WorldWideScience

Sample records for hole late inspiral

  1. Highly eccentric inspirals into a black hole

    Science.gov (United States)

    Osburn, Thomas; Warburton, Niels; Evans, Charles R.

    2016-03-01

    We model the inspiral of a compact stellar-mass object into a massive nonrotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as e ˜0.8 and initial separations as large as p ˜50 to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within ˜0.1 radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  2. Rλ3-inspired black holes

    Science.gov (United States)

    Kováčik, Samuel

    2017-08-01

    We study a black hole with a blurred mass density instead of a singular one, which is caused by the noncommutativity of three-space. Depending on its mass, such object has either none, one or two event horizons. It possesses properties, which become important on a microscopic scale, in particular, the Hawking temperature does not increase indefinitely as the mass goes to zero, but vanishes instead. Such frozen and extremely dense pieces of matter are good dark matter candidates.

  3. Highly eccentric inspirals into a black hole

    CERN Document Server

    Osburn, Thomas; Evans, Charles R

    2015-01-01

    We model the inspiral of a compact stellar-mass object into a massive non-rotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as $e\\sim0.8$ and initial separations as large as $\\sim 100M$ to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within $\\sim0.1$ radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified.

  4. Bouncing cosmology inspired by regular black holes

    Science.gov (United States)

    Neves, J. C. S.

    2017-09-01

    In this article, we present a bouncing cosmology inspired by a family of regular black holes. This scale-dependent cosmology deviates from the cosmological principle by means of a scale factor which depends on the time and the radial coordinate as well. The model is isotropic but not perfectly homogeneous. That is, this cosmology describes a universe almost homogeneous only for large scales, such as our observable universe.

  5. Noncommutative Geometry Inspired Rotating Black Hole in Three Dimensions

    OpenAIRE

    2010-01-01

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.

  6. Inspiral of double black holes in gaseous nuclear disks

    CERN Document Server

    Haardt, M D M C F

    2006-01-01

    We study the inspiral of double black holes orbiting inside a massive rotationally supported gaseous disk, with masses in the Laser Interferometer Space Antenna (LISA) window of detectability. Using high-resolution SPH simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until the form a close binary. We find that in the early sinking the black holes loose memory of their initial orbital eccentricity if they co-rotate with the gaseous disk. As a consequence the massive black holes form a binary with very low eccentricity. During the inspiral, gravitational capture of gas by the black holes occurs mainly when they move on circular orbits and may ignite AGN activity: eccentric orbits imply instead high relative velocities and weak gravitational focusing.

  7. Noncommutative geometry-inspired rotating black hole in three dimensions

    Indian Academy of Sciences (India)

    Juan Manuel Tejeiro; Alexis Larrañaga

    2012-01-01

    We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact nature of the Bekenstein–Hawking entropy.

  8. Accretion onto a noncommutative geometry inspired black hole

    Science.gov (United States)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  9. Regular black holes and noncommutative geometry inspired fuzzy sources

    Science.gov (United States)

    Kobayashi, Shinpei

    2016-05-01

    We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.

  10. Statistical constraints on binary black hole inspiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-12-21

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  11. Statistical constraints on binary black hole inspiral dynamics

    Science.gov (United States)

    Galley, Chad R.; Herrmann, Frank; Silberholz, John; Tiglio, Manuel; Guerberoff, Gustavo

    2010-12-01

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2 \\hat{\\bf S}_1 \\,\\cdot\\, \\hat{\\bf S}_2 + ( \\hat{\\bf S}_1 \\,\\cdot\\, \\hat{\\bf L}) ( \\hat{\\bf S}_2 \\,\\cdot\\, \\hat{\\bf L}), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  12. Supermassive black hole spin-flip during the inspiral

    Energy Technology Data Exchange (ETDEWEB)

    Gergely, Laszlo A [Department of Theoretical Physics, University of Szeged (Hungary); Biermann, Peter L [MPI for Radioastronomy, Bonn (Germany); Caramete, Laurentiu I, E-mail: gergely@physx.u-szeged.h, E-mail: plbiermann@mpifr-bonn.mpg.d, E-mail: lcaramete@gmail.co [Institute for Space Sciences, Bucharest (Romania)

    2010-10-07

    During post-Newtonian evolution of a compact binary, a mass ratio {nu} different from 1 provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, and then to establish a logarithmically even probability in {nu} of the mass ratios at their encounter. In the mass ratio range {nu} in (1/30, 1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40% with mass ratios {nu} in (1/30, 1/1000) a spin-flip never occurs, while in the remaining 20% of mergers with mass ratios {nu} in (1/3, 1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as a function of the mass ratio and original relative orientation of the spin and orbital angular momentum. We also derive a formula for the final spin at the end of the inspiral in this mass ratio range.

  13. Supermassive black hole spin-flip during the inspiral

    CERN Document Server

    Gergely, László Á; Caramete, Laurenţiu I

    2010-01-01

    During post-Newtonian evolution of a compact binary, a mass ratio different from one provides a second small parameter, which can lead to unexpected results. We present a statistics of supermassive black hole candidates, which enables us first to derive their mass distribution, then to establish a logarithmically even probability of the mass ratios at their encounter. In the mass ratio range (1/30,1/3) of supermassive black hole mergers representing 40% of all possible cases, the combined effect of spin-orbit precession and gravitational radiation leads to a spin-flip of the dominant spin during the inspiral phase of the merger. This provides a mechanism for explaining a large set of observations on X-shaped radio galaxies. In another 40%, with mass ratios (1/30,1/1000) a spin-flip never happens, while in the remaining 20% of mergers with mass ratios (1/3,1) it may occur during the plunge. We analyze the magnitude of the spin-flip angle occurring during the inspiral as function of the mass ratio and original ...

  14. Black hole binary inspiral: Analysis of the plunge

    Science.gov (United States)

    Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav

    2016-02-01

    Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.

  15. Black hole binary inspiral: Analysis of the plunge

    CERN Document Server

    Price, Richard H; Khanna, Gaurav

    2015-01-01

    Binary black hole coalescence has its peak of gravitational wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing. Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plungecomparable to that of the early and late stages. Here we make progress in developing such understanding by focusing on the excitation of quasinormal ringing (QNR) during the plunge. We rely on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the excitation of QNR. That insight is then shown to successfully explain Schwarzschild QNR found with evolution codes. Lastly, a phenomenological explanation is given for the underlying importance of the light ri...

  16. Better late than never: information retrieval from black holes.

    Science.gov (United States)

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-08

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  17. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; González, José A.; Brügmann, Bernd; Ansorg, Marcus

    2008-09-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of nonspinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasicircular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant, comparing numerical predictions with the post-Newtonian approximation and with extrapolations of point-particle results. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=Lcrit≃0.8M2. For Lcensorship conjecture.

  18. Highly eccentric inspirals into a Schwarzschild black hole using self-force calculations

    Science.gov (United States)

    Osburn, Thomas; Warburton, Niels; Evans, Charles

    2016-03-01

    Eccentric-orbit inspirals into a massive black hole are calculated using the gravitational self-force. Both extreme-mass-ratio inspirals (EMRIs) and intermediate-mass-ratio inspirals (IMRIs) are modeled. These calculations include all dissipative and conservative first-order-in-the-mass-ratio effects for inspirals into a Schwarzschild black hole. We compute systems with initial eccentricities as high as e = 0.8 and initial separations as large as 100 M. In the case of EMRIs, the calculations follow the decay through many thousands of orbits up to the onset of the plunge. Inspirals are computed using an osculating-orbits scheme that is driven by self-force data from a hybridized self-force code. A Lorenz gauge self-force code is combined with highly accurate flux data from a Regge-Wheeler-Zerilli code, allowing the hybrid self-force model to track orbital phase in the inspirals to within 0.1 radians or better. Extensions of the method to include other physical effects are considered.

  19. LISA extreme-mass-ratio inspiral events as probes of the black hole mass function

    CERN Document Server

    Gair, Jonathan R; Volonteri, Marta

    2010-01-01

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centres of galaxies - extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that is difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type --- using multiple observ...

  20. Search for gravitational waves from binary black hole inspirals in LIGO data

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Díaz, M; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hanna, C; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mukherjee, S; Murray, P; Myers, E; Myers, J; Müller, G; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; O'Reilly, B; Olson, T; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tarallo, M; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2006-01-01

    We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20 solar masses. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that could be identified as gravitational waves in the 385.6 hours of data that we searched.

  1. Noncommutative geometry inspired 3-dimensional charged black hole solution in an anti-de Sitter background spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Sharma, Ranjan [P. D. Women' s College, Department of Physics, Jalpaiguri (India); Tiwari, Rishi Kumar [Govt. Model Science College, Department of Mathematics, Rewa, MP (India)

    2015-03-01

    We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)

  2. Transient resonances in the inspirals of point particles into black holes.

    Science.gov (United States)

    Flanagan, Eanna E; Hinderer, Tanja

    2012-08-17

    We show that transient resonances occur in the two-body problem in general relativity for spinning black holes in close proximity to one another when one black hole is much more massive than the other. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. The resonances cause a perturbation to orbital phase of order a few tens of cycles for mass ratios ∼10(-6), make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine nonperturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. Resonances' effects will increase the computational challenge of accurately modeling these sources.

  3. Search for gravitational waves from binary black hole inspiral, merger and ringdown

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arain, M A; Araya, M C; Aronsson, M; Aso, Y; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballinger, T; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belletoile, A; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglia`, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Ely, G; Engel, R; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A W; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E J; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A D; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K

    2011-01-01

    We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.

  4. Search for gravitational waves from binary black hole inspiral, merger, and ringdown

    Science.gov (United States)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M. C.; Aronsson, M.; Aso, Y.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; Derosa, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; Del Prete, M.; Dergachev, V.; de Rosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Genin, E.; Gennai, A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A. W.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.

    2011-06-01

    We present the first modeled search for gravitational waves using the complete binary black-hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data, taken between November 2005 and September 2007, for systems with component masses of 1-99M⊙ and total masses of 25-100M⊙. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for 19M⊙≤m1, m2≤28M⊙ binary black-hole systems with negligible spin to be no more than 2.0Mpc-3Myr-1 at 90% confidence.

