PLC signal, (2) when C/I became from 0dB to -20dB, the measured PHY rate at the frequency existing the notch band were improved around 10Mbps than that at the frequency not existing the notch band, (3) when the narrowband interference wave was injected outside of frequency band of high-speed PLC signal, the measured PHY rate did not decrease than that in each notch band. Therefore, it was revealed that high-speed PLC system using Wavelet-OFDM had good interference immunity characteristics.

  2. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation)

    Science.gov (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.

    2016-03-01

    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  3. Polymer Surface Textured with Nanowire Bundles to Repel High-Speed Water Drops.

    Science.gov (United States)

    Li, Y P; Li, X Y; Zhu, X P; Lei, M K; Lakhtakia, A

    2018-05-11

    Water drops impacting windshields of high-speed trains and aircraft as well as blades in steam turbine power generators obliquely and at high speeds are difficult to repel. Impacting drops penetrate the void regions of nanotextured and microtextured superhydrophobic coatings, with this pinning resulting in the loss of drop mobility. In order to repel high-speed water drops, we nanotextured polymer surfaces with nanowire bundles separated from their neighbors by microscale void regions, with the nanowires in a bundle separated from their neighbors by nanoscale void regions. Water drops with speeds below a critical speed rebound completely. Water drops with speeds exceeding a critical speed rebound partially, but residual droplets that begin to be pinned undergo a spontaneous dewetting process and slide off. The natural oscillations of residual droplets drive this dewetting process in the interbundle void regions, resulting in a transition from the sticky Wenzel state to the slippery Cassie state without external stimuli.

  4. Impact of Increased Football Field Width on Player High-Speed Collision Rate.

    Science.gov (United States)

    Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul

    2017-07-01

    High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High-speed and supersonic upward plasma drifts: multi-instrumental study

    Science.gov (United States)

    Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.

    2017-12-01

    Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are

  6. Comparison of high-speed transportation systems in special consideration of investment costs

    Directory of Open Access Journals (Sweden)

    R. Schach

    2007-10-01

    Full Text Available In this paper a substantial comparison of different high-speed transportation systems and an approach to stochastic cost estimations are provided. Starting from the developments in Europe, the high-speed traffic technical characteristics of high-speed railways and Maglev systems are compared. But for a comprehensive comparison more criterions must be included and led to a wider consideration and the development of a multi-criteria comparison of high-speed transportation systems. In the second part a stochastic approach to cost estimations of infrastructure projects is encouraged. Its advantages in comparison with the traditional proceeding are presented and exemplify the practical implementation.

  7. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  8. Social exclusion and high speed rail: The case study of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pagliara, F.; Menicocci, F.; Vassallo, J.M.; Gomez, J.

    2016-07-01

    Very few contributions in the literature have dealt with the issue of social exclusion related to High Speed Rail systems. The objective of this manuscript is to understand what are the factors excluding users from choosing High Speed Rail services considering as case study Spain. For this purpose, a Revealed Preference survey was employed in November and December 2015. A questionnaire was submitted to users of the Spanish transport systems travelling for long distance-journeys. The aim was that of investigating their perception of High Speed Rail system and the factors inhibiting passengers or excluding them from its use. Data about their socioeconomic characteristics were collected as well. The main result of the survey has been that a relationship between social exclusion and High Speed Rail in Spain is present, especially in terms of geographical exclusion. (Author)

  9. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    Science.gov (United States)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  10. On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles

    Science.gov (United States)

    2006-02-17

    On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is

  11. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  12. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  13. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  14. Tooling device design for vibration-assisted high speed shaping of PMMA

    International Nuclear Information System (INIS)

    Mostofa, Md. Golam; Noh, J. H.; Kim, H. Y.; Ahn, J. H.; Kang, D. B.

    2010-01-01

    PMMA optical components that are used as one of the most important parts of high precision equipment and machines are increasingly replacing the glass due to the various advantages of PMMA. Especially in Light Guide Panels, the PMMA sheet that is used in Liquid Crystal Displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. The High Speed End milling and High Speed Shaping processes that are widely adopted and applied to the precise machining of Light Incident Plane still have quality problems, such as cracks, breakages, poor waviness, and straightness. This paper presents the tooling device design for machining a Light Incident Plane through vibration-assisted High Speed Shaping for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic characteristics of the cutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted High Speed Shaping

  15. Black hole formation in a contracting universe

    Energy Technology Data Exchange (ETDEWEB)

    Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 Canada (Canada)

    2016-11-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  16. Black hole formation in a contracting universe

    International Nuclear Information System (INIS)

    Quintin, Jerome; Brandenberger, Robert H.

    2016-01-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  17. A novel portable multi-channel analyzer based on high-speed microcontroller

    International Nuclear Information System (INIS)

    Lou Xinghua; Yi Hongchang; Wang Yuemin

    2005-01-01

    This paper introduces a novel portable multi-channel analyzer (MCA) based on high-speed microcontroller. The hardware implementation and the software scenario of the MCA are discussed. The MCA has features of high speed, small size and better performances. (authors)

  18. Yonjung High-Speed Railway Bridge Assessment Using Output-Only Structural Health Monitoring Measurements under Train Speed Changing

    Directory of Open Access Journals (Sweden)

    Mosbeh R. Kaloop

    2016-01-01

    Full Text Available Yonjung Bridge is a hybrid multispan bridge that is designed to transport high-speed trains (HEMU-430X with maximum operating speed of 430 km/h. The bridge consists of simply supported prestressed concrete (PSC and composite steel girders to carry double railway tracks. The structural health monitoring system (SHM is designed and installed to investigate and assess the performance of the bridge in terms of acceleration and deformation measurements under different speeds of the passing train. The SHM measurements are investigated in both time and frequency domains; in addition, several identification models are examined to assess the performance of the bridge. The drawn conclusions show that the maximum deflection and acceleration of the bridge are within the design limits that are specified by the Korean and European codes. The parameters evaluation of the model identification depicts the quasistatic and dynamic deformations of PSC and steel girders to be different and less correlated when higher speeds of the passing trains are considered. Finally, the variation of the frequency content of the dynamic deformations of the girders is negligible when high speeds are considered.

  19. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    Science.gov (United States)

    2013-12-01

    wave absorbing beach at the other. The carriage has electro-hydraulic drive and a regenerative braking system with a maximum carriage speed of 20...Carderock Division To: Commander, Naval Sea Systems Command (PMS3 85) Subj FORWARDING OF REPORT Encl: (1) NSWCCD-80-TR-2013/015, "High Speed Trimaran...and verify the system processes and capability. Your comments will be reviewed and are appreciated. JUDE F. BROWN By direction Copy to: NAVSEA

  20. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  1. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  2. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-Tc superconductors

    International Nuclear Information System (INIS)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P; Schmitt, F; Meevasana, W; Motoyama, E M; Lu, D H; Kim, C; Scalettar, R T

    2009-01-01

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  3. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  4. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  5. Thermodynamics of noncommutative high-dimensional AdS black holes with non-Gaussian smeared matter distributions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)

    2016-04-15

    Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)

  6. High-speed photography of dynamic photoelastic experiment with a highly accurate blasting machine

    Science.gov (United States)

    Katsuyama, Kunihisa; Ogata, Yuji; Wada, Yuji; Hashizume, K.

    1995-05-01

    A high accurate blasting machine which could control 1 microsecond(s) was developed. At first, explosion of a bridge wire in an electric detonator was observed and next the detonations of caps were observed with a high speed camera. It is well known that a compressed stress wave reflects at the free face, it propagates to the backward as a tensile stress wave, and cracks grow when the tensile stress becomes the dynamic tensile strength. The behavior of these cracks has been discussed through the observation of the dynamic photoelastic high speed photography and the three dimensional dynamic stress analysis.

  7. "Iron-Clad" Evidence For Spinning Black Hole

    Science.gov (United States)

    2003-09-01

    competing explanations that do not require extreme gravitational effects, and provide the best look yet at the geometry of the space-time around a stellar black hole created by the death of a massive star." The orbit of a particle near a black hole depends on the curvature of space around the black hole, which also depends on how fast the black hole is spinning. A spinning black hole drags space around with it and allows atoms to orbit closer to the black hole than is possible for a non-spinning black hole. The latest Chandra data from Cygnus X-1, the first stellar-size black hole discovered, show that the gravitational effects on the signal from the iron atoms can only be due to relativistic effects, and that some of the atoms are no closer than 100 miles to the black hole. There was no evidence that the Cygnus X-1 black hole is spinning. The XMM-Newton data from the black hole, XTE J1650-500, show a very similar distribution of iron atom X-rays with one important exception. More low energy X-rays from iron atoms are observed, an indication that some X-rays are coming from deep in the gravitational well around the black hole, as close as 20 miles to the black hole event horizon. This black hole must be spinning rapidly. Chandra observations of a third stellar black hole, GX 339-4, have revealed that it is also spinning rapidly, and clouds of warm absorbing gas appear to be flowing away from the black hole at speeds of about three hundred thousand miles per hour. Such warm gas flows have been observed in the vicinity of supermassive black holes. Previous observations of some supermassive black holes by Japan's ASCA satellite, XMM-Newton and Chandra have indicated that they may also be rotating rapidly. The latest results presented by Miller indicate that the peculiar geometry of space around spinning stellar-mass black holes and supermassive black holes is remarkably similar. Stellar and supermassive black holes may be similar in other ways. Powerful jets of high

  8. Compensator design for improved counterbalancing in high speed atomic force microscopy

    OpenAIRE

    Bozchalooi, I. S.; Youcef-Toumi, K.; Burns, D. J.; Fantner, G. E.

