WorldWideScience

Sample records for holes coronal emission

  1. Can coronal hole spicules reach coronal temperatures?

    Science.gov (United States)

    Madjarska, M. S.; Vanninathan, K.; Doyle, J. G.

    2011-08-01

    Aims: The present study aims to provide observational evidence of whether coronal hole spicules reach coronal temperatures. Methods: We combine multi-instrument co-observations obtained with the SUMER/SoHO and with the EIS/SOT/XRT/Hinode. Results: The analysed three large spicules were found to be comprised of numerous thin spicules that rise, rotate, and descend simultaneously forming a bush-like feature. Their rotation resembles the untwisting of a large flux rope. They show velocities ranging from 50 to 250 kms-1. We clearly associated the red- and blue-shifted emissions in transition region lines not only with rotating but also with rising and descending plasmas. Our main result is that these spicules although very large and dynamic, are not present in the spectral lines formed at temperatures above 300 000 K. Conclusions: In this paper we present the analysis of three Ca ii H large spicules that are composed of numerous dynamic thin spicules but appear as macrospicules in lower resolution EUV images. We found no coronal counterpart of these and smaller spicules. We believe that the identification of phenomena that have very different origins as macrospicules is due to the interpretation of the transition region emission, and especially the He ii emission, wherein both chromospheric large spicules and coronal X-ray jets are present. We suggest that the recent observation of spicules in the coronal AIA/SDO 171 Å and 211 Å channels probably comes from the existence of transition region emission there. Movie is available in electronic form at http://www.aanda.org

  2. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    prominences, have a significantly higher rate of occurrence in the vicinity of coronal .... coronal holes due to the birth of new holes or the growth of existing holes. .... Statistics of newly formed coronal hole areas (NFOCHA) associated with ...

  3. Dynamics of Coronal Hole Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, A. K.; Zurbuchen, T. H. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Antiochos, S. K.; DeVore, C. R. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wyper, P. F. [Universities Space Research Association, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2017-03-10

    Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.

  4. An equatorial coronal hole at solar minimum

    Science.gov (United States)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  5. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  6. Magnetic Topology of Coronal Hole Linkages

    Science.gov (United States)

    Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.

    2010-01-01

    In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.

  7. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  8. Extreme ultraviolet observations of coronal holes. II

    International Nuclear Information System (INIS)

    Bohlin, J.D.; Sheeley, N.R. Jr.

    1978-01-01

    Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface. Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973-74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the 'M-regions' which cause recurrent geomagnetic storms) and the polar cap holes. (Auth.)

  9. Solar Wind Associated with Near Equatorial Coronal Hole M ...

    Indian Academy of Sciences (India)

    2015-05-25

    May 25, 2015 ... coronal hole and solar wind. For both the wavelength bands, we also com- pute coronal hole radiative energy near the earth and it is found to be of similar order as that of solar wind energy. However, for the wavelength. 193 Å, owing to almost similar magnitudes of energy emitted by coronal hole and ...

  10. INTERCHANGE RECONNECTION AND CORONAL HOLE DYNAMICS

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.

    2010-01-01

    We investigate the effect of magnetic reconnection between open and closed fields, often referred to as 'interchange' reconnection, on the dynamics and topology of coronal hole boundaries. The most important and most prevalent three-dimensional topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully three-dimensional MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases, we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed fields. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary and find that the field remains well connected throughout this process. Our results, therefore, provide essential support for the quasi-steady models of the open field, because in these models the open and closed flux are assumed to remain topologically distinct as the photosphere evolves. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. On the other hand, the results argue against models in which open flux is assumed to diffusively penetrate deeply inside the closed field region under a helmet streamer. We discuss the implications of this work for coronal observations.

  11. Automated coronal hole identification via multi-thermal intensity segmentation

    Science.gov (United States)

    Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.

    2018-01-01

    Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.

  12. Solar wind acceleration in coronal holes

    International Nuclear Information System (INIS)

    Kopp, R.A.

    1978-01-01

    Past attempts to explain the large solar wind velocities in high speed streams by theoretical models of the expansion have invoked either extended nonthermal heating of the corona, heat flux inhibition, or direct addition of momentum to the expanding coronal plasma. Several workers have shown that inhibiting the heat flux at low coronal densities is probably not adequate to explain quantitatively the observed plasma velocities in high speed streams. It stressed that, in order to account for both these large plasma velocities and the low densities found in coronal holes (from which most high speed streams are believed to emanate), extended heating by itself will not suffice. One needs a nonthermal mechanism to provide the bulk acceleration of the high wind plasma close to the sun, and the most likely candidate at present is direct addition of the momentum carried by outward-propagating waves to the expanding corona. Some form of momentum addition appears to be absolutely necessary if one hopes to build quantitatively self-consistent models of coronal holes and high speed solar wind streams

  13. The physical structure of coronal holes

    International Nuclear Information System (INIS)

    Pneuman, G.W.

    1978-11-01

    The longitudinal geometrical structure of solar wind streams as observed at the orbit of earth is governed by two mechanisms - solar rotation and, most importantly, the geometry of the inner coronal magnetic fields. Here, we study the influence of the latter for the polar coronal hole observed by Skylab in 1973 and modeled by Munro and Jackson (1977). The influence of coronal heating on the properties of the solar wind in this geometry is also investigated. To do this, a crude exponentially damped heating function similar to that used by Kopp and Orrall (1976) is introduced into the solar wind equations. We find that increased heating produces higher temperatures in the inner corona but has little effect upon the temperature at 1 A.U. However, the density at 1 A.U. is increased significantly due to the increase in scale height. The most surprising consequence of coronal heating is its effect on the solar wind velocity, being that the velocity at 1 A.U. is actually decreased by heating in the inner corona. Physical reasons for this effect are discussed. (orig./WL) [de

  14. Calcium K-line network in coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K A [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    Microphotometry of calcium K-line photographs in the regions of polar coronal holes shows that the chromospheric network exterior to a hole has a slightly broader intensity distribution than that inside the hole itself, a fact which can be attributed to a greater number of bright network elements outside the hole. These bright elements presumably represent the enhanced network resulting from the dispersal of magnetic flux from old active regions, a hypothesis which is consistent with current ideas of coronal hole formation.

  15. Do coronal holes influence cosmic ray daily harmonics

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1977-01-01

    Coronal holes are identified by their low emissivity in either EUV (Munro and Withrobe, 1973) or in X-rays (Krieger et al, 1973). They are seats of unidirectional magnetic fields. Also, high speed solar wind streams originate in them. Also, high speed solar wind streams originate in then (Krieger et al, 1973; Neupert and Pizzo, 1974; Nolte et al, 1976). Coronal holes often extend over a wide range of heliolatitudes (Timothy et al, 1975). Elsewhere in the Proceedings we have presented results on the long term changes observed in the amplitudes and the times of maximum of the diurnal, the semidiurnal and the tridiurnal variations of cosmic rays, at low (neutrons) and at high (underground muons) primary rigidities (Ahluwalia, 1977). We have shown that a dramatic shift to early hours is noticeable in the times of maxima of the harmonics during 1971-72 period. In this paper we examine the nature of the contributions of off-ecliptic cosmic rays of high enough rigidity, streaming under the influence of large scale ordered interplanetary magnetic field set up by the coronal holes, to the cosmic ray daily harmonics. Some models are presented and discussed in a preliminary fashion. (author)

  16. Density Fluctuations in a Polar Coronal Hole

    Science.gov (United States)

    Hahn, Michael; D’Huys, Elke; Savin, Daniel Wolf

    2018-06-01

    We have measured the root-mean-square (rms) amplitude of intensity fluctuations, ΔI, in plume and interplume regions of a polar coronal hole. These intensity fluctuations correspond to density fluctuations. Using data from the Sun Watcher using the Active Pixel System detector and Image Processing on the Project for Onboard Autonomy (Proba2), our results extend up to a height of about 1.35 R ⊙. One advantage of the rms analysis is that it does not rely on a detailed evaluation of the power spectrum, which is limited by noise levels to low heights in the corona. The rms approach can be performed up to larger heights where the noise level is greater, provided that the noise itself can be quantified. At low heights, both the absolute ΔI, and the amplitude relative to the mean intensity, ΔI/I, decrease with height. However, starting at about 1.2 R ⊙, ΔI/I increases, reaching 20%–40% by 1.35 R ⊙. This corresponds to density fluctuations of Δn e/n e ≈ 10%–20%. The increasing relative amplitude implies that the density fluctuations are generated in the corona itself. One possibility is that the density fluctuations are generated by an instability of Alfvén waves. This generation mechanism is consistent with some theoretical models and with observations of Alfvén wave amplitudes in coronal holes. Although we find that the energy of the observed density fluctuations is small, these fluctuations are likely to play an important indirect role in coronal heating by promoting the reflection of Alfvén waves and driving turbulence.

  17. Measurements of EUV coronal holes and open magnetic flux

    International Nuclear Information System (INIS)

    Lowder, C.; Qiu, J.; Leamon, R.; Liu, Y.

    2014-01-01

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10 22 Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10 22 Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  18. Measurements of EUV coronal holes and open magnetic flux

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, C.; Qiu, J.; Leamon, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Liu, Y., E-mail: clowder@solar.physics.montana.edu [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-03-10

    Coronal holes are regions on the Sun's surface that map the footprints of open magnetic field lines. We have developed an automated routine to detect and track boundaries of long-lived coronal holes using full-disk extreme-ultraviolet (EUV) images obtained by SOHO/EIT, SDO/AIA, and STEREO/EUVI. We measure coronal hole areas and magnetic flux in these holes, and compare the measurements with calculations by the potential field source surface (PFSS) model. It is shown that, from 1996 through 2010, the total area of coronal holes measured with EIT images varies between 5% and 17% of the total solar surface area, and the total unsigned open flux varies between (2-5)× 10{sup 22} Mx. The solar cycle dependence of these measurements is similar to the PFSS results, but the model yields larger hole areas and greater open flux than observed by EIT. The AIA/EUVI measurements from 2010-2013 show coronal hole area coverage of 5%-10% of the total surface area, with significant contribution from low latitudes, which is under-represented by EIT. AIA/EUVI have measured much enhanced open magnetic flux in the range of (2-4)× 10{sup 22} Mx, which is about twice the flux measured by EIT, and matches with the PFSS calculated open flux, with discrepancies in the location and strength of coronal holes. A detailed comparison between the three measurements (by EIT, AIA-EUVI, and PFSS) indicates that coronal holes in low latitudes contribute significantly to the total open magnetic flux. These low-latitude coronal holes are not well measured with either the He I 10830 line in previous studies, or EIT EUV images; neither are they well captured by the static PFSS model. The enhanced observations from AIA/EUVI allow a more accurate measure of these low-latitude coronal holes and their contribution to open magnetic flux.

  19. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  20. Exploring the fine structure at the limb in coronal holes

    Science.gov (United States)

    Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai

    1994-01-01

    The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.

  1. EUV and radio spectrum of coronal holes

    Energy Technology Data Exchange (ETDEWEB)

    Chiuderi Drago, F [Osservatorio Astrofisico di Arcetri, Florence (Italy)

    1980-03-01

    From the intensity of 19 EUV lines whose formation temperature anti T ranges from 3 x 10/sup 4/ to 1.4 x 10/sup 6/, two different models of the transition region and corona for the cell-centre and the network are derived. It is shown that both these models give radio brightness temperatures systematically higher than the observed ones. An agreement with radio data can be found only with lines formed at low temperature (anti T < 8.5 x 10/sup 5/) by decreasing the coronal temperature and the emission measure. The possibility of resolving the discrepancy by using different ion abundances has also been investigated with negative results.

  2. The Longitudinal Evolution of Equatorial Coronal Holes

    Science.gov (United States)

    Krista, Larisza D.; McIntosh, Scott W.; Leamon, Robert J.

    2018-04-01

    In 2011, three satellites—the Solar-Terrestrial RElations Observatory A & B, and the Solar Dynamics Observatory (SDO)—were in a unique spatial alignment that allowed a 360° view of the Sun. This alignment lasted until 2014, the peak of solar cycle 24. Using extreme ultraviolet images and Hovmöller diagrams, we studied the lifetimes and propagation characteristics of coronal holes (CHs) in longitude over several solar rotations. Our initial results show at least three distinct populations of “low-latitude” or “equatorial” CHs (below 65^\\circ latitude). One population rotates in retrograde direction and coincides with a group of long-lived (over sixty days) CHs in each hemisphere. These are typically located between 30° and 55^\\circ , and display velocities of ∼55 m s‑1 slower than the local differential rotation rate. A second, smaller population of CHs rotate prograde, with velocities between ∼20 and 45 m s‑1. This population is also long-lived, but observed ±10° from the solar equator. A third population of CHs are short-lived (less than two solar rotations), and they appear over a wide range of latitudes (±65°) and exhibit velocities between ‑140 and 80 m s‑1. The CH “butterfly diagram” we developed shows a systematic evolution of the longer-lived holes; however, the sample is too short in time to draw conclusions about possible connections to dynamo-related phenomena. An extension of the present work to the 22 years of the combined SOHO–SDO archives is necessary to understand the contribution of CHs to the decadal-scale evolution of the Sun.

  3. Cyclical Variation of the Quiet Corona and Coronal Holes

    Indian Academy of Sciences (India)

    tribpo

    Key words. Coronagraphs—solar activity cycle—solar corona—total ... can be divided into the quiet sun (including coronal holes) and active regions. The ... regions has attracted attention and is termed as 'the extended solar cycle'. Here the.

  4. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    International Nuclear Information System (INIS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2016-01-01

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments

  5. LONG-TERM TREND OF SOLAR CORONAL HOLE DISTRIBUTION FROM 1975 TO 2014

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, K.; Tokumaru, M.; Hayashi, K.; Satonaka, D. [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa, Nagoya Aichi 464-8601 (Japan); Hakamada, K., E-mail: fujiki@isee.nagoya-u.ac.jp [Department of Natural Science and Mathematics, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2016-08-20

    We developed an automated prediction technique for coronal holes using potential magnetic field extrapolation in the solar corona to construct a database of coronal holes appearing from 1975 February to 2015 July (Carrington rotations from 1625 to 2165). Coronal holes are labeled with the location, size, and average magnetic field of each coronal hole on the photosphere and source surface. As a result, we identified 3335 coronal holes and found that the long-term distribution of coronal holes shows a similar pattern known as the magnetic butterfly diagram, and polar/low-latitude coronal holes tend to decrease/increase in the last solar minimum relative to the previous two minima.

  6. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  7. CME Interaction with Coronal Holes and Their Interplanetary Consequences

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.

    2008-01-01

    A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.

  8. Morphology and physical properties of solar coronal holes

    International Nuclear Information System (INIS)

    Rozelot, J.P.

    1983-01-01

    By their peculiar characteristics, coronal holes induce on Earth climatic variations and cyclic effects, not well known nowadays. Because of low electronical density and very low temperature, study of these holes was neglected. The author presents the results of the observations from discovery in the fifteens. He gives some new results, a theoretical model and not well resolved questions which can conduct to new methods of searching [fr

  9. The nature of micro CMEs within coronal holes

    Science.gov (United States)

    Bothmer, Volker; Nistico, Giuseppe; Zimbardo, Gaetano; Patsourakos, Spiros; Bosman, Eckhard

    Whilst investigating the origin and characteristics of coronal jets and large-scale CMEs identi-fied in data from the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) instrument suites on board the two STEREO satellites, we discovered transient events that originated in the low corona with a morphology resembling that of typical three-part struc-tured coronal mass ejections (CMEs). However, the CMEs occurred on considerably smaller spatial scales. In this presentation we show evidence for the existence of small-scale CMEs from inside coronal holes and present quantitative estimates of their speeds and masses. We interprete the origin and evolution of micro CMEs as a natural consequence of the emergence of small-scale magnetic bipoles related to the Sun's ever changing photospheric magnetic flux on various scales and their interactions with the ambient plasma and magnetic field. The analysis of CMEs is performed within the framework of the EU Erasmus and FP7 SOTERIA projects.

  10. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    Science.gov (United States)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  11. More Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  12. Automated Identification of Coronal Holes from Synoptic EUV Maps

    Science.gov (United States)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  13. Analysis of Solar Coronal Holes with Synoptic Magnetogram Data

    Science.gov (United States)

    Canner, A.; Kim, T. K.; Pogorelov, N.; Yalim, M. S.

    2017-12-01

    Coronal holes are regions in which the magnetic field of the Sun is open with high magnetic flux and low plasma density. Because of the low plasma beta in these regions, the open field lines transport plasma from the Sun throughout the heliosphere. Coronal hole area is closely related to the expansion factor of the magnetic flux tube, as demonstrated by Tokumaru et al. (2017). Following the approach of Tokumaru et al. (2017), we employ a potential field source surface model to identify the open field regions on the photosphere and estimate the area and expansion factor for each coronal hole. While Tokumaru et al. (2017) analyzed synoptic maps from Kitt Peak National Observatory for the period 1995-2011, we use different magnetograph observations with higher spatial resolution (e.g., SOHO-MDI) for the same time period. We compare the coronal hole area - expansion factor relationship with the original results of Tokumaru et al (2017). This work was supported by the NSF-funded Research Experience for Undergraduates program "Solar and Heliospheric Physics at UAH and MSFC" run by the University of Alabama in Huntsville in partnership with the Marshall Space Flight Center through grant AGS-1460767.

  14. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.; Temmer, Manuela [University of Graz, Institute of Physics, IGAM-Kanzelhöhe Observatory, Graz (Austria); Vennerstrom, Susanne [National Space Institute, DTU Space (Denmark); Vršnak, Bojan [Hvar Observatory, Faculty of Geodesy, Zagreb (Croatia); Heber, Bernd, E-mail: stefan.hofmeister@uni-graz.at [Universität Kiel, Institut für Experimentelle und Angewandte Physik, Kiel (Germany)

    2017-02-01

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO /AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO /AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 ± 1.6 G, and the percentaged unbalanced magnetic flux is 49 ± 16%. The mean magnetic field density, the mean unsigned magnetic field density, and the percentaged unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38% (81%) of the unbalanced magnetic flux of coronal holes arises from only 1% (10%) of the coronal hole area, clustered in magnetic flux tubes with field strengths >50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc>0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.

  15. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    We examined both X-ray and Magnetic field data in order to determine if there is a correlation between emerging magnetic flux and the production of Coronal jets. It was proposed that emerging flux can be a trigger to a coronal jet. The jet is thought to be caused when local bipoles reconnect or when a region of magnetic polarity emerges through a uniform field. In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was centered on the disk. Of the 15 that we studied 6 were shown to have an increase of magnetic flux within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  16. Influence of coronal holes on CMEs in causing SEP events

    International Nuclear Information System (INIS)

    Shen Chenglong; Yao Jia; Wang Yuming; Ye Pinzhong; Wang Shui; Zhao Xuepu

    2010-01-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events. (research papers)

  17. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  18. Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  19. Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes

    Science.gov (United States)

    Baikie, Tomi K.; Sterling, Alphonse C.; Falconer, David; Moore, Ronald L.; Savage, Sabrina L.

    2016-01-01

    Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked as 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a 'minifilament', and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 180 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 130 clearly-identifiable X-ray jet events and thus determined an event rate of over 17 jets per day per in the Hinode/XRT field of view. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex than presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program.

  20. The energy balance in coronal holes and average quiet-sun regions

    Science.gov (United States)

    Raymond, J. C.; Doyle, J. G.

    1981-01-01

    Emission measure curves are presented for average coronal hole and quiet-sun spectra taken during the Skylab mission by Vernazza and Reeves (1978), and the curves are used to discuss the energy balance in each region. Close-coupling calculations are used for the Be sequence, assuming a 10 level ion; for B sequence ions mainly distorted wave calculations in an 11 level ion are used, but close-coupling cross sections are used for some ions; for C and Mg sequence ions, distorted wave calculations are used with 15 and 10 level ions, respectively, and close-coupling results are used for Li-like ions with two levels. Results are presented and include the following: the coronal hole spectrum shows a smaller slope in the emission measure distribution, consistent with the expected outflow effects. It is concluded that the simple constant pressure models of static coronal loops of constant cross section are basically able to match the observed emission measure distribution of the average quiet sun between 1,000,000 and 10,000,000 K. However, the cell center and network distributions are respectively steeper and shallower than predicted by the detailed cooling curve.

  1. Examining the Properties of Jets in Coronal Holes

    Science.gov (United States)

    Gaulle, Owen; Adams, Mitzi L.; Tennant, A. F.

    2012-01-01

    Data from the Solar Dynamics Observatory (SDO) were used to look for triggers of jets in a coronal hole. It has been proposed that bright points affiliated with the jets are caused by either random collisions between magnetic elements or by magnetic flux emerging from the photosphere; either of which can give rise to magnetic reconnection. Images from the 193AA filter of the Atmospheric Imaging Assembly (AIA) were searched to identify and locate jets. Changes in the line-of-sight magnetic field prior to the time of the jet were sought in data from the Helioseismic Magnetic Imager (HMI). In total we studied 15 different jets that occurred over a two day period starting 2011-02-27 00:00:00 UTC and ending 2011-02-28 23:59:55 UTC. All of the jets were contained within a coronal hole that was close to disk center. Of the 15 that we studied 6 were shown to have an increase of the parameter B2 (where B is the line-of-sight component of the magnetic field), within one hour prior to the creation of the jet and 10 were within 3 hours before the event.

  2. Characteristics of Low-latitude Coronal Holes near the Maximum of Solar Cycle 24

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Reiss, Martin A.

    2017-01-01

    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO/AIA-193 filtergrams over the time range of 2011 January 01–2013 December 31. We analyze the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic fie...

  3. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  4. Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries

    Science.gov (United States)

    Stewart, G. A.; Bravo, S.

    1995-01-01

    Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.

  5. Areas of Polar Coronal Holes from 1996 Through 2010

    Science.gov (United States)

    Webber, Hess S. A.; Karna, N.; Pesnell, W. D.; Kirk, M. S.

    2014-01-01

    Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.

  6. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    Science.gov (United States)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  7. Relationship between coronal holes and high speed streams at L1: arrival times, durations, and intensities

    Science.gov (United States)

    Luo, B.; Bu, X.; Liu, S.; Gong, J.

    2017-12-01

    Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.

  8. Ulysses' rapid crossing of the polar coronal hole boundary

    International Nuclear Information System (INIS)

    McComas, D.J.; Riley, P.; Gosling, J.T.; Balogh, A.; Forsyth, R.

    1998-01-01

    The Ulysses spacecraft crossed from the slow dense solar wind characteristic of the solar streamer belt into the fast, less dense flow from the northern polar coronal hole over a very short interval (several days) in late March 1995. The spacecraft, which was at 1.35 AU and ∼19 degree north heliographic latitude, moving northward in its orbit, remained in the fast solar wind from then through summer 1996. This boundary crossing is unique in that the combination of the spacecraft motion and rotation of the structure past the spacecraft caused Ulysses to move smoothly and completely from one regime into the other. In this study we examine this crossing in detail. The crossing is marked by a region of enhanced pressure, typical of stream interaction regions, which extends ∼2x10 7 km across. We find that the transition between the slow and fast regimes occurs on several temporal, and hence spatial, scales. On the shortest scale ( 4 km) the stream interface is a tangential discontinuity where the proton and core electron densities and ion and electron pressures all drop while the magnetic pressure jumps to maintain a rough pressure balance. The alpha to proton ratio also jumps across the stream interface to reach the comparatively constant polar hole value of ∼4.3%. On larger scales (a few x10 6 km) the proton and alpha temperatures rise to their high-speed wind values. Finally, on the largest scale (∼10 8 km) the solar wind speed ramps up from ∼400kms -1 to ∼750kms -1 , typical of polar hole flows. While it seems likely that the stream interface maps back to a sharp boundary near the Sun, the large region of increasing flow speed suggests that there is also an extended gradient in solar wind source speed close to the Sun. copyright 1998 American Geophysical Union

  9. FORMATION OF CORONAL HOLES ON THE ASHES OF ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Karachik, Nina V.; Pevtsov, Alexei A.; Abramenko, Valentyna I.

    2010-01-01

    We investigate the formation of isolated non-polar coronal holes (CHs) on the remnants of decaying active regions (ARs) at the minimum/early ascending phase of sunspot activity. We follow the evolution of four bipolar ARs and measure several parameters of their magnetic fields including total flux, imbalance, and compactness. As regions decay, their leading and following polarities exhibit different dissipation rates: loose polarity tends to dissipate faster than compact polarity. As a consequence, we see a gradual increase in flux imbalance inside a dissipating bipolar region, and later a formation of a CH in place of more compact magnetic flux. Out of four cases studied in detail, two CHs had formed at the following polarity of the decaying bipolar AR, and two CHs had developed in place of the leading polarity field. All four CHs contain a significant fraction of magnetic field of their corresponding AR. Using potential field extrapolation, we show that the magnetic field lines of these CHs were closed on the polar CH at the North, which at the time of the events was in imbalance with the polar CH at the South. This topology suggests that the observed phenomenon may play an important role in transformation of toroidal magnetic field to poloidal field, which is a key step in transitioning from an old solar cycle to a new one. The timing of this observed transition may indicate the end of solar cycle 23 and the beginning of cycle 24.

  10. The Relation between Coronal Holes and Coronal Mass Ejections during the Rise, Maximum, and Declining Phases of Solar Cycle 23

    Science.gov (United States)

    Mohamed, A. A.; Gopalswamy, N; Yashiro, S.; Akiyama, S.; Makela, P.; Xie, H.; Jung, H.

    2012-01-01

    We study the interaction between coronal holes (CHs) and coronal mass ejections (CMEs) using a resultant force exerted by all the coronal holes present on the disk and is defined as the coronal hole influence parameter (CHIP). The CHIP magnitude for each CH depends on the CH area, the distance between the CH centroid and the eruption region, and the average magnetic field within the CH at the photospheric level. The CHIP direction for each CH points from the CH centroid to the eruption region. We focus on Solar Cycle 23 CMEs originating from the disk center of the Sun (central meridian distance =15deg) and resulting in magnetic clouds (MCs) and non-MCs in the solar wind. The CHIP is found to be the smallest during the rise phase for MCs and non-MCs. The maximum phase has the largest CHIP value (2.9 G) for non-MCs. The CHIP is the largest (5.8 G) for driverless (DL) shocks, which are shocks at 1 AU with no discernible MC or non-MC. These results suggest that the behavior of non-MCs is similar to that of the DL shocks and different from that of MCs. In other words, the CHs may deflect the CMEs away from the Sun-Earth line and force them to behave like limb CMEs with DL shocks. This finding supports the idea that all CMEs may be flux ropes if viewed from an appropriate vantage point.

  11. Radio emission from coronal and interplanetary shocks

    International Nuclear Information System (INIS)

    Cane, H.V.

    1987-01-01

    Observational data on coronal and interplanetary (IP) type II burst events associated with shock-wave propagation are reviewed, with a focus on the past and potential future contributions of space-based observatories. The evidence presented by Cane (1983 and 1984) in support of the hypothesis that the coronal (metric) and IP (kilometric) bursts are due to different shocks is summarized, and the fast-drift kilometric events seen at the same time as metric type II bursts (and designated shock-accelerated or shock-associated events) are characterized. The need for further observations at 0.5-20 MHz is indicated. 20 references

  12. Coronal Heating: Testing Models of Coronal Heating by Forward-Modeling the AIA Emission of the Ansample of Coronal Loops

    Science.gov (United States)

    Malanushenko, A. V.

    2015-12-01

    We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.

  13. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    Science.gov (United States)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  14. Determination of plasma parameters from soft X-ray images for coronal holes /open magnetic field configurations/ and coronal large-scale structures /extended closed-field configurations/

    Science.gov (United States)

    Maxson, C. W.; Vaiana, G. S.

    1977-01-01

    In connection with high-quality solar soft X-ray images the 'quiet' features of the inner corona have been separated into two sharply different components, including the strongly reduced emission areas or coronal holes (CH) and the extended regions of looplike emission features or large-scale structures (LSS). Particular central meridian passage observations of the prominent CH1 on August 21, 1973, are selected for a quantitative study. Histogram photographic density distributions for full-disk images at other central meridian passages of CH 1 are also presented, and the techniques of converting low photographic density data to deposited energy are discussed, with particular emphasis on the problems associated with the CH data.

  15. RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Karpen, J. T.; DeVore, C. R.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States); Pariat, E. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2017-01-01

    Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.

  16. A model for radio emission from solar coronal shocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J., E-mail: djwu@pmo.ac.cn [Purple Mountain Observatory, CAS, Nanjing 210008 (China)

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  17. A model for radio emission from solar coronal shocks

    International Nuclear Information System (INIS)

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-01-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  18. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    Science.gov (United States)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  19. Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2017-06-01

    We discuss the nature of the small areas of rapidly diverging, open magnetic flux that form in the strong unipolar fields at the peripheries of active regions (ARs), according to coronal extrapolations of photospheric field measurements. Because such regions usually have dark counterparts in extreme-ultraviolet (EUV) images, we refer to them as coronal holes, even when they appear as narrow lanes or contain sunspots. Revisiting previously identified “AR sources” of slow solar wind from 1998 and 1999, we find that they are all associated with EUV coronal holes; the absence of well-defined He i 1083.0 nm counterparts to some of these holes is attributed to the large flux of photoionizing radiation from neighboring AR loops. Examining a number of AR-associated EUV holes during the 2014 activity maximum, we confirm that they are characterized by wind speeds of ∼300–450 km s{sup −1}, O{sup 7+}/O{sup 6+} ratios of ∼0.05–0.4, and footpoint field strengths typically of order 30 G. The close spacing between ARs at sunspot maximum limits the widths of unipolar regions and their embedded holes, while the continual emergence of new flux leads to rapid changes in the hole boundaries. Because of the highly nonradial nature of AR fields, the smaller EUV holes are often masked by the overlying canopy of loops, and may be more visible toward one solar limb than at central meridian. As sunspot activity declines, the AR remnants merge to form much larger, weaker, and longer-lived unipolar regions, which harbor the “classical” coronal holes that produce recurrent high-speed streams.

  20. Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Directory of Open Access Journals (Sweden)

    Reiss Martin A.

    2015-01-01

    Full Text Available We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA, we prepared datasets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011–2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine (SVM, Linear Support Vector Machine, Decision Tree, and Random Forest, and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ≈ 0.90. Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.

  1. Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David

    2014-06-01

    We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program.

  2. Features of solar wind streams on June 21-28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes

    Science.gov (United States)

    Shugay, Yu. S.; Slemzin, V. A.; Rod'kin, D. G.

    2017-11-01

    Coronal sources and parameters of solar wind streams during a strong and prolonged geomagnetic disturbance in June 2015 have been considered. Correspondence between coronal sources and solar wind streams at 1 AU has been determined using an analysis of solar images, catalogs of flares and coronal mass ejections, solar wind parameters including the ionic composition. The sources of disturbances in the considered period were a sequence of five coronal mass ejections that propagated along the recurrent solar wind streams from coronal holes. The observed differences from typical in magnetic and kinetic parameters of solar wind streams have been associated with the interactions of different types of solar wind. The ionic composition has proved to be a good additional marker for highlighting components in a mixture of solar wind streams, which can be associated with different coronal sources.

  3. Comparison of the Scaling Properties of EUV Intensity Fluctuations in Coronal Holes to those in Regions of Quiet Sun

    Science.gov (United States)

    Cadavid, Ana Cristina; Lawrence, John K.; Jennings, Peter John

    2017-08-01

    We investigate the scaling properties of EUV intensity fluctuations seen in low-latitude coronal holes (CH) and in regions of Quiet Sun (QS), in signals obtained with the SDO/AIA instrument in the 193 Å waveband. Contemporaneous time series in the 171 and 211 Å wavebands are used for comparison among emissions at different heights in the transition region and low corona. Potential-field extrapolations of contemporaneous SDO/HMI line-of-sight magnetic fields provide a context in the physical environment. Detrended fluctuation analysis (DFA) shows that the variance of the fluctuations obeys a power-law as a function of temporal scales with periods in the range ~15-60 min. This scaling is characterized by a generalized Hurst exponent α. In QS regions, and in regions within CHs that include magnetic bipoles, the scaling exponent lies in the range 1.0 anti-correlated, turbulent-like, dynamical processes. Regions inside the coronal holes primarily associated with magnetic field of a dominant single polarity, have a generalized exponent (0.5 correlated (“persistent”) processes. The results indicate the influence of the magnetic fields on the dynamics of the emission.

  4. The effects of coronal holes on the propagation of solar energetic protons

    International Nuclear Information System (INIS)

    Kunches, Joseph M.; Zwickl, Ronald D.