  5. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    CERN Document Server

    Sperhake, U; Cardoso, V; González, J A; Brügmann, B; Ansorg, M

    2007-01-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider two sequences of simulations. The longer (shorter) sequence starts with a quasi-circular inspiral completing about 2.3 (1.5) orbits prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced to zero, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M. For L

  6. Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms

    CERN Document Server

    Taracchini, Andrea; Khanna, Gaurav; Hughes, Scott A

    2014-01-01

    We numerically solve the Teukolsky equation in the time domain to obtain the gravitational-wave emission of a small mass inspiraling and plunging into the equatorial plane of a Kerr black hole. We account for the dissipation of orbital energy using the Teukolsky frequency-domain gravitational-wave fluxes for circular, equatorial orbits, down to the light-ring. We consider Kerr spins $-0.99 \\leq q \\leq 0.99$, and compute the inspiral-merger-ringdown (2,2), (2,1), (3,3), (3,2), (4,4), and (5,5) modes. We study the large-spin regime, and find a great simplicity in the merger waveforms, thanks to the extremely circular character of the plunging orbits. We also quantitatively examine the mixing of quasinormal modes during the ringdown, which induces complicated amplitude and frequency modulations in the waveforms. Finally, we explain how the study of small mass-ratio black-hole binaries helps extending effective-one-body models for comparable-mass, spinning black-hole binaries to any mass ratio and spin magnitude.

  7. Measuring the dimensionality of compact extra dimensions with inspiral gravitational waves from black-hole binaries

    Science.gov (United States)

    Qiang, Li-E.; Zhao, Shu Hong; Xu, Peng

    2016-12-01

    Gravitational waves from coalescing black-hole binaries (BHBs) were recently observed by the advanced LIGO detectors. Based on the perturbation analysis, for general Kaluza-Klein theories with compact extra dimensions, we find a 1st-order post-Newtonian correction to the inspiral gravitational waveforms of black-hole binaries, that comes from the variations of the volume of the extra dimensions in near source zones. Such correction depends on a new parameter χ=\\frac{n}{2+n} with n the dimensionality of the extra space and it is irrelevant to the particular choice of the topology of the extra space. For the ideal case of a black-hole binary system following nearly circular orbital motion with almost equal or intermediate mass ratio, such higher-dimensional corrections to the chirping amplitude are worked out. Giving the power of tracing inspiral waves from coalescing massive BHBs with high signal-to-noise ratios, the planned space-borne antennas such as the eLISA and DECIGO may give us a measurement of the parameter χ in the near future and may serve us as new probes in the searching for the evidence of the hidden compact dimensions.

  8. Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...

  9. Search for gravitational waves from binary black hole inspiral, merger and ringdown

    OpenAIRE

    Abadie, J.; Abbott, B.; Abbott, R.; Abernathy, M; Accadia, T; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; G. Allen; Amador Ceron, E.; Amin, R.; Anderson, S.; Anderson, W.

    2011-01-01

    We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the m...

  10. Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    CERN Document Server

    Hopman, Clovis

    2009-01-01

    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.

  11. Improved approximate inspirals of test-bodies into Kerr black holes

    CERN Document Server

    Gair, J R; Gair, Jonathan R; Glampedakis, Kostas

    2006-01-01

    We present an improved version of the approximate scheme for generating inspirals of test-bodies into a Kerr black hole recently developed by Glampedakis, Hughes and Kennefick. Their original "hybrid" scheme was based on combining exact relativistic expressions for the evolution of the orbital elements (the semi-latus rectum p and eccentricity e) with approximate, weak-field, formula for the energy and angular momentum fluxes, amended by the assumption of constant inclination angle, iota, during the inspiral. Despite the fact that the resulting inspirals were overall well-behaved, certain pathologies remained for orbits in the strong field regime and for orbits which are nearly circular and/or nearly polar. In this paper we eliminate these problems by incorporating an array of improvements in the approximate fluxes. Firstly, we add certain corrections which ensure the correct behaviour of the fluxes in the limit of vanishing eccentricity and/or 90 degrees inclination. Secondly, we use higher order post-Newton...

  12. Noncommutative geometry inspired 3-dimensional charged black hole solution in an anti-de Sitter background space-time

    CERN Document Server

    Rahaman, Farook; Sharma, Ranjan; Tiwari, Rishi Kumar

    2014-01-01

    We report a 3D charged black hole solution in an anti desetter space inspired by noncommutative geometry.In this construction,the black hole exhibits two horizon which turn into a single horizon in the extreme case.We investigate the impacts of the electromagnetic field on the location of the event horizon,mass and thermodynamic properties such as Hawking temperature,entropy and heat capacity of the black hole.The geodesics of the charged black hole are also analyzed.

  13. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    Science.gov (United States)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary-disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  14. Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals

    CERN Document Server

    Lewis, Adam G M; Pfeiffer, Harald P

    2016-01-01

    Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement w...

  15. 11-orbit inspiral of a mass ratio 4:1 black-hole binary

    Energy Technology Data Exchange (ETDEWEB)

    Sperhake, U; Sopuerta, C F [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Torre C5 Parells, 08193 Bellaterra (Spain); Bruegmann, B; Mueller, D, E-mail: sperhake@ieec.uab.es [Theoretisch Physikalisches Institut, Friedrich Schiller Universitaet, Max-Wien Platz 1, 07743 Jena (Germany)

    2011-07-07

    We analyse an 11-orbit inspiral of a non-spinning black-hole binary with mass ratio q {identical_to} M{sub 1}/M{sub 2} = 4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several subdominant multipoles up to multipolar indices (l = 5, m = 5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2, 2) mode accumulate a phase difference of about 0.35 rad at the PN cut-off frequency M{omega} = 0.1 for the Taylor T1 approximant when numerical and PN waveforms are matched over a window in the early inspiral phase; (ii) in contrast to previous studies of equal mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l {ne} m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for subdominant multipoles.

  16. Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis

    CERN Document Server

    Berti, E; Cardoso, V; González, J A; Hannam, M; Husa, S; Sperhake, U; Berti, Emanuele; Bruegmann, Bernd; Cardoso, Vitor; Gonzalez, Jose A.; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    We study the inspiral, merger and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M2/M1=1 to q=4). We compare numerical and Post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the Post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the Post-Newtonian series to the numerical results is non-monotonic. To leading order the total energy emitted in the merger phase scales like eta^2 and the spin of the final black hole scales like eta, where eta=q/(1+q)^2 is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three differe...

  17. Kicking massive black holes off clusters: Intermediate-mass ratio inspirals

    CERN Document Server

    Konstantinidis, Symeon; Kokkotas, Kostas D

    2011-01-01

    Contrary to supermassive and stellar-mass black holes (SBHs), the existence of intermediate-mass black holes (IMBHs) with masses ranging between 100 and 10,000 Msun has not yet been confirmed. The main problem in the detection is that the innermost stellar kinematics of globular clusters (GCs), the natural loci to IMBHs, are very difficult to resolve. However, if IMBHs reside in the center of GCs, a possibility is that they interact dynamically with their enviroment. A binary formed with the IMBH and a compact object of the GC would naturally lead to a prominent source of gravitational radiation, detectable with future observatories. We run for the first time direct-summation integrations of GCs with an IMBH including the dynamical evolution of the IMBH with the stellar system and relativistic effects, such as energy loss in gravitational waves (GWs) and periapsis shift, and gravitational recoil. We find in one of our models an intermediate-mass ratio inspiral (IMRI), which leads to a merger with a recoiling ...

  18. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  19. Inspiral, merger and ring-down of equal-mass black-hole binaries

    CERN Document Server

    Buonanno, A; Pretorius, F; Buonanno, Alessandra; Cook, Gregory B.; Pretorius, Frans

    2006-01-01

    We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes. We find that to a good approximation the inspiral phase of the evolution is quasi-circular, followed by a "blurred, quasi-circular plunge", then merger and ring down. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results. We provide comparisons between the numerical results and analytical predictions based on the adiabatic Newtonain, post-Newtonian (PN), and non-adiabatic resummed-PN models. From the ring-down portion of the GW we extract the fundamental quasi-normal mode and several of the overtones. Finally, we estimate the optimal signal-to-noise ratio for typical binaries detectable by GW experiments.

  20. Parameter estimation using a complete signal and inspiral templates for nonspinning low mass binary black holes with Advanced LIGO sensitivity

    CERN Document Server

    Cho, Hee-Suk

    2015-01-01

    We study the validity of the inspiral templates in gravitational wave data analysis for nonspinning binary black holes with Advanced LIGO sensitivity. We use the phenomenological waveform model, which contains the inspiral-merger-ring down (IMR) phases defined in the Fourier domain. For parameter estimation purposes, we calculate the statistical errors assuming the IMR signals and IMR templates for the binaries with total masses M $\\leq$ 30Msun. Especially, we explore the systematic biases caused by a mismatch between the IMR signal model (IMR) and inspiral template model (Imerg), and investigate the impact on the parameter estimation accuracy by comparing the biases with the statistical errors. For detection purposes, we calculate the fitting factors of the inspiral templates with respect to the IMR signals. We find that the valid criteria for Imerg templates are obtained by Mcrit ~ 24Msun (if M < Mcrit, the fitting factor is higher than 0.97) for detection and M < 26Msun (where the systematic bias is ...

  1. Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals

    CERN Document Server

    Damour, Thibault; Villain, Loic

    2012-01-01

    The gravitational wave signal from a binary neutron star inspiral contains information on the nuclear equation of state. This information is contained in a combination of the tidal polarizability parameters of the two neutron stars and is clearest in the late inspiral, just before merger. We use the recently defined tidal extension of the effective one-body formalism to construct a controlled analytical description of the frequency-domain phasing of neutron star inspirals up to merger. Exploiting this analytical description we find that the tidal polarizability parameters of neutron stars can be measured by the advanced LIGO-Virgo detector network from gravitational wave signals having a reasonable signal-to-noise ratio of $\\rho=16$. This measurability result seems to hold for all the nuclear equations of state leading to a maximum mass larger than $1.97M_\\odot$. We also propose a promising new way of extracting information on the nuclear equation of state from a coherent analysis of an ensemble of gravitatio...

  2. Orbital inspiral into a massive black hole in a galactic center

    CERN Document Server

    Alexander, T; Alexander, Tal; Hopman, Clovis

    2003-01-01

    A massive black hole (MBH) in a galactic center drives a flow of stars into nearly radial orbits to replace those it destroyed. Stars whose orbits cross the event horizon r_s or the tidal disruption radius r_t are promptly destroyed in an orbital period P. Stars with orbital periapse r_p slightly larger than the sink radius q=max(r_s,r_t) may slowly spiral in due to dissipative interactions with the MBH, e.g. gravitational wave emission, tidal heating or accretion disk drag, with observable consequences and implications for the MBH growth rate. Unlike prompt destruction, the inspiral time is typically >>P. This time is limited by the same scattering process that initially deflected the star into its eccentric orbit, since it can deflect it again to a wider orbit where dissipation is inefficient. The ratio between slow and prompt event rates is therefore much smaller than that implied by the ratio of cross-sections, ~r_p/q, and so only prompt disruption contributes significantly to the mass of the MBH. Convers...