    2011-01-01

    High speed atomic force microscopy can provide the possibility of many new scientific observations and applications ranging from nano-manufacturing to the study of biological processes. However, the limited imaging speed has been an imperative drawback of the atomic force microscopes. One of the main reasons behind this limitation is the excitation of the AFM dynamics at high scan speeds, severely undermining the reliability of the acquired images. In this research, we propose a piezo based, ...

  9. The light up and early evolution of high redshift Supermassive Black Holes

    Science.gov (United States)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  10. High-speed cinematography of gas-tungsten arc welding: theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, L.D.; Key, J.F.

    1981-06-01

    High-speed photo-instrumentation theory and application are reviewed, with particular emphasis on high-speed cinematography, for the engineer who has not acquired an extensive background in scientific photography. Camera systems, optics, timing system, lighting, photometric equipment, filters, and camera mounts are covered. Manufacturers and other resource material are listed in the Appendices. The properties and processing of photosensitive materials suitable for high-speed photography are reviewed, and selected film data are presented. Methods are described for both qualitative and quantitative film analysis. This technology is applied to the problem of analyzing plasma dynamics in a gas-tungsten welding arc.

  11. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.

  12. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  13. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  14. High-speed railways in Japan

    International Nuclear Information System (INIS)

    Kyotani, Y.

    1974-01-01

    This paper reviews the development of conventional railways in Japan, leading up to the Shinkansen line, which at present runs at speeds up to 210km/h, and will in the future be speeded up to 260km/h. It then goes on to review the development of a superconductive, magnetically levitated train, which will constitute the next generation of railways, running at speeds of up to 500km/h. (author)

  15. Krypton yellow laser for the treatment of macular hole in high myopia without retinal detachment.

    Science.gov (United States)

    Cai, Ji-Ping; Cheng, Jin-Wei; Ma, Xiao-Ye; Li, Yu-Zhen; Li, You; Wei, Rui-Li

    2008-12-01

    To evaluate the prophylactic effect of krypton yellow laser for the treatment of macular holes in high myopic eyes in order to reduce the risk of retinal detachment. Twenty-seven eyes of 27 patients with high myopia and macular holes were randomly assigned to two groups. Fifteen patients (group A, 15 eyes) were subject to laser photocoagulation around the hole margin along with an oral placebo (vitamin B1), while 12 patients (group B, 12 eyes) were only given the oral placebo (vitamin B1). The incident rate of retinal detachment due to macular hole and the mean best-corrected visual acuity of the two groups before and after treatment were measured. The data were statistically tested by X2 test and Student's t test. The incident rates of retina1 detachment in group A and group B were 20%(3/15) and 58.3%(7/12), respectively (X2=4.201, P0.05). The mean BCVA of group B on the initial examination was 24/200, while the mean BCVA at the final follow-up was 30/200 (P>0.05). No significant difference in initial visual acuity (P>0.05) or final visual acuity (P>0.05) was found between the two groups. Krypton yellow laser photocoagulation could reduce the incidence of retinal detachment due to a macular hole in high myopia with acceptable functional results in this study.

  16. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  17. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    Science.gov (United States)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  18. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2018-03-01

    Full Text Available The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson–Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  19. Influences of Cutting Speed and Material Mechanical Properties on Chip Deformation and Fracture during High-Speed Cutting of Inconel 718.

    Science.gov (United States)

    Wang, Bing; Liu, Zhanqiang; Hou, Xin; Zhao, Jinfu

    2018-03-21

    The paper aims to investigate the influences of material constitutive and fracture parameters in addition to cutting speed on chip formation during high-speed cutting of Inconel 718. Finite element analyses for chip formation are conducted with Johnson-Cook constitutive and fracture models. Meanwhile, experiments of high-speed orthogonal cutting are performed to verify the simulation results with cutting speeds ranging from 50 m/min to 7000 m/min. The research indicates that the chip morphology transforms from serrated to fragmented at the cutting speed of 7000 m/min due to embrittlement of the workpiece material under ultra-high cutting speeds. The parameter of shear localization sensitivity is put forward to describe the influences of material mechanical properties on serrated chip formation. The results demonstrate that the effects of initial yield stress and thermal softening coefficient on chip shear localization are much more remarkable than the other constitutive parameters. For the material fracture parameters, the effects of initial fracture strain and exponential factor of stress state on chip shear localization are more much prominent. This paper provides guidance for controlling chip formation through the adjustment of material mechanical properties and the selection of appropriate cutting parameters.

  20. Multivariable Techniques for High-Speed Research Flight Control Systems

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  1. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  2. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  3. Error mapping of high-speed AFM systems

    Science.gov (United States)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  4. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  5. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  6. Observation of the dynamic movement of fragmentations by high-speed camera and high-speed video

    Science.gov (United States)

    Suk, Chul-Gi; Ogata, Yuji; Wada, Yuji; Katsuyama, Kunihisa

    1995-05-01

    The experiments of blastings using mortal concrete blocks and model concrete columns were carried out in order to obtain technical information on fragmentation caused by the blasting demolition. The dimensions of mortal concrete blocks were 1,000 X 1,000 X 1,000 mm. Six kinds of experimental blastings were carried out using mortal concrete blocks. In these experiments precision detonators and No. 6 electric detonators with 10 cm detonating fuse were used and discussed the control of fragmentation. As the results of experiment it was clear that the flying distance of fragmentation can be controlled using a precise blasting system. The reinforced concrete model columns for typical apartment houses in Japan were applied to the experiments. The dimension of concrete test column was 800 X 800 X 2400 mm and buried 400 mm in the ground. The specified design strength of the concrete was 210 kgf/cm2. These columns were exploded by the blasting with internal loading of dynamite. The fragmentation were observed by two kinds of high speed camera with 500 and 2000 FPS and a high speed video with 400 FPS. As one of the results in the experiments, the velocity of fragmentation, blasted 330 g of explosive with the minimum resisting length of 0.32 m, was measured as much as about 40 m/s.

  7. High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps

    Science.gov (United States)

    Burcham, R. E.

    1983-01-01

    Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.

  8. IMITATION MODEL OF A HIGH-SPEED INDUCTION MOTOR WITH FREQUENCY CONTROL

    Directory of Open Access Journals (Sweden)

    V. E. Pliugin

    2017-12-01

    Full Text Available Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model and in Ansys Simplorer (transient circuit model with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones.

  9. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  10. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  11. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  12. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  13. Monitoring and data acquisition of the high speed hydrogen pellet in SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Samiran Shanti, E-mail: samiran@ipr.res.in; Mishra, Jyotishankar; Gangradey, Ranjana; Dutta, Pramit; Rastogi, Naveen; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Bairagi, Pawan; Patel, Haresh; Sharma, Hardik

    2016-11-15

    Highlights: • Pellet INjector System with monitoring and data acquisition is described. • A high speed camera was used to view pellet size, and its flight trajectory. • PXI based high speed control system is used data acquisition. • Pellets of length 2–4.8 mm and speed 250–750 m/s were obtained. - Abstract: Injection of solid hydrogen pellets is an efficient way of replenishing the spent fuel in high temperature plasmas. Aiming that, a Single Pellet INjector System (SPINS) is developed at Institute for Plasma Research (IPR), India, to initiate pellet injection related research in SST-1. The pellet injector is controlled by a PXI system based data acquisition and control (DAC) system for pellet formation, precise firing control, data collection and diagnostics. The velocity of high speed moving pellets is estimated by using two sets of light gate diagnostic. Apart from light gate, a fast framing camera is used to measure the pellet size and its speed. The pellet images are captured at a frame rate of ∼200,000 frames per second at (128 × 64) pixel resolution with an exposure time of 1 μs. Using these diagnostic, various cylindrical pellets of length ranging from 2 to 4.8 mm and speed 250–750 m/s were successfully obtained. This paper describes the control and data acquisition system of SPINS, the techniques for measurement of pellet velocity and capturing images of high speed moving pellet.

  14. An ultra-high speed whole slide image viewing system.

    Science.gov (United States)

    Yagi, Yukako; Yoshioka, Shigeatsu; Kyusojin, Hiroshi; Onozato, Maristela; Mizutani, Yoichi; Osato, Kiyoshi; Yada, Hiroaki; Mark, Eugene J; Frosch, Matthew P; Louis, David N

    2012-01-01

    One of the goals for a Whole Slide Imaging (WSI) system is implementation in the clinical practice of pathology. One of the unresolved problems in accomplishing this goal is the speed of the entire process, i.e., from viewing the slides through making the final diagnosis. Most users are not satisfied with the correct viewing speeds of available systems. We have evaluated a new WSI viewing station and tool that focuses on speed. A prototype WSI viewer based on PlayStation®3 with wireless controllers was evaluated at the Department of Pathology at MGH for the following reasons: 1. For the simulation of signing-out cases; 2. Enabling discussion at a consensus conference; and 3. Use at slide seminars during a Continuing Medical Education course. Pathologists were being able to use the system comfortably after 0-15 min training. There were no complaints regarding speed. Most pathologists were satisfied with the functionality, usability and speed of the system. The most difficult situation was simulating diagnostic sign-out. The preliminary results of adapting the Sony PlayStation®3 (PS3®) as an ultra-high speed WSI viewing system were promising. The achieved speed is consistent with what would be needed to use WSI in daily practice.

  15. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  16. Three-Dimensional Numerical Analysis of an Operating Helical Rotor Pump at High Speeds and High Pressures including Cavitation

    Directory of Open Access Journals (Sweden)

    Zhou Yang

    2017-01-01

    Full Text Available High pressures, high speeds, low noise and miniaturization is the direction of development in hydraulic pump. According to the development trend, an operating helical rotor pump (HRP at high speeds and high pressures has been designed and produced, which rotational speed can reach 12000r/min and outlet pressure is as high as 25MPa. Three-dimensional simulation with and without cavitation inside the HRP is completed by the means of the computational fluid dynamics (CFD in this paper, which contributes to understand the complex fluid flow inside it. Moreover, the influences of the rotational speeds of the HRP with and without cavitation has been simulated at 25MPa.