    1999-01-01

    The accurate prediction of the start of a Solar Energetic Particle Event (SEP) is a high priority for space weather forecasters. The Space Environment Center (SEC) has recorded parameters related to SEPs since 1976, and that list includes a total of 134 events for the period 1976-1997. The onset times of individual events are variable, especially SEPs originating from the solar eastern hemisphere. An examination of the data shows the full set can be divided into two families -- those that begin at the geosynchronous satellite at a time consistent with what would be expected for activity from a given heliolongitude, and those whose onset is later than what accepted forecast techniques would predict. There are 21 'long onset' events in this historical record. Seeking to understand what factors distinguished the slow-to-arrive events, Helium I 1083.0 nm observations were examined for the presence of coronal holes at the times of the SEPs. It was found that all SEPs with long onset times had a coronal hole situated between the flare site and the footpoint of the interplanetary magnetic field line connecting to Earth ( Solar-Terrestrial Predictions-V, Hiraiso Solar-Terrestrial Research Center, Ibaraki, Japan). This coronal hole configuration is important for accurate predictions, although the hole may serve as merely a proxy for the plasma conditions that actually affect the propagation and acceleration of the protons. Since coronal holes are easily identifiable using Helium I and other wavelengths, operational forecasters can employ this technique to improve their predictions of SEPs

  5. Coronal Physics and the Chandra Emission Line Project

    Science.gov (United States)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  6. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    Science.gov (United States)

    Adams, Mitzi; Tennant, Allyn; Alexander, Caroline; Sterling, Alphonse; Moore, Ronald; Woolley, Robert

    2016-01-01

    We report on an eruption seen in a very small coronal hole (about 120 arcseconds across), beginning at approximately 19:00 Universal Time on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 angstroms, 304 angstroms, and 94 angstroms, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  7. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  8. Self consistent MHD modeling of the solar wind from polar coronal holes

    International Nuclear Information System (INIS)

    Stewart, G. A.; Bravo, S.

    1996-01-01

    We have developed a 2D self consistent MHD model for solar wind flow from antisymmetric magnetic geometries. We present results in the case of a photospheric magnetic field which has a dipolar configuration, in order to investigate some of the general characteristics of the wind at solar minimum. As in previous studies, we find that the magnetic configuration is that of a closed field region (a coronal helmet belt) around the solar equator, extending up to about 1.6 R · , and two large open field regions centred over the poles (polar coronal holes), whose magnetic and plasma fluxes expand to fill both hemispheres in interplanetary space. In addition, we find that the different geometries of the magnetic field lines across each hole (from the almost radial central polar lines to the highly curved border equatorial lines) cause the solar wind to have greatly different properties depending on which region it flows from. We find that, even though our simplified model cannot produce realistic wind values, we can obtain a polar wind that is faster, less dense and hotter than equatorial wind, and found that, close to the Sun, there exists a sharp transition between the two wind types. As these characteristics coincide with observations we conclude that both fast and slow solar wind can originate from coronal holes, fast wind from the centre, slow wind from the border

  9. FAST DIFFERENTIAL EMISSION MEASURE INVERSION OF SOLAR CORONAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Plowman, Joseph; Kankelborg, Charles; Martens, Petrus [Montana State University, Bozeman, MT 59717 (United States)

    2013-07-01

    We present a fast method for reconstructing differential emission measures (DEMs) using solar coronal data. The method consists of a fast, simple regularized inversion in conjunction with an iteration scheme for removal of residual negative emission measure. On average, it computes over 1000 DEMs s{sup -1} for a sample active region observed by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory, and achieves reduced chi-squared of order unity with no negative emission in all but a few test cases. The high performance of this method is especially relevant in the context of AIA, which images of order one million solar pixels per second. This paper describes the method, analyzes its fidelity, compares its performance and results with other DEM methods, and applies it to an active region and loop observed by AIA and by the Extreme-ultraviolet Imaging Spectrometer on Hinode.

  10. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    International Nuclear Information System (INIS)

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  11. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  12. Deriving the coronal hole electron temperature: electron density dependent ionization / recombination considerations

    International Nuclear Information System (INIS)

    Doyle, John Gerard; Perez-Suarez, David; Singh, Avninda; Chapman, Steven; Bryans, Paul; Summers, Hugh; Savin, Daniel Wolf

    2010-01-01

    Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368 A and Mg X 625 A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04 MK compared to just below 0.82 MK at solar minimum.

  13. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E., E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States)

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  14. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    International Nuclear Information System (INIS)

    Zhao, L.; Landi, E.

    2014-01-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  15. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    Energy Technology Data Exchange (ETDEWEB)

    Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-03-10

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  16. Methods of Temperature and Emission Measure Determination of Coronal Loops

    Science.gov (United States)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  17. ACCELERATING WAVES IN POLAR CORONAL HOLES AS SEEN BY EIS AND SUMER

    International Nuclear Information System (INIS)

    Gupta, G. R.; Banerjee, D.; Teriaca, L.; Solanki, S.; Imada, S.

    2010-01-01

    We present EIS/Hinode and SUMER/SOHO observations of propagating disturbances detected in coronal lines in inter-plume and plume regions of a polar coronal hole. The observation was carried out on 2007 November 13 as part of the JOP196/HOP045 program. The SUMER spectroscopic observation gives information about fluctuations in radiance and on both resolved (Doppler shift) and unresolved (Doppler width) line-of-sight velocities, whereas EIS 40'' wide slot images detect fluctuations only in radiance but maximize the probability of overlapping field of view between the two instruments. From distance-time radiance maps, we detect the presence of propagating waves in a polar inter-plume region with a period of 15-20 minutes and a propagation speed increasing from 130 ± 14 km s -1 just above the limb to 330 ± 140 km s -1 around 160'' above the limb. These waves can be traced to originate from a bright region of the on-disk part of the coronal hole where the propagation speed is in the range of 25 ± 1.3 to 38 ± 4.5 km s -1 , with the same periodicity. These on-disk bright regions can be visualized as the base of the coronal funnels. The adjacent plume region also shows the presence of propagating disturbances with the same range of periodicity but with propagation speeds in the range of 135 ± 18 to 165 ± 43 km s -1 only. A comparison between the distance-time radiance map of the two regions indicates that the waves within the plumes are not observable (may be getting dissipated) far off-limb, whereas this is not the case in the inter-plume region. A correlation analysis was also performed to find out the time delay between the oscillations at several heights in the off-limb region, finding results consistent with those from the analysis of the distance-time maps. To our knowledge, this result provides first spectroscopic evidence of the acceleration of propagating disturbances in the polar region close to the Sun (within 1.2 R/R sun ), which provides clues to the

  18. Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

    Science.gov (United States)

    Kahler, S. W.; Arge, C. N.; Akiyama, S.; Gopalswamy, N.

    2013-01-01

    The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E (is) approx. 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang-Sheeley-Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.

  19. Evolution of magnetohydrodynamic waves in low layers of a coronal hole

    International Nuclear Information System (INIS)

    Pucci, Francesco; Malara, Francesco; Onofri, Marco

    2014-01-01

    Although a coronal hole is permeated by a magnetic field with a dominant polarity, magnetograms reveal a more complex magnetic structure in the lowest layers, where several regions of opposite polarity of typical size of the order of 10 4 km are present. This can give rise to magnetic separatrices and neutral lines. MHD fluctuations generated at the base of the coronal hole by motions of the inner layer of the solar atmosphere may interact with such inhomogeneities, leading to the formation of small scales. This phenomenon is studied on a 2D model of a magnetic structure with an X-point, using 2D MHD numerical simulations. This model implements a method of characteristics for boundary conditions in the direction outer-pointing to Sun surface to simulate both wave injection and exit without reflection. Both Alfvénic and magnetosonic perturbations are considered, and they show very different phenomenology. In the former case, an anisotropic power-law spectrum forms with a dominance of perpendicular wavevectors at altitudes ∼10 4 km. Density fluctuations are generated near the X-point by Alfvén wave magnetic pressure and propagate along open fieldlines at a speed comparable to the local Alfvén velocity. An analysis of energy dissipation and heating caused by the formation of small scales for the Alfvénic case is presented. In the magnetosonic case, small scales form only around the X-point, where a phenomenon of oscillating magnetic reconnection is observed to be induced by the periodic deformation of the magnetic structure due to incoming waves.

  20. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    Science.gov (United States)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  1. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  2. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak...... statistically to zero, indicating that the associated high‐speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret...

  3. H and K (Ca II) emissions as observed in coronal spectrum in the July 20, 1963 solar eclipse

    International Nuclear Information System (INIS)

    Cavallini, F.; Righini, A.

    1975-01-01

    From a detailed analysis of a coronal spectrum taken from a DC-8 jet airplane during the Eclipse of 20 July, 1963 a rough model of a coronal cold region (T approximately 10 5 K) has been obtained. The model explains the presence of the abnormal H and K (Ca II) emissions and the large amount of F corona present in the spectrum. (Auth.)

  4. The Physical Relation between Disc and Coronal Emission in Quasars

    Directory of Open Access Journals (Sweden)

    Elisabeta Lusso

    2018-01-01

    Full Text Available We propose a modified version of the observed non-linear relation between the X-ray (2 keV and the ultraviolet (2,500 Å emission in quasars (i.e., LX∝LUVγ which involves the full width at half-maximum, FWHM, of the broad emission line, i.e., LX∝LUVγ^ FWHMβ^. By analyzing a sample of 550 optically selected non-jetted quasars in the redshift range of 0.36–2.23 from the Sloan Digital Sky Survey cross matched with the XMM-Newton catalog 3XMM-DR6, we found that the additional dependence of the observed LX − LUV correlation on the FWHM of the Mgii broad emission line is statistically significant. Our statistical analysis leads to a much tighter relation with respect to the one neglecting FWHM, and it does not evolve with redshift. We interpret this new relation within an accretion disc corona scenario where reconnection and magnetic loops above the accretion disc can account for the production of the primary X-ray radiation. For a broad line region size depending on the disc luminosity as Rblr∝Ldisc0.5, we find that LX∝LUV4/7 FWHM4/7, which is in very good agreement with the observed correlation.

  5. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I. Fe XII

    International Nuclear Information System (INIS)

    House, L.L.

    1977-01-01

    A general formulation for the polarization of coronal emission lines is presented, and the physics is illustrated through application of the formulation to the lines of Fe XIII at 10747 and 10798 A. The goal is to present a foundation for the determination of the orientation of coronal magnetic fields from emission-line polarization measurements. The physics of emission-line polarization is discussed using the statistical equilibrium equations for the magnetic sublevels of a coronal ion. The formulation of these equations, which describe the polarization of the radiation field in terms of Stokes parameters, is presented; and the various rate parameters: both radiative and collisional: are considered. The emission Stokes vector is constructed from the solution of the equilibrium equations for a point in the corona where the magnetic field has an arbitrary orientation. On the basis of a model, a computer code for the calculation of emission-line polarization is briefly described and illustrated with a number of sample calculations for Fe XIII. Calculations are carried out for three-dimensional models that demonstrate the physics of the formation of emission-line polarization and illustrate how the degree of polarization and angle of polarization and their variations over the corona are related to the density and magnetic field structure. The models considered range from simple cases in which the density distribution with height is spherically symmetric and the field is radial or dipole to a complex case in which both the density and magnetic field distributions are derived from realistic three-dimensional distributions for the 1973 eclipse on the basis of K-coronameter measurements for the density and potential-field extrapolation of surface magnetic fields in the corona

  6. Shock-related radio emission during coronal mass ejection lift-off?

    OpenAIRE

    Pohjolainen, S.

    2008-01-01

    Aims: We identify the source of fast-drifting decimetric-metric radio emission that is sometimes observed prior to the so-called flare continuum emission. Fast-drift structures and continuum bursts are also observed in association with coronal mass ejections (CMEs), not only flares. Methods: We analyse radio spectral features and images acquired at radio, H-alpha, EUV, and soft X-ray wavelengths, during an event close to the solar limb on 2 June 2003. Results: The fast-drifting decimetric-met...

  7. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  8. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    International Nuclear Information System (INIS)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary, G. Allen

    2014-01-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  9. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L. [Space Science Office, ZP13, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen, E-mail: mitzi.adams@nasa.gov, E-mail: alphonse.sterling@nasa.gov, E-mail: ron.moore@nasa.gov, E-mail: gag0002@uah.edu [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35805, USA. (United States)

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.

  10. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  11. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    Science.gov (United States)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  12. Quasar Formation and Energy Emission in Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-07-01

    Full Text Available Formation and energy emission of quasars are investigated in accord with the black hole universe, a new cosmological model recently developed by Zhang. According to this new cosmological model, the universe originated from a star-like black hole and grew through a supermassive black hole to the present universe by accreting ambient matter and merging with other black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe have been fully ex- plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and releases energy as an amount of that emitted by dozens of galaxies. A main sequence star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron star, or a black hole. A normal galaxy, after its most stars have run out of their fuels and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and collapse towards the center by gravity to form a supermassive black hole with billions of solar masses. This collapse leads to that extremely hot stellar black holes merge each other and further into the massive black hole at the center and meantime release a huge amount of radiation energy that can be as great as that of a quasar. Therefore, when the stellar black holes of a galaxy collapse and merge into a supermassive black hole, the galaxy is activated and a quasar is born. In the black hole universe, the observed dis- tant quasars powered by supermassive black holes can be understood as donuts from the mother universe. They were actually formed in the mother universe and then swallowed into our universe. The nearby galaxies are still very young and thus quiet at the present time. They will be activated and further evolve into quasars after billions of years. At that time, they will enter the universe formed by the currently observed distant quasars as similar to the distant quasars entered our universe

  13. Critical emission from a high-spin black hole

    Science.gov (United States)

    Lupsasca, Alexandru; Porfyriadis, Achilleas P.; Shi, Yichen

    2018-03-01

    We consider a rapidly spinning black hole surrounded by an equatorial, geometrically thin, slowly accreting disk that is stationary and axisymmetric. We analytically compute the broadening of electromagnetic line emissions from the innermost part of the disk, which resides in the near-horizon region. The result is independent of the disk's surface emissivity and therefore universal. This is an example of critical behavior in astronomy that is potentially observable by current or future telescopes.

  14. Relations Between FUV Excess and Coronal Soft X-Ray Emission Among Dwarf Stars

    Science.gov (United States)

    Smith, Graeme H.; Hargrave, Mason; Eckholm, Elliot

    2017-11-01

    The far-ultraviolet magnitudes of late-F, G and early-K dwarfs with (B - V) ⩾ 0.50 as measured by the GALEX satellite are shown to correlate with soft X-ray luminosity. This result indicates that line and continuum emission from stellar active regions make significant contributions to the flux in the GALEX FUV band for late-F, G and K dwarfs. By contrast, detection of a correlation between FUV brightness and soft X-ray luminosity among early-F dwarfs requires subtraction of the photospheric component from the FUV flux. The range in (B - V) among F and G dwarfs over which a correlation between uncorrected FUV magnitude and X-ray luminosity is detected coincides with the range in colour over which coronal and chromospheric emission correlates with stellar rotation.

  15. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  16. Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-03-01

    Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.

  17. What Dominates the Coronal Emission Spectrum During the Cycle of Impulsive Heating and Cooling?

    Science.gov (United States)

    Bradshaw, Stephen J.; Klimchuk, James A.

    2011-01-01

    The smoking gun of small-scale, impulsive events heating the solar corona is expected to be the presence of a hot ( > 5 MK) plasma component. Evidence for this has been scarce, but has gradually begun to accumulate due to recent studies designed to constrain the high temperature part of the emission measure distribution. However, the detected hot component is often weaker than models predict and this is due in part to the common modeling assumption that the ionization balance remains in equilibrium. The launch of the latest generation of space-based observing instrumentation aboard Hinode and the Solar Dynamics Observatory (SDO) has brought the matter of the ionization state of the plasma firmly to the forefront. It is timely to consider exactly what emission current instruments would detect when observing a corona heated impulsively on small-scales by nanoflares. Only after we understand the full effects of nonequilibrium ionization can we draw meaningful conclusions about the plasma that is (or is not) present. We have therefore performed a series of hydrodynamic simulations for a variety of different nanoflare properties and initial conditions. Our study has led to several key conclusions. 1. Deviations from equilibrium are greatest for short-duration nanoflares at low initial coronal densities. 2. Hot emission lines are the most affected and are suppressed sometimes to the point of being invisible. 3. The emission detected in all of the SDO-AIA channels is generally dominated by warm, over-dense, cooling plasma. 4. It is difficult not to create coronal loops that emit strongly at 1.5 MK and in the range 2 to 5 MK, which are the most commonly observed kind, for a broad range of nanoflare scenarios. 5. The Fe XV (284.16 ) emission in most of our models is about 10 times brighter than the Ca XVII (192.82 ) emission, consistent with observations. Our overarching conclusion is that small-scale, impulsive heating inducing a nonequilibrium ionization state leads to

  18. AN ANALYSIS OF INTERPLANETARY SOLAR RADIO EMISSIONS ASSOCIATED WITH A CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Krupar, V.; Eastwood, J. P. [The Blackett Laboratory, Imperial College London, London (United Kingdom); Kruparova, O.; Santolik, O.; Soucek, J., E-mail: v.krupar@imperial.ac.uk, E-mail: jonathan.eastwood@imperial.ac.uk, E-mail: ok@ufa.cas.cz, E-mail: os@ufa.cas.cz, E-mail: soucek@ufa.cas.cz [Institute of Atmospheric Physics CAS, Prague (Czech Republic); and others

    2016-05-20

    Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth directed. Here, we report a rare instance with comprehensive in situ and remote sensing observations of a CME combining white-light, radio, and plasma measurements from four different vantage points. For the first time, we have successfully applied a radio direction-finding technique to an interplanetary type II burst detected by two identical widely separated radio receivers. The derived locations of the type II and type III bursts are in general agreement with the white-light CME reconstruction. We find that the radio emission arises from the flanks of the CME and are most likely associated with the CME-driven shock. Our work demonstrates the complementarity between radio triangulation and 3D reconstruction techniques for space weather applications.

  19. Physical Properties of the SKYLAB North Polar Coronal Hole with an Extended Base and its MHD Self-Consistent Modelling

    Science.gov (United States)

    Bravo, S.; Ocania, G.

    1991-04-01

    RESUMEN Con base en las observaciones del Skylab del Sol en rayos X que permitieron r la forma de la frontera del hoyo coronal del polo norte y en las observaciones de l 'z que permitieron derivar un perfil de densidad para el flujo de viento solar (IC ese hoyo, Murno yjackson (1977) concluyeron que se requiere una adici6n t l clc energfa al flujo hasta al menos 5 R8. En este trabajo, recalculamos los perfiles de y de temperatura para el mismo hoyo pero considerando una frontera Cs mas ancha en la base, de acuerdo con las observaciones del coron6metro-K del IIAO, los espectroheliogramas en EUV del OSO-7 y las fotografias de la corona solar cerca de los 4 E)()O A. Se tomaron tambien las incertidumbres en el perfil de densidad electr6nica inl & a las observaciones de luz blanca y se consideraron diversos valores posibles dCl fl 'jo (lC masa 1 UA. Encontramos que las diferencias introducidas no son suficientes par clcsc' la necesidad de una energetizaci6n extensa del viento solar, pero una dC las s posibles muestra una concordancia muy buena con el modelado MHD (l( l flujo con el unico t6rmino adicional de la fuerza de Lorentz en la ecuaci6n de # (). ABSTRACT Based on the near to the Sun boundary of the Skylab north polar coroi ' l estimated from the AS & E X-ray photographs and on the density profile fi-C)I white light data, Munro and Jackson (1977) concluded that substantial energy the solar wind flux is required up to at least 5 Rs. In this paper we recalculate `eloci y and temperature profiles for the same hole but considering a different bo ' ry for flux tube which is larger at its base, according to the HAO K- obser"' (i()I0 , the OSO-7 EUV spectroheliograms and pictures of the solar 4500 A. è take into account the uncertainties inherent in the white light observations () electron density profile and consider different possible values of the solar I .' fltix at 1 AU. We that the differences introduced are not sufficient to discard ii y of an extended

  20. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-01-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  1. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Science.gov (United States)

    Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.

    2018-03-01

    We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  2. Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model

    Directory of Open Access Journals (Sweden)

    Temmer Manuela

    2018-01-01

    Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.

  3. Black hole emission process in the high energy limit

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B [Observatoire de Paris, Section de Meudon, 92 (France). Groupe d' Astrophysique Relativiste; Gibbons, G W; Lin, D N.C.; Perry, M J [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics; Cambridge Univ. (UK). Inst. of Astronomy)

    1976-11-01

    The ultimate outcome of the Hawking process of particle emission by small black holes is discussed in terms of the various conceivable theories of the behaviour of matter in the ultra-high temperature limit. It is shown that if high temperature matter is described by a relatively hard equation of state with an adiabatic index GAMMA greater than 6/5 then interactions between particles can probably be ignored so that the rate of creation will continue to be describable by Hawking's method. On the other hand for softer equations of state (including those of the ultra soft Hagedorn type) the created matter will almost certainly be highly opaque and a hydrodynamic model of the emission process will be more appropriate. Actual astronomical detection of the final emission products might in principle have provided valuable information about the correct theory of ultra high energy physics but it is shown that in practice the black hole death rate is so low that observational distinction of the resulting high energy decay products from the background would require high resolution detectors.

  4. An observational search for large-scale organization of five-minute oscillations on the sun. [coronal holes or sector structure relationships

    Science.gov (United States)

    Dittmer, P. H.; Scherrer, P. H.; Wilcox, J. M.

    1978-01-01

    The large-scale solar velocity field has been measured over an aperture of radius 0.8 solar radii on 121 days between April and September, 1976. Measurements are made in the line Fe I 5123.730 A, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.

  5. A model for the north coronal hole observed at the 1973 eclipse, between 1.3 and 3.2 solar radii

    International Nuclear Information System (INIS)

    Crifo, F.; Picat, J.-P.

    1980-01-01

    At the 1973 eclipse, several pictures of the white-light corona were obtained using polarizers and a radially-compensated filter. These pictures provide a very good opportunity for studying the large coronal hole at the north polar cap; this hole has been extensively studied during the Skylab period. On the plates reliable intensities between 1.3 and 3.2 solar radii could be recorded. The absolute calibration was made using the stars observed in the field at the same time. This method allows a direct comparison of well-exposed objects on a same plate and must therefore be highly reliable. The northern hole was very dark and from the synoptic maps and the X-ray pictures, one can conclude that probably no high-latitude streamers were projected over the hole in the plane of the sky. Intensities in the radial and tangential directions of polarization were recorded in the darkest part of the hole between the visible plumes. (Auth.)

  6. Radioactively powered emission from black hole-neutron star mergers

    International Nuclear Information System (INIS)

    Tanaka, Masaomi; Wanajo, Shinya; Hotokezaka, Kenta; Kyutoku, Koutarou; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2014-01-01

    Detection of the electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH)-neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, the observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the progenitors of GW sources and the nature of compact binary coalescences.

  7. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Chen, L.; Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yan, Y. H., E-mail: djwu@pmo.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing 100012 (China)

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  8. Determination of Differential Emission Measure Distribution of Coronal Structures Observed by SphinX During Recent Minimum of Solar Activity

    Science.gov (United States)

    Kepa, Anna; Gburek, Szymon; Siarkowski, Marek; Sylwester, Barbara; Sylwester, Janusz; Kowalinski, Miroslaw

    SphinX is a high-sensitivity soft X-ray spectrophotometer which measures soft X-ray spectra in the energy range between 0.8 keV and 15 keV. From February to November 2009 the instrument has observed unusually quiet solar coronal emission as well as a number of weak solar flares. Based on SphinX spectra it is possible to study the differential emission measure distributions (DEM) in the temperature range roughly between 1 MK and 10 MK. The aim of the present study is to unveil DEM plasma distributions for selected activity conditions and analyze their variability.

  9. Hole emission mechanism in Ge/Si quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaniewska, M.; Zaremba, G.; Kaczmarczyk, M.; Wzorek, M.; Czerwinski, A. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Engstroem, O. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Chalmers University of Technology, Kemivaegen 9, 412 96 Goeteborg (Sweden); Karmous, A.; Kirfel, O.; Kasper, E. [Institute for Semiconductor Engineering, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart (Germany); Raeissi, B.; Piscator, J. [Chalmers University of Technology, Kemivaegen 9, 412 96 Goeteborg (Sweden); Surma, B.; Wnuk, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2011-02-15

    The mechanisms determining emission of holes in self-assembled Ge quantum dots (QDs) embedded in the p-type Si matrix have been investigated. Specimens were prepared by molecular beam epitaxy (MBE). Electrical methods such as deep level transient spectroscopy (DLTS) and capacitance versus voltage (C-V) measurements were used for the study. The emission mechanisms were identified by measuring a QD-related signal as a function of the repetition frequency of the filling pulses with the reverse voltage and the pulse voltage as a parameter. An observed shift of the signal position or its absence versus the voltage parameters was interpreted in terms of thermal, tunnelling and mixed processes and attributed to the presence of a Coulomb barrier formed as a result of the charging effect. Thermal emission properties of the QDs were characterized under such measurement conditions that tunnelling contributions to the DLTS spectra could be neglected (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    International Nuclear Information System (INIS)

    Gold, R.E.; Dodson-Prince, H.W.; Hedeman, E.R.; Roelof, E.C.

    1982-01-01

    We have studied solar and interplanetary data by identification of the heliographic longitudes of the coronal source regions of high speed solar wind streams and by mapping the velocities measured near earth back to the sun using the approximation of constant radial velocity. Interplay of active regions and solar wind were studied

  11. Study of high energy emissions from stellar mass accreting holes

    International Nuclear Information System (INIS)

    Cadolle-Bel, Marion

    2006-01-01

    The present work is dedicated to the study of various X-ray binary Systems harbouring accreting stellar mass black holes (or candidates) associated in X-ray binary Systems mainly through the spectral and timing properties of the high energy 3 keV"-"1 MeV emission, sometimes completed by observations performed in radio, near-infrared and optical. The first part is devoted to accretion physics phenomena and the challenges of understanding the X-ray/gamma emission produced with the modeling of such high energy processes. Then I will define in a second part the instruments on board INTEGRAL and the way coded masked aperture is employed. In a third part, I will develop the standard data reduction analysis and my own contribution in improving the usual software before detailing the specific informatics tools I have developed for my own analysis. In the fourth part I will turn towards the deep analysis and interpretations I have performed on several black hole X-ray binary Systems chosen properly: the persistent black hole source Cygnus X-1 which has been studied since several years and surprised us by a high-energy excess detected; two new transient sources which provide interesting information, XTE J1720-318 located in the galactic bulge and SWIFT J1753.5-0127, probably situated in the halo. I will also detail my work on H 1743-322, recently identified by INTEGRAL as the HEAO source discovered in 1977, and on three (almost) persistent micro-quasars with superluminal jets, 1E 1740.7-2942, GRS 1758-258 and GRS 1915+105. I will analyze for each source spectral parameter evolutions and their links with each other during state transitions. I will then discuss the presence of two different X/gamma-ray emitting media with a relatively changing geometry. While establishing a cyclic order for the different variability classes of GRS 1915+105 observed during ten years, I will propose an interpretation for such behaviour, compatible with the theoretical predictions of the

  12. The influence of solar active region evolution on solar wind streams, coronal hole boundaries and geomagnetic storms

    Science.gov (United States)

    Gold, R. E.; Dodson-Prince, H. W.; Hedeman, E. R.; Roelof, E. C.

    1982-01-01

    Solar and interplanetary data are examined, taking into account the identification of the heliographic longitudes of the coronal source regions of high speed solar wind (SW) streams by Nolte and Roelof (1973). Nolte and Roelof have 'mapped' the velocities measured near earth back to the sun using the approximation of constant radial velocity. The 'Carrington carpet' for rotations 1597-1616 is shown in a graph. Coronal sources of high speed streams appear in the form of solid black areas. The contours of the stream sources are laid on 'evolutionary charts' of solar active region histories for the Southern and Northern Hemispheres. Questions regarding the interplay of active regions and solar wind are investigated, giving attention to developments during the years 1973, 1974, and 1975.

  13. Formation of black hole and emission of gravitational waves.

    Science.gov (United States)

    Nakamura, Takashi

    2006-12-01

    Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.

  14. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak velocit...

  15. High energy effects on D-brane and black hole emission rates

    International Nuclear Information System (INIS)

    Das, S.; Dasgupta, A.; Sarkar, T.

    1997-01-01

    We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society

  16. Numerical simulations of flares on M dwarf stars. I - Hydrodynamics and coronal X-ray emission

    Science.gov (United States)

    Cheng, Chung-Chieh; Pallavicini, Roberto

    1991-01-01

    Flare-loop models are utilized to simulate the time evolution and physical characteristics of stellar X-ray flares by varying the values of flare-energy input and loop parameters. The hydrodynamic evolution is studied in terms of changes in the parameters of the mass, energy, and momentum equations within an area bounded by the chromosphere and the corona. The zone supports a magnetically confined loop for which processes are described including the expansion of heated coronal gas, chromospheric evaporation, and plasma compression at loop footpoints. The intensities, time profiles, and average coronal temperatures of X-ray flares are derived from the simulations and compared to observational evidence. Because the amount of evaporated material does not vary linearly with flare-energy input, large loops are required to produce the energy measured from stellar flares.

  17. On the energy emission by a Kerr black hole in the superradiant range

    International Nuclear Information System (INIS)

    Curir, A.

    1985-01-01

    A new redefined ''Unruh vacuum'' has been used in order to obtain the thermal Hawkin emission in a Kerr geometry in the superradiant range. It is also shown that a new type of vacuum is needed to obtain the global emission from a rotating black hole in the superradiant range. The formula describing such global emission is given. (orig.)

  18. Very high energy emission from passive supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Pedaletti, Giovanna

    2009-10-22

    The H.E.S.S. experiment, an array of four Imaging Cherenkov Telescopes, widened the horizon of Very High Energy (VHE) astronomy. Its unprecedented sensitivity is well suited for the study of new classes of expected VHE emitters, such as passive galactic nuclei that are the main focus of the work presented in this thesis. Acceleration of particles up to Ultra High Energies is expected in the magnetosphere of supermassive black holes (SMBH). The radiation losses of these accelerated particles are expected to reach the VHE regime in which H.E.S.S. operates. Predicted fluxes exceed the sensitivity of the array. However, strong photon fields in the surrounding of the acceleration region might absorb the produced radiation. Therefore observations focus on those galactic nuclei that are underluminous at lower photon energies. This work presents data collected by the H.E.S.S. telescopes on the test candidate NGC 1399 and their interpretation. While no detection has been achieved, important constraints can be derived from the obtained upper limits on the maximum energy attainable by the accelerated particles and on the magnetic field strength in the acceleration region. A limit on the magnetic field of B < 74 Gauss is given. The limit is model dependent and a scaling of the result with the assumptions is given. This is the tightest empirical constraint to date. Because of the lack of signal from the test candidate, a stacking analysis has been performed on similar sources in three cluster fields. A search for signal from classes of active galactic nuclei has also been made in the same three fields. None of the analyzed samples revealed a significant signal. Also presented are the expectations for the next generation of Cherenkov Telescopes and an outlook on the relativistic effects expected on the VHE emission close to SMBH. (orig.)

  19. Black hole production and graviton emission in models with large extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, B.

    2007-11-21

    This thesis studies the possible production of microscopical black holes and the emission of graviational radiation under the assumption of large extra dimensions. We derive observables for the Large Hadron Collider and for ultra high energetic cosmic rays. (orig.)

  20. Black hole production and graviton emission in models with large extra dimensions

    International Nuclear Information System (INIS)

    Koch, B.

    2007-01-01

    This thesis studies the possible production of microscopical black holes and the emission of graviational radiation under the assumption of large extra dimensions. We derive observables for the Large Hadron Collider and for ultra high energetic cosmic rays. (orig.)

  1. An analysis of interplanetary solar radio emissions associated with a coronal mass ejection

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Eastwood, J. P.; Krupařová, Oksana; Santolík, Ondřej; Souček, Jan; Magdalenic, J.; Vourlidas, A.; Maksimovic, M.; Bonnin, X.; Bothmer, V.; Mrotzek, N.; Pluta, A.; Barnes, D.; Davies, J. A.; Oliveros, J.C.M.; Bale, S. D.

    2016-01-01

    Roč. 823, č. 1 (2016) ISSN 2041-8205 R&D Projects: GA ČR GJ16-16050Y; GA ČR(CZ) GAP209/12/2394; GA MŠk(CZ) LH15304 Grant - others:AV ČR(CZ) AP1401 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378289 Keywords : solar -terrestrial relations * coronal mass ejections (CMEs) * radio radiation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.522, year: 2016 http://iopscience.iop.org/article/10.3847/2041-8205/823/1/L5/meta

  2. Revisit emission spectrum and entropy quantum of the Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Jiang, Qing-Quan

    2012-01-01

    Banerjee and Majhi's recent work shows that black hole's emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner-Nordstroem black hole in the Banerjee-Majhi treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability Γ=e -πω 0 /κ + . This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner-Nordstroem black hole that a perfect tunneling picture can be provided during the charged particle's emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory. (orig.)