  3. Electromagnetic chirp of a compact binary black hole: A phase template for the gravitational wave inspiral

    Science.gov (United States)

    Haiman, Zoltán

    2017-07-01

    The gravitational waves (GWs) from a binary black hole (BBH) with masses 104≲M ≲107 M⊙ can be detected with the Laser Interferometer Space Antenna (LISA) once their orbital frequency exceeds 10-4- 10-5 Hz . The binary separation at this stage is a =O (100 )Rg (gravitational radius), and the orbital speed is v /c =O (0.1 ). We argue that at this stage, the binary will be producing bright electromagnetic (EM) radiation via gas bound to the individual BHs. Both BHs will have their own photospheres in x-ray and possibly also in optical bands. Relativistic Doppler modulations and lensing effects will inevitably imprint periodic variability in the EM light curve, tracking the phase of the orbital motion, and serving as a template for the GW inspiral waveform. Advanced localization of the source by LISA weeks to months prior to merger will enable a measurement of this EM chirp by wide-field x-ray or optical instruments. A comparison of the phases of the GW and EM chirp signals will help break degeneracies between system parameters, and probe a fractional difference Δ v in the propagation speed of photons and gravitons as low as Δ v /c ≈10-17.

  4. Late-time decay of coupled electromagnetic and gravitational perturbations outside an extremal charged black hole

    Science.gov (United States)

    Sela, Orr

    2016-10-01

    In this paper, we employ the results of a previous paper on the late-time decay of scalar-field perturbations of an extreme Reissner-Nordstrom black hole, in order to find the late-time decay of coupled electromagnetic and gravitational perturbations of this black hole. We explicitly write the late-time tails of Moncrief's gauge invariant variables and of the perturbations of the metric tensor and the electromagnetic field tensor in the Regge-Wheeler gauge. We discuss some of the consequences of the results and relations to previous works.

  5. Late-time decay of coupled electromagnetic and gravitational perturbations outside extremal charged black hole

    CERN Document Server

    Sela, Orr

    2016-01-01

    In this paper we employ the results of a previous paper on the late-time decay of scalar-field perturbations of an extreme Reissner-Nordstrom black hole, in order to find the late-time decay of coupled electromagnetic and gravitational perturbations of this black hole. We explicitly write the late-time tails of Moncrief's gauge invariant variables and of the perturbations of the metric tensor and the electromagnetic field tensor in the Regge-Wheeler gauge. We discuss some of the consequences of the results and relations to previous works.

  6. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism

    CERN Document Server

    Pan, Yi; Taracchini, Andrea; Kidder, Lawrence E; Mroue, Abdul H; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela

    2013-01-01

    We describe a general procedure to generate spinning, precessing waveforms that include inspiral, merger and ringdown stages in the effective-one-body (EOB) approach. The procedure uses a precessing frame in which precession-induced amplitude and phase modulations are minimized, and an inertial frame, aligned with the spin of the final black hole, in which we carry out the matching of the inspiral-plunge to merger-ringdown waveforms. As a first application, we build spinning, precessing EOB waveforms for the gravitational modes l=2 such that in the nonprecessing limit those waveforms agree with the EOB waveforms recently calibrated to numerical-relativity waveforms. Without recalibrating the EOB model, we then compare EOB and post-Newtonian precessing waveforms to two numerical-relativity waveforms produced by the Caltech-Cornell-CITA collaboration. The numerical waveforms are strongly precessing and have 35 and 65 gravitational-wave cycles. We find a remarkable agreement between EOB and numerical-relativity ...

  7. Template-space metric for searches for gravitational waves from the inspiral, merger and ringdown of binary black holes

    CERN Document Server

    Kalaghatgi, Chinmay; Arun, K G

    2015-01-01

    Searches for gravitational waves (GWs) from binary black holes using interferometric GW detectors require the construction of template banks for performing matched filtering while analyzing the data. Placement of templates over the parameter space of binaries, as well as coincidence tests of GW triggers from multiple detectors make use of the definition of a metric over the space of gravitational waveforms. Although recent searches have employed waveform templates coherently describing the inspiral, merger and ringdown (IMR) of the coalescence, the metric used in the template banks and coincidence tests was derived from post-Newtonian inspiral waveforms. In this paper, we compute the template-space metric of the IMR waveform family IMRPhenomB over the parameter space of masses and the effective spin parameter. We also propose a coordinate system, which is a modified version of post-Newtonian chirp time coordinates, in which the metric is slowly varying over the parameter space. The match function analytically...

  8. Parameter estimation using a complete signal and inspiral templates for low-mass binary black holes with Advanced LIGO sensitivity

    Science.gov (United States)

    Cho, Hee-Suk

    2015-12-01

    We study the validity of inspiral templates in gravitational wave data analysis with Advanced LIGO sensitivity for low mass binary black holes with total masses of M≤slant 30{M}⊙ . We mainly focus on the nonspinning system. As our complete inspiral-merger-ringdown waveform model ({I}{M}{R} ), we assume the phenomenological model, ‘PhenomA’, and define our inspiral template model ({{I}}{{merg}}) by taking the inspiral part into account from {I}{M}{R} up to the merger frequency ({f}{{merg}}). We first calculate the true statistical uncertainties using {I}{M}{R} signals and {I}{M}{R} templates. Next, using {I}{M}{R} signals and {{I}}{{merg}} templates, we calculate fitting factors and systematic biases, and compare the biases with the true statistical uncertainties. We find that the valid criteria of the bank of {{I}}{{merg}} templates are obtained as {M}{{crit}}˜ 24{M}⊙ for detection (if M\\gt {M}{{crit}}, the fitting factor is smaller than 0.97), and {M}{{crit}}˜ 26{M}⊙ for parameter estimation (if M\\gt {M}{{crit}}, the systematic bias is larger than the true statistical uncertainty where the signal-to-noise ratio is 20), respectively. In order to see the dependence on the cutoff frequency of the inspiral waveforms, we define another inspiral model {{I}}{{isco}} which is terminated at the innermost-stable-circular-orbit frequency ({f}{{isco}}\\lt {f}{{merg}}). We find that the valid criteria of the bank of {{I}}{{isco}} templates are obtained as {M}{{crit}}˜ 15{M}⊙ and ˜ 17{M}⊙ for detection and parameter estimation, respectively. We investigate the statistical uncertainties for the inspiral template models considering various signal-to-noise ratios, and compare those to the true statistical uncertainties. We also consider the aligned-spinning system with fixed mass ratio ({m}1/{m}2=3) and spin (χ =0.5) by employing the recent phenomenological model, ‘PhenomC’. In this case, we find that the true statistical uncertainties can be much larger

  9. Estimating parameters of binary black holes from gravitational-wave observations of their inspiral, merger, and ringdown

    Science.gov (United States)

    Ghosh, Archisman; Del Pozzo, Walter; Ajith, Parameswaran

    2016-11-01

    We characterize the expected statistical errors with which the parameters of black hole binaries can be measured from gravitational-wave (GW) observations of their inspiral, merger, and ringdown by a network of second-generation ground-based GW observatories. We simulate a population of black hole binaries with uniform distribution of component masses in the interval (3 ,80 )M⊙, distributed uniformly in comoving volume, with isotropic orientations. From signals producing signal-to-noise ratio ≥5 in at least two detectors, we estimate the posterior distributions of the binary parameters using the Bayesian parameter estimation code LALInference. The GW signals will be redshifted due to the cosmological expansion, and we measure only the "redshifted" masses. By assuming a cosmology, it is possible to estimate the gravitational masses by inferring the redshift from the measured posterior of the luminosity distance. We find that the measurement of the gravitational masses will be, in general, dominated by the error in measuring the luminosity distance. In spite of this, the component masses of more than 50% of the population can be measured with accuracy better than ˜25 % using the Advanced LIGO-Virgo network. Additionally, the mass of the final black hole can be measured with median accuracy ˜18 %. Spin of the final black hole can be measured with median accuracy ˜5 %(17 %) for binaries with nonspinning (aligned-spin) black holes. Additional detectors in Japan and India significantly improve the accuracy of sky localization, and moderately improve the estimation of luminosity distance, and hence, that of all mass parameters. We discuss the implication of these results on the observational evidence of intermediate-mass black holes and the estimation of cosmological parameters using GW observations.

  10. The kinematic signature of the inspiral phase of massive binary black holes

    CERN Document Server

    Meiron, Yohai

    2013-01-01

    Supermassive black holes are expected to pair as a result of galaxy mergers, and form a bound binary at parsec or sub-parsec scales. These scales are unresolved even in nearby galaxies, and thus detection of non-active black hole binaries must rely on stellar dynamics. Here we show that these systems could be indirectly detected through the trail that the black holes leave as they spiral inwards. We analyze two numerical simulations of inspiralling black holes (equal masses and 10:1 mass ratio) in the stellar environment of a galactic centre. We studied the effect of the binary on the structure of the stellar population, with particular emphasis on projected kinematics and directly measurable moments of the velocity distribution. We present those moments as high-resolution 2D maps. As shown in past scattering experiments, a torus of stars counter-rotating with respect to the black holes exists in scales ~ 5 to 10 times larger than the binary separation. While this is seen in the average velocity map in the un...

  11. Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce

    CERN Document Server

    Arun, K G; Berti, Emanuele; Cornish, Neil; Cutler, Curt; Gair, Jonathan; Hughes, Scott A; Iyer, Bala R; Lang, Ryan N; Mandel, Ilya; Porter, Edward K; Sathyaprakash, Bangalore S; Sinha, Siddhartha; Sintes, Alicia M; Trias, Miquel; Broeck, Chris Van Den; Volonteri, Marta

    2008-01-01

    The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show ...

  12. Eccentric black hole mergers and zoom-whirl behavior from elliptic inspirals to hyperbolic encounters

    CERN Document Server

    Gold, Roman

    2012-01-01

    We perform a parameter study of non-spinning, equal and unequal mass black hole binaries on generic, eccentric orbits in numerical relativity. The linear momentum considered ranges from that of a circular orbit to ten times that value. We discuss the different manifestations of zoom-whirl behavior in the hyperbolic and the elliptic regime. The hyperbolic data set applies to dynamical capture scenarios (e.g. in globular clusters). Evolutions in the elliptic regime correspond to possible end states of supermassive black hole binaries. We spot zoom-whirl behavior for eccentricities as low as $e\\sim0.5$, i.e. within the expected range of eccentricities in massive black hole binaries from galaxy mergers and binaries near galactic centers. The resulting gravitational waveforms reveal a rich structure, which will effectively break degeneracies in parameter space improving parameter estimation.