  17. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  18. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  19. Visualization of high speed liquid jet impaction on a moving surface.

    Science.gov (United States)

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  20. High speed analysis of high pressure combustion in a constant volume cell

    NARCIS (Netherlands)

    Frijters, P.J.M.; Klein-Douwel, R.J.H.; Manski, S.S.; Somers, L.M.T.; Baert, R.S.G.; Dias, V.

    2005-01-01

    A combustion process with N2, O2 and C2H4 as fuel used in an opticallyaccessible, high pressure, high temperature, constant volume cell forresearch on diesel fuel spray formation, is studied. The flame frontspeed Vf,HS is determined using high speed imaging. The pressure traceof the combustion

  1. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  2. Design of a high speed rotating mechanical shutter

    International Nuclear Information System (INIS)

    Stowers, I.F.; Merritt, B.T.; McFann, C.B.

    1979-01-01

    A high-speed rotating shutter was designed to operate in a 10 -6 Torr vacuum at the optical focus of a laser spatial filter. The shutter is basically a wheel, with a single 3 x 10-mm slot at the perimeter, which rotates with a peripheral speed of 1 km/s. The motor to drive the rotating wheel is magnetically suspended and synchronously wound. The wheel achieves a 4 μs opening time and a timing accuracy of better than 0.2 μs

  3. Adaptations to speed endurance training in highly trained soccer players

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Fiorenza, Matteo; Lund, Anders

    2016-01-01

    PURPOSE: The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I...... and II muscle fibers. METHODS: During the last nine weeks of the season, thirteen semi-professional soccer players performed additional speed endurance training sessions consisting of 2-3 sets of 8 - 10 repetitions of 30 m sprints with 10 s of passive recovery (SET). Before and after SET, subjects...... in type I and II fibers did not change. CONCLUSION: In highly trained soccer players, additional speed endurance training is associated with an improved ability to perform repeated high-intensity work. To what extent the training-induced changes in V˙O2 kinetics and mechanical efficiency in type I fibers...

  4. Embedded systems design for high-speed data acquisition and control

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2015-01-01

    This book serves as a practical guide for practicing engineers who need to design embedded systems for high-speed data acquisition and control systems. A minimum amount of theory is presented, along with a review of analog and digital electronics, followed by detailed explanations of essential topics in hardware design and software development. The discussion of hardware focuses on microcontroller design (ARM microcontrollers and FPGAs), techniques of embedded design, high speed data acquisition (DAQ) and control systems. Coverage of software development includes main programming techniques, culminating in the study of real-time operating systems. All concepts are introduced in a manner to be highly-accessible to practicing engineers and lead to the practical implementation of an embedded board that can be used in various industrial fields as a control system and high speed data acquisition system.   • Describes fundamentals of embedded systems design in an accessible manner; • Takes a problem-solving ...

  5. High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers

    Science.gov (United States)

    Saberi-Pouya, S.; Zarenia, M.; Perali, A.; Vazifehshenas, T.; Peeters, F. M.

    2018-05-01

    Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations. Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to ˜90 K with onset carrier densities as high as 4 ×1012cm-2 . This transition temperature is significantly larger than what is found in double electron-hole few-layers graphene. Our results can guide experimental research toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

  6. Superconducting magnet suspensions in high speed ground transport

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  7. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  8. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  9. New York state high-speed surface transportation study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    In 1990, New York State Governor Mario M. Cuomo created an interagency task force under the leadership of Lt. Governor Stan Lundine to investigate the potential of high speed ground transportation (HSGT) systems. Building on information from previous agency activities, including consultant efforts contracted by the New York State Energy Research and Development Authority (NYSERDA), the New York State Thruway Authority (NYSTA), and in-house analyses performed by New York State Department of Transportation (NYSDOT), the task force focused on the corridor between New York City and the Niagara Frontier. In December 1991, NYSERDA issued a contract for a study of high speed ground transportation options for New York State. The study`s objective was to assess potential rights-of-way, ridership, energy and environmental impacts, economic benefits, capital, operating, and maintenance costs, and financial viability of HSGT systems. This study builds upon and supplements previous and on-going HSGT activities conducted by the members of the interagency task force. These activities include: Maglev Technical and Economic Feasibility Study (NYSERDA); Maglev Demonstration Site Investigation (NYSTA); and New York/Massachusetts High Speed Ground Transportation Study (NYSDOT). This study is intended to verify and refine previous information and analyses and provide supplemental information and insights to be used in determining if additional investigation and activities involving HSGT are desirable for New York State. This study evaluates HSGT technologies capable of speeds significantly higher than those achieved with the present rail system. Three HSGT categories are used in this study: incremental rail improvement, very high-speed rail, and Maglev.

  10. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  11. STATUS REPORT ON DEVELOPMENT OF A HIGH-SPEED HIGH-INTENSITY MOLECULAR BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Eldon L.

    1963-07-15

    Status of a high-speed high-intensity molecular beam under development is described. Bases for designs of the several components are presented. Using an arc-heated source and a hypersonic jet, molecular energies exceeding 1 ev and beam intensities of the order of 10/sup 16/ molecules/ cm/sup 2/ sec are anticipated. A two-disk beam chopper and speed selector provides a means for analyzing the speed distribution in the generated beam, for chopping the beam into bursts of nearly monoenergetic molecules suitable for scattering studies using the time-of-flight technique, and for modulating the beam in order to facilitate detection. A through-flow ionization detector possesses the versatility required for scattering studies using the time-of-flight technique. A sorption pump and a turbo pump serve as central components of alternative pumping systems for the collimating chamber. Using the arc-heated source, the converging nozzle, the conduction-radiation-cooled skimmer, the turbo pump (turning at 3400 rpm), the chopperselector (acting only as a chopper), and the detector, an arc-heated beam is generated and detected. (auth)

  12. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  15. Black Holes Have Simple Feeding Habits

    Science.gov (United States)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  16. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  17. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    International Nuclear Information System (INIS)

    Zhang Yu; Shao Jun; Krausert, Christopher R.; Zhang Sai; Jiang, Jack J.

    2011-01-01

    Research highlights: → Low-dimensional human glottal area data. → Evidence of chaos in human laryngeal activity from high-speed digital imaging. → Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. → Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic

  18. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  19. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  20. High-Time-Resolution Study of Magnetic Holes in the Solar Wind

    Science.gov (United States)

    Lazarus, Alan; Kasper, Justin; Stevens, Michael

    2003-01-01

    The objectives of this investigation are to determine the internal plasma structure of kinetic-scale and larger scale magnetic holes, and to determine their stability, their source mechanism(s), and their spatial extent. It is also of importance to determine the relationship between kinetic-scale holes and long-duration holes. As smaller and smaller magnetic depressions are investigated in order to make this a complete study, a robust criterion is necessary for distinguishing magnetic holes from random or unresolvable fluctuations in the interplanetary magnetic field. In order to resolve this ambiguity, we obtained from the MFI experiments magnetic field measurements from the WIND spacecraft at a time resolution of 46 to 184 ms over certain periods. We have also devised a measure of certainty for magnetic hole detections. The certainty factor, q, is defined as the difference between the mean magnetic field in the hole and the local magnetic field, in units of the local standard deviation of the field strength. For fullest generality, it is necessary to calculate this q over the range of available scales of interest, from 60 ms up to 300 s. This technique establishes a two dimensional matrix of relative probabilities that a hole of some duration (d) might exist in the data set at a given time (t). In identifying q-peaks in time and duration, we also come upon a natural method for distinguishing holes with internal structure from multiple holes in close proximity or holes nested inside of others. If two q-peaks are more than a half-width apart, they are simply said to be separate events.

  1. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  2. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  3. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  4. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  5. High speed CAMAC differential branch highway driver

    International Nuclear Information System (INIS)

    McMillan, D.E.; Nelson, R.O.; Poore, R.V.; Sunier, J.W.; Ross, J.J.

    1979-01-01

    A new CAMAC branch driver is described that incorporates several unusual features which combine to give reliable, high-speed performance. These include balanced line driver/receivers, stored CAMAC command lists, 8 DMA channels, pseudo LAMS, hardware priority encoding of LAMS, and hardware-implemented Q-controlled block transfers. 3 figures

  6. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  7. CMOS analog integrated circuits high-speed and power-efficient design

    CERN Document Server

    Ndjountche, Tertulien

    2011-01-01

    High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metaloxidesemiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components. CMOS: Analog Integrated Circuits: High-Speed and Power-Efficient Design describes the important tren

  8. Application of high speed photography for high current vacuum arcs

    NARCIS (Netherlands)

    Damstra, G.C.; Merck, W.F.H.; Vossen, J.W.G.L.; Janssen, M.F.P.; Bouwmeester, C.E.

    1998-01-01

    A high speed image detection system for 106 frames per second or 107 streaks per second has been developed for the testing of vacuum circuit breakers, using 10×16 optical fibres for light transfer to 160 fast photo diodes. The output of these diodes is multiplexed, AD converted in a 4 bit

  9. Self-Powered, High-Speed and Visible-Near Infrared Response of MoO(3-x)/n-Si Heterojunction Photodetector with Enhanced Performance by Interfacial Engineering.

    Science.gov (United States)

    Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang

    2015-11-25

    Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.