  3. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  4. Automated Temperature and Emission Measure Analysis of Coronal Loops and Active Regions Observed with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA)

    Science.gov (United States)

    Aschwanden, Markus J.; Boerner, Paul; Schrijver, Carolus J.; Malanushenko, Anna

    2013-03-01

    We developed numerical codes designed for automated analysis of SDO/AIA image datasets in the six coronal filters, including: i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, ii) self-calibration by empirical correction of instrumental response functions, iii) automated generation of differential emission measure [DEM] distributions with peak-temperature maps [ T p( x, y)] and emission measure maps [ EM p( x, y)] of the full Sun or active region areas, iv) composite DEM distributions [d EM( T)/d T] of active regions or subareas, v) automated detection of coronal loops, and vi) automated background subtraction and thermal analysis of coronal loops, which yields statistics of loop temperatures [ T e], temperature widths [ σ T], emission measures [ EM], electron densities [ n e], and loop widths [ w]. The combination of these numerical codes allows for automated and objective processing of numerous coronal loops. As an example, we present the results of an application to the active region NOAA 11158, observed on 15 February 2011, shortly before it produced the largest (X2.2) flare during the current solar cycle. We detect 570 loop segments at temperatures in the entire range of log( T e)=5.7 - 7.0 K and corroborate previous TRACE and AIA results on their near-isothermality and the validity of the Rosner-Tucker-Vaiana (RTV) law at soft X-ray temperatures ( T≳2 MK) and its failure at lower EUV temperatures.

  5. Black Hole Universe Model for Explaining GRBs, X-Ray Flares, and Quasars as Emissions of Dynamic Star-like, Massive, and Supermassive Black Holes

    Science.gov (United States)

    Zhang, Tianxi

    2014-01-01

    Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.

  6. The EUV Helium Spectrum in the Quiet Sun: A By-Product of Coronal Emission?

    Science.gov (United States)

    Andretta, Vincenzo; DelZanna, Giulio; Jordan, Stuart D.; Oegerle, William (Technical Monitor)

    2002-01-01

    In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionizing flux in the wavelength range below 504 A (the photoionisation threshold for He(I)), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV helium lines: He(II) lambda304, He(I) lambda584, and He(I) lambda537. We find that there are not enough EUV photons to account for the observed helium line intensities. More specifically, we conclude that He(II) intensities cannot be explained by the P-R mechanism. Our results, however, leave open the possibility that the He(I) spectrum could be formed by the P-R mechanism, with the He(II) lambda304 line as a significant photoionizating source.

  7. On the Calculation of the Fe K-alpha Line Emissivity of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H.; Beheshtipour, B., E-mail: krawcz@wustl.edu [Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, 1 Brookings Drive, CB 1105, St. Louis, MO 63130 (United States)

    2017-11-01

    Observations of the fluorescent Fe K α emission line from the inner accretion flows of stellar mass black holes in X-ray binaries and supermassive black holes in active galactic nuclei have become an important tool to study the magnitude and inclination of the black hole spin, and the structure of the accretion flow close to the event horizon of the black hole. Modeling spectral, timing, and soon also X-ray polarimetric observations of the Fe K α emission requires the calculation of the specific intensity in the rest frame of the emitting plasma. We revisit the derivation of the equation used for calculating the illumination of the accretion disk by the corona. We present an alternative derivation leading to a simpler equation, and discuss the relation to previously published results.

  8. Graviton emission from a higher-dimensional black hole

    International Nuclear Information System (INIS)

    Cornell, Alan S.; Naylor, Wade; Sasaki, Misao

    2006-01-01

    We discuss the graviton absorption probability (greybody factor) and the cross-section of a higher-dimensional Schwarzschild black hole (BH). We are motivated by the suggestion that a great many BHs may be produced at the LHC and bearing this fact in mind, for simplicity, we shall investigate the intermediate energy regime for a static Schwarzschild BH. That is, for (2M) 1/(n-1) ω ∼ 1, where M is the mass of the black hole and ω is the energy of the emitted gravitons in (2+n)-dimensions. To find easily tractable solutions we work in the limit l >> 1, where l is the angular momentum quantum number of the graviton

  9. Photon emission of extremal Kerr-Newman black holes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao-Wen; Gu, Bao-Min; Wang, Yong-Qiang; Liu, Yu-Xiao [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China)

    2017-02-15

    In this paper, we deal with the null geodesics extending from the near-horizon region out to a distant observatory in an extremal Kerr-Newman black hole background. In particular, using the matched asymptotic expansion method, we analytically solve the null geodesics near the superradiant bound in the form of algebraic equations. For the case that the photon trajectories are limited in the equatorial plane, the shifts in the azimuthal angle and time are obtained. (orig.)

  10. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    Science.gov (United States)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  11. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  12. New upper limit to the coronal line emission from the T Tauri star RU Lupi

    Energy Technology Data Exchange (ETDEWEB)

    Gahm, G F [Stockholm Observatory (Sweden); Lago, M T.V.T. [Universidade do Porto (Portugal). Grupo de Matematica Aplicada; Penston, M V [ESTEC, European Space Agency, Villafranca Satellite Tracking Station, Madrid, (Spain)

    1981-05-01

    A high dispersion AAT spectrogram sets an upper limit on the (Fe x) emission line lambda 6374.5 A in the T Tauri star RU Lupi. The intensity of any 10/sup 6/ K corona in this star is less than 600 times that of the Sun compared to a chromosphere and transition region of 3 x 10/sup 3/ to 2 x 10/sup 5/ K gas 10/sup 6/ times stronger than the Sun's. The important theoretical implications are noted.

  13. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  14. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    Science.gov (United States)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  15. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States)

    2014-10-01

    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.

  16. The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23: a combination of midlatitude small coronal holes, low IMF BZ variances, low solar wind speeds and low solar magnetic fields

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2011-05-01

    Full Text Available Minima in geomagnetic activity (MGA at Earth at the ends of SC23 and SC22 have been identified. The two MGAs (called MGA23 and MGA22, respectively were present in 2009 and 1997, delayed from the sunspot number minima in 2008 and 1996 by ~1/2–1 years. Part of the solar and interplanetary causes of the MGAs were exceptionally low solar (and thus low interplanetary magnetic fields. Another important factor in MGA23 was the disappearance of equatorial and low latitude coronal holes and the appearance of midlatitude coronal holes. The location of the holes relative to the ecliptic plane led to low solar wind speeds and low IMF (Bz variances (σBz2 and normalized variances (σBz2/B02 at Earth, with concomitant reduced solar wind-magnetospheric energy coupling. One result was the lowest ap indices in the history of ap recording. The results presented here are used to comment on the possible solar and interplanetary causes of the low geomagnetic activity that occurred during the Maunder Minimum.

  17. Modeling Polarized Emission from Black Hole Jets: Application to M87 Core Jet

    Directory of Open Access Journals (Sweden)

    Monika Mościbrodzka

    2017-09-01

    Full Text Available We combine three-dimensional general-relativistic numerical models of hot, magnetized Advection Dominated Accretion Flows around a supermassive black hole and the corresponding outflows from them with a general relativistic polarized radiative transfer model to produce synthetic radio images and spectra of jet outflows. We apply the model to the underluminous core of M87 galaxy. The assumptions and results of the calculations are discussed in context of millimeter observations of the M87 jet launching zone. Our ab initio polarized emission and rotation measure models allow us to address the constrains on the mass accretion rate onto the M87 supermassive black hole.

  18. Time-of-flight Measurement Of Hole-tunneling Properties And Emission Color Control In Organic Light-emitting Diodes

    Science.gov (United States)

    Kurata, K.; Kashiwabara, K.; Nakajima, K.; Mizoguchi, Y.; Ohtani, N.

    2011-12-01

    Hole transport properties of organic light-emitting diodes (OLEDs) with a thin hole-blocking layer (HBL) were evaluated by time-of-flight measurement. Electroluminescence (EL) spectra of OLEDs with various HBL thicknesses were also evaluated. The results clearly show that the time-resolved photocurrent response and the emission color strongly depend on HBL thickness. This can be attributed to hole-tunneling through the thin HBL. We successfully fabricated a white OLED by controlling the thickness of HBL.

  19. Coronal magnetometry

    CERN Document Server

    Zhang, Jie; Bastian, Timothy

    2014-01-01

    This volume is a collection of research articles on the subject of the solar corona, and particularly, coronal magnetism. The book was motivated by the Workshop on Coronal Magnetism: Connecting Models to Data and the Corona to the Earth, which was held 21 - 23 May 2012 in Boulder, Colorado, USA. This workshop was attended by approximately 60 researchers. Articles from this meeting are contained in this topical issue, but the topical issue also contains contributions from researchers not present at the workshop. This volume is aimed at researchers and graduate students active in solar physics. Originally published in Solar Physics, Vol. 288, Issue 2, 2013 and Vol. 289, Issue 8, 2014.

  20. Back reaction, the Hawking emission spectrum from the charged black hole

    International Nuclear Information System (INIS)

    Xu Pingchuan; Wang Zhihong; Han Yan

    2011-01-01

    The Hawking emission spectrum of the Schwarzschild-like black hole has been successfully described in the tunneling picture. In this paper, we develop the idea for the case of the charged black hole with back reaction. First, the most general, static spherically symmetric charged black hole, in the presence of back reaction, has been provided by solving the Einstein equations with a non-zero vacuum expectation value of the energy-momentum tensor (T μν (φ, g μν )). At the one-loop corrections, we also produce the modified expressions for the Hawking temperature and Bekenstein-Hawking entropy. It is found that the leading correction to the semiclassical entropy is logarithmic and next to the leading order is inverse of the horizon area, just as the expected well-known results. In particular, as our main focus in this paper, we show that the modified black hole still radiates with a perfect blackbody spectrum, only the temperature undergoing quantum corrections. Also, the Hawking fluxes of the electric current and energy-momentum tensor to include the effect of back reaction are obtained. The results are interestingly found sharing the same form as that from the point of anomaly.

  1. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Wu, Kinwah [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Younsi, Ziri; Mizuno, Yosuke [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany); Asada, Keiichi; Nakamura, Masanori, E-mail: hpu@perimeterinstitute.ca, E-mail: asada@asiaa.sinica.edu.tw, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: kinwah.wu@ucl.ac.uk, E-mail: younsi@th.physik.uni-frankfurt.de, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China)

    2017-08-20

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

  2. U duality, D-branes, and black hole emission rates: Agreements and disagreements

    International Nuclear Information System (INIS)

    Dowker, F.; Kastor, D.; Traschen, J.

    1998-01-01

    An expression for the spacetime absorption coefficient of a scalar field in a five-dimensional, near-extremal black hole background is derived, which has the same form as that presented by Maldacena and Strominger, but is valid over a larger, U-duality invariant region of parameter space and in general disagrees with the corresponding D-brane result. We develop an argument, based on D-brane thermodynamics, which specifies the range of parameters over which agreement should be expected. For neutral emission, the spacetime and D-brane results agree over this range. However, for charged emission, we find disagreement in the 'fat black hole' regime, in which charge is quantized in smaller units on the brane than in the bulk of spacetime. We indicate a possible problem with the D-brane model in this regime. We also use the Born approximation to study the high frequency limit of the absorption coefficient and find that it approaches unity, for large black hole backgrounds, at frequencies still below the string scale, again in disagreement with D-brane results. copyright 1998 The American Physical Society

  3. On-line depth measurement for laser-drilled holes based on the intensity of plasma emission

    Science.gov (United States)

    Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung

    2014-09-01

    The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.

  4. Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

    CERN Document Server

    Blázquez-Salcedo, Jose Luis

    2016-01-01

    Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that...

  5. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khai; Bogdanović, Tamara [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States)

    2016-09-10

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  6. EMISSION SIGNATURES FROM SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES. I. DIAGNOSTIC POWER OF BROAD EMISSION LINES

    International Nuclear Information System (INIS)

    Nguyen, Khai; Bogdanović, Tamara

    2016-01-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  7. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  8. Searching for High-energy, Horizon-scale Emissions from Galactic Black Hole Transients during Quiescence

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C.-C.; Pu, Hung-Yi; Hirotani, Kouichi; Matsushita, Satoki; Inoue, Makoto [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Kong, Albert K. H; Chang, Hsiang-Kuang [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tam, Pak-Hin T., E-mail: lupin@asiaa.sinica.edu.tw, E-mail: hpu@perimeterinstitute.ca, E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)

    2017-08-10

    We search for the gamma-ray counterparts of stellar-mass black holes using the long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon. We achieve this by applying the pulsar outer-gap model to their magnetospheres. When a black hole transient (BHT) is in a low-hard or quiescent state, the radiatively inefficient accretion flow cannot emit enough MeV photons that are required to sustain the force-free magnetosphere in the polar funnel via two-photon collisions. In this charge-starved gap region, an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious Gamma-rays via the curvature and inverse-Compton (IC) processes. It is found that these gamma-ray emissions exhibit a flaring activity when the plasma accretion rate typically stays between 0.01% and 0.005% of the Eddington value for rapidly rotating, stellar-mass black holes. By analyzing the detection limit determined from archival Fermi /Large Area Telescope data, we find that the 7-year averaged duty cycle of such flaring activities should be less than 5% and 10% for XTE J1118+480 and 1A 0620-00, respectively, and that the detection limit is comparable to the theoretical prediction for V404 Cyg. It is predicted that the gap emission can be discriminated from the jet emission if we investigate the high-energy spectral behavior or observe nearby BHTs during deep quiescence simultaneously in infrared wavelength and very-high energies.

  9. Stellar mass black holes in star clusters: gravitational wave emission and detection rates

    OpenAIRE

    Banerjee, Sambaran

    2011-01-01

    We investigate the dynamics of stellar-mass black holes (BH) in star clusters focusing on the dynamical formation of BH-BH binaries, which are very important sources of gravitational waves (GW). We examine the properties of these BH-BH binaries through direct N-body computations of Plummer clusters, having initially N(0) = 5 X 10^4, typically a few of them dynamically harden to the extent that they can merge via GW emission within the cluster. Also, for each of such clusters, there are a few ...

  10. arXiv Gravitational wave energy emission and detection rates of Primordial Black Hole hyperbolic encounters

    CERN Document Server

    García-Bellido, Juan

    2018-01-01

    We describe in detail gravitational wave bursts from Primordial Black Hole (PBH) hyperbolic encounters. The bursts are one-time events, with the bulk of the released energy happening during the closest approach, which can be emitted in frequencies that could be within the range of both LIGO (10-1000Hz) and LISA ($10^{-6}-1$ Hz). Furthermore, we correct the results for the power spectrum of hyperbolic encounters found in the literature and present new exact and approximate expressions for the peak frequency of the emission. Note that these GW bursts from hyperbolic encounters between PBH are complementary to the GW emission from the bounded orbits of BHB mergers detected by LIGO, and help breaking degeneracies in the determination of the PBH mass, spin and spatial distributions.

  11. X-Ray Emission from Active Galactic Nuclei with Intermediate-Mass Black Holes

    Science.gov (United States)

    Dewangan, G. C.; Mathur, S.; Griffiths, R. E.; Rao, A. R.

    2008-12-01

    We present a systematic X-ray study of eight active galactic nuclei (AGNs) with intermediate-mass black holes (MBH ~ 8-95 × 104 M⊙) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class—NGC 4395 and POX 52 and six other AGNs discovered with the Sloan Digitized Sky Survey. These AGNs show some of the strongest X-ray variability, with the normalized excess variances being the largest and the power density break timescales being the shortest observed among radio-quiet AGNs. The excess-variance-luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break timescale-black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hβ/Hα line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kTin ~ 150-200 eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC 4395 with lowest L/LEdd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low-mass extensions of more massive AGNs, those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1 s and those with low L/LEdd looking more like broad-line Seyfert 1 galaxies.

  12. Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Landi, E.; Holst, B. van der; Sokolov, I. V.; Gombosi, T. I., E-mail: roran@mit.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48109 (United States)

    2017-08-20

    We test the predictions of the Alfvén Wave Solar Model (AWSoM), a global wave-driven magnetohydrodynamic (MHD) model of the solar atmosphere, against high-resolution spectra emitted by the quiescent off-disk solar corona. AWSoM incorporates Alfvén wave propagation and dissipation in both closed and open magnetic field lines; turbulent dissipation is the only heating mechanism. We examine whether this mechanism is consistent with observations of coronal EUV emission by combining model results with the CHIANTI atomic database to create synthetic line-of-sight spectra, where spectral line widths depend on thermal and wave-related ion motions. This is the first time wave-induced line broadening is calculated from a global model with a realistic magnetic field. We used high-resolution SUMER observations above the solar west limb between 1.04 and 1.34 R {sub ⊙} at the equator, taken in 1996 November. We obtained an AWSoM steady-state solution for the corresponding period using a synoptic magnetogram. The 3D solution revealed a pseudo-streamer structure transversing the SUMER line of sight, which contributes significantly to the emission; the modeled electron temperature and density in the pseudo-streamer are consistent with those observed. The synthetic line widths and the total line fluxes are consistent with the observations for five different ions. Further, line widths that include the contribution from the wave-induced ion motions improve the correspondence with observed spectra for all ions. We conclude that the turbulent dissipation assumed in the AWSoM model is a viable candidate for explaining coronal heating, as it is consistent with several independent measured quantities.

  13. Using a New Infrared Si X Coronal Emission Line for Discriminating between Magnetohydrodynamic Models of the Solar Corona During the 2006 Solar Eclipse

    Science.gov (United States)

    Dima, Gabriel I.; Kuhn, Jeffrey R.; Mickey, Don; Downs, Cooper

    2018-01-01

    During the 2006 March 29 total solar eclipse, coronal spectropolarimetric measurements were obtained over a 6 × 6 R ⊙ field of view with a 1–2 μm spectral range. The data yielded linearly polarized measurements of the Fe XIII 1.075 μm, He I 1.083 μm, and for the first time, of the Si X 1.430 μm emission lines. To interpret the measurements, we used forward-integrated synthetic emission from two magnetohydrodynamic models for the same Carrington rotation with different heating functions and magnetic boundary conditions. Observations of the Fe XIII 1.075/Si X 1.430 line ratio allowed us to discriminate between two models of the corona, with the observations strongly favoring the warmer model. The observed polarized amplitudes for the Si X 1.430 μm line are around 7%, which is three times higher than the predicted values from available atomic models for the line. This discrepancy indicates a need for a closer look at some of the model assumptions for the collisional coefficients, as well as new polarized observations of the line to rule out any unknown systematic effect in the present data. All but two near-limb fibers show correlated bright He I 1.083 μm and H I 1.282 μm emission, which likely indicates cool prominence emission that is non-localized by the strongly defocused optics. One of the distant fibers located at 1.5 R ⊙ detected a weak He I 1.083 μm intensity signal consistent with previous eclipse measurements around 3 × 10‑7 {B}ȯ . However, given the limitations of these observations, it is not possible to completely remove contamination that is due to emission from prominence material that is not obscured by the lunar limb.

  14. Prompt emission from tidal disruptions of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Laguna P.

    2012-12-01

    Full Text Available We present a qualitative picture of prompt emission from tidal disruptions of white dwarfs (WD by intermediate mass black holes (IMBH. The smaller size of an IMBH compared to a supermassive black hole and a smaller tidal radius of a WD disruption lead to a very fast event with high peak luminosity. Magnetic field is generated in situ following the tidal disruption, which leads to effective accretion. Since large-scale magnetic field is also produced, geometrically thick super-Eddington inflow leads to a relativistic jet. The dense jet possesses a photosphere, which emits quasi-thermal radiation in soft X-rays. The source can be classified as a long low-luminosity gamma-ray burst (ll-GRB. Tidal compression of a WD causes nuclear ignition, which is observable as an accompanying supernova. We suggest that GRB060218 and SN2006aj is such a pair of ll-GRB and supernova. We argue that in a flux-limited sample the disruptions of WDs by IMBHs are more frequent then the disruptions of other stars by IMBHs.

  15. Core-hole-induced dynamical effects in the x-ray emission spectrum of liquid methanol.

    Science.gov (United States)

    Ljungberg, M P; Zhovtobriukh, I; Takahashi, O; Pettersson, L G M

    2017-04-07

    We compute the x-ray emission spectrum of liquid methanol, with the dynamical effects that result from the creation of the core hole included in a semiclassical way. Our method closely reproduces a fully quantum mechanical description of the dynamical effects for relevant one-dimensional models of the hydrogen-bonded methanol molecules. For the liquid, we find excellent agreement with the experimental spectrum, including the large isotope effect in the first split peak. The dynamical effects depend sensitively on the initial structure in terms of the local hydrogen-bonding (H-bonding) character: non-donor molecules contribute mainly to the high-energy peak while molecules with a strong donating H-bond contribute to the peak at lower energy. The spectrum thus reflects the initial structure mediated by the dynamical effects that are, however, seen to be crucial in order to reproduce the intensity distribution of the recently measured spectrum.

  16. Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    International Nuclear Information System (INIS)

    Mauche, C W; Liedahl, D A; Mathiesen, B F; Jimenez-Garate, M A; Raymond, J C

    2003-01-01

    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Lyα, Heα, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Lyα and Heα emission lines of H- and He-like C and O escaping the disk atmosphere

  17. POWERFUL RADIO EMISSION FROM LOW-MASS SUPERMASSIVE BLACK HOLES FAVORS DISK-LIKE BULGES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Xu, Y.; Xu, D. W.; Wei, J. Y., E-mail: wj@bao.ac.cn [CAS Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China)

    2016-12-10

    The origin of spin of low-mass supermassive black holes (SMBHs) is still a puzzle at present. We report here a study on the host galaxies of a sample of radio-selected nearby ( z < 0.05) Seyfert 2 galaxies with a BH mass of 10{sup 6–7} M{sub ⊙}. By modeling the SDSS r -band images of these galaxies through a two-dimensional bulge+disk decomposition, we identify a new dependence of SMBH's radio power on host bulge surface brightness profiles, in which more powerful radio emission comes from an SMBH associated with a more disk-like bulge. This result means low-mass and high-mass SMBHs are spun up by two entirely different modes that correspond to two different evolutionary paths. A low-mass SMBH is spun up by a gas accretion with significant disk-like rotational dynamics of the host galaxy in the secular evolution, while a high-mass one by a BH–BH merger in the merger evolution.

  18. Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole

    Science.gov (United States)

    Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong

    2018-01-01

    Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.

  19. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    International Nuclear Information System (INIS)

    Kocharov, Leon; Laitinen, Timo; Vainio, Rami

    2013-01-01

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit

  20. THE EFFECT OF TURBULENCE INTERMITTENCE ON THE EMISSION OF SOLAR ENERGETIC PARTICLES BY CORONAL AND INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, Leon [Sodankylä Geophysical Observatory (Oulu Unit), P.O. Box 3000, University of Oulu, FI-90014 Oulu (Finland); Laitinen, Timo [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Vainio, Rami [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 Helsinki (Finland)

    2013-11-20

    Major solar energetic particle events are associated with shock waves in solar corona and solar wind. Fast scattering of charged particles by plasma turbulence near the shock wave increases the efficiency of the particle acceleration in the shock, but prevents particles from escaping ahead of the shock. However, the turbulence energy levels in neighboring magnetic tubes of solar wind may differ from each other by more than one order of magnitude. We present the first theoretical study of accelerated particle emission from an oblique shock wave propagating through an intermittent turbulence background that consists of both highly turbulent magnetic tubes, where particles are accelerated, and quiet tubes, via which the accelerated particles can escape to the non-shocked solar wind. The modeling results imply that the presence of the fast transport channels penetrating the shock and cross-field transport of accelerated particles to those channels may play a key role in high-energy particle emission from distant shocks and can explain the prompt onset of major solar energetic particle events observed near the Earth's orbit.

  1. SIMULTANEOUS ULTRAVIOLET AND OPTICAL EMISSION-LINE PROFILES OF QUASARS: IMPLICATIONS FOR BLACK HOLE MASS DETERMINATION

    International Nuclear Information System (INIS)

    Ho, Luis C.; Dong Xiaobo; Goldoni, Paolo; Ponti, Gabriele; Greene, Jenny E.

    2012-01-01

    The X-shooter instrument on the Very Large Telescope was used to obtain spectra of seven moderate-redshift quasars simultaneously covering the spectral range ∼3000 Å to 2.5 μm. At z ≈ 1.5, most of the prominent broad emission lines in the ultraviolet to optical region are captured in their rest frame. We use this unique data set, which mitigates complications from source variability, to intercompare the line profiles of C IV λ1549, C III] λ1909, Mg II λ2800, and Hα and evaluate their implications for black hole (BH) mass estimation. We confirm that Mg II and the Balmer lines share similar kinematics and that they deliver mutually consistent BH mass estimates with minimal internal scatter (∼<0.1 dex) using the latest virial mass estimators. Although no virial mass formalism has yet been calibrated for C III], this line does not appear promising for such an application because of the large spread of its velocity width compared to lines of both higher and lower ionization; part of the discrepancy may be due to the difficulty of deblending C III] from its neighboring lines. The situation for C IV is complex and, because of the limited statistics of our small sample, inconclusive. On the one hand, slightly more than half of our sample (4/7) have C IV line widths that correlate reasonably well with Hα line widths, and their respective BH mass estimates agree to within ∼0.15 dex. The rest, on the other hand, exhibit exceptionally broad C IV profiles that overestimate virial masses by factors of 2-5 compared to Hα. As C IV is widely used to study BH demographics at high redshifts, we urgently need to revisit our analysis with a larger sample.

  2. Gamma emission tomosynthesis based on an automated slant hole collimation system

    Science.gov (United States)

    Pellegrini, R.; Pani, R.; Cinti, M. N.; Longo, M.; Lo Meo, S.; Viviano, M.

    2015-03-01

    The imaging capabilities of radioisotope molecular imaging systems are limited by their ring geometry and by the object-to-detector distance, which impairs spatial resolution, efficiency and image quality. These detection capabilities could be enhanced by performing acquisitions with dedicated gamma cameras placed in close proximity to the object that has to be examined. The main aim of this work is to develop a compact camera suitable for detecting small and low-contrast lesions, with a higher detection efficiency than conventional SPECT, through a gamma emission tomosynthesis method. In this contribution a prototype of a new automated slant hole collimator, coupled to a small Field of View (FoV) gamma camera, is presented. The proposed device is able to acquire planar projection images at different angles without rotating around the patient body; these projection images are then three-dimensional reconstructed. Therefore, in order to perform the volumetric reconstruction of the studied object, the traditional Back Projection (BP) reconstruction is compared with the Shift And Add (SAA) method. In order to verify the effectiveness of the technique and to test the image reconstruction algorithms, a Monte Carlo simulation, based on the GEANT4 code, was implemented. The method was also validated by a set of experimental measurements. The discussed device is designed to work in patient proximity for detecting lesions placed at a distances ranged from 0 to 8 cm, thus allowing few millimeters planar resolutions and sagittal resolution of about 2 cm. The new collimation method implies high-resolution capabilities demonstrated by reconstructing the projection images through the BP and the SAA methods. The latter is simpler than BP and produces comparable spatial resolutions with respect to the traditional tomographic method, while preserving the image counts.

  3. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission

    Energy Technology Data Exchange (ETDEWEB)

    Haiman, Zoltan; Menou, Kristen [Department of Astronomy, Columbia University, New York, NY (United States); Kocsis, Bence [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Lippai, Zoltan; Frei, Zsolt [Institute of Physics, Eoetvoes University, Budapest (Hungary)

    2009-05-07

    Supermassive black hole binaries (SMBHBs) with masses in the mass range approx(10{sup 4}-10{sup 7}) M{sub o-dot}/(1 + z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the future Laser Interferometric Space Antenna (LISA) will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disc when the SMBHB recoils and 'shakes' the disc. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB-serving as a proof of concept for eventually finding actual LISA counterparts.

  4. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission

    International Nuclear Information System (INIS)

    Haiman, Zoltan; Menou, Kristen; Kocsis, Bence; Lippai, Zoltan; Frei, Zsolt

    2009-01-01

    Supermassive black hole binaries (SMBHBs) with masses in the mass range ∼(10 4 -10 7 ) M o-dot /(1 + z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the future Laser Interferometric Space Antenna (LISA) will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disc when the SMBHB recoils and 'shakes' the disc. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB-serving as a proof of concept for eventually finding actual LISA counterparts.

  5. Bulk emission by higher-dimensional black holes: almost perfect blackbody radiation

    International Nuclear Information System (INIS)

    Hod, Shahar

    2011-01-01

    We study the Hawking radiation emitted into the bulk by (D + 1)-dimensional Schwarzschild black holes. It is well known that the black-hole spectrum departs from exact blackbody form due to the frequency dependence of the 'greybody' factors. For intermediate values of D (3 ≤ D ∼ > 1, the typical wavelengths in the black-hole spectrum are much shorter than the size of the black hole. In this regime, the greybody factors are well described by the geometric-optics approximation according to which they are almost frequency independent. Following this observation, we argue that for higher-dimensional black holes with D >> 1, the total power emitted into the bulk should be well approximated by the analytical formula for perfect blackbody radiation. We test the validity of this analytical prediction with numerical computations.

  6. Coherent electron - hole state and femtosecond cooperative emission in bulk GaAs

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T

    2002-01-01

    The conditions for obtaining a collective coherent electron - hole state in semiconductors are discussed. The results of the experimental study of the regime of cooperative recombination of high-density electrons and holes (more than 3 x 10 18 cm -3 ) in bulk GaAs at room temperature are presented. It is shown that the collective pairing of electrons and holes and their condensation cause the formation of a short-living coherent electron - hole BCS-like state, which exhibits radiative recombination in the form of high-power femtosecond optical pulses. It is experimentally demonstrated that almost all of the electrons and holes available are condensed at the very bottoms of the bands and are at the cooperative state. The average lifetime of this state is measured to be of about 300 fs. The dependences of the order parameter (the energy gap of the spectrum of electrons and holes) and the Fermi energy of the coherent BCS state on the electron - hole concentration are obtained. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  7. Fermion emission in a two-dimensional black hole space-time

    International Nuclear Information System (INIS)

    Wanders, G.

    1994-01-01

    We investigate massless fermion production by a two-dimensional dilatonic black hole. Our analysis is based on the Bogoliubov transformation relating the outgoing fermion field observed outside the black hole horizon to the incoming field present before the black hole creation. It takes full account of the fact that the transformation is neither invertible nor unitarily implementable. The particle content of the outgoing radiation is specified by means of inclusive probabilities for the detection of sets of outgoing fermions and antifermions in given states. For states localized near the horizon these probabilities characterize a thermal equilibrium state. The way the probabilities become thermal as one approaches the horizon is discussed in detail

  8. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  9. Charge carriers bulk recombination instead of electroplex emission after their tunneling through hole-blocking layer in OLEDs

    Science.gov (United States)

    Yang, S. Y.; Liu, D.; Jiang, Y.; Teng, F.; Xu, Z.; Hou, Y.; Xu, X. R.

    2006-08-01

    Charge carriers bulk recombination instead of forming electroplex after their tunneling through a hole-blocking layer, i.e. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), in organic electroluminescence (EL) device ITO/poly-(N-vinyl-carbazole)(PVK)/BCP/tris(8-hydroxyquinoline) aluminum (Alq3)/Al is reported. By changing the thickness of BCP layer, one can find that high electric fields enhance the tunneling process of holes accumulated at the PVK/BCP interface into BCP layer instead of forming “electroplex emission” as reported earlier in literatures. Our experimental data show that charge carriers bulk recombination takes place in both PVK layer and BCP layer, and even in Alq3 layer when BCP layer is thin enough. Further, it is suggested that PVK is the origin of the emission shoulder at 595 nm in the EL spectra of trilayer device ITO/PVK/BCP/Alq3/Al.

  10. DISCOVERY OF X-RAY EMISSION FROM THE FIRST Be/BLACK HOLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M. [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Zabalza, V. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2014-05-10

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k{sub B}T=0.07{sub −0.03}{sup +0.04} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above ≅0.8 keV. The obtained total flux is F(0.3-5.5 keV)=(4.6{sub −1.1}{sup +1.3})×10{sup −14} erg cm{sup –2} s{sup –1}. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L {sub X} = (3.7 ± 1.7) × 10{sup 31} erg s{sup –1}. Considering the estimated range of BH masses to be 3.8-6.9 M {sub ☉}, this luminosity represents (6.7 ± 4.4) × 10{sup –8} L {sub Edd}, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ∼10{sup –8} L {sub Edd}. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  11. Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope

    Science.gov (United States)

    Ackermann, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Cameron, R. A.; Caputo, R.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Conrad, J.; Costantin, D.; D’Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Johnson, C.; Kensei, S.; Kocevski, D.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Sánchez-Conde, M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Valverde, J.; Vianello, G.; Wood, K.; Wood, M.; Zaharijas, G.