  13. (Anti)evaporation of Dyonic Black Holes in string-inspired dilaton $f(R)$-gravity

    CERN Document Server

    Addazi, Andrea

    2016-01-01

    We discuss dyonic black hole solutions in the case of $f(R)$-gravity coupled with a dilaton and two gauge bosons. The study of such a model is highly motivated from string theory. Our Black Hole solutions are extensions of the one firstly studied by Kallosh, Linde, Ort\\'in, Peet and Van Proyen (KLOPV) in [arXiv:hep-th/9205027]. We will show that extreme solutions are unstable. In particular, these solutions have Bousso-Hawking-Nojiri-Odintsov (anti)evaporation instabilities.

  14. Late-time tails in a stationary axisymmetric EMDA black hole geometry

    Institute of Scientific and Technical Information of China (English)

    Pan Qi-Yuan; Jing Ji-Liang

    2005-01-01

    The late-time tails of massless and self-interacting (SI) (massive) scalar fields are investigated analytically in a stationary axisymmetric Einstein-Maxwell dilaton-axion (EMDA) black hole geometry. It is shown that the asymptotic behaviour of massless perturbations is dominated by an inverse power-law decaying tail and the intermediate asymptotic behaviour of SI (massive) perturbations is dominated by an oscillatory one.

  15. Measuring gravitational waves from binary black hole coalescences; 1, Signal to noise for inspiral, merger, and ringdown

    CERN Document Server

    Flanagan, E E; Flanagan, Eanna E.; Hughes, Scott A.

    1998-01-01

    We estimate the expected signal-to-noise ratios (SNRs) from the three phases (inspiral,merger,ringdown) of coalescing binary black holes (BBHs) for initial and advanced ground-based interferometers (LIGO/VIRGO) and for space-based interferometers (LISA). LIGO/VIRGO can do moderate SNR (a few tens), moderate accuracy studies of BBH coalescences in the mass range of a few to about 2000 solar masses; LISA can do high SNR (of order 10^4) high accuracy studies in the mass range of about 10^5 to 10^8 solar masses. BBHs might well be the first sources detected by LIGO/VIRGO: they are visible to much larger distances(up to 500 Mpc by initial interferometers) than coalescing neutron star binaries (heretofore regarded as the "bread and butter" workhorse source for LIGO/VIRGO, visible to about 30 Mpc by initial interferometers). Low-mass BBHs (up to 50 solar masses for initial LIGO interferometers; 100 for advanced; 10^6 for LISA) are best searched for via their well-understood inspiral waves; higher mass BBHs must be s...

  16. Geonic black holes and remnants in Eddington-inspired Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, Gonzalo J. [Universidad de Valencia-CSIC, Universidad de Valencia, Departamento de Fisica Teorica y IFIC, Centro Mixto, Valencia (Spain); Rubiera-Garcia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Sanchis-Alepuz, Helios [Justus-Liebig University of Giessen, Institute of Theoretical Physics, Giessen (Germany)

    2014-03-15

    We show that electrically charged solutions within the Eddington-inspired Born-Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born-Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale. (orig.)

  17. The orbital statistics of stellar inspiral and relaxation near a massive black hole: characterizing gravitational wave sources

    CERN Document Server

    Hopman, C; Hopman, Clovis; Alexander, Tal

    2005-01-01

    We study the orbital parameters distribution of stars that are scattered into nearly radial orbits and then spiral into a massive black hole (MBH) due to dissipation, in particular by emission of gravitational waves (GW). This is important for GW detection, e.g. by the Laser Interferometer Space Antenna (LISA). Signal identification requires knowledge of the waveforms, which depend on the orbital parameters. We use analytical and Monte Carlo methods to analyze the interplay between GW dissipation and scattering in the presence of a mass sink during the transition from the initial scattering-dominated phase to the final dissipation-dominated phase of the inspiral. Our main results are (1) Stars typically enter the GW-emitting phase with high eccentricities. (2) The GW event rate per galaxy is a few per Gyr for typical central stellar cusps, almost independently of the relaxation time or the MBH mass. (3) For intermediate mass black holes (IBHs) of ~a thousand solar masses such as may exist in dense stellar clu...

  18. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the `final au problem'

    Science.gov (United States)

    Stone, Nicholas C.; Metzger, Brian D.; Haiman, Zoltán

    2017-01-01

    We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating discs of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semimajor axis of a BHB to radii where gravitational waves take over, on time-scales shorter than the typical lifetime of the AGN disc. Taking observationally motivated assumptions for the rate of star formation in AGN discs, we find a rate of disc-induced BHB mergers (R ˜ 3 yr^{-1} Gpc^{-3}, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. BHBs formed thorough this channel will frequently be associated with luminous AGN, which are relatively rare within the sky error regions of future gravitational wave detector arrays. This channel could also possess a (potentially transient) electromagnetic counterpart due to super-Eddington accretion on to the stellar mass black hole following the merger.

  19. Assisted Inspirals of Stellar Mass Black Holes Embedded in AGN Disks: Solving the "Final AU Problem"

    Science.gov (United States)

    Stone, Nicholas C.; Metzger, Brian D.; Haiman, Zoltán

    2016-09-01

    We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating disks of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semi-major axis of a BHB to radii where gravitational waves take over, on timescales shorter than the typical lifetime of the AGN disk. Taking observationally-motivated assumptions for the rate of star formation in AGN disks, we find a rate of disk-induced BHB mergers (R ˜ 3 yr^{-1} Gpc^{-3}, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. BHBs formed thorough this channel will frequently be associated with luminous AGN, which are relatively rare within the sky error regions of future gravitational wave detector arrays. This channel could also possess a (potentially transient) electromagnetic counterpart due to super-Eddington accretion onto the stellar mass black hole following the merger.

  20. P- v criticality in the extended phase space of a noncommutative geometry inspired Reissner-Nordström black hole in AdS space-time

    Science.gov (United States)

    Liang, Jun; Guan, Zhi-Hua; Liu, Yan-Chun; Liu, Bo

    2017-02-01

    The P- v criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner-Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the P- v criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid-gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity Ψ conjugate to the noncommutative parameter θ has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.

  1. High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL

    CERN Document Server

    McKennon, Justin; Khanna, Gaurav

    2012-01-01

    There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...

  2. Charged black holes in string-inspired gravity II. Mass inflation and dependence on parameters and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jakob [KISTI,Daejeon 305-806 (Korea, Republic of); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)

    2015-09-07

    We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.

  3. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.

    2008-08-01

    We report on the methods and results of the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family specially designed to capture the effects of the spin-induced precession of the orbital plane. We present details of the techniques developed to enable this search for spin-modulated gravitational waves, highlighting the differences between this and other recent searches for binaries with nonspinning components. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0M⊙hole system with m1≃1.35M⊙ and m2≃5M⊙, we calculate the 90%-confidence upper limit on the rate of coalescence of these systems to be 15.9yr-1L10-1, where L10 is 1010 times the blue light luminosity of the Sun.

  4. Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Lee Samuel; Thorne, Kip S.

    2000-12-15

    Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity {Omega} is 0.03{approx}<{Omega}/{Omega}{sub isco}{<=}1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass {mu}, with the distance to Earth chosen to be r{sub o}=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and {mu}. Graphs are presented showing the range of the {l_brace}M,a,{mu}{r_brace} parameter space, for which S/N>10 at r{sub 0}=1 Gpc during the last year of inspiral. The hole's spin a has a factor of {approx}10 influence on the range of M (at fixed {mu}) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of {approx}3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves.

  5. Wormholes versus black holes: quasinormal ringing at early and late times

    CERN Document Server

    Konoplya, R A

    2016-01-01

    Recently it has been argued that a special type of the thin-shell wormholes matched with the Schwarzschild space-time near the Schwarzschild radius produces quasinormal ringing, which coincides with the Schwarzschild one's at early times, but different at late times (arXiv:1602.07309). Here we consider perturbations of the wormhole configuration in General Relativity, constructed without thin-shells (the Bronnikov-Ellis wormhole supported by the phantom dust and electromagnetic field) and its generalizations, in order to show that if one does not use the above, particular thin-shell "tailoring", the wormhole, depending on values of its parameters, either rings as the black hole at all times or rings differently also at all times. The wormhole's spectrum, investigated here, posses a number of distinctive features. The s-mode of the Bronnikov-Ellis wormhole, corresponding to the phantom dust perturbation, rings effectively like a massive field. We have also studied properties of the scattering around generic ax...

  6. Minimizing Late Effects for Patients With Mediastinal Hodgkin Lymphoma: Deep Inspiration Breath-Hold, IMRT, or Both?

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, Marianne C., E-mail: marianne.camille.aznar@regionh.dk [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Faculty of Sciences, Niels Bohr Institute, and Faculty of Health Sciences, University of Copenhagen, Copenhagen (Denmark); Maraldo, Maja V.; Schut, Deborah A. [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Lundemann, Michael [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Faculty of Sciences, Niels Bohr Institute, and Faculty of Health Sciences, University of Copenhagen, Copenhagen (Denmark); Brodin, N Patrik [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Institute of Onco-Physics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States); Vogelius, Ivan R. [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Berthelsen, Anne K. [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark); Specht, Lena; Petersen, Peter M. [Department of Oncology, Section of Radiotherapy, Rigshospitalet, University of Copenhagen, Copenhagen (Denmark)

    2015-05-01

    Purpose: Hodgkin lymphoma (HL) survivors have an increased risk of cardiovascular disease (CD), lung cancer, and breast cancer. We investigated the risk for the development of CD and secondary lung, breast, and thyroid cancer after radiation therapy (RT) delivered with deep inspiration breath-hold (DIBH) compared with free-breathing (FB) using 3-dimensional conformal RT (3DCRT) and intensity modulated RT (IMRT). The aim of this study was to determine which treatment modality best reduced the combined risk of life-threatening late effects in patients with mediastinal HL. Methods and Materials: Twenty-two patients with early-stage mediastinal HL were eligible for the study. Treatment plans were calculated with both 3DCRT and IMRT on both DIBH and FB planning computed tomographic scans. We reported the estimated dose to the heart, lung, female breasts, and thyroid and calculated the estimated life years lost attributable to CD and to lung, breast, and thyroid cancer. Results: DIBH lowered the estimated dose to heart and lung regardless of delivery technique (P<.001). There was no significant difference between IMRT-FB and 3DCRT-DIBH in mean heart dose, heart V20Gy, and lung V20Gy. The mean breast dose was increased with IMRT regardless of breathing technique. Life years lost was lowest with DIBH and highest with FB. Conclusions: In this cohort, 3DCRT-DIBH resulted in lower estimated doses and lower lifetime excess risks than did IMRT-FB. Combining IMRT and DIBH could be beneficial for a subgroup of patients.