  10. Research on monitoring technology of axial gap change about high-speed rotating machinery

    International Nuclear Information System (INIS)

    Zhang Xiaochan; Liu Fanglei; Hu Shihua; Xie Qing; Li Zhen

    2014-01-01

    This paper describes that the only measuring point of high-speed rotating machinery (speed monitoring transducer) measuring the operation of the axial gap change and application. According to mechanism analysis the speed monitoring transducer's signal, prove its amplitude changes including the axial gap change information. To carry out the speed monitoring transducer qualitative and quantitative axial gap change research, Find the output signal amplitude and clearance change corresponding relationship formula of speed monitoring transducer, define the measurement method. Based on the above analsis, manufacture the single channel measurement devices and multiple unit measurement system, provide an important fault decision of high-speed rotating machinery, it can be applied to new equipment development and production. (authors)

  11. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  12. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    Science.gov (United States)

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  13. ECONOMIC REASONING MAXIMUM SLOPE IN DESIGN HIGH-SPEED LINES

    Directory of Open Access Journals (Sweden)

    CHERNYSHOVA O. S.

    2016-04-01

    Full Text Available Raising of problem The worldwide design standards high-speed lines are somewhat different. This is due to several reasons: different levels of design speed, differences of characteristics of rolling stock and, in particular, the features of the design plan and longitudinal profile, that are associated primarily with the conditions of the relief. In the design of high-speed railways in Ukraine should take into account these features and determine what the maximum slope values can be used in difficult conditions, as well as how it will affect the operational and capital costs. Purpose. To determine the optimal design parameters of the longitudinal profile. Conclusion. The results are based not only on technical, but also economic indicators and allow the assessment of the necessary capital expenditures and expected cost of the railway in the future. Analytical dependences, to predict the expected operating costs of the railway, depending on the maximum slope, its length and the total length of the section.

  14. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  15. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  16. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Directory of Open Access Journals (Sweden)

    Fu Yanbing

    2013-01-01

    Full Text Available This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transport and then calculate its carbon dioxide mitigation benefit. The numerical example shows that the carbon dioxide mitigation benefit of high-speed railway is better than that of road transport from the whole life cycle perspective.

  17. Preliminary tests of a high speed vertical axis windmill model

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S

    1971-01-01

    This report discusses a fixed-pitch vertical axis windmill that combines the inherent simplicity of this type of machine with a high aerodynamic efficiency and a high relative velocity. A three-bladed rotor was selected as the basic design, having constant chord symmetric airfoil blades configured in a catenary curve such that the rotor diameter is equal to the rotor height. In wind tunnel tests using a 30 inch scale model, it was found that once this rotor was given a very low rotational speed, it picked up speed and ran at a rotor tip velocity/wind speed ratio greater than 1. The number of blades was varied in the testing. A maximum power coefficient of 0.67 was achieved at 17 ft/s wind speed at a tip speed/wind speed ratio of 7.25 for a 2-bladed rotor. Increasing the number of blades above 3 did not result in higher power. The rotor could operate in gusts which double the mean wind velocity. Examination of Reynolds number effects, and taking into account the scale of the model, it was concluded that a full-scale windmill could run at lower velocity ratios than those predicted by the model tests, and that it could self-start under no-load conditions if the cut-in rpm are at least half the rpm for maximum power at the prevailing wind speed. Preliminary estimates show that a 15 ft diameter windmill of this design, designed to operate with a safety factor of 2.5 up to a maximum wind speed of 60 ft/s, would weigh ca 150 lb and could be marketed for ca $60.00, excluding the driven unit, if sufficient quantities were produced to make tooling costs negligible. Similarly, a 30 ft windmill would weigh ca 1000 lb and cost ca $400.00. 2 refs., 6 figs.

  18. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  19. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  20. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  1. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  2. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  3. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  4. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    DEFF Research Database (Denmark)

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m. ...... performance using sensor fusion of radar and computer vision....

  5. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  6. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    Science.gov (United States)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  7. On the catalysis of the electroweak vacuum decay by black holes at high temperature

    Science.gov (United States)

    Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N.

    2018-04-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We estimate the barrier for the transition by the ADM mass of this configuration, computed through the temperature-corrected Higgs potential. We find that the exponential suppression of the nucleation rate can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term ξ R h^2.

  8. Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Aliev, Alikram N

    2007-01-01

    We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes

  9. System Design of a Cheetah Robot Toward Ultra-high Speed

    OpenAIRE

    Mantian Li; Xin Wang; Wei Guo; Pengfei Wang; Lining Sun

    2014-01-01

    High-speed legged locomotion pushes the limits of the most challenging problems of design and development of the mechanism, also the control and the perception method. The cheetah is an existence proof of concept of what we imitate for high-speed running, and provides us lots of inspiration on design. In this paper, a new model of a cheetah-like robot is developed using anatomical analysis and design. Inspired by a biological neural mechanism, we propose a novel control method for controlling...

  10. Hierarchical micro-mobility management in high-speed multihop access networks

    Institute of Scientific and Technical Information of China (English)

    TANG Bi-hua; MA Xiao-lei; LIU Yuan-an; GAO Jin-chun

    2006-01-01

    This article integrates the hierarchical micro-mobility management and the high-speed multihop access networks (HMAN), to accomplish the smooth handover between different access routers. The proposed soft handover scheme in the high-speed HMAN can solve the micro-mobility management problem in the access network. This article also proposes the hybrid access router (AR) advertisement scheme and AR selection algorithm, which uses the time delay and stable route to the AR as the gateway selection parameters. By simulation, the proposed micro-mobility management scheme can achieve high packet delivery fraction and improve the lifetime of network.

  11. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    International Nuclear Information System (INIS)

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  12. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  13. Floating and sinking: the imprint of massive scalars around rotating black holes.

    Science.gov (United States)

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-09

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  14. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  15. Dramatic Outburst Reveals Nearest Black Hole

    Science.gov (United States)

    2000-01-01

    Scientists have discovered the closest black hole yet, a mere 1,600 light years from Earth. Its discovery was heralded by four of the most dramatic rapid X-ray intensity changes ever seen from one star. Astronomers from the Massachusetts Institute of Technology (MIT) and the National Science Foundation's National Radio Astronomy Observatory (NRAO) announced their findings at the American Astronomical Society's meeting in Atlanta. The black hole in the constellation Sagittarius, along with a normal star dubbed V4641 Sgr, form a violent system that briefly flooded part of our Milky Way Galaxy with X-rays and ejected subatomic particles moving at nearly the speed of light one day last September. At the peak of its X-ray output, V4641 Sgr was the brightest X-ray emitter in the sky. Astronomers call this type of system an X-ray nova because it suddenly becomes a bright source of X-rays, but this object shows characteristics never seen in an X-ray nova. "V4641 Sgr turns on and off so fast that it seems to represent a new subclass of X-ray novae," said Donald A. Smith, postdoctoral associate in MIT's Center for Space Research. Smith worked on data from this object with MIT principal research scientist Ronald Remillard and NRAO astronomer Robert Hjellming. "In X-rays, the intensity rose by a factor of more than 1,000 in seven hours, then dropped by a factor of 100 in two hours," Remillard said. The radio emission was seen as an image of an expanding "jet" of particles shooting out from the binary system. After reaching a maximum, the radio intensity dropped by a factor of nearly 40 within two days. "Radio telescopes give us a quick glimpse of something moving at a fantastically high velocity," Hjellming said. Black holes harbor enormous gravitational force that can literally rip the gas away from a nearby star. This transfer of gas is visible in many forms of radiation. Both orbiting X-ray telescopes and ground-based radio and optical telescopes saw the outburst of V4641

  16. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  17. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  18. The new AGV high-speed train; Der neue Hochgeschwindigkeitszug AGV

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.

    2008-07-01

    On 5th February 2008, Alstom lifted the veil on its new AGV high speed-train. With articulated carriages like the TGV, the AGV has a distributed drive system. Designed for a commercial speed of 360 km/h, the modular architecture of the AGV enables it to be built in a variety of configurations. (orig.)

  19. The Accretion Disk Wind in the Black Hole GRS 1915 + 105

    Science.gov (United States)

    Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-01-01

    We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  20. High-speed PIV applied to the wake of the NASA CRM model in ETW at high Re-number stall conditions for sub- and transonic speeds

    OpenAIRE

    Konrath, Robert; Geisler, Reinhard; Otter, Dirk; Philipp, Florian; Ehlers, Hauke; Agocs, Janos; Quest, Jürgen

    2015-01-01

    Within the framework of the EU project ESWIRP the Particle Image Velocimetry (PIV) using high-speed camera and laser has been used to measure the turbulent flow in the wake of a stalled aircraft wing. The measurements took place on the Common Research Model (CRM) provided by NASA in the pressurized cryogenic European Transonic Wind tunnel (ETW). A specific cryo-PIV system has been used and adapted for using high-speed PIV components under the cryogenic conditions of the wind tunnel faci...

  1. Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar

    Science.gov (United States)

    Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin

    2018-04-01

    More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.

  2. High mobility of the strongly confined hole gas in AgTaO3/SrTiO3

    KAUST Repository

    Nazir, Safdar

    2012-05-18

    A theoretical study of the two-dimensional hole gas at the (AgO)−/(TiO2)0 p-type interface in the AgTaO3/SrTiO3 (001) heterostructure is presented. The Ag 4d states strongly hybridize with the O 2p states and contribute to the hole gas. It is demonstrated that the holes are confined to an ultra thin layer (∼4.9Å) with a considerable carrier density of ∼1014cm−2. We estimate a hole mobility of 18.6 cm2 V−1 s−1, which is high enough to enable device applications.