    2018-04-01

    Black holes with masses below approximately 1015 g are expected to emit gamma-rays with energies above a few tens of MeV, which can be detected by the Fermi Large Area Telescope (LAT). Although black holes with these masses cannot be formed as a result of stellar evolution, they may have formed in the early universe and are therefore called primordial black holes (PBHs). Previous searches for PBHs have focused on either short-timescale bursts or the contribution of PBHs to the isotropic gamma-ray emission. We show that, in cases of individual PBHs, the Fermi-LAT is most sensitive to PBHs with temperatures above approximately 16 GeV and masses 6 × 1011 g, which it can detect out to a distance of about 0.03 pc. These PBHs have a remaining lifetime of months to years at the start of the Fermi mission. They would appear as potentially moving point sources with gamma-ray emission that become spectrally harder and brighter with time until the PBH completely evaporates. In this paper, we develop a new algorithm to detect the proper motion of gamma-ray point sources, and apply it to 318 unassociated point sources at a high galactic latitude in the third Fermi-LAT source catalog. None of the unassociated point sources with spectra consistent with PBH evaporation show significant proper motion. Using the nondetection of PBH candidates, we derive a 99% confidence limit on the PBH evaporation rate in the vicinity of Earth, {\\dot{ρ }}PBH}< 7.2× {10}3 {pc}}-3 {yr}}-1. This limit is similar to the limits obtained with ground-based gamma-ray observatories.

  12. Coronal Seismology: The Search for Propagating Waves in Coronal Loops

    Science.gov (United States)

    Schad, Thomas A.; Seeley, D.; Keil, S. L.; Tomczyk, S.

    2007-05-01

    We report on Doppler observations of the solar corona obtained in the Fe XeXIII 1074.7nm coronal emission line with the HAO Coronal Multi-Channel Polarimeter (CoMP) mounted on the NSO Coronal One Shot coronagraph located in the Hilltop Facility of NSO/Sacramento Peak. The COMP is a tunable filtergraph instrument that records the entire corona from the edge of the occulting disk at approximately 1.03 Rsun out to 1.4 Rsun with a spatial resolution of about 4” x 4”. COMP can be rapidly scanned through the spectral line while recording orthogonal states of linear and circular polarization. The two dimensional spatial resolution allows us to correlate temporal fluctuations observed in one part of the corona with those seen at other locations, in particular along coronal loops. Using cross spectral analysis we find that the observations reveal upward propagating waves that are characterized by Doppler shifts with rms velocities of 0.3 km/s, peak wave power in the 3-5 mHz frequency range, and phase speeds 1-3 Mm/s. The wave trajectories are consistent with the direction of the magnetic field inferred from the linear polarization measurements. We discuss the phase and coherence of these waves as a function of height in the corona and relate our findings to previous observations. The observed waves appear to be Alfvenic in character. "Thomas Schad was supported through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU Program." Daniel Seeley was supported through the National Solar Observatory Research Experience for Teachers (RET) site program, which is funded by the National Science Foundation RET program.

  13. Mid-term periodicities and heliospheric modulation of coronal index ...

    Indian Academy of Sciences (India)

    PRITHVI RAJ SINGH

    2018-03-06

    Mar 6, 2018 ... long-term periodicity of ∼11 years, with different solar activities. The physical processes that occur inside the. Sun are reflected by a periodic character in terms of coronal index of coronal emission (Fe XIV 530.3 nm) during solar activity cycles. Recently, a link between the strength of photospheric magnetic ...

  14. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  15. Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel–diesel fuel blends

    International Nuclear Information System (INIS)

    Sayin, Cenk; Gumus, Metin; Canakci, Mustafa

    2013-01-01

    In diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 × 2 (340 μm diameter holes with 2 holes in the nozzle), 240 × 4, 200 × 6, and 170 × 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO 2 ) and nitrogen oxides (NO x ) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel–diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO 2 and NO x increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel–diesel blends (B5 and B20). -- Highlights: • We used biodiesel–diesel blends with the injectors having different parameters. • Injector parameters have influences on the exhaust emissions. • Specific fuel consumption can be affected with injector parameters. • Injectors with proper hole numbers and size can be used for biodiesel–diesel blends

  16. Hole distribution in (Sr, Ca, Y, La)14Cu24O41 compounds studies by x-ray absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Kabasawa, Eiki; Nakamura, Jin; Yamada, Nobuyoshi; Kuroki, Kazuhiko; Yamazaki, Hisashi; Watanabe, Masamitsu; Denlinger, Jonathan D.; Shin, Shik; Perera, Rupert C.C.

    2008-01-01

    The polarization dependence of soft x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) near the O 1s absorption edge was measured on two-leg ladder single-crystalline samples of (Sr, Ca, Y, La) 14 Cu 24 O 41 (14-24-41). The hole distributions in 14-24-41 compounds are determined by polarization analysis. For samples with less than or equal to 5 holes/chemical formula (c.f.), all holes reside on the edge-shared chain layer. In the case of Sr 14-x Ca x Cu 24 O 41 (6 holes/c.f.), there is approximately one hole on the two-leg ladder layer, with about five holes remaining on the edge-shared chain layer. By Ca substitution for Sr in the Sr 14-x Ca x Cu 24 O 41 samples, 0.3 holes transfer from the edge-shared chain to the two-leg ladder layer. It is possible that some of the holes on the two-leg ladder layer move from the rung sites to the leg sites upon Ca substitution. (author)

  17. Constraining The Abundance Of Massive Black Hole Binaries By Spectroscopic Monitoring Of Quasars With Offset Broad Emission Lines

    Science.gov (United States)

    Liu, Xin; Shen, Y.

    2012-05-01

    A fraction of quasars have long been known to show significant bulk velocity offsets (of a few hundred to thousands of km/s) in the broad permitted emission lines with respect to host galaxy systemic redshift. Various scenarios may explain these features such as massive black hole binaries or broad line region gas kinematics. As previously demonstrated by the dedicated work of Eracleous and colleagues, long-term spectroscopic monitoring provides a promising test to discriminate between alternative scenarios. Here, we present a sample of 300 shifted-line quasars homogeneously selected from the SDSS DR7. For 60 of them, we have conducted second-epoch optical spectra using MMT/BCS, ARC 3.5m/DIS, and/or FLWO 1.5m/FAST. These new observations, combined with the existing SDSS spectra, enable us to constrain the velocity drifts of these shifted broad lines with time baselines of a few years up to a decade. Previous work has been focusing on objects with extreme velocity offsets: > 1000 km/s. Our work extends to the parameter space of smaller velocity offsets, where larger velocity drifts would be expected in the binary scenario. Our results may be used to identify strong candidates for and to constrain the abundance of massive black hole binaries, which are expected in the hierarchical universe, but have so far been illusive.

  18. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  19. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua [Kavli Institute of Astronomy and Astrophysics at Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China); Momjian, Emmanuel; Carilli, Chris L. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Fan, Xiaohui [Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721 (United States); Walter, Fabian [Max-Planck-Institute for Astronomy, Königsstuhl 17, D-69117 Heidelberg (Germany); Strauss, Michael A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Wang, Feige [Department of Astronomy, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871 (China)

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  20. The Hunt for Low-Mass Black Holes in the JWST Era

    Science.gov (United States)

    Cann, Jenna; Satyapal, Shobita; Abel, Nicholas; Ricci, Claudio; Gliozzi, Mario; Blecha, Laura; Secrest, Nathan

    2018-01-01

    Most, if not all, massive galaxies have a central supermassive black hole (SMBH) millions to billions of times the mass of the Sun. While the properties of SMBHs and their host galaxies have been well-studied in massive galaxies, very few SMBHs have been found in galaxies with low masses and those with small bulges. This is a significant deficiency, because the study of this population allows us to gain an understanding of merger-free pathways to black hole growth, and to gain insight into the origin and growth of SMBH ‘seeds’, thought to have formed at high redshift. Most studies aimed at finding SMBHs have been conducted using optical spectroscopic studies, where active SMBHs (active galactic nuclei or AGNs) display distinctive optical emission lines indicative of accreting SMBHs. However, in low mass (dwarf) galaxies, the SMBHs will likely be less massive, and can be energetically weak and possibly deeply embedded in their host galaxies. As a result, the optical emission lines may be dominated by star formation regions, severely limiting the diagnostic power of optical surveys in finding and characterizing the properties of the AGN in dwarf galaxies. In such galaxies, infrared coronal lines provide a robust method of finding AGNs. Furthermore, as the black hole mass decreases, the Schwarzschild radius of the black hole decreases, and in response, the temperature of the surrounding accretion disk increases. The shape of the ionizing radiation spectral energy distribution therefore changes with black hole mass, which will affect the emission line spectrum from the surrounding gas. In this work, we investigate the diagnostic power of infrared coronal lines and the effect of black hole mass on the emission line spectra from AGNs, with a particular focus on the emission lines accessible by JWST.

  1. Free Magnetic Energy and Coronal Heating

    Science.gov (United States)

    Winebarger, Amy; Moore, Ron; Falconer, David

    2012-01-01

    Previous work has shown that the coronal X-ray luminosity of an active region increases roughly in direct proportion to the total photospheric flux of the active region's magnetic field (Fisher et al. 1998). It is also observed, however, that the coronal luminosity of active regions of nearly the same flux content can differ by an order of magnitude. In this presentation, we analyze 10 active regions with roughly the same total magnetic flux. We first determine several coronal properties, such as X-ray luminosity (calculated using Hinode XRT), peak temperature (calculated using Hinode EIS), and total Fe XVIII emission (calculated using SDO AIA). We present the dependence of these properties on a proxy of the free magnetic energy of the active region

  2. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs

  3. DETERMINING QUASAR BLACK HOLE MASS FUNCTIONS FROM THEIR BROAD EMISSION LINES: APPLICATION TO THE BRIGHT QUASAR SURVEY

    International Nuclear Information System (INIS)

    Kelly, Brandon C.; Fan Xiaohui; Vestergaard, Marianne

    2009-01-01

    We describe a Bayesian approach to estimating quasar black hole mass functions (BHMF) using the broad emission lines to estimate black hole mass. We show how using the broad-line mass estimates in combination with statistical techniques developed for luminosity function estimation (e.g., the 1/V a correction) leads to statistically biased results. We derive the likelihood function for the BHMF based on the broad-line mass estimates, and derive the posterior distribution for the BHMF, given the observed data. We develop our statistical approach for a flexible model where the BHMF is modeled as a mixture of Gaussian functions. Statistical inference is performed using Markov chain Monte Carlo (MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform the MCMC. The MCMC simulates random draws from the probability distribution of the BHMF parameters, given the data, and we use a simulated data set to show how these random draws may be used to estimate the probability distribution for the BHMF. In addition, we show how the MCMC output may be used to estimate the probability distribution of any quantities derived from the BHMF, such as the peak in the space density of quasars. Our method has the advantage that it is able to constrain the BHMF even beyond the survey detection limits at the adopted confidence level, accounts for measurement errors and the intrinsic uncertainty in broad-line mass estimates, and provides a natural way of estimating the probability distribution of any quantities derived from the BHMF. We conclude by using our method to estimate the local active BHMF using the z BH ∼> 10 8 M sun . Our analysis implies that at a given M BH , z < 0.5 broad-line quasars have a typical Eddington ratio of ∼0.4 and a dispersion in Eddington ratio of ∼<0.5 dex.

  4. A SURVEY OF CORONAL CAVITY DENSITY PROFILES

    International Nuclear Information System (INIS)

    Fuller, J.; Gibson, S. E.

    2009-01-01

    Coronal cavities are common features of the solar corona that appear as darkened regions at the base of coronal helmet streamers in coronagraph images. Their darkened appearance indicates that they are regions of lowered density embedded within the comparatively higher density helmet streamer. Despite interfering projection effects of the surrounding helmet streamer (which we refer to as the cavity rim), Fuller et al. have shown that under certain conditions it is possible to use a Van de Hulst inversion of white-light polarized brightness (pB) data to calculate the electron density of both the cavity and cavity rim plasma. In this article, we apply minor modifications to the methods of Fuller et al. in order to improve the accuracy and versatility of the inversion process, and use the new methods to calculate density profiles for both the cavity and cavity rim in 24 cavity systems. We also examine trends in cavity morphology and how departures from the model geometry affect our density calculations. The density calculations reveal that in all 24 cases the cavity plasma has a flatter density profile than the plasma of the cavity rim, meaning that the cavity has a larger density depletion at low altitudes than it does at high altitudes. We find that the mean cavity density is over four times greater than that of a coronal hole at an altitude of 1.2 R sun and that every cavity in the sample is over twice as dense as a coronal hole at this altitude. Furthermore, we find that different cavity systems near solar maximum span a greater range in density at 1.2 R sun than do cavity systems near solar minimum, with a slight trend toward higher densities for systems nearer to solar maximum. Finally, we found no significant correlation of cavity density properties with cavity height-indeed, cavities show remarkably similar density depletions-except for the two smallest cavities that show significantly greater depletion.

  5. VARIABLE O VI AND N V EMISSION FROM THE X-RAY BINARY LMC X-3: HEATING OF THE BLACK HOLE COMPANION

    International Nuclear Information System (INIS)

    Song Limin; Tripp, Todd M.; Wang, Q. Daniel; Yao Yangsen; Cui Wei; Xue Yongquan; Orosz, Jerome A.; Steeghs, Danny; Steiner, James F.; Torres, Manuel A. P.; McClintock, Jeffrey E.

    2010-01-01

    Based on high-resolution ultraviolet spectroscopy obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Cosmic Origins Spectrograph, we present new detections of O VI and N V emission from the black hole X-ray binary (XRB) system LMC X-3. We also update the ephemeris of the XRB using recent radial velocity measurements obtained with the echelle spectrograph on the Magellan-Clay telescope. We observe significant velocity variability of the UV emission, and we find that the O VI and N V emission velocities follow the optical velocity curve of the XRB. Moreover, the O VI and N V intensities regularly decrease between binary phase = 0.5 and 1.0, which suggests that the source of the UV emission is increasingly occulted as the B star in the XRB moves from superior to inferior conjunction. These trends suggest that illumination of the B star atmosphere by the intense X-ray emission from the accreting black hole creates a hot spot on one side of the B star, and this hot spot is the origin of the O VI and N V emission. However, the velocity semiamplitude of the ultraviolet emission, K UV ∼ 180 km s -1 , is lower than the optical semiamplitude; this difference could be due to rotation of the B star. Comparison of the FUSE observations taken in 2001 November and 2004 April shows a significant change in the O VI emission characteristics: in the 2001 data, the O VI region shows both broad and narrow emission features, while in 2004 only the narrow O VI emission is clearly present. Rossi X-ray Timing Explorer data show that the XRB was in a high/soft state in the 2001 November epoch but was in a transitional state in 2004 April, so the shape of the X-ray spectrum might change the properties of the region illuminated on the B star and thus change the broad versus narrow characteristics of the UV emission. If our hypothesis about the origin of the highly ionized emission is correct, then careful analysis of the emission occultation could, in principle

  6. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    Science.gov (United States)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  7. Evidence for quiescent synchrotron emission in the black hole X-ray transient Swift J1357.2–0933

    Directory of Open Access Journals (Sweden)

    Shahbaz T.

    2013-12-01

    Full Text Available We present high time-resolution optical and infrared observations of the edge-on black hole X-ray transient Swift J1357.2-0933. Our data taken in 2012 shows the system to be at its pre-outburst magnitude and so the system is in quiescence. In contrast to other X-ray transients, the quiescent light curves of Swift J1357.2-0933 do not show the secondary star’s ellipsoidal modulation. The optical and infrared light curves is dominated by variability with an optical fractional rms of about 20 per cent, much larger than what is observed in other systems. The quiescent ultraviolet to mid-IR spectral energy distribution in quiescence is dominated by a nonthermal component with a power–law index of −1.4, (the broad-band rms SED has a similar index which arises from optically thin synchrotron emission from a jet; the lack of a peak in the spectral energy distribution rules out advection-dominated models (based on [19].

  8. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  9. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  10. Coronal mass ejections and coronal structures

    International Nuclear Information System (INIS)

    Hildner, E.; Bassi, J.; Bougeret, J.L.

    1986-01-01

    Research on coronal mass ejections (CMF) took a variety of forms, both observational and theoretical. On the observational side there were: case studies of individual events, in which it was attempted to provide the most complete descriptions possible, using correlative observations in diverse wavelengths; statistical studies of the properties of CMEs and their associated activity; observations which may tell us about the initiation of mass ejections; interplanetary observations of associated shocks and energetic particles; observations of CMEs traversing interplanetary space; and the beautiful synoptic charts which show to what degree mass ejections affect the background corona and how rapidly (if at all) the corona recovers its pre-disturbance form. These efforts are described in capsule form with an emphasis on presenting pictures, graphs, and tables so that the reader can form a personal appreciation of the work and its results

  11. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  12. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Glidden, Ana [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rose, Marvin; Elvis, Martin; McDowell, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .

  13. Space- and Ground-based Coronal Spectro-Polarimetry

    Science.gov (United States)

    Fineschi, Silvano; Bemporad, Alessandro; Rybak, Jan; Capobianco, Gerardo

    This presentation gives an overview of the near-future perspectives of ultraviolet and visible-light spectro-polarimetric instrumentation for probing coronal magnetism from space-based and ground-based observatories. Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter - has been recently installed on the Lomnicky Peak Observatory 20cm Zeiss coronagraph. The preliminary results from CorMag will be presented. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include the capability of imaging polarimetry of the HI Lyman-alpha, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. This presentation will describe how in future re-flights SCORE could observe the expected Hanle effect in corona with a HI Lyman-alpha polarimeter.

  14. On the detection of high-redshift black holes with ALMA through CO and H(2) emission

    NARCIS (Netherlands)

    Spaans, Marco; Meijerink, Rowin

    2008-01-01

    Many present-day galaxies are known to harbor supermassive, >= 10(6) M(circle dot), black holes. These central black holes must have grown through accretion from less massive seeds in the early universe. The molecules CO and H 2 can be used to trace this young population of accreting massive black

  15. Solar origins of coronal mass ejections

    Science.gov (United States)

    Kahler, Stephen

    1987-01-01

    The large scale properties of coronal mass ejections (CMEs), such as morphology, leading edge speed, and angular width and position, have been cataloged for many events observed with coronagraphs on the Skylab, P-78, and SMM spacecraft. While considerable study has been devoted to the characteristics of the SMEs, their solar origins are still only poorly understood. Recent observational work has involved statistical associations of CMEs with flares and filament eruptions, and some evidence exists that the flare and eruptive-filament associated CMEs define two classes of events, with the former being generally more energetic. Nevertheless, it is found that eruptive-filament CMEs can at times be very energetic, giving rise to interplanetary shocks and energetic particle events. The size of the impulsive phase in a flare-associated CME seems to play no significant role in the size or speed of the CME, but the angular sizes of CMEs may correlate with the scale sizes of the 1-8 angstrom x-ray flares. At the present time, He 10830 angstrom observations should be useful in studying the late development of double-ribbon flares and transient coronal holes to yield insights into the CME aftermath. The recently available white-light synoptic maps may also prove fruitful in defining the coronal conditions giving rise to CMEs.

  16. EIT Observations of Coronal Mass Ejections

    Science.gov (United States)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  17. Black hole mass estimates and emission-line properties of a sample of redshift z > 6.5 quasars

    Energy Technology Data Exchange (ETDEWEB)

    De Rosa, Gisella; Peterson, Bradley M.; Frank, Stephan [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Venemans, Bram P.; Decarli, Roberto; Walter, Fabian [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gennaro, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Simcoe, Robert A. [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Dietrich, Matthias [Department of Physics and Astronomy, Ohio University, Clippinger Lab 251B, Athens, OH 45701 (United States); McMahon, Richard G.; Hewett, Paul C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Mortlock, Daniel J. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ (United Kingdom); Simpson, Chris [Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom)

    2014-08-01

    We present the analysis of optical and near-infrared spectra of the only four z > 6.5 quasars known to date, discovered in the UKIDSS-LAS and VISTA-VIKING surveys. Our data set consists of new Very Large Telescope/X-Shooter and Magellan/FIRE observations. These are the best optical/NIR spectroscopic data that are likely to be obtained for the z > 6.5 sample using current 6-10 m facilities. We estimate the black hole (BH) mass, the Eddington ratio, and the Si IV/C IV, C III]/C IV, and Fe II/Mg II emission-line flux ratios. We perform spectral modeling using a procedure that allows us to derive a probability distribution for the continuum components and to obtain the quasar properties weighted upon the underlying distribution of continuum models. The z > 6.5 quasars show the same emission properties as their counterparts at lower redshifts. The z > 6.5 quasars host BHs with masses of ∼10{sup 9} M{sub ☉} that are accreting close to the Eddington luminosity ((log(L{sub Bol}/L{sub Edd})) = –0.4 ± 0.2), in agreement with what has been observed for a sample of 4.0 < z < 6.5 quasars. By comparing the Si IV/C IV and C III]/C IV flux ratios with the results obtained from luminosity-matched samples at z ∼ 6 and 2 ≤ z ≤ 4.5, we find no evidence of evolution of the line ratios with cosmic time. We compare the measured Fe II/Mg II flux ratios with those obtained for a sample of 4.0 < z < 6.4 sources. The two samples are analyzed using a consistent procedure. There is no evidence that the Fe II/Mg II flux ratio evolves between z = 7 and z = 4. Under the assumption that the Fe II/Mg II traces the Fe/Mg abundance ratio, this implies the presence of major episodes of chemical enrichment in the quasar hosts in the first ∼0.8 Gyr after the Big Bang.

  18. Coronal Mass Ejections

    CERN Document Server

    Kunow, H; Linker, J. A; Schwenn, R; Steiger, R

    2006-01-01

    It is well known that the Sun gravitationally controls the orbits of planets and minor bodies. Much less known, however, is the domain of plasma fields and charged particles in which the Sun governs a heliosphere out to a distance of about 15 billion kilometers. What forces activates the Sun to maintain this power? Coronal Mass Ejections (CMEs) and their descendants are the troops serving the Sun during high solar activity periods. This volume offers a comprehensive and integrated overview of our present knowledge and understanding of Coronal Mass Ejections (CMEs) and their descendants, Interplanetary CMEs (ICMEs). It results from a series of workshops held between 2000 and 2004. An international team of about sixty experimenters involved e.g. in the SOHO, ULYSSES, VOYAGER, PIONEER, HELIOS, WIND, IMP, and ACE missions, ground observers, and theoreticians worked jointly on interpreting the observations and developing new models for CME initiations, development, and interplanetary propagation. The book provides...

  19. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    International Nuclear Information System (INIS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat

    2016-01-01

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.

  20. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    Science.gov (United States)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  1. Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation.

    Science.gov (United States)

    Chirayath, V A; Callewaert, V; Fairchild, A J; Chrysler, M D; Gladen, R W; Mcdonald, A D; Imam, S K; Shastry, K; Koymen, A R; Saniz, R; Barbiellini, B; Rajeshwar, K; Partoens, B; Weiss, A H

    2017-07-13

    Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.

  2. The origin of coronal lines in Seyfert galaxies

    International Nuclear Information System (INIS)

    Korista, K.T.; Ferland, G.J.

    1989-01-01

    This paper examines the possibility that the coronal line region in Seyfert galaxies may be the result of an interstellar medium (ISM) exposed to, and subsequently photoionized by, a 'bare' Seyfert nucleus. It is shown that a 'generic' AGN continuum illuminating the warm-phase of the ISM of a spiral galaxy can produce the observed emission. In this picture the same UV-radiation cone that is responsible for the high-excitation extended narrow-line emission clouds observed out to 1-2 kpc or farther from the nuclei of some Seyfert galaxies also produces the coronal lines. Soft X-rays originating in the nucleus are Compton-scattered off the ISM, thus producing extended soft X-ray emission, as observed in NGC 4151. The results of the calculations show a basic insensitivity to the ISM density, which explains why similar coronal line spectra are found in many Seyfert galaxies of varying physical environments. 60 refs

  3. THE CORONAL ABUNDANCES OF MID-F DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin

    2013-01-01

    A Chandra spectrum of the moderately active nearby F6 V star π 3 Ori is used to study the coronal properties of mid-F dwarfs. We find that π 3 Ori's coronal emission measure distribution is very similar to those of moderately active G and K dwarfs, with an emission measure peak near log T = 6.6 seeming to be ubiquitous for such stars. In contrast to coronal temperature, coronal abundances are known to depend on spectral type for main sequence stars. Based on this previously known relation, we expected π 3 Ori's corona to exhibit an extremely strong ''first ionization potential (FIP) effect'', a phenomenon first identified on the Sun where elements with low FIP are enhanced in the corona. We instead find that π 3 Ori's corona exhibits a FIP effect essentially identical to that of the Sun and other early G dwarfs, perhaps indicating that the increase in FIP bias toward earlier spectral types stops or at least slows for F stars. We find that π 3 Ori's coronal characteristics are significantly different from two previously studied mid-F stars, Procyon (F5 IV-V) and τ Boo (F7 V). We believe π 3 Ori is more representative of the coronal characteristics of mid-F dwarfs, with Procyon being different because of luminosity class, and τ Boo being different because of the effects of one of two close companions, one stellar (τ Boo B: M2 V) and one planetary.

  4. Determination of Coronal Magnetic Fields from Vector Magnetograms

    Science.gov (United States)

    Mikic, Zoran

    1997-01-01

    During the course of the present contract we developed an 'evolutionary technique' for the determination of force-free coronal magnetic fields from vector magnetograph observations. The method can successfully generate nonlinear force- free fields (with non-constant-a) that match vector magnetograms. We demonstrated that it is possible to determine coronal magnetic fields from photospheric measurements, and we applied it to vector magnetograms of active regions. We have also studied theoretical models of coronal fields that lead to disruptions. Specifically, we have demonstrated that the determination of force-free fields from exact boundary data is a well-posed mathematical problem, by verifying that the computed coronal field agrees with an analytic force-free field when boundary data for the analytic field are used; demonstrated that it is possible to determine active-region coronal magnetic fields from photospheric measurements, by computing the coronal field above active region 5747 on 20 October 1989, AR6919 on 15 November 1991, and AR7260 on 18 August 1992, from data taken with the Stokes Polarimeter at Mees Solar Observatory, University of Hawaii; started to analyze active region 7201 on 19 June 1992 using measurements made with the Advanced Stokes Polarimeter at NSO/Sac Peak; investigated the effects of imperfections in the photospheric data on the computed coronal magnetic field; documented the coronal field structure of AR5747 and compared it to the morphology of footpoint emission in a flare, showing that the 'high- pressure' H-alpha footpoints are connected by coronal field lines; shown that the variation of magnetic field strength along current-carrying field lines is significantly different from the variation in a potential field, and that the resulting near-constant area of elementary flux tubes is consistent with observations; begun to develop realistic models of coronal fields which can be used to study flare trigger mechanisms; demonstrated that

  5. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    International Nuclear Information System (INIS)

    Lee, E.Y.; Brunett, B.A.; Olsen, R.W.; Van Scyoc, J.M. III; Hermon, H.; James, R.B.

    1998-01-01

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10 -16 cm 2 is detected and three hole traps having energies of 70 ± 20 meV, 105 ± 30 meV and 694 ± 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence

  6. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  7. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  8. Electric field effect on the emission rate of H4F and H4S hole traps in InP

    International Nuclear Information System (INIS)

    Darwich, R.; Alek, B.

    2010-01-01

    The electric field effect on the emission rate enhancement of the H4 F and H4 S hole trap in highly Zn-doped InP has been examined using the deep level transient spectroscopy (DLTS) and double correlation DLTS (DDLTS). The DLTS and DDLTS results have been found to be in good agreement for low and intermediate electric fields, but they disagree for large field effect. Comparing our emission data with the theory, we have found that H4 F obeys the quantum model of phonon-assisted tunneling while H4 S follows the Poole-Frenkel model employing a three-dimensional screening coulombic potential. Our results show that the H4 S defect can be attributed to a charged (V p - Zn) complex. (author)

  9. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  10. Forward Modeling of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    We apply a forward model of emission from a coronal cavity in an effort to determine the temperature and density distribution in the cavity. Coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and X-rays. When these structures erupt they form the cavity portions of CMEs The model consists of a coronal streamer model with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. Temperature and density can be varied as a function of altitude both in the cavity and streamer. We apply this model to a cavity observed in Aug. 2007 by a wide array of instruments including Hinode/EIS, STEREO/EUVI and SOHO/EIT. Studies such as these will ultimately help us understand the the original structures which erupt to become CMEs and ICMES, one of the prime Solar Orbiter objectives.

  11. Temperature Structure of a Coronal Cavity

    Science.gov (United States)

    Kucera, T. A.; Gibson, S. E.; Schmit, D. J.

    2011-01-01

    we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel lenth. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011).

  12. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  13. Radiation transport around Kerr black holes

    Science.gov (United States)

    Schnittman, Jeremy David

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable

  14. Plasma Diagnostics of Coronal Dimming Events

    Science.gov (United States)

    Vanninathan, Kamalam; Veronig, Astrid M.; Dissauer, Karin; Temmer, Manuela

    2018-04-01

    Coronal mass ejections are often associated with coronal dimmings, i.e., transient dark regions that are most distinctly observed in Extreme Ultra-violet wavelengths. Using Atmospheric Imaging Assembly (AIA) data, we apply Differential Emission Measure diagnostics to study the plasma characteristics of six coronal dimming events. In the core dimming region, we find a steep and impulsive decrease of density with values up to 50%–70%. Five of the events also reveal an associated drop in temperature of 5%–25%. The secondary dimming regions also show a distinct decrease in density, but less strong, decreasing by 10%–45%. In both the core and the secondary dimming the density changes are much larger than the temperature changes, confirming that the dimming regions are mainly caused by plasma evacuation. In the core dimming, the plasma density reduces rapidly within the first 20–30 minutes after the flare start and does not recover for at least 10 hr later, whereas the secondary dimming tends to be more gradual and starts to replenish after 1–2 hr. The pre-event temperatures are higher in the core dimming (1.7–2.6 MK) than in the secondary dimming regions (1.6–2.0 MK). Both core and secondary dimmings are best observed in the AIA 211 and 193 Å filters. These findings suggest that the core dimming corresponds to the footpoints of the erupting flux rope rooted in the AR, while the secondary dimming represents plasma from overlying coronal structures that expand during the CME eruption.

  15. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Halpern, Jules P. [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Eracleous, Michael [Department of Astronomy and Institute for Gravitation and The Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  16. Coronal heating via nanoflares

    International Nuclear Information System (INIS)

    Poletto, G.; Kopp, R.

    1993-01-01

    It has been recently proposed that the coronae of single late-type main sequence stars represent the radiative output from a large number of tiny energy release events, the so-called nanoflares. Although this suggestion is attractive and order of magnitude estimates of the physical parameters involved in the process are consistent with available data, nanoflares have not yet been observed and theoretical descriptions of these phenomena are still very crude. In this paper we examine the temporal behavior of a magnetic flux tube subject to the repeated occurrence of energy release events, randomly distributed in time, and we show that an originally empty cool loop may, in fact, reach typical coronal density and temperature values via nanoflare heating. By choosing physical parameters appropriate to solar conditions we also explore the possibilities for observationally detecting nanoflares. Although the Sun is the only star where nanoflares might be observed, present instrumentation appears to be inadequate for this purpose

  17. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  18. Interpretation of coronal synoptic observations

    International Nuclear Information System (INIS)

    Munro, R.H.; Fisher, R.R.

    1986-01-01

    Three-dimensional reconstruction techniques used to determine coronal density distributions from synoptic data are complicated and time consuming to employ. Current techniques also assume time invariant structures and thus mix both temporal and spatial variations present in the coronal data. The observed distribution of polarized brightness, pB, and brightness, B, of coronal features observed either at eclipses or with coronagraphs depends upon both the three-dimensional distribution of electron density within the structure and the location of the feature with respect to the plane-of-the-sky. By theoretically studying the signature of various coronal structures as they would appear during a limb transit, it is possible to recognize these patterns in real synoptic data as well as estimate temporal evolutionary effects

  19. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source

    Science.gov (United States)

    Zepf, Stephen E.; Stern, Daniel; Maccarone, Thomas J.; Kundu, Arunav; Kamionkowski, Marc; Rhode, Katherine L.; Salzer, John J.; Ciardullo, Robin; Gronwall, Caryl

    2008-08-01

    We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ 2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [O III] λ5007 and [O III] λ4959 emission lines, with velocity widths of approximately 2000 km s-1. This result has significant implications for the nature of this accreting black hole system and the mass of the globular cluster black hole. We show that the broad [O III] λ5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [O III]-emitting atoms to account for the observed L([O III] λ5007) at high velocities, even if this volume is filled with oxygen at the critical density for [O III] λ5007. The Balmer emission is also weak, indicating the observed [O III] is not due to shocks. We therefore conclude that the [O III] λλ4959, 5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar-mass black hole. Since it is dynamically implausible to form an accreting stellar-mass black hole system in a globular cluster with an intermediate-mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the MBH - Mstellar and MBH - σ relations. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  20. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  1. Birth, life, and death of a solar coronal plume

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, AL 35812 (United States)

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflow speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.