  7. Accuracy and precision of gravitational-wave models of inspiraling neutron star -- black hole binaries with spin: comparison with numerical relativity in the low-frequency regime

    CERN Document Server

    Kumar, Prayush; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A; Lovelace, Geoffrey; Scheel, Mark A; Szilágyi, Béla

    2015-01-01

    Coalescing binaries of neutron stars (NS) and black holes (BH) are one of the most important sources of gravitational waves for the upcoming network of ground based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The Effective-One-Body and other phenomenological models interpolate between analytic results and $10-30$ orbit numerical relativity (NR) merger simulations. In this paper we study the accuracy of these models using new NR simulations that span $36-88$ orbits, with mass-ratios and black hole spins $(q,\\chi_{BH}) = (7, \\pm 0.4), (7, \\pm 0.6)$, and $(5, -0.9)$. We find that: (i) the recently published SEOBNRv1 and SEOBNRv2 models of the Effective-One-Body family disagree with each other (mismatches of a few percent) for black hole spins $\\geq 0.5$ or $\\leq -0.3$, with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicate that this disagreement is due to phasing errors of...

  8. Numerical Relativity for Inspiraling Binaries in Co-Rotating Coordinates: Test Bed for Lapse and Shift Equations

    OpenAIRE

    Thorne, Kip S.

    1998-01-01

    Gravitational-wave data analysis requires a detailed understanding of the highly relativistic, late stages of inspiral of neutron-star and black-hole binaries. A promising method to compute the late inspiral and its emitted waves is numerical relativity in co-rotating coordinates. The coordinates must be kept co-rotating via an appropriate choice of numerical relativity's lapse and shift functions. This article proposes a model problem for testing the ability of various lapse and shift prescr...

  9. Late Closure of a Stage III Idiopathic Macular Hole after Pars Plana Vitrectomy

    Directory of Open Access Journals (Sweden)

    Filiz Afrashi

    2015-12-01

    Full Text Available A 57-year-old female presented to our hospital with decreased vision in her right eye. Detailed ocular examination was performed, and a macular hole was detected in the right eye. The presence of a full-thickness stage III macular hole was confirmed with optical coherence tomography (OCT imaging. Pars plana vitrectomy followed by long-acting gas tamponade (C3F8 was performed as treatment. One month after surgery, clinical examination revealed a persistent macular hole, confirmed by an OCT scan. Although the patient was scheduled for reoperation, the surgery was postponed due to personal reasons of the patient. Surprisingly, after five months, a closure pattern with accompanying epiretinal membrane was observed in the macular hole area. The closure of the macular hole was completed without any further intervention 8 months post-surgery. In cases of unclosed macular hole after the first surgery, if a second surgery cannot be performed, follow-up with OCT recommended due to the possibility of spontaneous closure. However, spontaneous closure of a persistent macular hole following PPV is rare, so early diagnosis and surgical repair of unclosed macular holes must remain the primary goal.

  10. 南极臭氧洞的发现、研究和启示%The Antarctic Ozone Hole and its Discovery, Research and Inspiration

    Institute of Scientific and Technical Information of China (English)

    陆龙骅

    2016-01-01

    回顾了南极臭氧洞的发现过程,评述了南极臭氧洞形成和发展的机制、以及南北极臭氧变化的差异,讨论了南极臭氧洞的发现和研究带来的启示。研究指出,目前只是在南极春季出现了臭氧洞,北极并没有出现过臭氧洞。在当前大气环境被污染的情况下,极地大气臭氧亏损的程度将更多地随大气环流,特别是极地涡旋中的低温状况而发生变化。%This study reviews the detection and the variety of the Antarctic ozone hole; the reason why the ozone hole is formed over the Antarctic is discussed, while the different patterns of the ozone variation over the Arctic and the Antarctic are outlined. It is also discussed the inspiration obtained throughout the detection and research of Antarctic ozone hole. It is pointed out that, currently, the ozone hole appears only in spring over the Antarctic and not appeared yet over the Arctic. Under the current atmospheric environment with the added pollution, the change of atmospheric ozone depletion over the Polar Regions will be more dependent on the atmospheric circulation, especially the low temperature in the polar vortex.

  11. Search for Gravitational Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from 2009-2010

    CERN Document Server

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Diaz, M; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endroczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gaspar, M E; Gelencser, G; Gemme, G; Genin, E; Gennai, A; Gergely, L A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Gonzalez, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Keitel, D; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnan, B; Krolak, A; Kuehn, G; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Lam, P K; Landry, M; Langley, A; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Roux, A Le; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Lhuillier, V; Li, J; Li, T G F; Lindquist, P E; Litvine, V; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Logue, J; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M; Lueck, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Marka, S; Marka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menendez, D F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Mueller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Neri, I; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Oldenberg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pihlaja, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Poeld, J; Postiglione, F; Poux, C; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Racz, I; Radkins, H; Raffai, P; Rakhmanov, M; Ramet, C; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, M; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romie, J H; Rosinska, D; Roever, C; Rowan, S; Ruediger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sankar, S; Sannibale, V; Santamaria, L; Santiago-Prieto, I; Santostasi, G; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Speirits, F C; Sperandio, L; Stefszky, M; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thuering, A; Titsler, C; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicere, A; Villar, A E; Vinet, J -Y; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yvert, M; Zadrozny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2012-01-01

    We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20) Msun coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for non-spinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with non-spinning components of mass between 19 and 28 Msun of 3.3 \\times 10^-7 mergers /Mpc^3 /yr.

  12. Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010

    Science.gov (United States)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.

    2013-01-01

    We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20,20)M⊙ coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M⊙ of 3.3×10-7 mergers Mpc-3yr-1.

  13. Accuracy of the post-Newtonian approximation. II. Optimal asymptotic expansion of the energy flux for quasicircular, extreme mass-ratio inspirals into a Kerr black hole

    CERN Document Server

    Zhang, Zhongyang; Berti, Emanuele

    2011-01-01

    We study the effect of black hole spin on the accuracy of the post-Newtonian approximation. We focus on the gravitational energy flux for the quasicircular, equatorial, extreme mass-ratio inspiral of a compact object into a Kerr black hole of mass M and spin J. For a given dimensionless spin a=J/M^2 (in geometrical units), the energy flux depends only on the orbital velocity v or (equivalently) on the Boyer-Lindquist orbital radius r. We investigate the formal region of validity of the Taylor post-Newtonian expansion of the energy flux (which is known up to order v^8 beyond the quadrupole formula), generalizing previous work by two of us. The "error function" used to determine the region of validity of the post-Newtonian expansion can have two qualitatively different kinds of behavior, and we deal with these two cases separately. We find that, at any fixed post-Newtonian order, the edge of the region of validity (as measured by v/v_{ISCO}, where v_{ISCO} is the orbital velocity at the innermost stable circula...

  14. Accuracy of the Post-Newtonian Approximation for Extreme-Mass Ratio Inspirals from Black-hole Perturbation Approach

    CERN Document Server

    Sago, Norichika; Nakano, Hiroyuki

    2016-01-01

    We revisit the accuracy of the post-Newtonian (PN) approximation and its region of validity for quasi-circular orbits of a point particle in the Kerr spacetime, by using an analytically known highest post-Newtonian order gravitational energy flux and accurate numerical results in the black hole perturbation approach. It is found that regions of validity become larger for higher PN order results although there are several local maximums in regions of validity for relatively low-PN order results. This might imply that higher PN order calculations are also encouraged for comparable-mass binaries.

  15. Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals

    CERN Document Server

    Abbott, B; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Arain, M; Araya, M; Armandula, H; Ashley, M; Aston, S; Aufmuth, P; Aulbert, C; Babak, S; Ballmer, S; Bantilan, H; Barish, B C; Barker, C; Barker, D; Barr, B; Barriga, P; Barton, M A; Bayer, K; Betzwieser, J; Beyersdorf, P T; Bhawal, B; Bilenko, I A; Billingsley, G; Biswas, R; Black, E; Blackburn, K; Blackburn, L; Blair, D; Bland, B; Bogenstahl, J; Bogue, L; Bork, R; Boschi, V; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brinkmann, M; Brooks, A; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burmeister, O; Busby, D; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Castaldi, G; Cepeda, C; Chalkley, E; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chiadini, F; Christensen, N; Clark, J; Cochrane, P; Cokelaer, T; Coldwell, R; Conte, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Croce, R P; Crooks, D R M; Cruise, A M; Cumming, A; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; De Bra, D; Degallaix, J; Degree, M; Demma, T; Dergachev, V; Desai, S; DeSalvo, R; Dhurandhar, S; Daz, M; Dickson, J; Di Credico, A; Diederichs, G; Dietz, A; Doomes, E E; Drever, R W P; Dumas, J C; Dupuis, R J; Dwyer, J G; Ehrens, P; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fan, Y; Fazi, D; Fejer, M M; Finn, L S; Fiumara, V; Fotopoulos, N; Franzen, A; Franzen, K Y; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Garofoli, J; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Goda, K; Goetz, E; Goggin, L M; González, G; Gossler, S; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, J; Gretarsson, A M; Grosso, R; Grote, H; Grünewald, S; Günther, M; Gustafson, R; Hage, B; Hammer, D; Hanna, C; Hanson, J; Harms, J; Harry, G; Harstad, E; Hayler, T; Heefner, J; Heng, I S; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hosken, D; Hough, J; Hoyland, D; Huttner, S H; Ingram, D; Innerhofer, E; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, Peter Ignaz Paul; Kalogera, V; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalili, F Ya; Kim, C; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R K; Kozak, D; Krishnan, B; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leiner, J; Leonhardt, V; Leonor, I; Libbrecht, K; Lindquist, P; Lockerbie, N A; Longo, M; Lormand, M; Lubinski, M; Luck, H; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marano, S; Marka, S; Markowitz, J; Maros, E; Martin, I; Marx, J N; Mason, K; Matone, L; Matta, V; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McKenzie, K; McWilliams, S; Meier, T; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C J; Meyers, D; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mow Lowry, C; Moylan, A; Mudge, D; Müller, G; Mukherjee, S; Muller-Ebhardt, H; Munch, J; Murray, P; Myers, E; Myers, J; Nash, T; Newton, G; Nishizawa, A; Numata, K; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Patel, P; Pedraza, M; Penn, S; Pierro, V; Pinto, I M; Pitkin, M; Pletsch, H; Plissi, M V; Postiglione, F; Prix, R; Quetschke, V; Raab, F; Rabeling, D; Radkins, H; Rahkola, R; Rainer, N; Rakhmanov, M; Ramsunder, M; Ray-Majumder, S; Re, V; Rehbein, H; Reid, S; Reitze, D H; Ribichini, L; Riesen, R; Riles, K; Rivera, B; Robertson, N A; Robinson, C; Robinson, E L; Roddy, S; Rodríguez, A; Rogan, A M; Rollins, J; Romano, J D; Romie, J; Route, R; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sakata, S; Samidi, M; Sanchodela Jordana, L; Sandberg, V; Sannibale, V; Saraf, S; Sarin, P; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R; Savov, P; Schediwy, S; Schilling, R; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Sidles, J A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Somiya, K; Strain, K A; Strom, D M; Stuver, A; Summerscales, T Z; Sun, K X; Sung, M; Sutton, P J; Takahashi, H; Tanner, D B; Taylor, R; Taylor, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Trias, M; Tyler, W; Ugolini, D; Urbanek, K; Vahlbruch, H; Vallisneri, M; Van Den Broeck, C; Varvella, M; Vass, S; Vecchio, A; Veitch, J; Veitch, P; Villar, A; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R; Watts, K; Weidner, A; Weinert, M; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F