  3. High mobility of the strongly confined hole gas in AgTaO3/SrTiO3

    KAUST Repository

    Nazir, Safdar; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2012-01-01

    A theoretical study of the two-dimensional hole gas at the (AgO)−/(TiO2)0 p-type interface in the AgTaO3/SrTiO3 (001) heterostructure is presented. The Ag 4d states strongly hybridize with the O 2p states and contribute to the hole gas. It is demonstrated that the holes are confined to an ultra thin layer (∼4.9Å) with a considerable carrier density of ∼1014cm−2. We estimate a hole mobility of 18.6 cm2 V−1 s−1, which is high enough to enable device applications.

  4. High speed computer assisted tomography

    International Nuclear Information System (INIS)

    Maydan, D.; Shepp, L.A.

    1980-01-01

    X-ray generation and detection apparatus for use in a computer assisted tomography system which permits relatively high speed scanning. A large x-ray tube having a circular anode (3) surrounds the patient area. A movable electron gun (8) orbits adjacent to the anode. The anode directs into the patient area xrays which are delimited into a fan beam by a pair of collimating rings (21). After passing through the patient, x-rays are detected by an array (22) of movable detectors. Detector subarrays (23) are synchronously movable out of the x-ray plane to permit the passage of the fan beam

  5. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  6. Comparison between Laser and Stamping without Die (SWD for Micro Tapered Hole Forming

    Directory of Open Access Journals (Sweden)

    Yung-Chou Hung

    2016-03-01

    Full Text Available The forming of a micro tapered hole is based on nanosecond pulsed laser processing, which conforms to fast processing time and high throughput; however, the microhole quality should be improved. Micro stamping is a technology providing high precise size and speed. The greatest difficulty in forming a microhole by micro stamping is the precision alignment of the punch head to the lower die. In order to overcome the difficulty, we proposed a concept of stamping without die (SWD. Without a lower die, the tapered punch head was directly applied to the workpiece for micro stamping, and a thicker workpiece surrounding the punching area provides a better support to the stamping process. Thus, a successful forming of micro tapered holes is completed. The micro tapered hole depth is 300 μm, and the maximum ratio of inlet to outlet diameter is 18:1. In order to reduce the number of experiments, the finite element analysis software DEFORM-3D was used for forming analysis. The simulation forecast result was compared with the experimental processing, which was well validated. Under different experimental parameters of laser energy and defocusing distance, drilling results by two methods show that the microhole quality by stamping process is better than by laser processing.

  7. Energy Efficient Control of High Speed IPMSM Drives - A Generalized PSO Approach

    Directory of Open Access Journals (Sweden)

    GECIC, M.

    2016-02-01

    Full Text Available In this paper, a generalized particle swarm optimization (GPSO algorithm was applied to the problems of optimal control of high speed low cost interior permanent magnet motor (IPMSM drives. In order to minimize the total controllable electrical losses and to increase the efficiency, the optimum current vector references are calculated offline based on GPSO for the wide speed range and for different load conditions. The voltage and current limits of the drive system and the variation of stator inductances are all included in the optimization method. The stored optimal current vector references are used during the real time control and the proposed algorithm is compared with the conventional high speed control algorithm, which is mostly voltage limit based. The computer simulations and experimental results on 1 kW low cost high speed IPMSM drive are discussed in details.

  8. Life-cycle assessment of high-speed rail: the case of California

    International Nuclear Information System (INIS)

    Chester, Mikhail; Horvath, Arpad

    2010-01-01

    The state of California is expected to have significant population growth in the next half-century resulting in additional passenger transportation demand. Planning for a high-speed rail system connecting San Diego, Los Angeles, San Francisco, and Sacramento as well as many population centers between is now underway. The considerable investment in California high-speed rail has been debated for some time and now includes the energy and environmental tradeoffs. The per-trip energy consumption, greenhouse gas emissions, and other emissions are often compared against the alternatives (automobiles, heavy rail, and aircraft), but typically only considering vehicle operation. An environmental life-cycle assessment of the four modes was created to compare both direct effects of vehicle operation and indirect effects from vehicle, infrastructure, and fuel components. Energy consumption, greenhouse gas emissions, and SO 2 , CO, NO X , VOC, and PM 10 emissions were evaluated. The energy and emission intensities of each mode were normalized per passenger kilometer traveled by using high and low occupancies to illustrate the range in modal environmental performance at potential ridership levels. While high-speed rail has the potential to be the lowest energy consumer and greenhouse gas emitter, appropriate planning and continued investment would be needed to ensure sustained high occupancy. The time to environmental payback is discussed highlighting the ridership conditions where high-speed rail will or will not produce fewer environmental burdens than existing modes. Furthermore, environmental tradeoffs may occur. High-speed rail may lower energy consumption and greenhouse gas emissions per trip but can create more SO 2 emissions (given the current electricity mix) leading to environmental acidification and human health issues. The significance of life-cycle inventorying is discussed as well as the potential of increasing occupancy on mass transit modes.

  9. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  10. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  11. The black hole information paradox and highly squeezed interior quantum fluctuations

    Science.gov (United States)

    Oshita, Naritaka

    2017-10-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox.

  12. The black hole information paradox and highly squeezed interior quantum fluctuations

    International Nuclear Information System (INIS)

    Oshita, Naritaka

    2017-01-01

    Almheiri, Marolf, Polchinski, and Sully argued that, for a consistent black hole evaporation process, the horizon of a sufficiently old black hole should be replaced by a ‘firewall’ at which an infalling observer burns up, which obviously leads to the violation of the equivalence principle. We propose that once the infalling partner of an outgoing Hawking particle approaches a black hole singularity, it experiences decoherence and the loss of its entanglement with the outgoing Hawking particle. This implies we would no longer need firewalls to avoid the black hole information paradox. (paper)

  13. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiling; Shen, Zhonghua, E-mail: shenzh@njust.edu.cn [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Lomonosov, Alexey M. [Faculty of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); General Physics Institute, Russian Academy of Sciences, 119991 Moscow (Russian Federation)

    2016-06-07

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  14. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  15. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  16. High-speed photography and holography of laser induced breakdown in liquids

    International Nuclear Information System (INIS)

    Lauterborn, W.

    1979-01-01

    Optical breakdown phenomena in liquids due to focused ruby laser light are investigated by high-speed photography and holography. Special attention is given the dynamics of the cavities produced in the liquid upon breakdown as they can be expected to become a powerful research tool in cavitation physics. To this end the production of three-dimensional breakdown configurations would be desirable as well as their investigation by high-speed holographic means. Both problems are presently under study. To achieve multiple breakdown at preselected points in the liquid a grating-lens assembly and digital holograms in photoresist are used. To film the motion of the cavities high-speed holocinematographic methods are developed. By now four to eight holograms can be taken at a rate of 10 to 20 kHz. (author)

  17. [Injection Pressure Evaluation of the New Venous Catheter with Side Holes for Contrast-enhanced CT/MRI].

    Science.gov (United States)

    Fukuda, Junya; Arai, Keisuke; Miyazawa, Hitomi; Kobayashi, Kyouko; Nakamura, Junpei; Suto, Takayuki; Tsushima, Yoshito

    2018-01-01

    The simulation study was conducted for the new venous catheter with side holes of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) to evaluate the infusion pressure on four contrast media and several injection speeds. All infusion pressure of the new venous catheter with side holes were less than 15 kg/cm 2 as limitation of extension tube and also reduced the infusion pressure by 15% at the maximum compared to the catheter with single hole. The results suggest that the new venous catheter with side holes can reduce the infusion pressure by power injection of contrast-enhanced CT and MRI.

  18. Chaotic Dynamics of Cage Behavior in a High-Speed Cylindrical Roller Bearing

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available This paper presents a mathematical model to investigate the nonlinear dynamic behavior of cage in high-speed cylindrical bearing. Variations of cage behavior due to varying cage eccentricity and cage guidance gap are observed. Hydrodynamic behavior in cage contacts is taken into consideration for a more realistic calculation of acting forces owing to high working speed. Analysis of real-time cage dynamic behavior on radial plane is carried out using chaos theory based on the theoretical and mathematical model established in the paper. The analytical results of this paper provide a solid foundation for designing and manufacturing of high-speed cylindrical roller bearing.

  19. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  20. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  1. An engineer's guide to automated testing of high-speed interfaces

    CERN Document Server

    Moreira, Jose

    2010-01-01

    Providing a complete introduction to the state-of-the-art in high-speed digital testing with automated test equipment (ATE), this practical resource is the first book focus exclusively on this increasingly important topic. Featuring clear examples, this one-stop reference covers all critical aspects of the subject, from high-speed digital basics, ATE instrumentation for digital applications, and test and measurements, to production testing, support instrumentation and text fixture design. This in-depth volume also discusses at advanced ATE topics, such as multiplexing of ATE pin channels and t

  2. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  3. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  4. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  5. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  6. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  7. Teaching high-speed photography and photo-instrumentation

    Science.gov (United States)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  8. A New Look at Speeding Outflows

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations

  9. High energy colliders as black hole factories: The end of short distance physics

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Thomas, Scott

    2002-01-01

    If the fundamental Planck scale is of order of a TeV, as is the case in some extra-dimension scenarios, future hadron colliders such as the CERN Large Hadron Collider will be black hole factories. The nonperturbative process of black hole formation and decay by Hawking evaporation gives rise to spectacular events with up to many dozens of relatively hard jets and leptons with a characteristic ratio of hadronic to leptonic activity of roughly 5:1. The total transverse energy of such events is typically a sizable fraction of the beam energy. Perturbative hard scattering processes at energies well above the Planck scale are cloaked behind a horizon, thus limiting the ability to probe short distances. The high energy black hole cross section grows with energy at a rate determined by the dimensionality and geometry of the extra dimensions. This dependence therefore probes the extra dimensions at distances larger than the Planck scale

  10. High speed video recording system on a chip for detonation jet engine testing

    Directory of Open Access Journals (Sweden)

    Samsonov Alexander N.