  2. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2009 and September 2009

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Pettitt, Will [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2009-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st April 2009 and 30th September 2009 and is the ninth 6-monthly processing and interpretation of the results from the experiment.

  3. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2009 and March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Andrews, Jennifer [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2010-09-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, 2009, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring periods can be found in Appendix 1. This report covers the period between 1st October 2009 and 31st March 2010 and is the tenth 6-monthly processing and interpretation of the results from the experiment.

  4. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2008 and March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon; Duckworth, Damion [ASC, Applied Seismology Consultants, Shrewsbury, Shropshire (United Kingdom)

    2009-06-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st October 2008 and 31st March 2009 and is the eighth 6-monthly processing and interpretation of the results from the experiment.

  5. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2010 and September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Haycox, Jon (ASC Applied Seismology Consultants (United Kingdom))

    2011-05-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox et al. 2009a, b, 2010). Appendix I contains further information about previous monitoring periods. This report covers the period between 1st April 2010 and 30th September 2010 and is the eleventh 6-monthly processing and interpretation of the results from the experiment

  6. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2008 and March 2009

    International Nuclear Information System (INIS)

    Haycox, Jon; Duckworth, Damion

    2009-06-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st October 2008 and 31st March 2009 and is the eighth 6-monthly processing and interpretation of the results from the experiment

  7. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2009 and March 2010

    International Nuclear Information System (INIS)

    Haycox, Jon; Andrews, Jennifer

    2010-09-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, 2009, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring periods can be found in Appendix 1. This report covers the period between 1st October 2009 and 31st March 2010 and is the tenth 6-monthly processing and interpretation of the results from the experiment

  8. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2009 and September 2009

    International Nuclear Information System (INIS)

    Haycox, Jon; Pettitt, Will

    2009-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox and Duckworth 2009). Further information on the previous monitoring undertaken can be found in Appendix 1. This report covers the period between 1st April 2009 and 30th September 2009 and is the ninth 6-monthly processing and interpretation of the results from the experiment

  9. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2010 and September 2010

    International Nuclear Information System (INIS)

    Haycox, Jon

    2011-05-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and changes in pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation (Pettitt et al. 1999), and during stages of canister heating and tunnel pressurisation (Haycox and Pettitt 2005a, b, 2006a, b, Zolezzi et al. 2007, 2008, Duckworth et al. 2008, 2009, Haycox et al. 2009a, b, 2010). Appendix I contains further information about previous monitoring periods. This report covers the period between 1st April 2010 and 30th September 2010 and is the eleventh 6-monthly processing and interpretation of the results from the experiment

  10. ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R. J.R.; Grappin, R.; Robbrecht, E.

    2012-01-01

    Coronal pseudostreamers, which separate like-polarity coronal holes, do not have current sheet extensions, unlike the familiar helmet streamers that separate opposite-polarity holes. Both types of streamers taper into narrow plasma sheets that are maintained by continual interchange reconnection with the adjacent open magnetic field lines. White-light observations show that pseudostreamers do not emit plasma blobs; this important difference from helmet streamers is due to the convergence of like-polarity field lines above the X-point, which prevents the underlying loops from expanding outward and pinching off. The main component of the pseudostreamer wind has the form of steady outflow along the open field lines rooted just inside the boundaries of the adjacent coronal holes. These flux tubes are characterized by very rapid expansion below the X-point, followed by reconvergence at greater heights. Analysis of an idealized pseudostreamer configuration shows that, as the separation between the underlying holes increases, the X-point rises and the expansion factor f ss at the source surface increases. In situ observations of pseudostreamer crossings indicate wind speeds v ranging from ∼350 to ∼550 km s –1 , with O 7+ /O 6+ ratios that are enhanced compared with those in high-speed streams but substantially lower than in the slow solar wind. Hydrodynamic energy-balance models show that the empirical v-f ss relation overestimates the wind speeds from nonmonotonically expanding flux tubes, particularly when the X-point is located at low heights and f ss is small. We conclude that pseudostreamers produce a 'hybrid' type of outflow that is intermediate between classical slow and fast solar wind.

  11. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  12. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  13. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  14. Shear-induced inflation of coronal magnetic fields

    International Nuclear Information System (INIS)

    Klimchuk, J.A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs

  15. Solar Coronal Structure Study

    Science.gov (United States)

    Nitta, Nariaki; Bruner, Marilyn E.; Saba, Julia; Strong, Keith; Harvey, Karen

    2000-01-01

    The subject of this investigation is to study the physics of the solar corona through the analysis of the EUV and UV data produced by two flights (12 May 1992 and 25 April 1994) of the Lockheed Solar Plasma Diagnostics Experiment (SPDE) sounding rocket payload, in combination with Yohkoh and ground-based data. Each rocket flight produced both spectral and imaging data. These joint datasets are useful for understanding the physical state of various features in the solar atmosphere at different heights ranging from the photosphere to the corona at the time of the, rocket flights, which took place during the declining phase of a solar cycle, 2-4 years before the minimum. The investigation is narrowly focused on comparing the physics of small- and medium-scale strong-field structures with that of large-scale, weak fields. As we close th is investigation, we have to recall that our present position in the understanding of basic solar physics problems (such as coronal heating) is much different from that in 1995 (when we proposed this investigation), due largely to the great success of SOHO and TRACE. In other words, several topics and techniques we proposed can now be better realized with data from these missions. For this reason, at some point of our work, we started concentrating on the 1992 data, which are more unique and have more supporting data. As a result, we discontinued the investigation on small-scale structures, i.e., bright points, since high-resolution TRACE images have addressed more important physics than SPDE EUV images could do. In the final year, we still spent long time calibrating the 1992 data. The work was complicated because of the old-fashioned film, which had problems not encountered with more modern CCD detectors. After our considerable effort on calibration, we were able to focus on several scientific topics, relying heavily on the SPDE UV images. They include the relation between filaments and filament channels, the identification of hot

  16. Oblique Propagation and Dissipation of Alfvén Waves in Coronal ...

    Indian Academy of Sciences (India)

    velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (<1.05 R⊙) where these may be one of the pri- mary energy sources ...

  17. Coronal Mass Ejections An Introduction

    CERN Document Server

    Howard, Timothy

    2011-01-01

    In times of growing technological sophistication and of our dependence on electronic technology, we are all affected by space weather. In its most extreme form, space weather can disrupt communications, damage and destroy spacecraft and power stations, and increase radiation exposure to astronauts and airline passengers. Major space weather events, called geomagnetic storms, are large disruptions in the Earth’s magnetic field brought about by the arrival of enormous magnetized plasma clouds from the Sun. Coronal mass ejections (CMEs) contain billions of tons of plasma and hurtle through space at speeds of several million miles per hour. Understanding coronal mass ejections and their impact on the Earth is of great interest to both the scientific and technological communities. This book provides an introduction to coronal mass ejections, including a history of their observation and scientific revelations, instruments and theory behind their detection and measurement, and the status quo of theories describing...

  18. Observational Analysis of Coronal Fans

    Science.gov (United States)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  19. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  20. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  1. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  2. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  3. Lepton Acceleration in the Vicinity of the Event Horizon: Very High Energy Emissions from Supermassive Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che; Matsushita, Satoki; Asada, Keiichi [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan 10617, R.O.C. (China); Kong, Albert K. H; Chang, Hsiang-Kuang [Institute of Astronomy, Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (China); Tam, Pak-Hin T., E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)

    2017-08-10

    Around a rapidly rotating black hole (BH), when the plasma accretion rate is much less than the Eddington rate, the radiatively inefficient accretion flow (RIAF) cannot supply enough MeV photons that are capable of materializing as pairs. In such a charge-starved BH magnetosphere, the force-free condition breaks down in the polar funnels. Applying the pulsar outer-magnetospheric lepton accelerator theory to supermassive BHs, we demonstrate that a strong electric field arises along the magnetic field lines in the direct vicinity of the event horizon in the funnels, that the electrons and positrons are accelerated up to 100 TeV in this vacuum gap, and that these leptons emit copious photons via inverse-Compton (IC) processes between 0.1 and 30 TeV for a distant observer. It is found that these IC fluxes will be detectable with Imaging Atmospheric Cherenkov Telescopes, provided that a low-luminosity active galactic nucleus is located within 1 Mpc for a million-solar-mass central BH or within 30 Mpc for a billion-solar-mass central BH. These very high energy fluxes are beamed in a relatively small solid angle around the rotation axis because of the inhomogeneous and anisotropic distribution of the RIAF photon field and show an anticorrelation with the RIAF submillimeter fluxes. The gap luminosity depends little on the 3D magnetic field configuration, because the Goldreich–Julian charge density, and hence the exerted electric field, is essentially governed by the frame-dragging effect, not by the magnetic field configuration.

  4. The dynamics of coronal magnetic structures

    International Nuclear Information System (INIS)

    Weber, W.

    1978-01-01

    An analysis is made of the evolution of coronal magnetic fields due to the interaction with the solar wind. An analysis of the formation of coronal streamers, arising as a result of the stretching of bipolar fields, is given. Numerical simulations of the formation of coronal streamers are presented. Fast-mode shocks as triggers of microturbulence in the solar corona are discussed

  5. MHD aspects of coronal transients

    International Nuclear Information System (INIS)

    Anzer, U.

    1979-10-01

    If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG

  6. Coronal Mass Ejections: a Summary of Recent Results

    Science.gov (United States)

    Gopalswamy, Nat; Davila, J. M.

    2010-01-01

    Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. This paper highlights some of the recent results on CMEs obtained from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO) missions. The summary of the talk follows. SOHO observations revealed that the CME rate is almost a factor of two larger than previously thought and varied with the solar activity cycle in a complex way (e.g., high-latitude CMEs occurred in great abundance during the solar maximum years). CMEs were found to interact with other CMEs as well as with other large-scale structures (coronal holes), resulting in deflections and additional particle acceleration. STEREO observations have confirmed the three-dimensional nature of CMEs and the shocks surrounding them. The EUV signatures (flare arcades, corona) dimming, filament eruption, and EUV waves) associated with CMEs have become vital in the identification of solar sources from which CMEs erupt. CMEs with speeds exceeding the characteristic speeds of the corona and the interplanetary medium drive shocks, which produce type II radio bursts. The wavelength range of type II bursts depends on the CME kinetic energy: type II bursts with emission components at all wavelengths (metric to kilometric) are due to CMEs of the highest kinetic energy. Some CMEs, as fast as 1600 km/s do not produce type II bursts, while slow CMEs (400 km/s) occasionally produce type II bursts. These observations can be explained as the variation in the ambient flow speed (solar wind) and the Alfven speed. Not all CME-driven shocks produce type II bursts because either they are subcritical or do not have the appropriate geometry. The same shocks that produce type II bursts also produce solar energetic particles (SEPs), whose release near the Sun seems to be delayed with respect to the onset of type II bursts

  7. The Coronal Place; Why is It Special?

    Directory of Open Access Journals (Sweden)

    Azhar Alkazwini

    2017-10-01

    Full Text Available To prove the existence of arguments about the exact place that can bear the term ‘coronal’, it would be enough to check the explanatory dictionary’s entry. There are different arguments regarding the exact place of coronal. In this paper, some of the linguistic evidence regarding the coronal place shall be mentioned. Then, I shall discuss the classes of coronal that lend support to the fact that coronal place is believed to be special, and that is by discussing the different typologies of coronal consonants and giving their description.

  8. LEPTON ACCELERATION IN THE VICINITY OF THE EVENT HORIZON: HIGH-ENERGY AND VERY-HIGH-ENERGY EMISSIONS FROM ROTATING BLACK HOLES WITH VARIOUS MASSES

    Energy Technology Data Exchange (ETDEWEB)

    Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che; Inoue, Makoto; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics (ASIAA), P.O. Box 23-141, Taipei, Taiwan 10617, R.O.C. (China); Chang, Hsiang-Kuang; Kong, Albert K. H. [Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, R.O.C. (China); Tam, Pak-Hin T., E-mail: hirotani@tiara.sinica.edu.tw [School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082 (China)

    2016-12-20

    We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IR photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.

  9. Polarization of Coronal Forbidden Lines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Qu, Zhongquan [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Landi Degl’Innocenti, Egidio, E-mail: sayahoro@ynao.ac.cn [Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 2, I-50125 Firenze (Italy)

    2017-03-20

    Since the magnetic field is responsible for most manifestations of solar activity, one of the most challenging problems in solar physics is the diagnostics of solar magnetic fields, particularly in the outer atmosphere. To this end, it is important to develop rigorous diagnostic tools to interpret polarimetric observations in suitable spectral lines. This paper is devoted to analyzing the diagnostic content of linear polarization imaging observations in coronal forbidden lines. Although this technique is restricted to off-limb observations, it represents a significant tool to diagnose the magnetic field structure in the solar corona, where the magnetic field is intrinsically weak and still poorly known. We adopt the quantum theory of polarized line formation developed in the framework of the density matrix formalism, and synthesize images of the emergent linear polarization signal in coronal forbidden lines using potential-field source-surface magnetic field models. The influence of electronic collisions, active regions, and Thomson scattering on the linear polarization of coronal forbidden lines is also examined. It is found that active regions and Thomson scattering are capable of conspicuously influencing the orientation of the linear polarization. These effects have to be carefully taken into account to increase the accuracy of the field diagnostics. We also found that linear polarization observation in suitable lines can give valuable information on the long-term evolution of the magnetic field in the solar corona.

  10. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  11. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  12. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  13. VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS

    International Nuclear Information System (INIS)

    Kramar, M.; Inhester, B.; Lin, H.; Davila, J.

    2013-01-01

    In this paper, we investigate the feasibility of saturated coronal Hanle effect vector tomography or the application of vector tomographic inversion techniques to reconstruct the three-dimensional magnetic field configuration of the solar corona using linear polarization measurements of coronal emission lines. We applied Hanle effect vector tomographic inversion to artificial data produced from analytical coronal magnetic field models with equatorial and meridional currents and global coronal magnetic field models constructed by extrapolation of real photospheric magnetic field measurements. We tested tomographic inversion with only Stokes Q, U, electron density, and temperature inputs to simulate observations over large limb distances where the Stokes I parameters are difficult to obtain with ground-based coronagraphs. We synthesized the coronal linear polarization maps by inputting realistic noise appropriate for ground-based observations over a period of two weeks into the inversion algorithm. We found that our Hanle effect vector tomographic inversion can partially recover the coronal field with a poloidal field configuration, but that it is insensitive to a corona with a toroidal field. This result demonstrates that Hanle effect vector tomography is an effective tool for studying the solar corona and that it is complementary to Zeeman effect vector tomography for the reconstruction of the coronal magnetic field

  14. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  15. FAST CONTRACTION OF CORONAL LOOPS AT THE FLARE PEAK

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2010-01-01

    On 2005 September 8, a coronal loop overlying the active region NOAA 10808 was observed in TRACE 171 A to contract at ∼100 km s -1 at the peak of an X5.4-2B flare at 21:05 UT. Prior to the fast contraction, the loop underwent a much slower contraction at ∼6 km s -1 for about 8 minutes, initiating during the flare preheating phase. The sudden switch to fast contraction is presumably corresponding to the onset of the impulsive phase. The contraction resulted in the oscillation of a group of loops located below, with the period of about 10 minutes. Meanwhile, the contracting loop exhibited a similar oscillatory pattern superimposed on the dominant downward motion. We suggest that the fast contraction reflects a suddenly reduced magnetic pressure underneath due either to (1) the eruption of magnetic structures located at lower altitudes or to (2) the rapid conversion of magnetic free energy in the flare core region. Electrons accelerated in the shrinking trap formed by the contracting loop can theoretically contribute to a late-phase hard X-ray burst, which is associated with Type IV radio emission. To complement the X5.4 flare which was probably confined, a similar event observed in SOHO/EIT 195 A on 2004 July 20 in an eruptive, M8.6 flare is briefly described, in which the contraction was followed by the expansion of the same loop leading up to a halo coronal mass ejection. These observations further substantiate the conjecture of coronal implosion and suggest coronal implosion as a new exciter mechanism for coronal loop oscillations.

  16. MHD modeling of coronal loops: the transition region throat

    Science.gov (United States)

    Guarrasi, M.; Reale, F.; Orlando, S.; Mignone, A.; Klimchuk, J. A.

    2014-04-01

    Context. The expansion of coronal loops in the transition region may considerably influence the diagnostics of the plasma emission measure. The cross-sectional area of the loops is expected to depend on the temperature and pressure, and might be sensitive to the heating rate. Aims: The approach here is to study the area response to slow changes in the coronal heating rate, and check the current interpretation in terms of steady heating models. Methods: We study the area response with a time-dependent 2D magnetohydrodynamic (MHD) loop model, including the description of the expanding magnetic field, coronal heating and losses by thermal conduction, and radiation from optically thin plasma. We run a simulation for a loop 50 Mm long and quasi-statically heated to about 4 MK. Results: We find that the area can change substantially with the quasi-steady heating rate, e.g., by ~40% at 0.5 MK as the loop temperature varies between 1 MK and 4 MK, and, therefore, affects the interpretation of the differential emission measure vs. temperature (DEM(T)) curves. The movie associated to Fig. 4 is available in electronic form at http://www.aanda.org

  17. Diagnostics of Coronal Heating in Solar Active Regions

    Science.gov (United States)

    Fludra, Andrzej; Hornsey, Christopher; Nakariakov, Valery

    2015-04-01

    We aim to develop a diagnostic method for the coronal heating mechanism in active region loops. Observational constraints on coronal heating models have been sought using measurements in the X-ray and EUV wavelengths. Statistical analysis, using EUV emission from many active regions, was done by Fludra and Ireland (2008) who studied power-law relationships between active region integrated magnetic flux and emission line intensities. A subsequent study by Fludra and Warren (2010) for the first time compared fully resolved images in an EUV spectral line of OV 63.0 nm with the photospheric magnetic field, leading to the identification of a dominant, ubiquitous variable component of the transition region EUV emission and a discovery of a steady basal heating, and deriving the dependence of the basal heating rate on the photospheric magnetic flux density. In this study, we compare models of single coronal loops with EUV observations. We assess to what degree observations of individual coronal loops made in the EUV range are capable of providing constraints on the heating mechanism. We model the coronal magnetic field in an active region using an NLFF extrapolation code applied to a photospheric vector magnetogram from SDO/HMI and select several loops that match an SDO/AIA 171 image of the same active region. We then model the plasma in these loops using a 1D hydrostatic code capable of applying an arbitrary heating rate as a function of magnetic field strength along the loop. From the plasma parameters derived from this model, we calculate the EUV emission along the loop in AIA 171 and 335 bands, and in pure spectral lines of Fe IX 17.1 nm and Fe XVI 33.5 nm. We use different spatial distributions of the heating function: concentrated near the loop top, uniform and concentrated near the footpoints, and investigate their effect on the modelled EUV intensities. We find a diagnostics based on the dependence of the total loop intensity on the shape of the heating function

  18. Radio and white-light observations of coronal transients

    Science.gov (United States)

    Dulk, G. A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper the observed properties of coronal transients are reviewed, with concentration on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones nonthermal. The possible mechanisms involved in the radio bursts are then discussed and estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the field, provides a possible driving force for the coronal and interplanetary shock waves.

  19. Radio and white-light observations of coronal transients

    International Nuclear Information System (INIS)

    Dulk, G.A.

    1980-01-01

    Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. The author reviews the observed properties of coronal transients, concentrating on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones non-thermal. The possible mechanisms involved in the radio bursts are discussed and the estimates of various forms of energy are reviewed. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves. (Auth.)

  20. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    Energy Technology Data Exchange (ETDEWEB)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A. [Space Research Group—Space Weather, Departamento de Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares (Spain)

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  1. Future space missions and ground observatory for measurements of coronal magnetic fields

    Science.gov (United States)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  2. Coronal mass ejections and solar radio bursts

    International Nuclear Information System (INIS)

    Kundu, M.R.

    1990-01-01

    The properties of coronal mass ejection (CME) events and their radio signatures are discussed. These signatures are mostly in the form of type II and type IV burst emissions. Although type II bursts are temporally associated with CMEs, it is shown that there is no spatial relationship between them. Type II's associated with CMEs have in most cases a different origin, and they are not piston-driven by CMEs. Moving type IV and type II bursts can be associated with slow CMEs with speeds as low as 200 km/s, contrary to the earlier belief that only CMEs with speeds >400 km/s are associated with radio bursts. A specific event has been discussed in which the CME and type IV burst has nearly the same speed and direction, but the type II burst location was behind the CME and its motion was transverse. The speed and motion of the type II burst strongly suggest that the type II shock was decoupled from the CME and was probably due to a flare behind the limb. Therefore only the type IV source could be directly associated with the slow CME. The electrons responsble for the type IV emission could be produced in the flare or in the type II and then become trapped in a plasmoid associated with the CME. The reconnected loop could then move outwards as in the usual palsmoid model. Alternatively, the type IV emission could be interpreted as due to electrons produced by acceleration in wave turbulence driven by currents in the shock front driven by the CME. The lower-hybrid model Lampe and Papadopoulos (1982), which operates at both fast and slow mode shocks, could be applied to this situation. (author). 31 refs., 12 figs

  3. A comparison of solar wind streams and coronal structure near solar minimum

    Science.gov (United States)

    Nolte, J. T.; Davis, J. M.; Gerassimenko, M.; Lazarus, A. J.; Sullivan, J. D.

    1977-01-01

    Solar wind data from the MIT detectors on the IMP 7 and 8 satellites and the SOLRAD 11B satellite for the solar-minimum period September-December, 1976, were compared with X-ray images of the solar corona taken by rocket-borne telescopes on September 16 and November 17, 1976. There was no compelling evidence that a coronal hole was the source of any high speed stream. Thus it is possible that either coronal holes were not the sources of all recurrent high-speed solar wind streams during the declining phase of the solar cycle, as might be inferred from the Skylab period, or there was a change in the appearance of some magnetic field regions near the time of solar minimum.

  4. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  5. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  6. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. X. [Key Laboratory of Planetary Sciences, Shanghai Astronomical Observatory, Shanghai 200030 (China); Qiu, J., E-mail: chengjx@shao.ac.cn [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-07-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  7. Observable Signatures of Energy Release in Braided Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Pontin, D. I. [University of Dundee, Nethergate, Dundee, DD1 4HN (United Kingdom); Janvier, M. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405, Orsay Cedex (France); Tiwari, S. K.; Winebarger, A. R.; Cirtain, J. W. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Galsgaard, K. [Niels Bohr Institute, Geological Museum Østervoldgade 5-7, DK-1350, Copenhagen K (Denmark)

    2017-03-10

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to the observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.

  8. Comparison between two models of energy balance in coronal loops

    Science.gov (United States)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  9. THE NATURE OF CME-FLARE-ASSOCIATED CORONAL DIMMING

    International Nuclear Information System (INIS)

    Cheng, J. X.; Qiu, J.

    2016-01-01

    Coronal mass ejections (CMEs) are often accompanied by coronal dimming that is evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting material expands in the corona, the decreased plasma density leads to reduced emission observed in spectral and irradiance measurements. Therefore, signatures of dimming may reflect the properties of CMEs in the early phase of their eruption. In this study, we analyze the event of flare, CME, and coronal dimming on 2011 December 26. We use the data from the Atmospheric Imaging Assembly on the Solar Dynamics Observatory for disk observations of the dimming, and analyze images taken by EUVI, COR1, and COR2 on board the Solar Terrestrial Relations Observatory to obtain the height and velocity of the associated CMEs observed at the limb. We also measure the magnetic reconnection rate from flare observations. Dimming occurs in a few locations next to the flare ribbons, and it is observed in multiple EUV passbands. Rapid dimming starts after the onset of fast reconnection and CME acceleration, and its evolution tracks the CME height and flare reconnection. The spatial distribution of dimming exhibits cores of deep dimming with a rapid growth, and their light curves are approximately linearly scaled with the CME height profile. From the dimming analysis we infer the process of the CME expansion, and estimate properties of the CME.

  10. Geometric Model of a Coronal Cavity

    Science.gov (United States)

    Kucera, Therese A.; Gibson, S. E.; Ratawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; Reeves, K. K.; hide

    2010-01-01

    We observed a coronal cavity from August 8-18 2007 during a multi-instrument observing campaign organized under the auspices of the International Heliophysical Year (IHY). Here we present initial efforts to model the cavity with a geometrical streamer-cavity model. The model is based the white-light streamer mode] of Gibson et a]. (2003 ), which has been enhanced by the addition of a cavity and the capability to model EUV and X-ray emission. The cavity is modeled with an elliptical cross-section and Gaussian fall-off in length and width inside the streamer. Density and temperature can be varied in the streamer and cavity and constrained via comparison with data. Although this model is purely morphological, it allows for three-dimensional, multi-temperature analysis and characterization of the data, which can then provide constraints for future physical modeling. Initial comparisons to STEREO/EUVI images of the cavity and streamer show that the model can provide a good fit to the data. This work is part of the effort of the International Space Science Institute International Team on Prominence Cavities

  11. New techniques for the characterisation of dynamical phenomena in solar coronal images

    Science.gov (United States)

    Robbrecht, E.

    2007-02-01

    During a total solar eclipse, a narrow strip of the Earth's surface is shielded completely by the Moon from the disk of the Sun. In this strip, the corona appears crown-like around the shade of the Moon. It was uncertain until the middle of the 20th century whether the corona was a solar phenomenon or if it was related to the Moon or whether it represented an artifact produced by the Earth's atmosphere. The answer to this question was provided by Grotrian (1939) and Edlèn (1942). Based on studies of iron emission lines, they suggested that the surface of the Sun is surrounded by a hot tenuous gas having a temperature of million degrees Kelvin and thus in a state of high ionization. This discovery was a result from spectroscopy, a field of research which started in 1666 with Sir Isaac Newton's observations of sunlight, dispersed by a prism. It is now clear that the hot solar corona is made of a low density plasma, highly structured by the magnetic field on length scales ranging from the Sun's diameter to the limit of angular resolution (e.g. Démoulin and Klein 2000). The need to resolve and study the corona down to such scales has determined a vigorous scientific and technological impulse toward the development of solar Ultraviolet (UV) and X-ray telescopes with high spatial and temporal resolution. With the advent of the satellite SOHO (Solar and Heliospheric Observatory, see chapter 1), the picture of a quiet corona was definitely sent to the past. EUV (Extreme UV) image sequences of the lower solar corona revealed a finely structured medium constantly agitated by a wide variety of transients (e.g. Harrison 1998). Active regions consisting of large magnetic loops with enhanced temperature and density are observed, as well as "quiet" areas, coronal holes and numerous structures of different scales such as plumes, jets, spicules, X-ray bright points, blinkers, all structured by magnetic fields. Launched in 1998, the Transition Region And Coronal Explorer (TRACE

  12. Swift X-ray monitoring of stellar coronal variability

    Science.gov (United States)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  13. mxCSM: A 100-slit, 6-wavelength wide-field coronal spectropolarimeter for the study of the dynamics and the magnetic fields of the solar corona

    Directory of Open Access Journals (Sweden)

    Haosheng eLin

    2016-03-01

    Full Text Available remendous progress has been made in the field of observational coronal magnetometry in the first decade of the 21st century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP instrument, observations of the linear polarization of the coronal emission lines (CELs, which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important {bf of} our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employees large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase of the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six coronal emission lines simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  14. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  15. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2008-12-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing

  16. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between October 2007 and March 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-12-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The experiment has been designed to simulate a disposal tunnel in a real deep repository environment for storage of high-level radioactive waste. The test consists of a 90 m long, 5 m diameter subhorizontal tunnel excavated in dioritic granite. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing.

  17. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  18. Steady three-fluid coronal expansion for nonspherical geometries

    International Nuclear Information System (INIS)

    Joselyn, J.; Holzer, T.E.

    1978-01-01

    A steady three-fluid model of the solar coronal expansionk in which 4 He ++ ions (alphas) are treated as a nonminor species, is developed for nonspherically symmetric flow geometries of the general sort thought to be characteristic of coronal holes. It is found that the very high mass fluxes in the low corona, which are associated with rapidly diverging flow geometries, lead to a locally enhanced frictional coupling between protons and alphas and consequently to a significant reduction of the He/H abundance ratio in the lower corona from that normally predicted by multifluid models. In the models considered, the frictional drag on the protons by the alphas (a process neglected in most studies) is found to play an important role near the sun. Heavy ions, other than alphas, are treated as minor species and are seen to exhibit varying responses to the rapidly diverging flow geometries, depending on the ion mass and charge. As for the protons, the frictional effect of the alphas on the heavier ions is found to be significant in the models considered

  19. FORECASTING A CORONAL MASS EJECTION'S ALTERED TRAJECTORY: ForeCAT

    International Nuclear Information System (INIS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-01-01

    To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CME's trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CME's Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CME's deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a potential field source surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a coronal hole and streamer region, the strong magnetic gradients cause a deflection of 8.°1 in latitude and 26.°4 in longitude for a 10 15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt (SB) position with height, leads to a deflection of 1.°6 in latitude and 4.°1 in longitude for the control case. Varying the CME's input parameters within observed ranges leads to the majority of CMEs reaching the SB within the first few solar radii. For these specific backgrounds, the SB acts like a potential well that forces the CME into an equilibrium angular position

  20. Determining coronal electron temperatures from observations with UVCS/SOHO

    Science.gov (United States)

    Fineschi, S.; Esser, R.; Habbal, S. R.; Karovska, M.; Romoli, M.; Strachan, L.; Kohl, J. L.; Huber, M. C. E.

    1995-01-01

    The electron temperature is a fundamental physical parameter of the coronal plasma. Currently, there are no direct measurements of this quantity in the extended corona. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) aboard the upcoming Solar and Heliospheric Observatory (SOHO) mission can provide the most direct determination of the electron kinetic temperature (or, more precisely, the electron velocity distribution along the line of sight). This measurement is based on the observation of the Thomson-scattered Lyman alpha (Ly-alpha) profile. This observation is made particularly challenging by the fact that the integrated intensity of the electron-scattered Ly-alpha line is about 10(exp 3) times fainter than that of the resonantly-scattered Ly-alpha component. In addition, the former is distributed across 50 A (FWHM), unlike the latter that is concentrated in 1 A. These facts impose stringent requirements on the stray-light rejection properties of the coronagraph/spectrometer, and in particular on the requirements for the grating. We make use of laboratory measurements of the UVCS Ly-alpha grating stray-light, and of simulated electron-scattered Ly-alpha profiles to estimate the expected confidence levels of electron temperature determination. Models of different structures typical of the corona (e.g., streamers, coronal holes) are used for this parameter study.

  1. THE RELATION BETWEEN EIT WAVES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Chen, P. F.

    2009-01-01

    More and more evidence indicates that 'EIT waves' are strongly related to coronal mass ejections (CMEs). However, it is still not clear how the two phenomena are related to each other. We investigate a CME event on 1997 September 9, which was well observed by both the EUV Imaging Telescope (EIT) and the high-cadence Mark-III K-Coronameter at Mauna Loa Solar Observatory, and compare the spatial relation between the 'EIT wave' fronts and the CME leading loops. It is found that 'EIT wave' fronts are cospatial with the CME leading loops, and the expanding EUV dimmings are cospatial with the CME cavity. It is also found that the CME stopped near the boundary of a coronal hole, a feature common to observations of 'EIT waves'. It is suggested that 'EIT waves'/dimmings are the EUV counterparts of the CME leading loop/cavity, based on which we propose that, as in the case of 'EIT waves', CME leading loops are apparently moving density enhancements that are generated by successive stretching (or opening-up) of magnetic loops.

  2. CORONAL MASS EJECTIONS AS A MECHANISM FOR PRODUCING IR VARIABILITY IN DEBRIS DISKS

    International Nuclear Information System (INIS)

    Osten, Rachel; Livio, Mario; Lubow, Steve; Pringle, J. E.; Soderblom, David; Valenti, Jeff

    2013-01-01

    Motivated by recent observations of short-timescale variations in the infrared emission of circumstellar disks, we propose that coronal mass ejections can remove dust grains on timescales as short as a few days. Continuous monitoring of stellar activity, coupled with infrared observations, can place meaningful constraints on the proposed mechanism.