    2007-01-01

    We report on the first dedicated search for gravitational waves emitted during the inspiral of compact binaries with spinning component bodies. We analyze 788 hours of data collected during the third science run (S3) of the LIGO detectors. We searched for binary systems using a detection template family designed specially to capture the effects of spin-induced precession. The template bank we employed was found to yield high matches with our spin-modulated target waveform for binaries with masses in the asymmetric range 1.0 M_{\\odot} < m_1 < 3.0 M_{\\odot} and 12.0 M_{\\odot} < m_{2} < 20.0 M_{\\odot} which is where we would expect the spin of the binary's components to have significant effect. We find that our search of S3 LIGO data had good sensitivity to binaries in the Milky Way and to a small fraction of binaries in M31 and M33 with masses in the range 1.0 M_{\\odot} < m_{1}, m_{2} < 20.0 M_{\\odot}. No gravitational wave signals were identified during this search. Assuming a binary populati...

  16. Inspiral into Gargantua

    CERN Document Server

    Gralla, Samuel E; Warburton, Niels

    2016-01-01

    We model the inspiral of a compact object into a more massive black hole rotating very near the theoretical maximum. We find that once the body enters the near-horizon regime the gravitational radiation is characterized by a constant frequency, equal to (twice) the horizon frequency, with an exponentially damped profile. This contrasts with the usual "chirping" behavior and, if detected, would constitute a "smoking gun" for a near-extremal black hole in nature.

  17. Writing Inspired

    Science.gov (United States)

    Tischhauser, Karen

    2015-01-01

    Students need inspiration to write. Assigning is not teaching. In order to inspire students to write fiction worth reading, teachers must take them through the process of writing. Physical objects inspire good writing with depth. In this article, the reader will be taken through the process of inspiring young writers through the use of boxes.…

  18. Black Hole Ringing, Quasinormal Modes, and Light Rings

    CERN Document Server

    Khanna, Gaurav

    2016-01-01

    Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.

  19. Inspired Responses

    Science.gov (United States)

    Steele, Carol Frederick

    2011-01-01

    In terms of teacher quality, Steele believes the best teachers have reached a stage she terms inspired, and that teachers move progressively through the stages of unaware, aware, and capable until the most reflective teachers finally reach the inspired level. Inspired teachers have a wide repertoire of teaching and class management techniques and…

  20. Inspiring the next generation of scientists with their observations of quasars, black holes, Jupiter, and SETI with the Goldstone Apple Valley Radio Telescope, GAVRT

    Science.gov (United States)

    Jauncey, D. L.; Levin, S.; Teitelbaum, L.; Hofstadter, M.; Arballo, J.; McConnell, S.; Dorcey, R.; Cole, K.; Kreuser-Jenkins, N.; Leflang, J.; Kruzins, E.; Ricardo, L.; Horiuchi, S.; Nagle, G.; Miro, C. G.

    2017-04-01

    This paper describes a radio astronomy programfor schools, the Goldstone-AppleValley Radio Telescope,GAVRT. The GAVRT program is designed to bring the inspiration and enthusiasm to a younger generation of teachers and children who learn about science by doing real science, just as Iosif Shklovsky brought to an older generation.

  1. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration.

    Science.gov (United States)

    Oh, Sang Young; Lee, Minho; Seo, Joon Beom; Kim, Namkug; Lee, Sang Min; Lee, Jae Seung; Oh, Yeon Mok

    2017-01-01

    A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT). Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942). The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT) parameters using the Pearson's correlation test. The mean extents of low-attenuation area (LAA), E1 (size variation and collapse of emphysema holes may be useful for understanding the dynamic collapse of emphysema and its functional relation.

  2. Extracting equation of state parameters from black hole-neutron star mergers. I. Nonspinning black holes

    CERN Document Server

    Lackey, Benjamin D; Shibata, Masaru; Brady, Patrick R; Friedman, John L

    2011-01-01

    The late inspiral, merger, and ringdown of a black hole-neutron star (BHNS) system can provide information about the neutron-star equation of state (EOS). Candidate EOSs can be approximated by a parametrized piecewise-polytropic EOS above nuclear density, matched to a fixed low-density EOS; and we report results from a large set of BHNS inspiral simulations that systematically vary two parameters. To within the accuracy of the simulations, we find that, apart from the neutron-star mass, a single physical parameter Lambda, describing its deformability, can be extracted from the late inspiral, merger, and ringdown waveform. This parameter is related to the radius, mass, and l=2 Love number, k_2, of the neutron star by Lambda = 2k_2 R^5/3M_{NS}^5, and it is the same parameter that determines the departure from point-particle dynamics during the early inspiral. Observations of gravitational waves from BHNS inspiral thus restrict the EOS to a surface of constant Lambda in the parameter space, thickened by the meas...

  3. Arrival Times of Gravitational Radiation Peaks for Binary Inspiral

    CERN Document Server

    Price, Richard H

    2016-01-01

    Modeling of gravitational waves (GWs) from binary black hole inspiral brings together early post-Newtonian waveforms and late quasinormal ringing waveforms. Attempts to bridge the two limits without recourse to numerical relativity involve predicting the time of the peak GW amplitude. This prediction will require solving the question of why the peak of the "source," i.e., the peak of the binary angular velocity, does not correspond to the peak of the GW amplitude. We show here that this offset can be understood as due to the existence two distinct components of the radiation: the "direct" radiation analogous to that in flat spacetime, and "scattered" radiation associated with curved spacetime. The time dependence of these two components, and of their relative phases determines the location of the peak amplitude. We use a highly simplified model to clarify the twocomponent nature of the source, then demonstrate that the explanation is valid also for an extreme mass ratio binary inspiral.

  4. A late jet rebrightening revealed from multiwavelength monitoring of the black hole candidate XTE J1752-223

    NARCIS (Netherlands)

    Russell, D.M.; Curran, P.A.; Muñoz-Darias, T.; Lewis, F.; Motta, S.; Stiele, H.; Belloni, T.; Miller-Jones, J.C.A.; Jonker, P.G.; O'Brien, K.; Homan, J.; Casella, P.; Gandhi, P.; Soleri, P.; Markoff, S.; Maitra, D.; Gallo, E.; Cadolle Bel, M.

    2012-01-01

    We present optical monitoring of the black hole candidate XTE J1752−223 during its 2009-10 outburst and decay to quiescence. The optical light curve can be described by an exponential decay followed by a plateau, then a more rapid fade towards quiescence. The plateau appears to be due to an extra co

  5. Berengario's drill: origin and inspiration.

    Science.gov (United States)

    Chorney, Michael A; Gandhi, Chirag D; Prestigiacomo, Charles J

    2014-04-01

    Craniotomies are among the oldest neurosurgical procedures, as evidenced by early human skulls discovered with holes in the calvaria. Though devices change, the principles to safely transgress the skull are identical. Modern neurosurgeons regularly use electric power drills in the operating theater; however, nonelectric trephining instruments remain trusted by professionals in certain emergent settings in the rare instance that an electric drill is unavailable. Until the late Middle Ages, innovation in craniotomy instrumentation remained stunted without much documented redesign. Jacopo Berengario da Carpi's (c. 1457-1530 CE) text Tractatus de Fractura Calvae sive Cranei depicts a drill previously unseen in a medical volume. Written in 1518 CE, the book was motivated by defeat over the course of Lorenzo II de'Medici's medical care. Berengario's interchangeable bit with a compound brace ("vertibulum"), known today as the Hudson brace, symbolizes a pivotal device in neurosurgery and medical tool design. This drill permitted surgeons to stock multiple bits, perform the craniotomy faster, and decrease equipment costs during a period of increased incidence of cranial fractures, and thus the need for craniotomies, which was attributable to the introduction of gunpowder. The inspiration stemmed from a school of thought growing within a population of physicians trained as mathematicians, engineers, and astrologers prior to entering the medical profession. Berengario may have been the first to record the use of such a unique drill, but whether he invented this instrument or merely adapted its use for the craniotomy remains clouded.

  6. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  7. A low upper mass limit for the central black hole in the late-type galaxy NGC 4414

    Science.gov (United States)

    Thater, S.; Krajnović, D.; Bourne, M. A.; Cappellari, M.; de Zeeuw, T.; Emsellem, E.; Magorrian, J.; McDermid, R. M.; Sarzi, M.; van de Ven, G.

    2017-01-01

    We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km s-1. We constructed dynamical models using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of MBH = 1.56 × 106M⊙ (at 3σ level) which is at least 1σ below the recent MBH-σe relations. Further tests with dark matter, mass-to-light ratio variation and different light models confirm that our results are not dominated by uncertainties. The derived upper limit mass is not only below the MBH-σe relation, but is also five times lower than the lower limit black hole mass anticipated from the resolution limit of the sphere of influence. This proves that via high quality integral field data we are now able to push black hole measurements down to at least five times less than the resolution limit. The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A18

  8. Simulations of coalescing black holes

    CERN Document Server

    Janiuk, Agnieszka

    2016-01-01

    We describe the methods and results of numerical simulations of coalescing black holes. The simulation in dynamical spacetime covers the inspiral, merger, and ringdown phases. We analyze the emission of gravitational waves and properties of a black hole being the merger product. We discuss the results in the context of astrophysical environment of black holes that exist in the Universe.