    2018-01-01

    Full Text Available This article describes system on a chip development for high speed video recording purposes. Current research was started due to difficulties in selection of FPGAs and CPUs which include wide bandwidth, high speed and high number of multipliers for real time signal analysis implementation. Current trend of high density silicon device integration will result soon in a hybrid sensor-controller-memory circuit packed in a single chip. This research was the first step in a series of experiments in manufacturing of hybrid devices. The current task is high level syntheses of high speed logic and CPU core in an FPGA. The work resulted in FPGA-based prototype implementation and examination.

  11. Evaluation of a new device for sterilizing dental high-speed handpieces

    DEFF Research Database (Denmark)

    Larsen, T; Andersen, H K; Fiehn, N E

    1997-01-01

    Dental high-speed turbines and handpieces can take up and expel microorganisms during operation and thus need regular sterilization. This study established a method for validating devices used to sterilize high-speed turbines and handpieces. The air and water channels and turbine chambers were...... contaminated with suspensions of Streptococcus salivarius or endospores of Bacillus stearothermophilus. The effect of flushing and/or autoclaving performed by a new device combining both procedures was evaluated by counting the number of viable bacteria recovered from these devices. Further, the effect...... on clinically used handpieces was evaluated. In an initial experiment, the device partially reduced S. salivarius, and the endospores survived. In a second experiment, a 5 to 6 log reduction of S. salivarius in air and water channels was obtained. No growth was observed in clinically used high-speed handpieces...

  12. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  13. High capacity, high speed histogramming data acquisition memory

    International Nuclear Information System (INIS)

    Epstein, A.; Boulin, C.

    1996-01-01

    A double width CAMAC DRAM store module was developed for use as a histogramming memory in fast time-resolved synchrotron radiation applications to molecular biology. High speed direct memory modify (3 MHz) is accomplished by using a discrete DRAM controller and fast page mode access. The module can be configured using standard SIMMs to sizes of up to 64M-words. The word width is 16 bit and the module can handle overflows by storing the overflow addresses in a dedicated FIFO. Simultaneous front panel DMM/DMI access and CAMAC readout of the overflow addresses is supported

  14. Development of embedded real-time and high-speed vision platform

    Science.gov (United States)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  15. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  16. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  17. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  18. Collisions Around a Black Hole Mean Mealtime

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    reverses course and migrates outward again as a brown dwarf.Metzger and Stone demonstrate that the timescale for this process is shorter than the time delay expected between successive EMRIs. The likelihood is high, they show, that two consecutive EMRIs would collide while one is inspiraling and the other is outspiraling.Results of a CollisionSchematic diagram (not to scale) showing how two circular EMRI orbits can intersect as the main-sequence star migrates inward (blue) and the brown dwarf very slowly migrates outward (red). [Metzger Stone 2017]Because both stars are deep in the black holes gravitational well, they collide with enormous relative velocities ( 10% the speed of light!). If this collision is head-on, one or both stars will be completely destroyed. The resulting gas then accretes onto the black hole, producing a flare very similar to a classical tidal disruption event.If the stars instead meet on a grazing collision, Metzger and Stone show that this liberates gas from at least one of the stars. The gas forms an accretion disk around the black hole, causing a transient flare similar to some of the harder-to-explain flares weve observed that dont quite fit our models for tidal disruption events.In this latter scenario, the stars survive to encounter each other again, decades to millennia later. These grazing collisions between the pair can continue to produce quasi-periodic flares for thousands of years or longer.Metzger and Stone argue that EMRI collisions have the potential to explain some of the flares from supermassive black holes that we had previously attributed to tidal disruption events. More detailed modeling will allow us to explore this idea further in the future.CitationBrian D. Metzger and Nicholas C. Stone 2017 ApJ 844 75. doi:10.3847/1538-4357/aa7a16

  19. Grade Crossing Protection in High-Speed, High-Density, Passenger-Service Rail Corridors

    Science.gov (United States)

    1973-01-01

    The report is a preliminary examination of special aspects of grade crossing protection for operation of high-speed passenger trains in rail corridors for which complete grade separation is not possible. Overall system needs and constraints are indic...

  20. Laser cut hole matrices in novel armour plate steel for appliqué battlefield vehicle protection

    Directory of Open Access Journals (Sweden)

    Daniel J. Thomas

    2016-10-01

    Full Text Available During this research, experimental rolled homogeneous armour steel was cast, annealed and laser cut to form an appliqué plate. This Martensitic–Bainitic microstructure steel grade was used to test a novel means of engineering lightweight armour. It was determined that a laser cutting speed of 1200 mm/min produced optimum hole formations with limited distortion. The array of holes acts as a double-edged solution, in that they provide weight saving of 45%, providing a protective advantage and increasing the surface area. Data collected were used to generate laser cut-edge hole projections in order to identify the optimum cutting speed, edge condition, cost and deformation performance. These parameters resulted in the generation of a surface, with less stress raising features. This can result in a distribution of stress across the wider surface. Provided that appropriate process parameters are used to generate laser cut edges, then the hardness properties of the surface can be controlled. This is due to compressive residual stresses produced in the near edge region as a result of metallurgical transformations. This way the traverse cutting speed parameter can be adjusted to alter critical surface characteristics and microstructural properties in close proximity to the cut-edge. A relationship was identified between the width of the laser HAZ and the hardness of the cut edge. It is the thickness of the HAZ that is affected by the laser process parameters which can be manipulated with adjusting the traverse cutting speed.

  1. High speed UNIBUS-VME interface

    International Nuclear Information System (INIS)

    Olmos, P.

    1987-01-01

    An interface between VME an the UNIBUS of PDP or VAX computer is presented. The system supports high speed parallel communication (up to 1MB/S) and is composed of two modules. One of these is a commercial DR11M board which performs DMA transfers between UNIBUS and the external word. The other is a VME module specifically developed for this application. The interface has been tested under VMS operating system in VAX and VALET-PLUS system for the VME Bus. We describe in detail the VME module and its connection with the DR11M. Software, both in WMS and VALET, is also described. (Author) 7 refs

  2. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  3. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  4. Application of oblique plane microscopy to high speed live cell imaging

    Science.gov (United States)

    Kumar, Sunil; Wilding, Dean; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken T.; Dunsby, Chris

    2011-07-01

    Oblique Plane Microscopy (OPM) is a light sheet microscopy technique that combines oblique illumination with correction optics that tilt the focal plane of the collection system. OPM can be used to image conventionally mounted specimens on coverslips or tissue culture dishes and has low out-of-plane photobleaching and phototoxicity. No moving parts are required to achieve an optically sectioned image and so high speed optically sectioned imaging is possible. We present high speed 2D and 3D optically sectioned OPM imaging of live cells using a high NA water immersion lens.

  5. Optimum Design of High Speed Prop-Rotors

    Science.gov (United States)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  6. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  7. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  8. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    Czech Academy of Sciences Publication Activity Database

    Vonnahme, T.R.; Devetter, Miloslav; Žárský, J.D.; Šabacká, M.; Elster, Josef

    2016-01-01

    Roč. 13, č. 3 (2016), s. 659-674 ISSN 1726-4170 Institutional support: RVO:60077344 ; RVO:67985939 Keywords : microalgal communities * cryoconite holes * high-Arctic glaciers * Svalbard Subject RIV: EH - Ecology, Behaviour Impact factor: 3.851, year: 2016

  9. A High Speed Mobile Communication System implementing Bicasting Architecture on the IP Layer

    OpenAIRE

    Yamada, Kazuhiro

    2012-01-01

    Having a broadband connection on high speed rails is something that business travelers want most. Increasing number of passengers is requesting even higher access speeds. We are proposing the Media Convergence System as an ideal communication system for future high speed mobile entities. The Media Convergence System recognizes plural wireless communication media between the ground network and each train, and then traffic is load-balanced over active media which varies according to circumstanc...

  10. [Comfort of crew and passengers and atmospheric pressure, noise, wind speed in high-speed train of Shijiazhuang-Taiyuan passenger dedicated line].

    Science.gov (United States)

    Zhai, Yi-biao; Huo, Wei; Liu, Qiao-ying; Chen, Bao-shan; Zhang, Jin-long; Shi, Lei

    2012-11-01

    To explore the crew and passengers' comfort on the Shijiazhuang-Taiyuan passenger dedicated line and physical factors, such as air pressure, noise, wind speed. Comfort investigation of all the crew (n = 244) and passengers (n = 377) on the Shijiazhuang-Taiyuan passenger dedicated line at speed of 250 km/h and 200 km/h and the detection of the air pressure, noise and wind speed were performed in 2011. Significantly higher ratio of comfortable feeling, lower ratio of seriously discomfortable feeling were observed in crew and passengers at 200 km/h compared with those at 250 km/h (P noise in passengers at 200 km/h. No significant difference was observed in ear discomfort induced by air pressure and noise among crew, and the duration of disappearance of discomfortable feeling among passengers between 200 km/h and 250 km/h. The noise in carriages exceeded the related standard when the high-speed train passing through the tunnels. The individuals feel more comfortable at 200 km/h than 250 km/h in this line., which may be related with rapid variation of wind speed and noise when the train passes through the tunnels with high speed.

  11. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  12. Etching holes in graphene supercapacitor electrodes for faster performance.

    Science.gov (United States)

    Ervin, Matthew H

    2015-06-12

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.

  13. Computational Model for Impact-Resisting Critical Thickness of High-Speed Machine Outer Protective Plate

    Science.gov (United States)

    Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei

    2018-05-01

    The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.