  3. Exploring Coronal Structures with SOHO Μ. Karovska1*, Β. Wood1 ...

    Indian Academy of Sciences (India)

    tribpo

    Astr. (2000) 21, 403–406. Exploring Coronal ... et al. 1995). The wavelengths and the dominant emission lines in these bandpasses ... (2) the profile of the poloidal flux injection (Chen et al. 1997 ... Delaboudiniere, J. P., et al, 1995, Sol. Phys.

  4. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  5. Coronal Magnetism and Forward Solarsoft Idl Package

    Science.gov (United States)

    Gibson, S. E.

    2014-12-01

    The FORWARD suite of Solar Soft IDL codes is a community resource for model-data comparison, with a particular emphasis on analyzing coronal magnetic fields. FORWARD may be used both to synthesize a broad range of coronal observables, and to access and compare to existing data. FORWARD works with numerical model datacubes, interfaces with the web-served Predictive Science Inc MAS simulation datacubes and the Solar Soft IDL Potential Field Source Surface (PFSS) package, and also includes several analytic models (more can be added). It connects to the Virtual Solar Observatory and other web-served observations to download data in a format directly comparable to model predictions. It utilizes the CHIANTI database in modeling UV/EUV lines, and links to the CLE polarimetry synthesis code for forbidden coronal lines. FORWARD enables "forward-fitting" of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties.

  6. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2015-08-20

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s{sup −1} and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures.

  7. CORONAL AND CHROMOSPHERIC SIGNATURES OF LARGE-SCALE DISTURBANCES ASSOCIATED WITH A MAJOR SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Zong, Weiguo; Dai, Yu

    2015-01-01

    We present both coronal and chromospheric observations of large-scale disturbances associated with a major solar eruption on 2005 September 7. In the Geostationary Operational Environmental Satellites/Solar X-ray Imager (SXI), arclike coronal brightenings are recorded propagating in the southern hemisphere. The SXI front shows an initially constant speed of 730 km s −1 and decelerates later on, and its center is near the central position angle of the associated coronal mass ejection (CME) but away from the flare site. Chromospheric signatures of the disturbances are observed in both Mauna Loa Solar Observatory (MLSO)/Polarimeter for Inner Coronal Studies Hα and MLSO/Chromospheric Helium I Imaging Photometer He i λ10830 and can be divided into two parts. The southern signatures occur in regions where the SXI front sweeps over, with the Hα bright front coincident with the SXI front, while the He i dark front lags the SXI front but shows a similar kinematics. Ahead of the path of the southern signatures, oscillations of a filament are observed. The northern signatures occur near the equator, with the Hα and He i fronts coincident with each other. They first propagate westward and then deflect to the north at the boundary of an equatorial coronal hole. Based on these observational facts, we suggest that the global disturbances are associated with the CME lift-off and show a hybrid nature: a mainly non-wave CME flank nature for the SXI signatures and the corresponding southern chromospheric signatures, and a shocked fast-mode coronal MHD wave nature for the northern chromospheric signatures

  8. COMPOSITION OF CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zurbuchen, T. H.; Weberg, M.; Lepri, S. T. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI (United States); Von Steiger, R. [International Space Science Institute, Bern (Switzerland); Mewaldt, R. A. [California Institute of Technology, Pasadena, CA (United States); Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-07-20

    We analyze the physical origin of plasmas that are ejected from the solar corona. To address this issue, we perform a comprehensive analysis of the elemental composition of interplanetary coronal mass ejections (ICMEs) using recently released elemental composition data for Fe, Mg, Si, S, C, N, Ne, and He as compared to O and H. We find that ICMEs exhibit a systematic abundance increase of elements with first ionization potential (FIP) < 10 eV, as well as a significant increase of Ne as compared to quasi-stationary solar wind. ICME plasmas have a stronger FIP effect than slow wind, which indicates either that an FIP process is active during the ICME ejection or that a different type of solar plasma is injected into ICMEs. The observed FIP fractionation is largest during times when the Fe ionic charge states are elevated above Q {sub Fe} > 12.0. For ICMEs with elevated charge states, the FIP effect is enhanced by 70% over that of the slow wind. We argue that the compositionally hot parts of ICMEs are active region loops that do not normally have access to the heliosphere through the processes that give rise to solar wind. We also discuss the implications of this result for solar energetic particles accelerated during solar eruptions and for the origin of the slow wind itself.

  9. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  10. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, X.; Xia, C.; Keppens, R. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, B-3001 Leuven (Belgium)

    2013-07-10

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  11. MULTIDIMENSIONAL MODELING OF CORONAL RAIN DYNAMICS

    International Nuclear Information System (INIS)

    Fang, X.; Xia, C.; Keppens, R.

    2013-01-01

    We present the first multidimensional, magnetohydrodynamic simulations that capture the initial formation and long-term sustainment of the enigmatic coronal rain phenomenon. We demonstrate how thermal instability can induce a spectacular display of in situ forming blob-like condensations which then start their intimate ballet on top of initially linear force-free arcades. Our magnetic arcades host a chromospheric, transition region, and coronal plasma. Following coronal rain dynamics for over 80 minutes of physical time, we collect enough statistics to quantify blob widths, lengths, velocity distributions, and other characteristics which directly match modern observational knowledge. Our virtual coronal rain displays the deformation of blobs into V-shaped features, interactions of blobs due to mostly pressure-mediated levitations, and gives the first views of blobs that evaporate in situ or are siphoned over the apex of the background arcade. Our simulations pave the way for systematic surveys of coronal rain showers in true multidimensional settings to connect parameterized heating prescriptions with rain statistics, ultimately allowing us to quantify the coronal heating input.

  12. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  13. MULTIFRACTAL SOLAR EUV INTENSITY FLUCTUATIONS AND THEIR IMPLICATIONS FOR CORONAL HEATING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J. [Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States); Rivera, Y. J. [Department of Climate and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143 (United States); Jennings, P. J. [5174 S. Slauson Avenue, Culver City, CA 90230 (United States); Rappazzo, A. F., E-mail: ana.cadavid@csun.edu [Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-11-10

    We investigate the scaling properties of the long-range temporal evolution and intermittency of Atmospheric Imaging Assembly/ Solar Dynamics Observatory intensity observations in four solar environments: an active region core, a weak emission region, and two core loops. We use two approaches: the probability distribution function (PDF) of time series increments and multifractal detrended fluctuation analysis (MF-DFA). Noise taints the results, so we focus on the 171 Å waveband, which has the highest signal-to-noise ratio. The lags between pairs of wavebands distinguish between coronal versus transition region (TR) emission. In all physical regions studied, scaling in the range of 15–45 minutes is multifractal, and the time series are anti-persistent on average. The degree of anti-correlation in the TR time series is greater than that for coronal emission. The multifractality stems from long-term correlations in the data rather than the wide distribution of intensities. Observations in the 335 Å waveband can be described in terms of a multifractal with added noise. The multiscaling of the extreme-ultraviolet data agrees qualitatively with the radiance from a phenomenological model of impulsive bursts plus noise, and also from ohmic dissipation in a reduced magnetohydrodynamic model for coronal loop heating. The parameter space must be further explored to seek quantitative agreement. Thus, the observational “signatures” obtained by the combined tests of the PDF of increments and the MF-DFA offer strong constraints that can systematically discriminate among models for coronal heating.

  14. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype. Repository between April 2007 and September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Zolezzi, F.; Haycox, J.R.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2008-07-01

    This six-month period of ultrasonic monitoring in the Prototype Repository Experiment, has been undertaken with the following objectives; - Produce accurate source locations for AEs so as to delineate the spatial and temporal extent of any brittle microcracking within the rock mass around the deposition hole and locate any movements on pre-existing macroscopic fractures; - Conduct regular ultrasonic surveys to assess the effect of heating and other environmental changes on the velocity and amplitude of transmitted ultrasonic waves; - Investigate changes in dynamic moduli and crack density to show how the properties of the rock volume around the deposition hole change through the experiment; - Relate the AE and ultrasonic measurements to the measured in situ stress regime and other operating parameters such as temperature and fluid pressure; - Outline how the results from this reporting period relate to previous monitoring periods, and into the overall experimental aims and objectives.

  15. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype. Repository between April 2007 and September 2007

    International Nuclear Information System (INIS)

    Zolezzi, F.; Haycox, J.R.; Pettitt, W.S.

    2008-01-01

    This six-month period of ultrasonic monitoring in the Prototype Repository Experiment, has been undertaken with the following objectives; - Produce accurate source locations for AEs so as to delineate the spatial and temporal extent of any brittle microcracking within the rock mass around the deposition hole and locate any movements on pre-existing macroscopic fractures; - Conduct regular ultrasonic surveys to assess the effect of heating and other environmental changes on the velocity and amplitude of transmitted ultrasonic waves; - Investigate changes in dynamic moduli and crack density to show how the properties of the rock volume around the deposition hole change through the experiment; - Relate the AE and ultrasonic measurements to the measured in situ stress regime and other operating parameters such as temperature and fluid pressure; - Outline how the results from this reporting period relate to previous monitoring periods, and into the overall experimental aims and objectives

  16. Einstein Observatory coronal temperatures of late-type stars

    Science.gov (United States)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  17. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  18. Limits on the quiescent radio emission from the black hole binaries GRO J1655−40 and XTE J1550−564

    NARCIS (Netherlands)

    Calvelo, D.E.; Fender, R.P.; Russell, D.M.; Gallo, E.; Corbel, S.; Tzioumis, A.K.; Bell, M.E.; Lewis, F.; Maccarone, T.J.

    2010-01-01

    We present the results of radio observations of the black hole binaries GRO J1655−40 and XTE J1550−564 in quiescence, with the upgraded Australia Telescope Compact Array. Neither system was detected. Radio flux density upper limits (3σ) of 26 μJy (at 5.5 GHz), 47 μJy (at 9 GHz) for GRO J1655−40 and

  19. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  20. When Supermassive Black Holes Wander

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    wanderers within 10 kpc of the halo center (roughly the size of the Milky Ways disk).These wandering supermassive black holes were kicked onto wide orbits during the merger of their host galaxy with the main halo; Tremmel and collaborators find that their orbits are often tilted, lying outside of the galactic disk. Because these black holes travel through relatively deserted regions, they accumulate little mass and are rarely perturbed in their journeys, wandering for billions of years.Finding MonstersCumulative fraction of simulated Milky-Way-mass halos as a function of the number of supermassive black holes they host. All of the halos host at least one SMBH within 10 kpc from halo center, but the majority host more than that. [Tremmel et al. 2018]Tremmel and collaborators simulations suggest that, regardless of its merger history, a Milky-Way-mass halo will end up with an average of 5 supermassive black holes within 10 kpc of the galaxy center, and an average of 12 within its larger virial radius! This means there could be a number of supermassive black holes just like the enormous Sgr A* at our galaxys core wandering the Milky Way unseen.So how can we find these invisible monsters? We already have some observational evidence in the form of offset and dual active galactic nuclei of non-central supermassive black holes in distant galaxies. As for nearby, our best bet is to look for tidal disruption events, the burps of emission that occur when an otherwise invisible black hole encounters a star or a cloud of gas.CitationMichael Tremmel et al 2018 ApJL 857 L22. doi:10.3847/2041-8213/aabc0a

  1. Introduction of hind foot coronal alignment view

    International Nuclear Information System (INIS)

    Moon, Il Bong; Jeon, Ju Seob; Yoon, Kang Cheol; Choi, Nam Kil; Kim, Seung Kook

    2006-01-01

    Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hind foot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hind foot coronal alignment view. Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. Both feet stood on a radiolucent platform with equal weight on both feet. Both feet are located foot axis longitudinal perpendicular to the platform. Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. The x-ray beam is angled down approximately 15 .deg. to 20 .deg. This image described tibial axis and medial, lateral tuberosity of calcaneus. Calcaneus do not rotated. The view is showed by talotibial joint space. Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hind foot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hind foot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hind foot and varus, valgus deformity of calcaneus

  2. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  3. The first coronation churches of medieval Serbia

    Directory of Open Access Journals (Sweden)

    Kalić Jovanka

    2017-01-01

    Full Text Available The medieval ceremony of coronation as a rule took place in the most important church of a realm. The sites of the coronation of Serbian rulers before the establishment of the Žiča monastery church as the coronation church of Serbian kings in the first half of the thirteenth century have not been reliably identified so far. Based on the surviving medieval sources and the archaeological record, this paper provides background information about the titles of Serbian rulers prior to the creation of the Nemanjić state, and proposes that Stefan, son of the founder of the Nemanjić dynasty, was crowned king (1217 in the church of St Peter in Ras.

  4. A contemporary view of coronal heating.

    Science.gov (United States)

    Parnell, Clare E; De Moortel, Ineke

    2012-07-13

    Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures has long been a key problem. For decades, the problem has been known as the coronal heating problem, but it is now clear that 'coronal heating' cannot be treated or explained in isolation and that the heating of the whole solar atmosphere must be studied as a highly coupled system. The magnetic field of the star is known to play a key role, but, despite significant advancements in solar telescopes, computing power and much greater understanding of theoretical mechanisms, the question of which mechanism or mechanisms are the dominant supplier of energy to the chromosphere and corona is still open. Following substantial recent progress, we consider the most likely contenders and discuss the key factors that have made, and still make, determining the actual (coronal) heating mechanism (or mechanisms) so difficult.

  5. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    International Nuclear Information System (INIS)

    Duckworth, D.; Haycox, J.; Pettitt, W.S.

    2009-03-01

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment

  6. Aespoe Hard Rock Laboratory. Prototype Repository. Acoustic emission and ultrasonic monitoring results from deposition hole DA3545G01 in the Prototype Repository between April 2008 and September 2008

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, D.; Haycox, J.; Pettitt, W.S. (Applied Seismology Consultants, Shrewsbury (United Kingdom))

    2009-03-15

    This report describes results from acoustic emission (AE) and ultrasonic monitoring around a canister deposition hole (DA3545G01) in the Prototype Repository Experiment at SKB's Hard Rock Laboratory (HRL), Sweden. The monitoring aims to examine changes in the rock mass caused by an experimental repository environment, in particular due to thermal stresses induced from canister heating and pore pressures induced from tunnel sealing. Monitoring of this volume has previously been performed during excavation [Pettitt et al., 1999], and during stages of canister heating and tunnel pressurisation [Haycox et al., 2005a and 2005b; Haycox et al., 2006a and 2006b; Zolezzi et al., 2007 and Duckworth et al., 2008]. Further information on this monitoring can be found in Appendix I. This report covers the period between 1st April 2008 and 30th September 2008 and is the seventh instalment of the 6-monthly processing and interpretation of the results from the experiment.

  7. Infrared Dual-Line Hanle Diagnostic of the Coronal Vector Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Gabriel I.; Kuhn, Jeffrey R. [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Berdyugina, Svetlana V., E-mail: gdima@hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Kiepenheuer Institut fuer Sonnenphysik, Freiburg (Germany); Predictive Science Inc., San Diego, CA (United States)

    2016-04-20

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g., ~4G at a height of 0.1R⊙ above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 μm line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 R⊙). Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 μm forbidden line with linear polarization observations of the HeI 1.0830 μm permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume that the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step toward interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  8. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  9. Transition region, coronal heating and the fast solar wind

    Science.gov (United States)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  10. ON THE OBSERVATION AND SIMULATION OF SOLAR CORONAL TWIN JETS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Wang, Yuming; Zhang, Quanhao [CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, NO. 96, Jinzhai Road, Hefei, Anhui 230026 (China); Fang, Fang [Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States); McIntosh, Scott W.; Fan, Yuhong [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  11. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Feng, S. W.; Chen, Y.; Song, H. Q.; Wang, B.; Kong, X. L., E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China)

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closely associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.

  12. On the Observation and Simulation of Solar Coronal Twin Jets

    Science.gov (United States)

    Liu, Jiajia; Fang, Fang; Wang, Yuming; McIntosh, Scott W.; Fan, Yuhong; Zhang, Quanhao

    2016-02-01

    We present the first observation, analysis, and modeling of solar coronal twin jets, which occurred after a preceding jet. Detailed analysis on the kinetics of the preceding jet reveals its blowout-jet nature, which resembles the one studied in Liu et al. However, the erupting process and kinetics of the twin jets appear to be different from the preceding one. Lacking detailed information on the magnetic fields in the twin jet region, we instead use a numerical simulation using a three-dimensional (3D) MHD model as described in Fang et al., and find that in the simulation a pair of twin jets form due to reconnection between the ambient open fields and a highly twisted sigmoidal magnetic flux, which is the outcome of the further evolution of the magnetic fields following the preceding blowout jet. Based on the similarity between the synthesized and observed emission, we propose this mechanism as a possible explanation for the observed twin jets. Combining our observation and simulation, we suggest that with continuous energy transport from the subsurface convection zone into the corona, solar coronal twin jets could be generated in the same fashion addressed above.

  13. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    Science.gov (United States)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  14. Entropy correction of BTZ black holes in a tunneling framework

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, using the Parikh-Wilczek tunneling framework, we first calculate the emission rates of non-rotating BTZ black holes and rotating BTZ black holes to second order accuracy. Then, by assuming that the emission process satisfies an underlying unitary theory, we obtain the corrected entropy of the BTZ black holes. A log term emerges naturally in the expression of the corrected entropy. A discussion about the inverse area term is also presented.

  15. mxCSM: A 100-slit, 6-Wavelength Wide-Field Coronal Spectropolarimeter for the Study of the Dynamics and the Magnetic Fields of the Solar Corona

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haosheng, E-mail: lin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States)

    2016-03-30

    Tremendous progress has been made in the field of observational coronal magnetometry in the first decade of the Twenty-First century. With the successful construction of the Coronal Multichannel Magnetometer (CoMP) instrument, observations of the linear polarization of the coronal emission lines (CELs), which carry information about the azimuthal direction of the coronal magnetic fields, are now routinely available. However, reliable and regular measurements of the circular polarization signals of the CELs remain illusive. The CEL circular polarization signals allow us to infer the magnetic field strength in the corona, and is critically important for our understanding of the solar corona. Current telescopes and instrument can only measure the coronal magnetic field strength over a small field of view. Furthermore, the observations require very long integration time that preclude the study of dynamic events even when only a small field of view is required. This paper describes a new instrument concept that employs large-scale multiplexing technology to enhance the efficiency of current coronal spectropolarimeter by more than two orders of magnitude. This will allow for the instrument to increase the integration time at each spatial location by the same factor, while also achieving a large field of view coverage. We will present the conceptual design of a 100-slit coronal spectropolarimeter that can observe six CELs simultaneously. Instruments based on this concept will allow us to study the evolution of the coronal magnetic field even with coronagraphs with modest aperture.

  16. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  17. Higher-speed coronal mass ejections and their geoeffectiveness

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh; Tonk, Apeksha

    2018-06-01

    We have attempted to examine the ability of coronal mass ejections to cause geoeffectiveness. To that end, we have investigated total 571 cases of higher-speed (> 1000 km/s) coronal mass ejection events observed during the years 1996-2012. On the basis of angular width (W) of observance, events of coronal mass ejection were further classified as front-side or halo coronal mass ejections (W = 360°); back-side halo coronal mass ejections (W = 360°); partial halo (120°mass ejections were much faster and more geoeffective in comparison of partial halo and non-halo coronal mass ejections. We also inferred that the front-sided halo coronal mass ejections were 67.1% geoeffective while geoeffectiveness of partial halo coronal mass ejections and non-halo coronal mass ejections were found to be 44.2% and 56.6% respectively. During the same period of observation, 43% of back-sided CMEs showed geoeffectiveness. We have also investigated some events of coronal mass ejections having speed > 2500 km/s as a case study. We have concluded that mere speed of coronal mass ejection and their association with solar flares or solar activity were not mere criterion for producing geoeffectiveness but angular width of coronal mass ejections and their originating position also played a key role.

  18. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  19. Simulating coronal condensation dynamics in 3D

    Science.gov (United States)

    Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.

    2015-12-01

    We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.

  20. Role of Magnetic Carpet in Coronal Heating

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different ...

  1. Mechanisms of Coronal Heating S. R. Verma

    Indian Academy of Sciences (India)

    Abstract. The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar ...

  2. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [USRA, 7178 Columbia Gateway Drive, Columbia, MD 21046 (United States); Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu [Physics Department, University of Memphis, Memphis, TN 38152 (United States)

    2016-11-10

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated from the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.

  3. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  4. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Taylor, B. D. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Einaudi, G. [Berkeley Research Associates, Inc., Beltsville, MD 20705 (United States); Ugarte-Urra, I. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Rappazzo, A. F. [Advanced Heliophysics, Pasadena, CA 91106 (United States); Velli, M., E-mail: rdahlbur@lcp.nrl.navy.mil [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-01-20

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.

  5. CONSTRAINING A MODEL OF TURBULENT CORONAL HEATING FOR AU MICROSCOPII WITH X-RAY, RADIO, AND MILLIMETER OBSERVATIONS

    International Nuclear Information System (INIS)

    Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.

    2013-01-01

    Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We also synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms

  6. Brown dwarfs and black holes

    International Nuclear Information System (INIS)

    Tarter, J.C.

    1978-01-01

    The astronomical missing-mass problem (the discrepancy between the dynamical mass estimate and the sum of individual masses in large groupings) is considered, and possible explanations are advanced. The existence of brown dwarfs (stars not massive enough to shine by nuclear burning) and black holes (extremely high density matter contraction such that gravitation allows no light emission) thus far provides the most plausible solutions

  7. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  8. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  9. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    International Nuclear Information System (INIS)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan

    2016-01-01

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  10. Spectroscopic observations of Nova Cygni 1975: The coronal line region revisited

    International Nuclear Information System (INIS)

    Ferland, G.J.; Lambert, D.L.; Woodman, J.H.

    1986-01-01

    A synopsis of the McDonald Observatory spectrophotometric observations of Nova Cyg 1975 (V1500 Cyg) is presented. We present these data in a form in which they can be readily accessed in the future, and also study the continous spectrum during the early nebular phase. We show that (1) the remnant probably maintained a luminosity at or above the Eddington limit for at least a year after outburst, (2) free-free emission from the coronal line region made a significant contribution to the optical continuum, and (3) the coronal line region was probably a significant source of ionizing radiation. The energetics of this nova appear to be dominated by the lift-off energy from the white dwarf and radiation from the coronal line region. Thus the light curve of Nova Cyg may tell more about the cooling of the coronal line region than about the decline of the central object. In appendices we discuss the argon abundance of Nova Cyg (less than 8 times solar) and describe how to obtain copies of the McDonald nova data

  11. MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan, E-mail: hjcsolar@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-10-20

    Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.

  12. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  13. Three-dimensional structure of the coronal magnetic field and the solar wind speed distribution projected on the photosphere in 1974

    International Nuclear Information System (INIS)

    Hakamada, K.

    1987-01-01

    Since the solar wind and coronal holes were relatively steady in 1974, the average distribution of the solar wind speed on the source surface and that of the line-of-sight component of the photospheric magnetic fields (B 1 ) can be constructed, with fair accuracy, by the superposed epoch analysis. The three-dimensional structure of the coronal magnetic fields is then computed from this average map of B 1 based on the potential model. The average distribution of the solar wind speed on the source surface, obtained from interplanetary scintillation observations, is then projected onto the photosphere along the open field lines in the corona. The high-speed regions thus projected are compared with the He I (1083 nm) coronal holes and are found to have a similar geometry. The results are also suggestive that the solar wind does not blow out uniformly from the vicinity of a coronal hole and that the speed is higher at the east side in that region than at the west side. The slower speed regions on the source surface have a sinusoidal structure in heliographic latitude-longitude coordinates and are similar to the brightness distribution of the K corona and the structure of closed field line regions projected onto the photosphere. copyrightAmerican Geophysical Union 1987

  14. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  15. X-ray emission from high-redshift miniquasars: self-regulating the population of massive black holes through global warming

    Science.gov (United States)

    Tanaka, Takamitsu; Perna, Rosalba; Haiman, Zoltán.

    2012-10-01

    Observations of high-redshift quasars at z ≳6 imply that supermassive black holes (SMBHs) with masses M≳109 M were in place less than 1 Gyr after the big bang. If these SMBHs assembled from 'seed' BHs left behind by the first stars, then they must have accreted gas at close to the Eddington limit during a large fraction (>rsim 50 per cent) of the time. A generic problem with this scenario, however, is that the mass density in M ˜ 106 M⊙ SMBHs at z ˜ 6 already exceeds the locally observed SMBH mass density by several orders of magnitude; in order to avoid this overproduction, BH seed formation and growth must become significantly less efficient in less massive protogalaxies through some form of feedback, while proceeding unabated in the most massive galaxies that formed first. Using Monte Carlo realizations of the merger and growth history of BHs, we show that X-rays from the earliest accreting BHs can provide such a feedback mechanism, on a global scale. Our calculations paint a self-consistent picture of BH-made climate change, in which the first miniquasars - among them the ancestors of the z ˜ 6 quasar SMBHs - globally warm the intergalactic medium and suppress the formation and growth of subsequent generations of BHs. We present two specific models with global miniquasar feedback that provide excellent agreement with recent estimates of the z = 6 SMBH mass function. For each of these models, we estimate the rate of BH mergers at z > 6 that could be detected by the proposed gravitational-wave observatory eLISA/NGO.

  16. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-08-10

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillations traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.

  17. Quantum tunneling radiation from self-dual black holes

    International Nuclear Information System (INIS)

    Silva, C.A.S.; Brito, F.A.

    2013-01-01

    Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included

  18. Black Holes and Gravitational Properties of Antimatter

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  19. Discrete quantum spectrum of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lochan, Kinjalk, E-mail: kinjalk@iucaa.in; Chakraborty, Sumanta, E-mail: sumanta@iucaa.in

    2016-04-10

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  20. Particle creation rate for dynamical black holes

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjaee, Javad T. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); University of Oxford, Department of Physics (Astrophysics), Oxford (United Kingdom); Ellis, George F.R. [University of Cape Town, Mathematics and Applied Mathematics Department, Rondebosch (South Africa)

    2016-11-15

    We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment. (orig.)

  1. Interplanetary Coronal Mass Ejections detected by HAWC

    Science.gov (United States)

    Lara, Alejandro

    The High Altitude Water Cherenkov (HAWC) observatory is being constructed at the volcano Sierra Negra (4100 m a.s.l.) in Mexico. HAWC’s primary purpose is the study of both: galactic and extra-galactic sources of high energy gamma rays. HAWC will consist of 300 large water Cherenkov detectors (WCD), instrumented with 1200 photo-multipliers. The Data taking has already started while construction continues, with the completion projected for late 2014. The HAWC counting rate will be sensitive to cosmic rays with energies above the geomagnetic cutoff of the site (˜ 8 GV). In particular, HAWC will detect solar energetic particles known as Ground Level Enhancements (GLEs), and the effects of Coronal Mass Ejections on the galactic cosmic ray flux, known as Forbush Decreases. In this paper, we present a description of the instrument and its response to interplanetary coronal mass ejections, and other solar wind large scale structures, observed during the August-December 2013 period.

  2. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  3. Sinonasal polyposis: investigation by direct coronal CT

    International Nuclear Information System (INIS)

    Drutman, J.; Harnsberger, H.R.; Babbel, R.W.; Sonkens, J.W.; Braby, D.

    1994-01-01

    To demonstrate the typical clinical and CT features of sinonasal polyposis, we reviewed the clinical records and preoperative direct coronal CT scans of 35 patients with surgically proven disease. Symptoms included progressive nasal stuffiness (100 %), rhinorrhea (69 %), facial pain (60 %), headache (43 %) and anosmia (17 %). We found associations with rhinitis (46 %), asthma (29 %) and aspirin sensitivity (9 %). Coronal CT features included polypoid masses in the nasal cavity (91 %), partial or complete pansinus opacification (90 %), enlargement of infundibula (89 %), bony attenuation of the ethmoid trabeculae (63 %) and nasal septum (37 %), opacified ethmoid sinuses with convex lateral walls (51 %) and air-fluid levels (43 %). The latter feature correlated with symptoms and signs of acute sinusitis in only 40 % of patients. Recognition of sinonasal polyposis is important to the endoscopic surgeon since it can be the most troubling sinonasal inflammatory disease to manage due to its aggressive nature and tendency to recur despite appropriate treatment. (orig.)

  4. Fracture mechanism of coronal teenage dentin

    Science.gov (United States)

    Panfilov, P. E.; Kabanova, A. V.; Borodin, I. N.; Guo, J.; Zang, Z.

    2017-10-01

    The structure of coronal teenage dentin and the development of cracks in it are studied on microand nanolevels. The material is found to fail according to a ductile mechanism on a microlelvel and according to a ductile-brittle mechanism on a nanoscale. This behavior is similar to the failure of a polyethylene film and rubber, when significant elastic and irreversible deformation precedes crack growth. The viscoelastic behavior can be considered as the reaction of dentin to an applied mechanical load.

  5. The transition region and coronal explorer (TRACE)

    Science.gov (United States)

    Title, Alan; Bruner, M.; Jurcevich, B.; Lemen, J.; Strong, K.; Tarbell, Ted; Wolfson, C. Jacob; Golub, L.; Bookbinder, J.; Fisher, R.

    1995-01-01

    The transition region and coronal explorer (TRACE) NASA small explorer mission and instrument are presented. The TRACE scientific investigation explores the relationships between fine-scale magnetic fields and the associated solar plasma structures. The instrument collects images of solar plasmas at temperatures from 10(exp 4) to 10(exp 7) K with one arcsec spatial resolution. The design specifications of the trace instrument are presented.

  6. Coronal magnetic fields inferred from IR wavelength and comparison with EUV observations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2009-07-01

    Full Text Available Spectropolarimetry using IR wavelength of 1075 nm has been proved to be a powerful tool for directly mapping solar coronal magnetic fields including transverse component directions and line-of-sight component intensities. Solar tomography, or stereoscopy based on EUV observations, can supply 3-D information for some magnetic field lines in bright EUV loops. In a previous paper \\citep{liu08} the locations of the IR emission sources in the 3-D coordinate system were inferred from the comparison between the polarization data and the potential-field-source-surface (PFSS model, for one of five west limb regions in the corona (Lin et al., 2004. The paper shows that the region with the loop system in the active region over the photospheric area with strong magnetic field intensity is the region with a dominant contribution to the observed Stokes signals. So, the inversion of the measured Stokes parameters could be done assuming that most of the signals come from a relatively thin layer over the area with a large photospheric magnetic field strength. Here, the five limb coronal regions are studied together in order to study the spatial correlation between the bright EUV loop features and the inferred IR emission sources. It is found that, for the coronal regions above the stronger photospheric magnetic fields, the locations of the IR emission sources are closer to or more consistent with the bright EUV loop locations than those above weaker photospheric fields. This result suggests that the structures of the coronal magnetic fields observed at IR and EUV wavelengths may be different when weak magnetic fields present there.

  7. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung

    2013-01-01

    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  8. Understanding the fate of merging supermassive black holes

    International Nuclear Information System (INIS)

    Campanelli, Manuela

    2005-01-01

    Understanding the fate of merging supermassive black holes in galactic mergers, and the gravitational wave emission from this process, are important LISA science goals. To this end, we present results from numerical relativity simulations of binary black hole mergers using the so-called Lazarus approach to model gravitational radiation from these events. In particular, we focus here on some recent calculations of the final spin and recoil velocity of the remnant hole formed at the end of a binary black hole merger process, which may constrain the growth history of massive black holes at the core of galaxies and globular clusters

  9. Coronal Heating Observed with Hi-C

    Science.gov (United States)

    Winebarger, Amy R.

    2013-01-01

    The recent launch of the High-Resolution Coronal Imager (Hi-C) as a sounding rocket has offered a new, different view of the Sun. With approx 0.3" resolution and 5 second cadence, Hi-C reveals dynamic, small-scale structure within a complicated active region, including coronal braiding, reconnection regions, Alfven waves, and flows along active region fans. By combining the Hi-C data with other available data, we have compiled a rich data set that can be used to address many outstanding questions in solar physics. Though the Hi-C rocket flight was short (only 5 minutes), the added insight of the small-scale structure gained from the Hi-C data allows us to look at this active region and other active regions with new understanding. In this talk, I will review the first results from the Hi-C sounding rocket and discuss the impact of these results on the coronal heating problem.

  10. [Development of electroforming apparatus for coronal restoration].

    Science.gov (United States)

    Watanabe, M; Sawada, T; Ukiya, M

    1989-03-01

    As dental technologies become highly developed, techniques have been more diversified. From as aspect of prosthodontic practice, both esthetic and functional requirements are emphasized for coronal restoration and consequently, these should be considered in the routine procedure. In fabrication of coronal restorations, metal, porcelain and resin are commonly used, and there exists the various disadvantages for metal cast method due to complicated processes by using different dental materials. Therefore, an electroforming apparatus was developed by us to replace the conventional procedure by a cathode rotary system. It was applied for coronal restorations to allow an electroforming directly on a working model. An experiment was successfully conducted to apply for a veneer crown on abutment tooth of upper central incisor on plaster model. The results were obtained as follows, 1. It was become possible to construct a metal framework by the electroforming. 2. Metal framework can be constructed on the same working model without a duplication of it. 3. The combined system for cathode rotation and liquid circulation could shorten the electroposition time, and allows a high current density extending to 50 A/dm2.