  9. Size variation and collapse of emphysema holes at inspiration and expiration CT scan: evaluation with modified length scale method and image co-registration

    Directory of Open Access Journals (Sweden)

    Oh SY

    2017-07-01

    Full Text Available Sang Young Oh,1,* Minho Lee,1,* Joon Beom Seo,1,* Namkug Kim,1,2,* Sang Min Lee,1 Jae Seung Lee,3 Yeon Mok Oh3 1Department of Radiology, 2Department of Convergence Medicine, 3Department of Pulmonology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A novel approach of size-based emphysema clustering has been developed, and the size variation and collapse of holes in emphysema clusters are evaluated at inspiratory and expiratory computed tomography (CT. Thirty patients were visually evaluated for the size-based emphysema clustering technique and a total of 72 patients were evaluated for analyzing collapse of the emphysema hole in this study. A new approach for the size differentiation of emphysema holes was developed using the length scale, Gaussian low-pass filtering, and iteration approach. Then, the volumetric CT results of the emphysema patients were analyzed using the new method, and deformable registration was carried out between inspiratory and expiratory CT. Blind visual evaluations of EI by two readers had significant correlations with the classification using the size-based emphysema clustering method (r-values of reader 1: 0.186, 0.890, 0.915, and 0.941; reader 2: 0.540, 0.667, 0.919, and 0.942. The results of collapse of emphysema holes using deformable registration were compared with the pulmonary function test (PFT parameters using the Pearson’s correlation test. The mean extents of low-attenuation area (LAA, E1 (<1.5 mm, E2 (<7 mm, E3 (<15 mm, and E4 (≥15 mm were 25.9%, 3.0%, 11.4%, 7.6%, and 3.9%, respectively, at the inspiratory CT, and 15.3%, 1.4%, 6.9%, 4.3%, and 2.6%, respectively at the expiratory CT. The extents of LAA, E2, E3, and E4 were found to be significantly correlated with the PFT ­parameters (r=−0.53, −0.43, −0.48, and −0.25, with forced expiratory volume in 1 second (FEV1; −0.81, −0.62, −0.75, and

  10. A low upper mass limit for the central black hole in the late-type galaxy NGC 4414

    CERN Document Server

    Thater, Sabine; Bourne, Martin A; Cappellari, Michele; de Zeeuw, Tim; Emsellem, Eric; Magorrian, John; McDermid, Richard M; Sarzi, Marc; van de Ven, Glenn

    2016-01-01

    We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km/s. We constructed dynamical methods using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of Mbh= 1.56 x 10^6 Msun(at 3 sigma level) which is at least 1 sigma below the recent Mbh-sigma_e relations. Further tests with dark matter, mass-to-light rat...

  11. A late jet rebrightening revealed from multi-wavelength monitoring of the black hole candidate XTE J1752-223

    CERN Document Server

    Russell, D M; Muñoz-Darias, T; Lewis, F; Motta, S; Stiele, H; Belloni, T; Miller-Jones, J C A; Jonker, P G; O'Brien, K; Homan, J; Casella, P; Gandhi, P; Soleri, P; Markoff, S; Maitra, D; Gallo, E; Bel, M Cadolle

    2011-01-01

    We present optical monitoring of the black hole candidate XTE J1752-223 during its 2009 - 2010 outburst and decay to quiescence. The optical light curve can be described by an exponential decay followed by a plateau, then a more rapid fade towards quiescence. The plateau appears to be due to an extra component of optical emission that brightens and then fades over ~ 40 days. We show evidence for the origin of this optical 'flare' to be the synchrotron jet during the decaying hard state, and we identify and isolate both disc and jet components in the spectral energy distributions. The optical flare has the same morphology and amplitude as a contemporaneous X-ray rebrightening. This suggests a common origin, but no firm conclusions can be made favouring or disfavouring the jet producing the X-ray flare. The quiescent optical magnitudes are B >= 20.6, V >= 21.1, R >= 19.5, i' >= 19.2. From the optical outburst amplitude we estimate a likely orbital period of < 22 h. We also present near-infrared (NIR) photome...

  12. Late Pliocene to early Pleistocene (2.4-1.25 Ma) paleoproductivity changes in the Bering Sea: IODP expedition 323 Hole U1343E

    Science.gov (United States)

    Kim, Sunghan; Khim, Boo-Keun; Takahashi, Kozo

    2016-03-01

    Late Pliocene to early Pleistocene paleoproductivity changes in the Bering Sea were reconstructed using geochemical concentrations and mass accumulation rates (MARs) of CaCO3, biogenic opal, and total organic carbon (TOC), and sedimentary nitrogen isotope ratios (δ15N) at IODP Expedition 323 Hole U1343E, drilled in the northern slope area (1956 m deep) of the Bering Sea. CaCO3 concentration is generally low, but prominent CaCO3 peaks occur intermittently due to subseafloor authigenic carbonate formation rather than biogenic accumulation, regardless of glacial-interglacial variations. Biogenic opal concentrations reflect orbital-scale glacial-interglacial variations. However, TOC concentration did not show clear glacial-interglacial variation, probably due to poor preservation. The sedimentary δ15N values vary synchronously with biogenic opal concentration on orbital timescales. The co-varying pattern of opal productivity and δ15N values at Hole U1343E is a result of nutrient utilization controlled by diatom productivity in the Bering slope area where Fe is not a limiting factor. Biogenic opal and TOC MARs showed a temporal shift at around 1.9 Ma from a high productivity period under nutrient-enriched conditions to a low productivity period under relatively nutrient-depleted conditions. High diatom productivity with low δ15N values before 1.9 Ma is associated with abundant nutrient supply by upwelling in relation to strong surface current system. This productivity decrease at about 1.9 Ma was also found in the southern Bering Sea (Site U1341) and may be related to global opal reorganization.

  13. Late Pleistocene Variations in the Water Current and Ice Rafting Transportations of Organic Matter in the Central Arctic Ocean (ACEX Hole M0004C)

    Science.gov (United States)

    Yamamoto, M.; Sugisaki, S.; Sakamoto, T.

    2006-12-01

    Little is known about the source of organic matter and the response of sedimentary organic matter composition to glacial-interglacial changes in the central Arctic Ocean. Here we have generated late Pleistocene records of biomarkers and ice rafted debris (IRD) from IODP-Arctic Coring Expedition (ACEX) Hole M0004C to understand the glacial-interglacial changes of mass transportation in the Arctic Ocean. Major biomarkers detected in Hole M0004C were long-chain n-alkanes, n-fatty acids and n-alkan-1-ols, derived from fresh higher plants, and gem-alkanes (branched aliphatic alkanes with a quaternary substituted carbon atom), derived from unknown source. Minor biomarkers were oleanenes of angiosperm origin, unsaturated fatty acids, bacteria-derived anteiso- and iso-fatty acids, various hydroxy acids, formed by hydroxylation of n-fatty acids by aerobic bacteria, cholesterol and sitosterol, and hopanes, formed by diagenetic alteration of bacterial biohopanoids. There was no concrete evidence for in situ production of phytoplanktons. The concentrations of these biomarkers varied with IRD number variation. During periods of abundant IRD, diagenetic hopanes were abundant, suggesting that clastic materials were supplied by ice rafting. During periods of scarce IRD, the other biomarkers such as long-chain compounds were abundant, suggesting that the riverine discharge was enhanced. The IRD and biomarker variations were synchronized with the eastward expansion of the Fennoscandinavian Ice Sheet to northen Siberia, suggesting that the ice cover of northen Siberia is critical in switching mass transportation mechanisms in the Arctic Ocean.

  14. Inspirational Journey

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Artists from across Europe and Asia ventured into the remote Chinese countryside to seek inspiration from the Miao Ethnic group "I’ve never been to Asia before and everything is strange and wonderful:supermarkets and shopping mails,even the air- port seemed exotic!"wrote Ula Sickle,a choreographer from Poland on her blog under the name"chopstick diaries."Ula was one of the 18 foreign and domestic artists participating in a cultural exchange project called the Pointe to Point: Asia-Europe Dance Forum.It aims to empower aspiring young artists from Asia and Europe to reflect upon their views of

  15. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  16. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  17. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    CERN Document Server

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  18. Observing binary inspiral with LIGO

    CERN Document Server

    Finn, L S

    1994-01-01

    Gravitational radiation from a binary neutron star or black hole system leads to orbital decay and the eventual coalescence of the binary's components. During the last several minutes before the binary components coalesce, the radiation will enter the bandwidth of the United States Laser Inteferometer Gravitational-wave Observatory (LIGO) and the French/Italian VIRGO gravitational radiation detector. The combination of detector sensitivity, signal strength, and source density and distribution all point to binary inspiral as the most likely candidate for observation among all the anticipated sources of gravitational radiation for LIGO/VIRGO. Here I review briefly some of the questions that are posed to theorists by the impending observation of binary inspiral.

  19. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  20. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  1. A Tony Thomas-Inspired Guide to INSPIRE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  2. Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Cardoso, V.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perraca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.

    2009-09-01

    According to general relativity a perturbed black hole will settle to a stationary configuration by the emission of gravitational radiation. Such a perturbation will occur, for example, in the coalescence of a black hole binary, following their inspiral and subsequent merger. At late times the waveform is a superposition of quasinormal modes, which we refer to as the ringdown. The dominant mode is expected to be the fundamental mode, l=m=2. Since this is a well-known waveform, matched filtering can be implemented to search for this signal using LIGO data. We present a search for gravitational waves from black hole ringdowns in the fourth LIGO science run S4, during which LIGO was sensitive to the dominant mode of perturbed black holes with masses in the range of 10M⊙ to 500M⊙, the regime of intermediate-mass black holes, to distances up to 300 Mpc. We present a search for gravitational waves from black hole ringdowns using data from S4. No gravitational wave candidates were found; we place a 90%-confidence upper limit on the rate of ringdowns from black holes with mass between 85M⊙ and 390M⊙ in the local universe, assuming a uniform distribution of sources, of 3.2×10-5yr-1Mpc-3=1.6×10-3yr-1L10-1,where L10 is 1010 times the solar blue-light luminosity.

  3. Filling the holes: Evolving excised binary black hole initial data with puncture techniques

    CERN Document Server

    Etienne, Zachariah B; Liu, Yuk Tung; Shapiro, Stuart L; Baumgarte, Thomas W

    2007-01-01

    We follow the inspiral and merger of equal-mass black holes (BHs) by the moving puncture technique and demonstrate that both the exterior solution and the asymptotic gravitational waveforms are unchanged when the initial interior solution is replaced by constraint-violating ``junk'' initial data. We apply this result to evolve conformal thin-sandwich (CTS) binary BH initial data by filling their excised interiors with arbitrary, but smooth, initial data and evolving with standard puncture gauge choices. The waveforms generated for both puncture and filled-CTS initial data are remarkably similar, and there are only minor differences between irrotational and corotational CTS BH binaries. Even the interior solutions appear to evolve to the same constraint-satisfying solution at late times, independent of the initial data.