  14. Development of FPGA-based High Speed Serial Links for High Energy Physics Experiments

    CERN Document Server

    Perrella, Sabrina; Giordano, Raffaele; Izzo, Vincenzo

    Ricerca Simple Search Advanced Search Ultime accessioni Browse Browse by Author Browse by Subject Browse by Year Browse by Type Browse by Accessibilità del full-text Informazioni Policy About FAQ Contatti Perrella, Sabrina (2016) Development of FPGA-based High-Speed serial links for High Energy Physics Experiments. [Tesi di dottorato] [img] Text Perrella_Sabrina_28.pdf Download (59MB) | Preview [error in script] [error in script] Item Type: Tesi di dottorato Lingua: English Title: Development of FPGA-based High-Speed serial links for High Energy Physics Experiments Creators: Creators\tEmail Perrella, Sabrina\tsa.perrella@gmail.com Date: 31 March 2016 Number of Pages: 113 Institution: Università degli Studi di Napoli Federico II Department: Fisica Scuola di dottorato: Scienze fisiche Dottorato: Fisica fondamentale ed applicata Ciclo di dottorato: 28 Coordinatore del Corso di dottorato: nome\temail Velotta, Raffaele\tvelotta@na.infn.it Tutor: nome\temail Alviggi, Mariagrazia\tUNSPECIFIED Giordano, ...

  15. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  16. A high speed dual-gain preamplifier system with multiple channels

    International Nuclear Information System (INIS)

    Zhao Lei; Liu Shubin; Xian Ze; An Qi

    2008-01-01

    In this paper, a multiple-channel high speed preamplifier module with dual-gain is presented, together with its design principle, test methods and performance parameter. By proper choice of the chips and careful circuit design, the preamplifier accomplishes a fine performance in high speed analog signal processing. The 3 dB bandwidth is above 440 MHz for gain factor of 2 and 280 MHz for gain factor of 8, with the leading edge time of less than 2 ns. The preamplifier module has been used in the research project of β-delayed neutron emission of radionuclides in neutron-rich region. (authors)

  17. Gravitational Wave Speed: Undefined. Experiments Proposed

    Directory of Open Access Journals (Sweden)

    Daniel Russell

    2018-04-01

    Full Text Available Since changes in all 4 dimensions of spacetime are components of displacement for gravitational waves, a theoretical result is presented that their speed is undefined, and that the Theory of Relativity is not reliable to predict their speed. Astrophysical experiments are proposed with objectives to directly measure gravitational wave speed, and to verify these theoretical results. From the circumference of two merging black hole's final orbit, it is proposed to make an estimate of a total duration of the last ten orbits, before gravitational collapse, for comparison with durations of reported gravitational wave signals. It is proposed to open a new field of engineering of spacetime wave modulation with an objective of faster and better data transmission and communication through the Earth, the Sun, and deep space. If experiments verify that gravitational waves have infinite speed, it is concluded that a catastrophic gravitational collapse, such as a merger of quasars, today, would re-define the geometry and curvature of spacetime on Earth, instantly, without optical observations of this merger visible, until billions of years in the future.

  18. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  19. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  20. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  1. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  2. Real time data compactor (sparsifier) and 8 megabyte high speed FIFO for HEP

    International Nuclear Information System (INIS)

    Baumbaugh, A.E.; Knickerbocker, K.L.; Wegner, C.R.; Baumbaugh, B.W.; Ruchti, R.

    1985-10-01

    A Video-Data-Acquisition-System (VDAS) has been developed to record image data from a scintillating glass fiber-optic target developed for High Energy Physics. The major components of the VDAS are a flash ADC, a ''real time'' high speed data compactor, and high speed 8 megabyte FIFO memory. The data rates through the system are in excess of 30 megabytes/second. The compactor is capable of reducing the amount of data needed to reconstruct typical images by as much as a factor of 20. The FIFO uses only standard NMOS DRAMS and TTL components to achieve its large size and high speed at relatively low power and cost

  3. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  4. Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, B; Johnston, S; Greven, M; Shen, Z-X; Devereaux, T P [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory and Stanford University, Stanford, CA 94305 (United States); Schmitt, F; Meevasana, W; Motoyama, E M [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Lu, D H [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kim, C [Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749 (Korea, Republic of); Scalettar, R T [Physics Department, University of California-Davis, Davis, CA 95616 (United States)], E-mail: moritzb@slac.stanford.edu

    2009-09-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  5. High-speed vector-processing system of the MELCOM-COSMO 900II

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K; Mori, H; Fujikake, J; Sasaki, Y

    1983-01-01

    Progress in scientific and technical calculations has lead to a growing demand for high-speed vector calculations. Mitsubishi electric has developed an integrated array processor and automatic-vectorizing fortran compiler as an option for the MELCOM-COSMO 900II computer system. This facilitates the performance of vector calculations and matrix calculations, achieving significant gains in cost-effectiveness. The article outlines the high-speed vector system, includes discussion of compiler structuring, and cites examples of effective system application. 1 reference.

  6. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  7. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  8. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  9. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2016-01-01

    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  10. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  11. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075.

    Science.gov (United States)

    Ghasemi, Amir Hossein; Khorasani, Amir Mahyar; Gibson, Ian

    2018-01-16

    Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness) are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed) on thrust force, surface roughness, and dimensional accuracy (cylindricity) have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5-8% Mo) reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  12. Investigation on the Effect of a Pre-Center Drill Hole and Tool Material on Thrust Force, Surface Roughness, and Cylindricity in the Drilling of Al7075

    Directory of Open Access Journals (Sweden)

    Amir Hossein Ghasemi

    2018-01-01

    Full Text Available Drilling is one of the most useful metal cutting processes and is used in various applications, such as aerospace, electronics, and automotive. In traditional drilling methods, the thrust force, torque, tolerance, and tribology (surface roughness are related to the cutting condition and tool geometry. In this paper, the effects of a pre-center drill hole, tool material, and drilling strategy (including continuous and non-continuous feed on thrust force, surface roughness, and dimensional accuracy (cylindricity have been investigated. The results show that using pre-center drill holes leads to a reduction of the engagement force and an improvement in the surface quality and cylindricity. Non-continuous drilling reduces the average thrust force and cylindricity value, and High Speed Steels HSS-Mo (high steel speed + 5–8% Mo reduces the maximum quantity of cutting forces. Moreover, cylindricity is directly related to cutting temperature and is improved by using a non-continuous drilling strategy.

  13. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras

    Science.gov (United States)

    2017-10-01

    ARL-TR-8185 ● OCT 2017 US Army Research Laboratory Field Test Data for Detecting Vibrations of a Building Using High-Speed Video...Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras by Caitlin P Conn and Geoffrey H Goldman Sensors and...June 2016 – October 2017 4. TITLE AND SUBTITLE Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras 5a. CONTRACT

  14. Observations of electron phase-space holes driven during magnetic reconnection in a laboratory plasma

    Science.gov (United States)

    Fox, W.; Porkolab, M.; Egedal, J.; Katz, N.; Le, A.

    2012-03-01

    This work presents detailed experimental observations of electron phase-space holes driven during magnetic reconnection events on the Versatile Toroidal Facility. The holes are observed to travel on the order of or faster than the electron thermal speed, and are of large size scale, with diameter of order 60 Debye lengths. In addition, they have 3D spheroidal structure with approximately unity aspect ratio. We estimate the direct anomalous resistivity due to ion interaction with the holes and find it to be too small to affect the reconnection rate; however, the holes may play a role in reining in a tail of accelerated electrons and they indicate the presence of other processes in the reconnection layer, such as electron energization and electron beam formation.

  15. Robust output feedback cruise control for high-speed train movement with uncertain parameters

    International Nuclear Information System (INIS)

    Li Shu-Kai; Yang Li-Xing; Li Ke-Ping

    2015-01-01

    In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H ∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. (paper)

  16. High-Frequency Technical Trading: The Importance of Speed

    NARCIS (Netherlands)

    M.L. Scholtus (Martin); D.J.C. van Dijk (Dick)

    2012-01-01

    textabstractThis paper investigates the importance of speed for technical trading rule performance for three highly liquid ETFs listed on NASDAQ over the period January 6, 2009 up to September 30, 2009. In addition we examine the characteristics of market activity over the day and within subperiods

  17. The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Avelino, Pedro P.

    2010-01-01

    If you fall into a real astronomical black hole (choosing a supermassive black hole, to make sure that the tidal forces do not get you first), then you will probably meet your fate not at a central singularity, but rather in the exponentially growing, relativistic counter-streaming instability at the inner horizon first pointed out by Poisson and Israel (1990), who called it mass inflation. The chief purpose of this paper is to present a clear exposition of the physical cause and consequence of inflation in spherical, charged black holes. Inflation acts like a particle accelerator in that it accelerates cold ingoing and outgoing streams through each other to prodigiously high energies. Inflation feeds on itself: the acceleration is powered by the gravity produced by the streaming energy. The paper: (1) uses physical arguments to develop simple approximations that follow the evolution of inflation from ignition, through inflation itself, to collapse; (2) confirms that the simple approximations capture accurately the results of fully nonlinear one- and two-fluid self-similar models; (3) demonstrates that, counter-intuitively, the smaller the accretion rate, the more rapidly inflation exponentiates; (4) shows that in single perfect fluid models, inflation occurs only if the sound speed equals the speed of light, supporting the physical idea that inflation in single fluids is driven by relativistic counter-streaming of waves; (5) shows that what happens during inflation up to the Planck curvature depends not on the distant past or future, but rather on events happening only a few hundred black hole crossing times into the past or future; (6) shows that, if quantum gravity does not intervene, then the generic end result of inflation is not a general relativistic null singularity, but rather a spacelike singularity at zero radius.