  11. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    Energy Technology Data Exchange (ETDEWEB)

    Russell, A. J. B.; Mooney, M. K. [School of Science and Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Leake, J. E. [Naval Research Laboratory, Washington, DC 20375 (United States); Hudson, H. S. [Space Sciences Lab, University of California Berkeley, Berkeley, CA 94720 (United States)

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  12. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    International Nuclear Information System (INIS)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.; Hudson, H. S.

    2016-01-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.

  13. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E.; Laming, J. Martin [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Karovska, Margarita, E-mail: brian.wood@nrl.navy.mil [Smithsonian Astrophysical Observatory, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  14. The Coronal Abundance Anomalies of M Dwarfs

    Science.gov (United States)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-07-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an "inverse FIP effect" is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  15. THE CORONAL ABUNDANCE ANOMALIES OF M DWARFS

    International Nuclear Information System (INIS)

    Wood, Brian E.; Laming, J. Martin; Karovska, Margarita

    2012-01-01

    We analyze Chandra X-ray spectra of the M0 V+M0 V binary GJ 338. As quantified by X-ray surface flux, these are the most inactive M dwarfs ever observed with X-ray grating spectroscopy. We focus on measuring coronal abundances, in particular searching for evidence of abundance anomalies related to first ionization potential (FIP). In the solar corona and wind, low-FIP elements are overabundant, which is the so-called FIP effect. For other stars, particularly very active ones, an 'inverse FIP effect' is often observed, with low-FIP elements being underabundant. For both members of the GJ 338 binary, we find evidence for a modest inverse FIP effect, consistent with expectations from a previously reported correlation between spectral type and FIP bias. This amounts to strong evidence that all M dwarfs should exhibit the inverse FIP effect phenomenon, not just the active ones. We take the first step toward modeling the inverse FIP phenomenon in M dwarfs, building on past work that has demonstrated that MHD waves coursing through coronal loops can lead to a ponderomotive force that fractionates elements in a manner consistent with the FIP effect. We demonstrate that in certain circumstances this model can also lead to an inverse FIP effect, pointing the way to more detailed modeling of M dwarf coronal abundances in the future.

  16. Coronal structures and particle acceleration studies from radioelectric and optical observations

    International Nuclear Information System (INIS)

    Axisa, Francois.

    1974-01-01

    The problem of acceleration outside of and during eruptions is studied from the association of type III radioelectric jumps with the chromosphere activity observed in absorption and emission of the Hα line. In addition the mean corona structure is investigated from observation of the slowly variable metric wave component in connection with coronal filaments and jets, and by type III emission in relation to the eruptive sites of complex active regions. Most of the experimental material comes from observations made with the Nancay East-West radioheliograph, which works on 169 MHz and optical observations carried out at the Meudon Observatory on the chromosphere and on photosphere magnetic fields [fr

  17. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  18. The acceleration of electrons at a spherical coronal shock in a streamer-like coronal field

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang, E-mail: kongx@sdu.edu.cn; Chen, Yao, E-mail: yaochen@sdu.edu.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan, E-mail: guofan.ustc@gmail.com [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-03-25

    We study the effect of large-scale coronal magnetic field on the electron acceleration at a spherical coronal shock using a test-particle method. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. It shows that the closed field plays the role of a trapping agency of shock-accelerated electrons, allowing for repetitive reflection and acceleration, therefore can greatly enhance the shock-electron acceleration efficiency. It is found that, with an ad hoc pitch-angle scattering, electron injected in the open field at the shock flank can be accelerated to high energies as well. In addition, if the shock is faster or stronger, a relatively harder electron energy spectrum and a larger maximum energy can be achieved.

  19. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  20. THERMAL PROPERTIES OF A SOLAR CORONAL CAVITY OBSERVED WITH THE X-RAY TELESCOPE ON HINODE

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS 58, Cambridge, MA 02138 (United States); Gibson, Sarah E. [HAO/NCAR, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Kucera, Therese A. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hudson, Hugh S. [Space Sciences Laboratories, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kano, Ryouhei, E-mail: kreeves@cfa.harvard.edu [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-02-20

    Coronal cavities are voids in coronal emission often observed above high latitude filament channels. Sometimes, these cavities have areas of bright X-ray emission in their centers. In this study, we use data from the X-ray Telescope (XRT) on the Hinode satellite to examine the thermal emission properties of a cavity observed during 2008 July that contains bright X-ray emission in its center. Using ratios of XRT filters, we find evidence for elevated temperatures in the cavity center. The area of elevated temperature evolves from a ring-shaped structure at the beginning of the observation, to an elongated structure two days later, finally appearing as a compact round source four days after the initial observation. We use a morphological model to fit the cavity emission, and find that a uniform structure running through the cavity does not fit the observations well. Instead, the observations are reproduced by modeling several short cylindrical cavity 'cores' with different parameters on different days. These changing core parameters may be due to some observed activity heating different parts of the cavity core at different times. We find that core temperatures of 1.75 MK, 1.7 MK, and 2.0 MK (for July 19, July 21, and July 23, respectively) in the model lead to structures that are consistent with the data, and that line-of-sight effects serve to lower the effective temperature derived from the filter ratio.

  1. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  2. Measuring Coronal Magnetic Fields with Remote Sensing Observations of Shock Waves

    Energy Technology Data Exchange (ETDEWEB)

    Bemporad, Alessandro; Susino, Roberto; Frassati, Federica; Fineschi, Silvano, E-mail: bemporad@oato.inaf.it [INAF, Turin Astrophysical Observatory, Pino Torinese (Italy)

    2016-05-27

    Our limited knowledge of the magnetic fields structuring in the solar corona represents today the main hurdle in our understanding of its structure and dynamic. Over the last decades significant efforts have been dedicated to measure these fields, by approaching the problem on many different sides and in particular: (i) by improving our theoretical understanding of the modification (via Zeeman and Hanle effects) induced by these fields on the polarization of coronal emission lines, (ii) by developing new instrumentation to measure directly with spectro-polarimeters these modifications, (iii) by improving the reliability of the extrapolated coronal fields starting from photospheric measurements, (iv) by developing new techniques to analyse existing remote sensing data and infer properties of these fields, or by combining all these different approaches (e.g., Chifu et al.,).

  3. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    time, the ones in between have been counted properly. Growth of the Biggest Black Holes Illustrated Growth of the Biggest Black Holes Illustrated "We need to have an accurate head count over time of all growing black holes if we ever hope to understand their habits, so to speak," co-author Richard Mushotzky of NASA's Goddard Space Flight Center in Greenbelt, Md. Supermassive black holes themselves are invisible, but heated gas around them -- some of which will eventually fall into the black hole - produces copious amounts of radiation in the centers of galaxies as the black holes grow. Growth of the Biggest Black Holes Illustrated Growth of Smaller Black Holes Illustrated This study relied on the deepest X-ray images ever obtained, the Chandra Deep Fields North and South, plus a key wider-area survey of an area called the "Lockman Hole". The distances to the X-ray sources were determined by optical spectroscopic follow-up at the Keck 10-meter telescope on Mauna Kea in Hawaii, and show the black holes range from less than a billion to 12 billion light years away. Since X-rays can penetrate the gas and dust that block optical and ultraviolet emission, the very long-exposure X-ray images are crucial to find black holes that otherwise would go unnoticed. Black Hole Animation Black Hole Animation Chandra found that many of the black holes smaller than about 100 million Suns are buried under large amounts of dust and gas, which prevents detection of the optical light from the heated material near the black hole. The X-rays are more energetic and are able to burrow through this dust and gas. However, the largest of the black holes show little sign of obscuration by dust or gas. In a form of weight self-control, powerful winds generated by the black hole's feeding frenzy may have cleared out the remaining dust and gas. Other aspects of black hole growth were uncovered. For example, the typical size of the galaxies undergoing supermassive black hole formation reduces with

  4. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  5. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    Science.gov (United States)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  6. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  7. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  8. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  9. CORONAL IMPLOSION AND PARTICLE ACCELERATION IN THE WAKE OF A FILAMENT ERUPTION

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2009-01-01

    We study the evolution of a group of TRACE 195 A coronal loops overlying a reverse S-shaped filament on 2001 June 15. These loops were initially pushed upward with the filament ascending and kinking slowly, but as soon as the filament rose explosively, they began to contract at a speed of ∼100 km s -1 , and sustained for at least 12 minutes, presumably due to the reduced magnetic pressure underneath with the filament escaping. Despite the contraction following the expansion, the loops of interest remained largely intact during the filament eruption, rather than formed via reconnection. These contracting loops naturally formed a shrinking trap, in which hot electrons of several keV, in an order of magnitude estimation, can be accelerated to nonthermal energies. A single hard X-ray (HXR) burst, with no corresponding rise in GOES soft X-ray (SXR) flux, was recorded by the Hard X-ray Telescope (HXT) on board Yohkoh, when the contracting loops expectedly approached the post-flare arcade originating from the filament eruption. HXT images reveal a coronal source distinctly above the top of the SXR arcade by ∼15''. The injecting electron population for the coronal source (thin target) is hardening by ∼1.5 powers relative to the footpoint emission (thick target), which is consistent with electron trapping in the weak diffusion limit. Although we cannot rule out additional reconnection, observational evidence suggests that the shrinking coronal trap may play a significant role in the observed nonthermal HXR emission during the flare decay phase.

  10. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  11. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  12. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  13. Coronal Loops: Evolving Beyond the Isothermal Approximation

    Science.gov (United States)

    Schmelz, J. T.; Cirtain, J. W.; Allen, J. D.

    2002-05-01

    Are coronal loops isothermal? A controversy over this question has arisen recently because different investigators using different techniques have obtained very different answers. Analysis of SOHO-EIT and TRACE data using narrowband filter ratios to obtain temperature maps has produced several key publications that suggest that coronal loops may be isothermal. We have constructed a multi-thermal distribution for several pixels along a relatively isolated coronal loop on the southwest limb of the solar disk using spectral line data from SOHO-CDS taken on 1998 Apr 20. These distributions are clearly inconsistent with isothermal plasma along either the line of sight or the length of the loop, and suggested rather that the temperature increases from the footpoints to the loop top. We speculated originally that these differences could be attributed to pixel size -- CDS pixels are larger, and more `contaminating' material would be expected along the line of sight. To test this idea, we used CDS iron line ratios from our data set to mimic the isothermal results from the narrowband filter instruments. These ratios indicated that the temperature gradient along the loop was flat, despite the fact that a more complete analysis of the same data showed this result to be false! The CDS pixel size was not the cause of the discrepancy; rather, the problem lies with the isothermal approximation used in EIT and TRACE analysis. These results should serve as a strong warning to anyone using this simplistic method to obtain temperature. This warning is echoed on the EIT web page: ``Danger! Enter at your own risk!'' In other words, values for temperature may be found, but they may have nothing to do with physical reality. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783. This research was funded in part by the NASA/TRACE MODA grant for Montana State University.

  14. A multi-channel coronal spectrophotometer.

    Science.gov (United States)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  15. Evolution of coronal and interplanetary magnetic fields

    International Nuclear Information System (INIS)

    Levine, R.H.

    1980-01-01

    Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)

  16. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  17. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  18. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission)....

  19. EFFECT OF A RADIATION COOLING AND HEATING FUNCTION ON STANDING LONGITUDINAL OSCILLATIONS IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J., E-mail: sanjaykumar@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, 446-701, Gyeonggi (Korea, Republic of)

    2016-06-10

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  20. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  1. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...

  2. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  3. Plasma Evolution within an Erupting Coronal Cavity

    Science.gov (United States)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  4. BAYESIAN MAGNETOHYDRODYNAMIC SEISMOLOGY OF CORONAL LOOPS

    International Nuclear Information System (INIS)

    Arregui, I.; Asensio Ramos, A.

    2011-01-01

    We perform a Bayesian parameter inference in the context of resonantly damped transverse coronal loop oscillations. The forward problem is solved in terms of parametric results for kink waves in one-dimensional flux tubes in the thin tube and thin boundary approximations. For the inverse problem, we adopt a Bayesian approach to infer the most probable values of the relevant parameters, for given observed periods and damping times, and to extract their confidence levels. The posterior probability distribution functions are obtained by means of Markov Chain Monte Carlo simulations, incorporating observed uncertainties in a consistent manner. We find well-localized solutions in the posterior probability distribution functions for two of the three parameters of interest, namely the Alfven travel time and the transverse inhomogeneity length scale. The obtained estimates for the Alfven travel time are consistent with previous inversion results, but the method enables us to additionally constrain the transverse inhomogeneity length scale and to estimate real error bars for each parameter. When observational estimates for the density contrast are used, the method enables us to fully constrain the three parameters of interest. These results can serve to improve our current estimates of unknown physical parameters in coronal loops and to test the assumed theoretical model.

  5. Do evaporating black holes form photospheres?

    International Nuclear Information System (INIS)

    MacGibbon, Jane H.; Carr, B. J.; Page, Don N.

    2008-01-01

    Several authors, most notably Heckler, have claimed that the observable Hawking emission from a microscopic black hole is significantly modified by the formation of a photosphere around the black hole due to QED or QCD interactions between the emitted particles. In this paper we analyze these claims and identify a number of physical and geometrical effects which invalidate these scenarios. We point out two key problems. First, the interacting particles must be causally connected to interact, and this condition is satisfied by only a small fraction of the emitted particles close to the black hole. Second, a scattered particle requires a distance ∼E/m e 2 for completing each bremsstrahlung interaction, with the consequence that it is improbable for there to be more than one complete bremsstrahlung interaction per particle near the black hole. These two effects have not been included in previous analyses. We conclude that the emitted particles do not interact sufficiently to form a QED photosphere. Similar arguments apply in the QCD case and prevent a QCD photosphere (chromosphere) from developing when the black hole temperature is much greater than Λ QCD , the threshold for QCD particle emission. Additional QCD phenomenological arguments rule out the development of a chromosphere around black hole temperatures of order Λ QCD . In all cases, the observational signatures of a cosmic or Galactic halo background of primordial black holes or an individual black hole remain essentially those of the standard Hawking model, with little change to the detection probability. We also consider the possibility, as proposed by Belyanin et al. and D. Cline et al., that plasma interactions between the emitted particles form a photosphere, and we conclude that this scenario too is not supported.

  6. Problems with tunneling of thin shells from black holes

    Indian Academy of Sciences (India)

    is proposed. However, it is shown that this gives half the correct temperature for black ... Hawking radiation was calculated for the emission of test particles. (not affecting ... needed to get an expression for tunneling in black hole backgrounds.

  7. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  8. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  9. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  10. Massive Black Hole Implicated in Stellar Destruction

    Science.gov (United States)

    2010-01-01

    New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University

  11. Quality of coroner's post-mortems in a UK hospital.

    Science.gov (United States)

    Al Mahdy, Husayn

    2014-01-01

    The aim of this paper was, principally, to look at the coroner's post-mortem report quality regarding adult medical patients admitted to an English hospital; and to compare results with Royal College of Pathologists guidelines. Hospital clinical notes of adult medical patients dying in 2011 and who were referred to the coroner's office to determine the cause of death were scrutinised. Their clinical care was also reviewed. There needs to be a comprehensive approach to coroner's post-mortems such as routinely taking histological and microbiological specimens. Acute adult medical patient care needs to improve. Steps should be taken to ensure that comprehensive coroner's post-mortems are performed throughout the UK, including with routine histological and microbiological specimens examination. Additionally, closer collaboration between clinicians and pathologists needs to occur to improve emergency adult medical patient clinical care. The study highlights inadequacies in coroner's pathology services.

  12. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  13. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  14. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  15. Assessment of Coronal Radiographic Parameters of the Spine in the Treatment of Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Mohsen Karami

    2016-10-01

    Preoperative coronal balance is very important to make a balanced spine after surgery. Other parameters like Lenke classification or main thoracic overcorrection did not affect postoperative coronal decompensation.

  16. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, P.; Ramesh, R.; Hariharan, K.; Kathiravan, C. [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore—560034 (India); Gopalswamy, N., E-mail: kishore@iiap.res.in [Code 671, Solar Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the location of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.

  17. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F.; Peres, G. [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Guarrasi, M. [CINECA—Interuniversity consortium, via Magnanelli 6/3, I-40033, Casalecchio di Reno, Bologna (Italy); Mignone, A. [Dipartimento di Fisica Generale, Università di Torino, via Pietro Giuria 1, I-10125, Torino (Italy); Hood, A. W.; Priest, E. R., E-mail: fabio.reale@unipa.it [School of Mathematics and Statistics, University of St. Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2016-10-10

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km. We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.

  18. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Dalmasse, Kevin; Nychka, Douglas W.; Gibson, Sarah E.; Fan, Yuhong; Flyer, Natasha

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 and 10798 lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analog. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  19. Effects of pilot holes on longitudinal miniscrew stability and bony adaptation.

    Science.gov (United States)

    Carney, Lauren Ohlenforst; Campbell, Phillip M; Spears, Robert; Ceen, Richard F; Melo, Ana Cláudia; Buschang, Peter H

    2014-11-01

    The purposes of this study were to longitudinally evaluate the effects of pilot holes on miniscrew implant (MSI) stability and to determine whether the effects can be attributed to the quality or the quantity of bone surrounding the MSI. Using a randomized split-mouth design in 6 skeletally mature female foxhound-mix dogs, 17 MSIs (1.6 mm outer diameter) placed with pilot holes (1.1 mm) were compared with 17 identical MSIs placed without pilot holes. Implant stability quotient measurements of MSI stability were taken weekly for 7 weeks. Using microcomputed tomography with an isotropic resolution of 6 μm, bone volume fractions were measured for 3 layers of bone (6-24, 24-42, and 42-60 μm) surrounding the MSIs. At placement, the MSIs with pilot holes showed significantly (P holes (48.3 vs 47.5). Over time, the implant stability quotient values decreased significantly more for the MSIs placed with pilot holes than for those placed without pilot holes. After 7 weeks, the most coronal aspect of the 6- to 24-μm layer of cortical bone and the most coronal aspects of all 3 layers of trabecular bone showed significantly larger bone volume fractions for the MSIs placed without pilot holes than for those placed with pilot holes. MSIs placed with pilot holes show greater primary stability, but greater decreases in stability over time, due primarily to having less trabecular bone surrounding them. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B., E-mail: paulo.simoes@glasgow.ac.uk, E-mail: lyndsay.fletcher@glasgow.ac.uk, E-mail: arussell@maths.dundee.ac.uk, E-mail: hhudson@ssl.berkeley.edu [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  1. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  2. TEMPORAL AND SPATIAL RELATIONSHIP OF FLARE SIGNATURES AND THE FORCE-FREE CORONAL MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Thalmann, J. K.; Veronig, A.; Su, Y., E-mail: julia.thalmann@uni-graz.at [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5/II, A-8010 Graz (Austria)

    2016-08-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  3. A model for a stable coronal loop

    International Nuclear Information System (INIS)

    Hoven, G.V.; Chiuderi, C.; Giachetti, R.

    1977-01-01

    We present here a new plasma-physics model of a stable active-region arch which corresponds to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium magnetic field must depart from the force-free form valid in the surrounding corona. We take advantage of the data and of the approximate cylindrical symmetry to develop a modified form of the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion physics, and the results show short-wavelength stability in a specific parameter range. Thus we demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and magnetic fields of a characteristic stable coronal loop are described

  4. Image-Optimized Coronal Magnetic Field Models

    Science.gov (United States)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  5. Endogenous Magnetic Reconnection in Solar Coronal Loops

    Science.gov (United States)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  6. Image-optimized Coronal Magnetic Field Models

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  7. Coronal mass ejections and large geomagnetic storms

    International Nuclear Information System (INIS)

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.

    1990-01-01

    Previous work indicates that coronal mass ejection (CME) events in the solar wind at 1 AU can be identified by the presence of a flux of counterstreaming solar wind halo electrons (above about 80 eV). Using this technique to identify CMEs in 1 AU plasma data, the authors find that most large geomagnetic storms during the interval surrounding the last solar maximum (Aug. 1978-Oct. 1982) were associated with Earth-passage of interplanetary disturbances in which the Earth encountered both a shock and the CME driving the shock. However, only about one CME in six encountered by Earth was effective in causing a large geomagnetic storm. Slow CMEs which did not interact strongly with the ambient solar wind ahead were particularly ineffective in a geomagnetic sense

  8. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  9. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  10. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  11. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    Energy Technology Data Exchange (ETDEWEB)

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States); Lindsey, Charles [North West Research Associates, CORA Division, Boulder, CO 80301 (United States); Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schou, Jesper [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  12. Heating of an Erupting Prominence Associated with a Solar Coronal Mass Ejection on 2012 January 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Yi; Moon, Yong-Jae; Kim, Kap-Sung [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104 (Korea, Republic of); Raymond, John C.; Reeves, Katharine K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-07-20

    We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen as absorption in EUV at the beginning of its eruption. Later, the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the X-ray Telescope on board Hinode . We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then, we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

  13. PROMINENCE ACTIVATION BY CORONAL FAST MODE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya [Department of Astronomy, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Shibata, Kazunari, E-mail: takahashi@kwasan.kyoto-u.ac.jp [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan)

    2015-03-01

    An X5.4 class flare occurred in active region NOAA11429 on 2012 March 7. The flare was associated with a very fast coronal mass ejection (CME) with a velocity of over 2500 km s{sup −1}. In the images taken with the Solar Terrestrial Relations Observatory-B/COR1, a dome-like disturbance was seen to detach from an expanding CME bubble and propagated further. A Type-II radio burst was also observed at the same time. On the other hand, in extreme ultraviolet images obtained by the Solar Dynamic Observatory/Atmospheric Imaging Assembly (AIA), the expanding dome-like structure and its footprint propagating to the north were observed. The footprint propagated with an average speed of about 670 km s{sup −1} and hit a prominence located at the north pole and activated it. During the activation, the prominence was strongly brightened. On the basis of some observational evidence, we concluded that the footprint in AIA images and the ones in COR1 images are the same, that is, the MHD fast mode shock front. With the help of a linear theory, the fast mode Mach number of the coronal shock is estimated to be between 1.11 and 1.29 using the initial velocity of the activated prominence. Also, the plasma compression ratio of the shock is enhanced to be between 1.18 and 2.11 in the prominence material, which we consider to be the reason for the strong brightening of the activated prominence. The applicability of linear theory to the shock problem is tested with a nonlinear MHD simulation.

  14. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E ∼ 20 MeV SEP events with CME source regions within 20° of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  15. DEFLECTIONS OF FAST CORONAL MASS EJECTIONS AND THE PROPERTIES OF ASSOCIATED SOLAR ENERGETIC PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, S. W. [Air Force Research Laboratory, Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland AFB, NM 87117 (United States); Akiyama, S. [Institute for Astrophyics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Gopalswamy, N., E-mail: AFRL.RVB.PA@kirtland.af.mil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-08-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E {approx} 20 MeV SEP events with CME source regions within 20 Degree-Sign of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events.

  16. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    Science.gov (United States)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  17. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  18. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  19. Model of a black hole gas submitted to background gravitational field for active galaxy nuclei with application to calculating the continuous emission spectra of massless particles (Photons: neutrinos and gravitons)

    International Nuclear Information System (INIS)

    Pinto Neto, A.

    1987-01-01

    A new theoretical model for active galaxy nuclei which describes the continuous spectrum of rest massless particles (photons, neutrinos and gravitons) in the frequency range from radiofrequency to gamma ray frequency, is presented. The model consists in a black hole gas interacting with a background gravitacional field. The previously models proposed for active galaxy nuclei are exposured. Whole theoretical fundaments based on Einstein general relativity theory for defining and studying singularity properties (black holes) are also presented. (M.C.K.) [pt

  20. 14 July 2000, a near-global coronal event and its association with energetic electron events detected in the interplanetary medium

    Czech Academy of Sciences Publication Activity Database

    Maia, D.; Pick, M.; Hawkins, S. E.; Fomichev, V. V.; Jiřička, Karel

    2001-01-01

    Roč. 204, 1/2 (2001), s. 199-214 ISSN 0038-0938 Institutional research plan: CEZ:AV0Z1003909 Keywords : coronal mass ejections * solar radio emissions * interplanetary particles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.103, year: 2001

  1. Case report: pre-eruptive intra-coronal radiolucencies revisited.

    LENUS (Irish Health Repository)

    Counihan, K P

    2012-08-01

    Pre-eruptive intra-coronal radiolucency (PEIR) describes a radiolucent lesion located in the coronal dentine, just beneath the enamel-dentine junction of unerupted teeth. The prevalence of this lesion varies depending on the type and quality of radiographic exposure and age of patients used for assessment. The aetiology of pre-eruptive intra-coronal radiolucent lesions is not fully understood, but published clinical and histological evidence suggest that these lesions are resorptive in nature. Issues around the diagnosis, treatment planning and clinical management of this lesion are explored using previously unreported cases.

  2. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  3. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ gap /τ emission = O(1), where τ gap is the average time gap between the emissions of successive Hawking quanta and τ emission is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  4. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  5. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  6. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  7. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  8. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Hawking radiation from four-dimensional Schwarzschild black holes in M theory

    International Nuclear Information System (INIS)

    Das, S.R.; Mathur, S.D.; Ramadevi, P.

    1999-01-01

    Recently a method has been developed for relating four dimensional Schwarzschild black holes in M theory to near-extremal black holes in string theory with four charges, using suitably defined open-quotes boostsclose quotes and T dualities. We show that this method can be extended to obtain the emission rate of low energy massless scalars for the four dimensional Schwarzschild hole from the microscopic picture of radiation from the near extremal hole. copyright 1999 The American Physical Society

  11. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  12. Quantum-gravity fluctuations and the black-hole temperature

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  13. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  14. Black Holes Have Simple Feeding Habits

    Science.gov (United States)

    2008-06-01

    properties of these black holes should be very helpful. In addition to Chandra, three radio arrays (the Giant Meterwave Radio Telescope, the Very Large Array and the Very Long Baseline Array), two millimeter telescopes (the Plateau de Bure Interferometer and the Submillimeter Array), and Lick Observatory in the optical were used to monitor M81. These observations were made simultaneously to ensure that brightness variations because of changes in feeding rates did not confuse the results. Chandra is the only X-ray satellite able to isolate the faint X-rays of the black hole from the emission of the rest of the galaxy. This result confirms less detailed earlier work by Andrea Merloni from the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, Germany and colleagues that suggested that the basic properties of larger black holes are similar to the smaller ones. Their study, however, was not based on simultaneous, multi-wavelength observations nor the application of a detailed physical model. These results will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  15. Double-coronal X-Ray and Microwave Sources Associated with a Magnetic Breakout Solar Eruption

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yao; Wu, Zhao; Zhao, Di; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Liu, Wei [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Schwartz, Richard A., E-mail: yaochen@sdu.edu.cn [NASA Goddard Space Flight Center and American University, Greenbelt, MD 20771 (United States)

    2017-07-01

    Double-coronal hard X-ray (HXR) sources are believed to be critical observational evidence of bi-directional energy release through magnetic reconnection in large-scale current sheets in solar flares. Here, we present a study on double-coronal sources observed in both HXR and microwave regimes, revealing new characteristics distinct from earlier reports. This event is associated with a footpoint-occulted X1.3-class flare (2014 April 25, starting at 00:17 UT) and a coronal mass ejection that were likely triggered by the magnetic breakout process, with the lower source extending upward from the top of the partially occulted flare loops and the upper source co-incident with rapidly squeezing-in side lobes (at a speed of ∼250 km s{sup −1} on both sides). The upper source can be identified at energies as high as 70–100 keV. The X-ray upper source is characterized by flux curves that differ from those of the lower source, a weak energy dependence of projected centroid altitude above 20 keV, a shorter duration, and an HXR photon spectrum slightly harder than those of the lower source. In addition, the microwave emission at 34 GHz also exhibits a similar double-source structure and the microwave spectra at both sources are in line with gyrosynchrotron emission given by non-thermal energetic electrons. These observations, especially the co-incidence of the very-fast squeezing-in motion of side lobes and the upper source, indicate that the upper source is associated with (and possibly caused by) this fast motion of arcades. This sheds new light on the origin of the corona double-source structure observed in both HXRs and microwaves.

  16. Fast Breakdown as Coronal/Ionization Waves?

    Science.gov (United States)

    Krehbiel, P. R.; Petersen, D.; da Silva, C. L.

    2017-12-01

    Studies of high-power narrow bipolar events (NBEs) have shown they are produced by a newly-recognized breakdown process called fast positive breakdown (FPB, Rison et al., 2016, doi:10.1038/ncomms10721). The breakdown was inferred to be produced by a system of positive streamers that propagate at high speed ( ˜3-6 x 107 m/s) due to occurring in a localized region of strong electric field. The polarity of the breakdown was determined from broadband interferometer (INTF) observations of the propagation direction of its VHF radiation, which was downward into the main negative charge region of a normally-electrified storm. Subsequent INTF observations being conducted in at Kennedy Space Center in Florida have shown a much greater incidence of NBEs than in New Mexico. Among the larger dataset have been clear-cut instances of some NBEs being produced by upward breakdown that would be of negative polarity. The speed and behavior of the negative breakdown is the same as that of the fast positive, leading to it being termed fast negative breakdown (FNB). The similarity (not too mention its occurrence) is surprising, given the fact that negative streamers and breakdown develops much differently than that of positive breakdown. The question is how this happens. In this study, we compare fast breakdown characteristics to well-known streamer properties as inferred from laboratory experiments and theoretical analysis. Additionally, we begin to explore the possibility that both polarities of fast breakdown are produced by what may be called coronal or ionization waves, in which the enhanced electric field produced by streamer or coronal breakdown of either polarity propagates away from the advancing front at the speed of light into a medium that is in a metastable condition of being at the threshold of hydrometeor-mediated corona onset or other ionization processes. The wave would develop at a faster speed than the streamer breakdown that gives rise to it, and thus would be

  17. Coronal Magnetic Field Lines and Electrons Associated with Type III

    Indian Academy of Sciences (India)

    Coronal Magnetic Field Lines and Electrons Associated with Type III–V Radio Bursts in a Solar Flare ... velocities of the electron streams associated with the above two types of bursts indicate ... Journal of Astrophysics and Astronomy | News ...

  18. Coroner Autopsy Findings Among Children and Adolescents of ...

    African Journals Online (AJOL)

    year retrospective study of coroner autopsies carried out on children I adolescents aged between 0-19 years, evaluated the pattern, causes and demographic features of childhood deaths in Rivers state, Nigeria. Methods A retrospective remew of ...

  19. Energy released by the interaction of coronal magnetic fields

    International Nuclear Information System (INIS)

    Sheeley, N.R. Jr.

    1976-01-01

    Comparisons between coronal spectroheliograms and photospheric magnetograms are presented to support the idea that as coronal magnetic fields interact, a process of field line reconnection usually takes place as a natural way of preventing magnetic stresses from building up in the lower corona. This suggests that the energy which would have been stored in stressed fields in continuously released as kinetic energy of material being driven aside to make way for the reconnecting fields. However, this kinetic energy is negligible compared to the thermal energy of the coronal plasma. Therefore, it appears that these slow adjustments of coronal magnetic fields cannot account for even the normal heating of the corona, much less the energetic events associated with solar flares. (Auth.)

  20. The X-ray signature of solar coronal mass

    Science.gov (United States)

    Harrison, R. A.; Waggett, P. W.; Bentley, R. D.; Phillips, K. J. H.; Bruner, M.

    1985-01-01

    The coronal response to six solar X-ray flares has been investigated. At a time coincident with the projected onset of the white-light coronal mass ejection associated with each flare, there is a small, discrete soft X-ray enhancement. These enhancements (precursors) precede by typically about 20 m the impulsive phase of the solar flare which is dominant by the time the coronal mass ejection has reached an altitude above 0.5 solar radii. Motions of hot X-ray emitting plasma, during the precursors, which may well be a signature of the mass ejection onsets, are identified. Further investigations have also revealed a second class of X-ray coronal transient, during the main phase of the flare. These appear to be associated with magnetic reconnection above post-flare loop systems.

  1. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    dramatic differences in appearance and physical processes, all these structures share a common ... mena that indicate a close relationship between coronal and sub-photo- spheric processes. .... 8) maintaining the same chirality. Large scale ...