  18. THE M BH-L SPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES

    International Nuclear Information System (INIS)

    Graham, Alister W.; Scott, Nicholas

    2013-01-01

    From a sample of 72 galaxies with reliable supermassive black hole masses M bh , we derive the M bh -(host spheroid luminosity, L) relation for (1) the subsample of 24 core-Sérsic galaxies with partially depleted cores, and (2) the remaining subsample of 48 Sérsic galaxies. Using K s -band Two Micron All Sky Survey data, we find the near-linear relation M bh ∝L 1.10±0.20 K s for the core-Sérsic spheroids thought to be built in additive dry merger events, while we find the relation M bh ∝L 2.73±0.55 K s for the Sérsic spheroids built from gas-rich processes. After converting literature B-band disk galaxy magnitudes into inclination- and dust-corrected bulge magnitudes, via a useful new equation presented herein, we obtain a similar result. Unlike with the M bh -(velocity dispersion) diagram, which is also updated here using the same galaxy sample, it remains unknown whether barred and non-barred Sérsic galaxies are offset from each other in the M bh -L diagram. While black hole feedback has typically been invoked to explain what was previously thought to be a nearly constant M bh /M Spheroid mass ratio of ∼0.2%, we advocate that the near-linear M bh -L and M bh -M Spheroid relations observed at high masses may have instead arisen largely from the additive dry merging of galaxies. We argue that feedback results in a dramatically different scaling relation, such that black hole mass scales roughly quadratically with the spheroid mass in Sérsic galaxies. We therefore introduce a revised cold-gas 'quasar' mode feeding equation for semi-analytical models to reflect what we dub the quadratic growth of black holes in Sérsic galaxies built amidst gas-rich processes. Finally, we use our new Sérsic M bh -L equations to predict the masses of candidate intermediate mass black holes in almost 50 low-luminosity spheroids containing active galactic nuclei, finding many masses between that of stellar mass black holes and supermassive black holes.

  19. Research on the Vibration Insulation of High-Speed Train Bogies in Mid and High Frequency

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2018-01-01

    Full Text Available According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.

  20. High speed subfractional HP-motor with permanent magnets

    International Nuclear Information System (INIS)

    Hanitsch, R.; Frenzel, B.

    1998-01-01

    During the last years an increasing demand for small permanent magnet motors can be detected, especially in the fields of medical applications. For heart assist devices there is the request to have small high speed devices operating at low voltage supply with almost no overtemperature. The design of a special hollow shaft motor for the speed range of 15000..25000 rpm and a torque of 4 to 8 mNm will be outlined. The low noise requirements and the high efficiency request lead to a design with an airgap winding. A thermal analysis is also done in order to meet the conditions given by the medical specialists. The features of the prototype will be presented and also the sensorless control strategy will be outlined. Measured and calculated data show good agreement. Focus will be on the magnetic circuit and the thermal behaviour and not on the control aspects of the motor. Specific parameters demonstrate the good quality of the drive system. (orig.)

  1. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  2. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  3. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  4. Clusters of PCS for high-speed computation for modelling of the climate

    International Nuclear Information System (INIS)

    Pabon C, Jose Daniel; Eslava R, Jesus Antonio; Montoya G, Gerardo de Jesus

    2001-01-01

    In order to create high speed computing capability, the Program of Post grade in Meteorology of the Department of Geosciences, National University of Colombia installed a cluster of 8 PCs for parallel processing. This high-speed processing machine was tested with the Climate Community Model (CCM3). In this paper, the results related to the performance of this machine are presented

  5. On The Export Control Of High Speed Imaging For Nuclear Weapons Applications

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott Avery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Altherr, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographic technologies and make recommendations about how future restrictions, if any, should be guided.

  6. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  7. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  8. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  9. Concept study of 20 MW high-speed permanent magnet synchronous motor for marine propulsion

    NARCIS (Netherlands)

    Bogomolov, M.D.

    2013-01-01

    High-speed permanent magnet synchronous machines are of great interest in the applications where high utilization factor and efficiency are required. Depending on application, power requirements change from kilowatts to megawatts. To investigate power limits of high-speed machines, the present

  10. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  11. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  12. L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

    DEFF Research Database (Denmark)

    Svendsen, Casper H.; Holck, Niels Ole; Galeazzi, Roberto

    2012-01-01

    This work addresses the issue of designing an adaptive robust control system to govern the steering of a high speed unmanned personal watercraft (PWC) maintaining equal performance across the craft’s envelope of operation. The maneuvering dynamics of a high speed PWC is presented and a strong var......-of-freedom surge-sway-yaw-roll model. An L1 adaptive autopilot is then designed, which allows to achieve fast adaption to system parameters’ changes and robustness of the closed loop system....

  13. High speed elevator s rise high rise building; Chokoso biru wo kakenoboru elevator

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, K. [Mitsubishi Electric Corp., Tokyo (Japan)

    1994-10-20

    The world`s fastest (750 m/min) elevators are operating in Yokohama Landmark Tower. This paper describes how engineers solved the technological problems to realize the high-speed elevator. Buildings in Japan have become higher and higher. At the present, this Tower is the highest in Japan (296 m, 70 stories). The Ministry of Construction is going to start a research team to study construction of buildings of the order of 1,000 m high. An important issue for a skyscraper is how to reduce the elevator space adapting to the increase of the number of inhabitants in the building. The basic solution is to increase the elevator speed and to plan the best elevator moving line. The 120 kW AC motor direct-driven winding machine that withstands the superhigh-speed suspending load was developed. Vibrations from the motor and the mechanical system are minimized and the touch-down tolerances for the elevator cage are controlled to {plus_minus}15 mm. The safety devices of the elevator include the emergency stopper of special ceramic material and the hydraulic shock absorber with the optimum reduction characteristic. 2 refs., 3 figs.

  14. Environmental risks of high-speed railway in China: Public participation, perception and trust

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2015-01-01

    Two decades ago China entered an era with rapid expansion of transport infrastructure. In an ambitious plan on high-speed railway development, China plans to have the longest high-speed railway network by 2020. Social concerns and anxiety with the adverse environmental and social risks and impacts

  15. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    Science.gov (United States)

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  16. From computational discovery to experimental characterization of a high hole mobility organic crystal.

    KAUST Repository

    Sokolov, Anatoliy N; Atahan-Evrenk, Sule; Mondal, Rajib; Akkerman, Hylke B; Sá nchez-Carrera, Roel S; Granados-Focil, Sergio; Schrier, Joshua; Mannsfeld, Stefan C B; Zoombelt, Arjan P; Bao, Zhenan; Aspuru-Guzik, Alá n

    2011-01-01

    can be hindered by synthetic and characterization difficulties. Here we show that in silico screening of novel derivatives of the dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene semiconductor with high hole mobility and air stability can lead

  17. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  18. Study on the machinability characteristics of superalloy Inconel 718 during high speed turning

    International Nuclear Information System (INIS)

    Thakur, D.G.; Ramamoorthy, B.; Vijayaraghavan, L.

    2009-01-01

    The present paper is an attempt of an experimental investigation on the machinability of superalloy, Inconel 718 during high speed turning using tungsten carbide insert (K20) tool. The effect of machining parameters on the cutting force, specific cutting pressure, cutting temperature, tool wear and surface finish criteria were investigated during the experimentation. The machining parameters have been optimized by measuring forces. The effect of machining parameters on the tool wear was examined through SEM micrographs. During high speed turning acoustic emission signal were collected and analyzed to understand the effect of cutting parameters during online. The research work findings will also provide useful economic machining solution by utilizing economical tungsten carbide tooling during high speed processing of Inconel 718, which is otherwise usually machined by costly PCD or CBN tools. The present approach and results will be helpful for understanding the machinability of Inconel 718 during high speed turning for the manufacturing engineers

  19. Automatic X-ray television rig for high-speed radiography of polycrystals

    International Nuclear Information System (INIS)

    Bezbakh, V.D.; Garasim, Yu.A.; Oshkaderov, S.P.; Pet'kov, V.V.

    1993-01-01

    The high-speed radiography method is used for studying the phase and structural transformation in metals and alloys during rapid changes in temperature. In order to improve the effectiveness of this method the Institute of Metal Physics, Ukrainian Academy of Sciences, has developed an automatic rig for high-speed radiography of polycrystalline materials using a television method for recording the x-ray diffraction patterns. The rig, described here, consists of an x-ray block, a vacuum chamber, a device for programmed electro-contact heating of specimens, a system for imaging and scanning x-ray diffraction patterns, and a system for collecting and analyzing the data. Focusing is carried out by the Zeeman-Bolin method. The new rig helps to significantly reduce the recording time and ensures adequate quality and reliability of the recorded diffraction image over a wide range of temperatures. Data using the rig is presented for high-speed radiography for cooling a specimen of G20 steel. 4 refs., 4 figs

  20. Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges

    International Nuclear Information System (INIS)

    Jalali, M; Maillard, P; Wüthrich, R

    2009-01-01

    Spark-assisted chemical engraving (SACE) is a flexible, simple and inexpensive method for machining electrically non-conductive materials. SACE is particularly interesting because of the high drilling speed that can be achieved compared to other micromachining technologies. In this paper, the issue of drilling speed decreasing from 100 µm s −1 to 10 µm s −1 for micro-hole depths more than 200–300 µm is analyzed. To understand better the material removal mechanism, with the target to eliminate this limit, a model for the material removal mechanism as a hybrid mechanism combining local heating and chemical etching is presented and compared with experimental data. The comparison between the model and experiment allowed the estimation of the machining temperature to be around 600 °C