  2. Black hole chromosphere at the CERN LHC

    International Nuclear Information System (INIS)

    Anchordoqui, Luis; Goldberg, Haim

    2003-01-01

    If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the CERN LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely into a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the 'chromosphere', and find that the hard hadronic jets are almost entirely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC

  3. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  4. Ejection of massive black holes from galaxies

    International Nuclear Information System (INIS)

    Kapoor, R.C.

    1976-01-01

    Gravitational recoil of a gigantic black hole (M approximately 10 8-9 M) formed in the nonspherical collapse of the nuclear part of a typical galaxy can take place with an appreciable speed as a consequence of the anisotropic emission of gravitational radiation. Accretion of gaseous matter during its flight through the galaxy results in the formation of a flowing shock front. The accompanying stellar captures can lead to the formation of an accretion disk-star system about the hole. Consequently, the hole can become 'luminous' enough to be observable after it emerges out of the galaxy. The phenomenon seems to have an importance in relation to the observations of quasar-galaxy association in a number of cases. (author)

  5. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yuhong, E-mail: yfan@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2017-07-20

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.

  6. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Lionello, R.; Török, T.; Titov, V. S.; Mikić, Z.; Linker, J. A. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Leake, J. E.; Linton, M. G., E-mail: lionel@predsci.com [US Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 (United States)

    2016-11-01

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.

  7. Culex coronator in coastal Georgia and South Carolina.

    Science.gov (United States)

    Moulis, Robert A; Russell, Jennifer D; Lewandowski, Henry B; Thompson, Pamela S; Heusel, Jeffrey L

    2008-12-01

    In 2007, adult Culex coronator were collected in Chatham County, Georgia, and Jasper County, South Carolina, during nuisance and disease vector surveillance efforts. A total of 75 specimens of this species were collected at 8 widely separated locations in Chatham County, Georgia, and 4 closely situated sites in Jasper County, South Carolina. These represent the first Atlantic coastal records of this species in Georgia and the first confirmed records of Cx. coronator in South Carolina.

  8. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  9. Active Longitude and Coronal Mass Ejection Occurrences

    International Nuclear Information System (INIS)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R.; Singh, T.; Srivastava, A. K.

    2017-01-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  10. Active Longitude and Coronal Mass Ejection Occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, N.; Kiss, T. S.; Erdélyi, R. [Solar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom); Singh, T.; Srivastava, A. K., E-mail: n.g.gyenge@sheffield.ac.uk [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi (India)

    2017-03-20

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  11. Active Longitude and Coronal Mass Ejection Occurrences

    Science.gov (United States)

    Gyenge, N.; Singh, T.; Kiss, T. S.; Srivastava, A. K.; Erdélyi, R.

    2017-03-01

    The spatial inhomogeneity of the distribution of coronal mass ejection (CME) occurrences in the solar atmosphere could provide a tool to estimate the longitudinal position of the most probable CME-capable active regions in the Sun. The anomaly in the longitudinal distribution of active regions themselves is often referred to as active longitude (AL). In order to reveal the connection between the AL and CME spatial occurrences, here we investigate the morphological properties of active regions. The first morphological property studied is the separateness parameter, which is able to characterize the probability of the occurrence of an energetic event, such as a solar flare or CME. The second morphological property is the sunspot tilt angle. The tilt angle of sunspot groups allows us to estimate the helicity of active regions. The increased helicity leads to a more complex buildup of the magnetic structure and also can cause CME eruption. We found that the most complex active regions appear near the AL and that the AL itself is associated with the most tilted active regions. Therefore, the number of CME occurrences is higher within the AL. The origin of the fast CMEs is also found to be associated with this region. We concluded that the source of the most probably CME-capable active regions is at the AL. By applying this method, we can potentially forecast a flare and/or CME source several Carrington rotations in advance. This finding also provides new information for solar dynamo modeling.

  12. Guided flows in coronal magnetic flux tubes

    Science.gov (United States)

    Petralia, A.; Reale, F.; Testa, P.

    2018-01-01

    Context. There is evidence that coronal plasma flows break down into fragments and become laminar. Aims: We investigate this effect by modelling flows confined along magnetic channels. Methods: We consider a full magnetohydrodynamic (MHD) model of a solar atmosphere box with a dipole magnetic field. We compare the propagation of a cylindrical flow perfectly aligned with the field to that of another flow with a slight misalignment. We assume a flow speed of 200 km s-1 and an ambient magnetic field of 30 G. Results: We find that although the aligned flow maintains its cylindrical symmetry while it travels along the magnetic tube, the misaligned one is rapidly squashed on one side, becoming laminar and eventually fragmented because of the interaction and back-reaction of the magnetic field. This model could explain an observation made by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory of erupted fragments that fall back onto the solar surface as thin and elongated strands and end up in a hedge-like configuration. Conclusions: The initial alignment of plasma flow plays an important role in determining the possible laminar structure and fragmentation of flows while they travel along magnetic channels. Movies are available in electronic form at http://www.aanda.org

  13. ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kocher, M.; Lepri, S. T.; Landi, E.; Zhao, L.; Manchester, W. B. IV, E-mail: mkocher@umich.edu [Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109-2143 (United States)

    2017-01-10

    We report a subset of interplanetary coronal mass ejections (ICMEs) containing distinct periods of anomalous heavy-ion charge state composition and peculiar ion thermal properties measured by ACE /SWICS from 1998 to 2011. We label them “depleted ICMEs,” identified by the presence of intervals where C{sup 6+}/C{sup 5+} and O{sup 7+}/O{sup 6+} depart from the direct correlation expected after their freeze-in heights. These anomalous intervals within the depleted ICMEs are referred to as “Depletion Regions.” We find that a depleted ICME would be indistinguishable from all other ICMEs in the absence of the Depletion Region, which has the defining property of significantly low abundances of fully charged species of helium, carbon, oxygen, and nitrogen. Similar anomalies in the slow solar wind were discussed by Zhao et al. We explore two possibilities for the source of the Depletion Region associated with magnetic reconnection in the tail of a CME, using CME simulations of the evolution of two Earth-bound CMEs described by Manchester et al.

  14. A Catalog of Coronal "EIT Wave" Transients

    Science.gov (United States)

    Thompson, B. J.; Myers, D. C.

    2009-01-01

    Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal "EIT wave" transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than one image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from "candidate" events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s(exp -1) with "typical" speeds of 200-400 km s(exp -1).

  15. A CATALOG OF CORONAL 'EIT WAVE' TRANSIENTS

    International Nuclear Information System (INIS)

    Thompson, B. J.; Myers, D. C.

    2009-01-01

    Solar and Heliospheric Observatory (SOHO) Extreme ultraviolet Imaging Telescope (EIT) data have been visually searched for coronal 'EIT wave' transients over the period beginning from 1997 March 24 and extending through 1998 June 24. The dates covered start at the beginning of regular high-cadence (more than 1 image every 20 minutes) observations, ending at the four-month interruption of SOHO observations in mid-1998. One hundred and seventy six events are included in this catalog. The observations range from 'candidate' events, which were either weak or had insufficient data coverage, to events which were well defined and were clearly distinguishable in the data. Included in the catalog are times of the EIT images in which the events are observed, diagrams indicating the observed locations of the wave fronts and associated active regions, and the speeds of the wave fronts. The measured speeds of the wave fronts varied from less than 50 to over 700 km s -1 with 'typical' speeds of 200-400 km s -1 .

  16. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  17. FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. II. APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium)

    2016-04-15

    Magnetohydrodynamic waves are believed to play a significant role in coronal heating, and could be used for remote diagnostics of solar plasma. Both the heating and diagnostic applications rely on a correct inversion (or backward modeling) of the observables into the thermal and magnetic structures of the plasma. However, due to the limited availability of observables, this is an ill-posed issue. Forward modeling is designed to establish a plausible mapping of plasma structuring into observables. In this study, we set up forward models of standing kink modes in coronal loops and simulate optically thin emissions in the extreme ultraviolet bandpasses, and then adjust plasma parameters and viewing angles to match three events of transverse loop oscillations observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We demonstrate that forward models could be effectively used to identify the oscillation overtone and polarization, to reproduce the general profile of oscillation amplitude and phase, and to predict multiple harmonic periodicities in the associated emission intensity and loop width variation.

  18. Evidence linking coronal mass ejections with interplanetary magnetic clouds

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1983-12-01

    Using proxy data for the occurrence of those mass ejections from the solar corona which are directed earthward, we investigate the association between the post-1970 interplanetary magnetic clouds of Klein and Burlaga and coronal mass ejections. The evidence linking magnetic clouds following shocks with coronal mass ejections is striking. Six of nine clouds observed at Earth were preceded an appropriate time earlier by meter-wave type II radio bursts indicative of coronal shock waves and coronal mass ejections occurring near central meridian. During the selected periods when no clouds were detected near Earth, the only type II bursts reported were associated with solar activity near the limbs. Where the proxy solar data to be sought are not so clearly suggested, that is, for clouds preceding interaction regions and clouds within cold magnetic enhancements, the evidence linking the clouds and coronal mass ejections is not as clear proxy data usually suggest many candidate mass-ejection events for each cloud. Overall, the data are consistent with and support the hypothesis suggested by Klein and Burlaga that magnetic clouds observed with spacecraft at 1 AU are manifestations of solar coronal mass ejection transients

  19. New Evidence that Magnetoconvection Drives Solar–Stellar Coronal Heating

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. [NASA Marshall Space Flight Center, Mail Code ST 13, Huntsville, AL 35812 (United States); Thalmann, Julia K., E-mail: sanjivtiwari80@gmail.com [Institute of Physics/IGAM, University of Graz, Universittsplatz 5/II, A-8010 Graz (Austria)

    2017-07-10

    How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body.

  20. Lectures on Black Hole Quantum Mechanics

    Science.gov (United States)

    Wilczek, Frank

    The lectures that follow were originally given in 1992, and written up only slightly later. Since then there have been dramatic developments in the quantum theory of black holes, especially in the context of string theory. None of these are reflected here. The concept of quantum hair, which is discussed at length in the lectures, is certainly of permanent interest, and I continue to believe that in some generalized form it will prove central to the whole question of how information is stored in black holes. The discussion of scattering and emission modes from various classes of black holes could be substantially simplified using modern techniques, and from currently popular perspectives the choice of examples might look eccentric. On the other hand fashions have changed rapidly in the field, and the big questions as stated and addressed here, especially as formulated for "real" black holes (nonextremal, in four-dimensional, asymptotically flat space-time, with supersymmetry broken), remain pertinent even as the tools to address them may evolve. The four lectures I gave at the school were based on two lengthy papers that have now been published, "Black Holes as Elementary Particles," Nuclear Physics B380, 447 (1992) and "Quantum Hair on Black Holes," Nuclear Physics B378, 175 (1992). The unifying theme of this work is to help make plausible the possibility that black holes, although they are certainly unusual and extreme states of matter, may be susceptible to a description using concepts that are not fundamentally different from those we use in describing other sorts of quantum-mechanical matter. In the first two lectures I discussed dilaton black holes. The fact that apparently innocuous changes in the "matter" action can drastically change the properties of a black hole is already very significant: it indicates that the physical properties of small black holes cannot be discussed reliably in the abstract, but must be considered with due regard to the rest of

  1. Studying the Kinematic Behavior of Coronal Mass Ejections and Other Solar Phenomena using the Time-Convolution Mapping Method

    Science.gov (United States)

    Hess Webber, Shea A.; Thompson, Barbara J.; Kwon, Ryun Young; Ireland, Jack

    2018-01-01

    An improved understanding of the kinematic properties of CMEs and CME-associated phenomena has several impacts: 1) a less ambiguous method of mapping propagating structures into their inner coronal manifestations, 2) a clearer view of the relationship between the “main” CME and CME-associated brightenings, and 3) an improved identification of the heliospheric sources of shocks, Type II bursts, and SEPs. We present the results of a mapping technique that facilitates the separation of CMEs and CME-associated brightenings (such as shocks) from background corona. The Time Convolution Mapping Method (TCMM) segments coronagraph data to identify the time history of coronal evolution, the advantage being that the spatiotemporal evolution profiles allow users to separate features with different propagation characteristics. For example, separating “main” CME mass from CME-associated brightenings or shocks is a well-known obstacle, which the TCMM aids in differentiating. A TCMM CME map is made by first recording the maximum value each individual pixel in the image reaches during the traversal of the CME. Then the maximum value is convolved with an index to indicate the time that the pixel reached that value. The TCMM user is then able to identify continuous “kinematic profiles,” indicating related kinematic behavior, and also identify breaks in the profiles that indicate a discontinuity in kinematic history (i.e. different structures or different propagation characteristics). The maps obtained from multiple spacecraft viewpoints (i.e., STEREO and SOHO) can then be fit with advanced structural models to obtain the 3D properties of the evolving phenomena. We will also comment on the TCMM's further applicability toward the tracking of prominences, coronal hole boundaries and coronal cavities.

  2. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    Energy Technology Data Exchange (ETDEWEB)

    Krista, Larisza D.; Reinard, Alysha [University of Colorado/Cooperative Institute for Research in Environmental Sciences, Boulder, CO 80205 (United States)

    2013-01-10

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 A wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  3. STUDY OF THE RECURRING DIMMING REGION DETECTED AT AR 11305 USING THE CORONAL DIMMING TRACKER (CoDiT)

    International Nuclear Information System (INIS)

    Krista, Larisza D.; Reinard, Alysha

    2013-01-01

    We present a new approach to coronal dimming detection using the COronal DImming Tracker tool (CODIT), which was found to be successful in locating and tracking multiple dimming regions. This tool, an extension of a previously developed coronal hole tracking software, allows us to study the properties and the spatial evolution of dimming regions at high temporal and spatial cadence from the time of their appearance to their disappearance. We use Solar Dynamics Observatory/Atmospheric Imaging Assembly 193 Å wavelength observations and Helioseismic and Magnetic Imager magnetograms to study dimmings. As a demonstration of the detection technique we analyzed six recurrences of a dimming observed near AR 11305 between 2011 September 29 and October 2. The dimming repeatedly appeared and formed in a similar way, first expanding then shrinking and occasionally stabilizing in the same location until the next eruption. The dimming areas were studied in conjunction with the corresponding flare magnitudes and coronal mass ejection (CME) masses. These properties were found to follow a similar trend during the observation period, which is consistent with the idea that the magnitude of the eruption and the CME mass affect the relative sizes of the consecutive dimmings. We also present a hypothesis to explain the evolution of the recurrent single dimming through interchange reconnection. This process would accommodate the relocation of quasi-open magnetic field lines and hence allow the CME flux rope footpoint (the dimming) to expand into quiet-Sun regions. By relating the properties of dimmings, flares, and CMEs we improve our understanding of the magnetic field reconfiguration caused by reconnection.

  4. AUTOMATICALLY DETECTING AND TRACKING CORONAL MASS EJECTIONS. I. SEPARATION OF DYNAMIC AND QUIESCENT COMPONENTS IN CORONAGRAPH IMAGES

    International Nuclear Information System (INIS)

    Morgan, Huw; Byrne, Jason P.; Habbal, Shadia Rifai

    2012-01-01

    Automated techniques for detecting and tracking coronal mass ejections (CMEs) in coronagraph data are of ever increasing importance for space weather monitoring and forecasting. They serve to remove the biases and tedium of human interpretation, and provide the robust analysis necessary for statistical studies across large numbers of observations. An important requirement in their operation is that they satisfactorily distinguish the CME structure from the background quiescent coronal structure (streamers, coronal holes). Many studies resort to some form of time differencing to achieve this, despite the errors inherent in such an approach—notably spatiotemporal crosstalk. This article describes a new deconvolution technique that separates coronagraph images into quiescent and dynamic components. A set of synthetic observations made from a sophisticated model corona and CME demonstrates the validity and effectiveness of the technique in isolating the CME signal. Applied to observations by the LASCO C2 and C3 coronagraphs, the structure of a faint CME is revealed in detail despite the presence of background streamers that are several times brighter than the CME. The technique is also demonstrated to work on SECCHI/COR2 data, and new possibilities for estimating the three-dimensional structure of CMEs using the multiple viewing angles are discussed. Although quiescent coronal structures and CMEs are intrinsically linked, and although their interaction is an unavoidable source of error in any separation process, we show in a companion paper that the deconvolution approach outlined here is a robust and accurate method for rigorous CME analysis. Such an approach is a prerequisite to the higher-level detection and classification of CME structure and kinematics.

  5. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  6. Intermittency in MHD turbulence and coronal nanoflares modelling

    Directory of Open Access Journals (Sweden)

    P. Veltri

    2005-01-01

    Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.

  7. Jets, black holes and disks in blazars

    Directory of Open Access Journals (Sweden)

    Ghisellini Gabriele

    2013-12-01

    Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.

  8. Phantom black holes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha [Engineering Faculty, Başkent University, Bağlıca Campus, Ankara (Turkey); Marques, Glauber T. [Universidade Federal Rural da Amazônia ICIBE-LASIC, Av. Presidente Tancredo Neves 2501, CEP 66077-901—Belém/PA (Brazil); Rodrigues, Manuel E., E-mail: azreg@baskent.edu.tr, E-mail: gtadaiesky@hotmail.com, E-mail: esialg@gmail.com [Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Campus Universitário de Abaetetuba, CEP 68440-000, Abaetetuba, Pará (Brazil)

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  9. Fermionic greybody factors in dilaton black holes

    International Nuclear Information System (INIS)

    Abedi, Jahed; Arfaei, Hessamaddin

    2014-01-01

    In this paper the question of the emission of fermions in the process of dilaton black hole evolution and its characteristics for different dilaton coupling constants α are studied. The main quantity of interest, the greybody factors, are calculated both numerically and in analytical approximation. The dependence of the rates of evaporation and behaviour on the dilaton coupling constant is analysed. Having calculated the greybody factors, we are able to address the question of the final fate of the dilaton black hole. For that we also need to perform dynamical treatment of the solution by considering the backreaction, which will show a crucial effect on the final result. We find a transition line in the (Q/M,α) plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable. (paper)

  10. ON THE RELATIONSHIP BETWEEN THE CORONAL MAGNETIC DECAY INDEX AND CORONAL MASS EJECTION SPEED

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yan; Liu Chang; Jing Ju; Wang Haimin, E-mail: yx2@njit.edu [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)

    2012-12-10

    Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter called the decay index (i.e., the coronal magnetic gradient of the overlying fields above the eruptive flux ropes) could play an important role in controlling the kinematics of eruptions. Previous studies have identified a threshold range of the decay index that distinguishes between eruptive and confined configurations. Here we advance the study by investigating if there is a clear correlation between the decay index and coronal mass ejection (CME) speed. Thirty-eight CMEs associated with filament eruptions and/or two-ribbon flares are selected using the H{alpha} data from the Global H{alpha} Network. The filaments and flare ribbons observed in H{alpha} associated with the CMEs help to locate the magnetic polarity inversion line, along which the decay index is calculated based on the potential field extrapolation using Michelson Doppler Imager magnetograms as boundary conditions. The speeds of CMEs are obtained from the LASCO C2 CME catalog available online. We find that the mean decay index increases with CME speed for those CMEs with a speed below 1000 km s{sup -1} and stays flat around 2.2 for the CMEs with higher speeds. In addition, we present a case study of a partial filament eruption, in which the decay indices show different values above the erupted/non-erupted part.

  11. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  12. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  13. Do Hypervolumes Have Holes?

    Science.gov (United States)

    Blonder, Benjamin

    2016-04-01

    Hypervolumes are used widely to conceptualize niches and trait distributions for both species and communities. Some hypervolumes are expected to be convex, with boundaries defined by only upper and lower limits (e.g., fundamental niches), while others are expected to be maximal, with boundaries defined by the limits of available space (e.g., potential niches). However, observed hypervolumes (e.g., realized niches) could also have holes, defined as unoccupied hyperspace representing deviations from these expectations that may indicate unconsidered ecological or evolutionary processes. Detecting holes in more than two dimensions has to date not been possible. I develop a mathematical approach, implemented in the hypervolume R package, to infer holes in large and high-dimensional data sets. As a demonstration analysis, I assess evidence for vacant niches in a Galapagos finch community on Isabela Island. These mathematical concepts and software tools for detecting holes provide approaches for addressing contemporary research questions across ecology and evolutionary biology.

  14. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  15. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  16. White dwarfs - black holes

    International Nuclear Information System (INIS)

    Sexl, R.; Sexl, H.

    1975-01-01

    The physical arguments and problems of relativistic astrophysics are presented in a correct way, but without any higher mathematics. The book is addressed to teachers, experimental physicists, and others with a basic knowledge covering an introductory lecture in physics. The issues dealt with are: fundamentals of general relativity, classical tests of general relativity, curved space-time, stars and planets, pulsars, gravitational collapse and black holes, the search for black holes, gravitational waves, cosmology, cosmogony, and the early universe. (BJ/AK) [de

  17. Magnonic black holes

    OpenAIRE

    Roldán-Molina, A.; Nunez, A.S.; Duine, R. A.

    2017-01-01

    We show that the interaction between spin-polarized current and magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons - the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the imp...

  18. Supersymmetric black holes

    OpenAIRE

    de Wit, Bernard

    2005-01-01

    The effective action of $N=2$, $d=4$ supergravity is shown to acquire no quantum corrections in background metrics admitting super-covariantly constant spinors. In particular, these metrics include the Robinson-Bertotti metric (product of two 2-dimensional spaces of constant curvature) with all 8 supersymmetries unbroken. Another example is a set of arbitrary number of extreme Reissner-Nordstr\\"om black holes. These black holes break 4 of 8 supersymmetries, leaving the other 4 unbroken. We ha...

  19. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  20. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  1. Black hole physics. Black hole lightning due to particle acceleration at subhorizon scales.

    Science.gov (United States)

    Aleksić, J; Ansoldi, S; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; Becerra González, J; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; de Oña Wilhelmi, E; Delgado Mendez, C; Dominis Prester, D; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; García López, R J; Garczarczyk, M; Garrido Terrats, D; Gaug, M; Godinović, N; González Muñoz, A; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Prada Moroni, P G; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rodriguez Garcia, J; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Zanin, R; Kadler, M; Schulz, R; Ros, E; Bach, U; Krauß, F; Wilms, J

    2014-11-28

    Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. We suggest that the emission is associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the radio jet. Copyright © 2014, American Association for the Advancement of Science.

  2. Black-hole decay and topological stability in quantum gravity

    International Nuclear Information System (INIS)

    Rodrigues, L.M.C.S.; Soares, I.D.; Zanelli, J.

    1988-01-01

    In the context of Quantum Gravity, the evolution of Schwarzschild black-holes is studied. The superspace of the theory is restricted to a class of geometries that contains the Schwarzschild solution for different masses as well as other geometries with different topologies. It is shown that, black-holes are topologically stable under quantum fluctuations but unstable under quantum processes of emission and absorption of gravitons. It is found that, the probability of emission behaves as exp (- α (M f - M i ), where M i and M f are the masses associated to the initial and final states, respectively and α is a positive constant of the order of 1. As the black-hole looses mass it evolves towards a state corresponding to a black-hole of very small that cannot be distinguished from a pure graviton state. (author) [pt

  3. Quantum gravity effects in black holes at the LHC

    International Nuclear Information System (INIS)

    Alberghi, G L; Casadio, R; Tronconi, A

    2007-01-01

    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 1 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC

  4. Gravity, quantum theory and the evaporation of black holes. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, D C [Tata Inst. of Fundamental Research, Bombay (India)

    1977-06-01

    Recent developments in blackhole physics are reviewed. It is pointed out that black hole thermodynamics is a theory of exceptional unity and elegance. Starting from the discovery of thermal emission from black holes (evaporation process) by Hawking, the four thermodynamic laws they obey, the nonzero temperature and entropy, angular momentum and charge of the black holes are dealt with. The influence of this thermodynamics on quantum theory and gravitation is discussed in relation to particle creation and quantum gravity. The formation and basic properties of black holes are described in terms of significant milestones. The decade-long development of black hole thermodynamics from 1963-73 is highlighted. The fundamental issues arising in particle physics as a result of these discoveries are discussed.

  5. Nustar Reveals the Extreme Properties of the Super-Eddington Accreting Supermassive Black Hole in PG 1247+267

    Science.gov (United States)

    Lanzuisi, G.; Perna, M.; Comastri, A.; Cappi, M.; Dadina, M.; Marinucci, A.; Masini, A.; Matt, G.; Vagnetti, F.; Vignali, C.; hide

    2016-01-01

    PG1247+267 is one of the most luminous known quasars at z approximately 2 and is a strongly super-Eddington accreting supermassive black hole (SMBH) candidate. We obtained NuSTAR data of this intriguing source in December 2014 with the aim of studying its high-energy emission, leveraging the broad band covered by the new NuSTAR and the archival XMM-Newton data. Several measurements are in agreement with the super-Eddington scenario for PG1247+267: the soft power law (gamma = 2.3 +/- 0.1); the weak ionized Fe emission line; and a hint of the presence of outflowing ionized gas surrounding the SMBH. The presence of an extreme reflection component is instead at odds with the high accretion rate proposed for this quasar. This can be explained with three different scenarios; all of them are in good agreement with the existing data, but imply very different conclusions: i) a variable primary power law observed in a low state, superimposed on a reflection component echoing a past, higher flux state; ii) a power law continuum obscured by an ionized, Compton thick, partial covering absorber; and iii) a relativistic disk reflector in a lamp-post geometry, with low coronal height and high BH spin. The first model is able to explain the high reflection component in terms of variability. The second does not require any reflection to reproduce the hard emission, while a rather low high-energy cutoff of approximately 100 keV is detected for the first time in such a high redshift source. The third model require a face-on geometry, which may affect the SMBH mass and Eddington ratio measurements. Deeper X-ray broad-band data are required in order to distinguish between these possibilities.

  6. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  7. Initial-State Graviton Radiation in Quantum Black Hole Production

    CERN Document Server

    AUTHOR|(CDS)2262067

    2017-01-01

    Monte Carlo simulation of quantum black hole production in the ATLAS experiment that allows for graviton radiation in the initial state is discussed and studied. It is concluded that, using trapped surface calculations and graviton emission, a black hole signal would be significant for Planck scales up to 4.5 TeV given a proton-proton luminosity of 37 fb$^{-1}$ in the 13 TeV LHC configuration.

  8. Formation of Radio Type II Bursts During a Multiple Coronal Mass Ejection Event

    Science.gov (United States)

    Al-Hamadani, Firas; Pohjolainen, Silja; Valtonen, Eino

    2017-12-01

    We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter-hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME-CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.

  9. RESOLVING THE ξ BOO BINARY WITH CHANDRA, AND REVEALING THE SPECTRAL TYPE DEPENDENCE OF THE CORONAL 'FIP EFFECT'

    International Nuclear Information System (INIS)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of ξ Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5%, respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for ξ Boo) leads to the surprising conclusion that ξ Boo B may dominate the wind from the binary, with ξ Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of 'FIP effect' on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries, or extremely active stars with log L X >29, explaining why this correlation has not been recognized in the past.

  10. Resolving the xi Boo Binary with Chandra, and Revealing the Spectral Type Dependence of the Coronal "Fip Effect"

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    2010-01-01

    On 2008 May 2, Chandra observed the X-ray spectrum of xi Boo (G8 V+K4 V), resolving the binary for the first time in X-rays and allowing the coronae of the two stars to be studied separately. With the contributions of ξ Boo A and B to the system's total X-ray emission now observationally established (88.5% and 11.5% respectively), consideration of mass loss measurements for GK dwarfs of various activity levels (including one for xi Boo) leads to the surprising conclusion that xi Boo B may dominate the wind from the binary, with xi Boo A's wind being very weak despite its active corona. Emission measure (EM) distributions and coronal abundances are computed for both stars and compared with Chandra measurements of other moderately active stars with G8-K5 spectral types, all of which exhibit a narrow peak in EM near log T = 6.6, indicating that the coronal heating process in these stars has a strong preference for this temperature. As is the case for the Sun and many other stars, our sample of stars shows coronal abundance anomalies dependent on the first ionization potential (FIP) of the element. We see no dependence of the degree of FIP effect on activity, but there is a dependence on spectral type, a correlation that becomes more convincing when moderately active main-sequence stars with a broader range of spectral types are considered. This clear dependence of coronal abundances on spectral type weakens if the stellar sample is allowed to be contaminated by evolved stars, interacting binaries or extremely active stars with logLX 29, explaining why this correlation has not been recognized in the past.

  11. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  12. SCALING LAWS AND TEMPERATURE PROFILES FOR SOLAR AND STELLAR CORONAL LOOPS WITH NON-UNIFORM HEATING

    International Nuclear Information System (INIS)

    Martens, P. C. H.

    2010-01-01

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of active regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a set of temperature- and pressure-dependent heating functions that encompass heating concentrated at the footpoints, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution-not sufficiently to be of significant diagnostic value-and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the Rosner-Tucker-Vaiana scaling law (P 0 L ∼ T 3 max ) depending on the specific heating function. Furthermore, quasi-static solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the results to a set of solutions for strands with a functionally prescribed variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are accurate and stable.

  13. How the change in horizon area drives black hole evaporation

    International Nuclear Information System (INIS)

    Massar, S.; Parentani, R.

    2000-01-01

    We rephrase the derivation of black hole radiation so as to take into account, at the level of transition amplitudes, the change of the geometry induced by the emission process. This enlarged description reveals that the dynamical variables which govern the emission are the horizon area and its conjugate time variable. Their conjugation is established through the boundary term at the horizon which must be added to the canonical action of general relativity in order to obtain a well defined action principle when the area varies. These coordinates have already been used by Teitelboim and collaborators to compute the partition function of a black hole. We use them to show that the probability to emit a particle is given by e -ΔA/4 , where ΔA is the decrease in horizon area induced by the emission. This expression improves Hawking result which is governed by a temperature (given by the surface gravity) in that the specific heat of the black hole is no longer neglected. The present derivation of quantum black hole radiation is based on the same principles which are used to derive the first law of classical black hole thermodynamics. Moreover, it also applies to quantum processes associated with cosmological or acceleration horizons. These two results indicate that not only black holes but all event horizons possess an entropy which governs processes according to quantum statistical thermodynamics

  14. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  15. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  17. Observation and Modeling of Chromospheric Evaporation in a Coronal Loop Related to Active Region Transient Brightening

    Science.gov (United States)

    Gupta, G. R.; Sarkar, Aveek; Tripathi, Durgesh

    2018-04-01

    Using the observations recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and the Interface Region Imaging Spectrograph (IRIS) and the Extreme-ultraviolet Imaging Spectrometer and X-Ray Telescope both on board Hinode, we present evidence of chromospheric evaporation in a coronal loop after the occurrence of two active region transient brightenings (ARTBs) at the two footpoints. The chromospheric evaporation started nearly simultaneously in all of the three hot channels of AIA 131, 94, and 335 Å and was observed to be temperature dependent, being fastest in the highest temperature channel. The whole loop became fully brightened following the ARTBs after ≈25 s in 131 Å, ≈40 s in 94 Å, and ≈6.5 minutes in 335 Å. The differential emission measurements at the two footpoints (i.e., of two ARTBs) and at the loop top suggest that the plasma attained a maximum temperature of ∼10 MK at all these locations. The spectroscopic observations from IRIS revealed the presence of redshifted emission of ∼20 km s‑1 in cooler lines like C II and Si IV during the ARTBs that was cotemporal with the evaporation flow at the footpoint of the loop. During the ARTBs, the line width of C II and Si IV increased nearly by a factor of two during the peak emission. Moreover, enhancement in the line width preceded that in the Doppler shift, which again preceded enhancement in the intensity. The observed results were qualitatively reproduced by 1D hydrodynamic simulations, where energy was deposited at both of the footpoints of a monolithic coronal loop that mimicked the ARTBs identified in the observations.

  18. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    International Nuclear Information System (INIS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-01-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ∼1.0 × 10 10 cm −2 and 3.0 × 10 10 cm −2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ∼600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure. (paper)

  19. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    Science.gov (United States)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  20. Coronal Loop Evolution Observed with AIA and Hi-C

    Science.gov (United States)

    Mulu-Moore, Fana; Winebarger, A.; Cirtain, J.; Kobayashi, K.; Korreck, K.; Golub, L.; Kuzin. S.; Walsh, R.; DeForest, C.; DePontieu, B.; hide

    2012-01-01

    Despite much progress toward understanding the dynamics of the solar corona, the physical properties of coronal loops are not yet fully understood. Recent investigations and observations from different instruments have yielded contradictory results about the true physical properties of coronal loops. In the past, the evolution of loops has been used to infer the loop substructure. With the recent launch of High Resolution Coronal Imager (Hi-C), this inference can be validated. In this poster we discuss the first results of loop analysis comparing AIA and Hi-C data. We find signatures of cooling in a pixel selected along a loop structure in the AIA multi-filter observations. However, unlike previous studies, we find that the cooling time is much longer than the draining time. This is inconsistent with previous cooling models.