  4. Astrophysics of extreme mass ratio inspiral sources

    CERN Document Server

    Hopman, C

    2007-01-01

    Compact remnants on orbits with peri-apses close to the Schwarzschild radius of a massive black hole (MBH) lose orbital energy by emitting gravitational waves (GWs) and spiral in. Scattering with other stars allows successful inspiral of such extreme mass ratio inspiral sources (EMRIs) only within small distances, a < few \\times 0.01 pc from the MBH. The event rate of EMRIs is therefore dominated by the stellar dynamics and content in the inner few \\times 0.01 pc. I discuss the relevant dynamical aspects and resulting estimated event rates of EMRIs. Subjects considered include the loss-cone treatment of inspiral sources; mass segregation; resonant relaxation; and alternative routes to EMRI formation such as tidal binary disruptions, stellar formation in disks and tidal capture of massive main sequence stars. The EMRI event rate is estimated to be of order few \\times 10^2/Gyr per MBH, giving excellent prospects for observation by LISA.

  5. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  6. Clay Bells: Edo Inspiration

    Science.gov (United States)

    Wagner, Tom

    2010-01-01

    The ceremonial copper and iron bells at the Smithsonian's National Museum of African Art were the author's inspiration for an interdisciplinary unit with a focus on the contributions various cultures make toward the richness of a community. The author of this article describes an Edo bell-inspired ceramic project incorporating slab-building…

  7. Inspiration, anyone? (Editorial

    Directory of Open Access Journals (Sweden)

    Lindsay Glynn

    2006-09-01

    Full Text Available I have to admit that writing an editorial for this issue was a struggle. Trying to sit down and write when the sun was shining outside and most of my colleagues were on vacation was, to say the least, difficult. Add to that research projects and conferences…let’s just say that I found myself less than inspired. A pitiful plea for ideas to a colleague resulted in the reintroduction to a few recent evidence based papers and resources which inspired further searching and reading. Though I generally find myself surrounded (more like buried in research papers and EBLIP literature, somehow I had missed the great strides that have been made of late in the world of evidence based library and information practice. I realize now that I am inspired by the researchers, authors and innovators who are putting EBLIP on the proverbial map. My biggest beef with library literature in general has been the plethora of articles highlighting what we should be doing. Take a close look at the evidence based practitioners in the information professions: these are some of the people who are actively practicing what has been preached for the past few years. Take, for example, the about‐to‐be released Libraries using Evidence Toolkit by Northern Sydney Central Coast Health and The University of Newcastle, Australia (see their announcement in this issue. An impressive advisory group is responsible for maintaining the currency and relevancy of the site as well as promoting the site and acting as a steering committee for related projects. This group is certainly doing more than “talking the talk”: they took their experience at the 3rd International Evidence Based Librarianship Conference and did something with the information they obtained by implementing solutions that worked in their environment. The result? The creation of a collection of tools for all of us to use. This toolkit is just what EBLIP needs: a portal to resources aimed at supporting the information

  8. Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame

    CERN Document Server

    Pekowsky, Larne; Healy, Jim; Shoemaker, Deirdre

    2013-01-01

    Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitations of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the source's total mass $M$. By restricting attention to masses $M\\in 200, 2500 M_\\odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the \\texttt{IMRPhenomB} phenome...

  9. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  10. Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics

    CERN Document Server

    Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...

  11. Thermodynamics of black holes in rainbow gravity

    CERN Document Server

    Banerjee, Ritwick

    2016-01-01

    In this paper, we investigate the thermodynamic properties of black holes under the influence of rainbow gravity. In the metric of Schwarzschild, Reissner-Nordstrom and Reissner-Nordstrom-de-Sitter black hole surrounded by quintessence, we consider a rainbow function and derive the existence of remnant and critical masses of a black hole. Using the Hawking temperature relation we derive the heat capacity and the entropy of the rainbow gravity inspired black holes and closely study the relation between entropy and area of the horizon for different values of n of the rainbow function.

  12. Physicists get INSPIREd

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Particle physicists thrive on information. They first create information by performing experiments or elaborating theoretical conjectures and then they share it through publications and various web tools. The INSPIRE service, just released, will bring state of the art information retrieval to the fingertips of researchers.   Keeping track of the information shared within the particle physics community has long been the task of libraries at the larger labs, such as CERN, DESY, Fermilab and SLAC, as well as the focus of indispensible services like arXiv and those of the Particle Data Group. In 2007, many providers of information in the field came together for a summit at SLAC to see how physics information resources could be enhanced, and the INSPIRE project emerged from that meeting. The vision behind INSPIRE was built by a survey launched by the four labs to evaluate the real needs of the community. INSPIRE responds to these directives from the community by combining the most successful aspe...

  13. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  14. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  15. Resonantly enhanced kicks from equatorial small mass-ratio inspirals

    Science.gov (United States)

    van de Meent, Maarten

    2014-08-01

    We calculate the kick generated by an eccentric black hole binary inspiral as it evolves through a resonant orbital configuration where the precession of the system temporarily halts. As a result, the effects of the asymmetric emission of gravitational waves build up coherently over a large number of orbits. Our results are calculated using black hole perturbation theory in the limit where the ratio of the masses of the orbiting objects ɛ =m/M is small. The resulting kick velocity scales as ɛ3/2, much faster than the ɛ2 scaling of the kick generated by the final merger. For the most extreme case of a very eccentric (e˜1) inspiral around a maximally spinning black hole, we find kicks close to 30 000 ɛ3/2 km /s, enough to dislodge an intermediate-mass black hole from its host globular cluster. In reality, such extreme inspirals should be very rare. Nonetheless, the astrophysical impact of kicks in less extreme inspirals could be astrophysically significant.

  16. Inspiring Middle School Minds: Gifted, Creative, and Challenging

    Science.gov (United States)

    Willis, Judy

    2009-01-01

    Teaching adolescents can be quite challenging. Dr. Judy Willis, a neurologist and teacher, explains the inner workings of the adolescent brain. She uses the findings of brain research in her classroom to explain how parents and teachers can trigger untapped inspiration in students. Middle school education has often been a "black hole" for gifted…

  17. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    Science.gov (United States)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  18. Binary compact object inspiral: Detection expectations

    Indian Academy of Sciences (India)

    Vassiliki Kalogera

    2004-10-01

    We review the current estimates of binary compact object inspiral rates in particular in view of the recently discovered highly relativistic binary pulsar J0737-3039. One of the robust results is that, because of this discovery, the rate estimates for binary neutron stars have increased by a factor of 6-7 independent of any uncertainties related to the pulsar population properties. This rate increase has dramatic implications for gravitational wave detectors. For initial LIGO, the most probable detection rates for double neutron star (DNS) inspirals is 1 event/(5{250) yr; at 95% confidence we obtain rates up to 1/1.5 yr. For advanced LIGO, the most probable rates are 20-1000 events/yr. These predictions, for the first time, bring the expectations for DNS detections by initial LIGO to the astrophysically relevant regime. We also use our models to predict that the large-scale Parkes multibeam pulsar survey with acceleration searches could detect an average of three to four binary pulsars similar to those known at present. In comparison, rate estimates for binaries with black holes are derived based on binary evolution calculation, and based on the optimistic ends of the ranges, remain an important candidate for inspiral detection in the next few years. We also consider another aspect of the detectability of binary inspiral: the effect of precession on the detection efficiency of astrophysically relevant binaries. Based on our current astrophysical expectations, large tilt angles are not favored. As a result the decrease in detection rate varies rather slowly with black hole spin magnitude and is within 20-30% of the maximum possible values.

  19. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  20. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  1. Fast plunges into Kerr black holes

    OpenAIRE

    Hadar, Shahar; Porfyriadis, Achilleas; Strominger, Andrew E.

    2015-01-01

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges i...

  2. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  3. An eye for inspiration

    Science.gov (United States)

    2009-11-01

    The discovery that the eye of a particular mantis shrimp has an achromatic quarter-waveplate that is superior to modern-day devices could be a source of inspiration to those designing optical components. Nature Photonics spoke to Nicholas Roberts, one of the researchers involved in the study.

  4. Inspire & innovate : Endbericht

    NARCIS (Netherlands)

    Cornelissen, T.; Lugtenaar, M.; Balendonck, J.; Ruckelshausen, A.; Wit, de R.

    2008-01-01

    Met het project Inspire & Innovate helpt de EU Nederlandse en Duitse bedrijven in met name de sectoren Food en Life Sciences op weg. Het project is bedoeld voor MKB-bedrijven in de Euregio Rijn-Waal en de EUREGIO die inhoudelijke en financiële ondersteuning zoeken om hun innovatieplannen door te

  5. Ndebele Inspired Houses

    Science.gov (United States)

    Rice, Nicole

    2012-01-01

    The house paintings of the South African Ndebele people are more than just an attempt to improve the aesthetics of a community; they are a source of identity and significance for Ndebele women. In this article, the author describes an art project wherein students use the tradition of Ndebele house painting as inspiration for creating their own…

  6. Inspire & innovate : Endbericht

    NARCIS (Netherlands)

    Cornelissen, T.; Lugtenaar, M.; Balendonck, J.; Ruckelshausen, A.; Wit, de R.

    2008-01-01

    Met het project Inspire & Innovate helpt de EU Nederlandse en Duitse bedrijven in met name de sectoren Food en Life Sciences op weg. Het project is bedoeld voor MKB-bedrijven in de Euregio Rijn-Waal en de EUREGIO die inhoudelijke en financiële ondersteuning zoeken om hun innovatieplannen door te

  7. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  8. An Ark of Inspiration.

    Science.gov (United States)

    King, Steve

    2001-01-01

    Describes an art project suitable for middle and high school students in which they either combine identifiable parts from different animals to create one creature or take one animal and creatively distort it. Explains that this lesson enables students to be satisfied with their animal-inspired artwork. (CMK)

  9. Nature as Inspiration

    Science.gov (United States)

    Tank, Kristina; Moore, Tamara; Strnat, Meg

    2015-01-01

    This article describes the final lesson within a seven-day STEM and literacy unit that is part of the Picture STEM curriculum (pictureSTEM. org) and uses engineering to integrate science and mathematics learning in a meaningful way (Tank and Moore 2013). For this engineering challenge, students used nature as a source of inspiration for designs to…

  10. Results from Binary Black Hole Simulations in Astrophysics Applications

    Science.gov (United States)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  11. Fossil Gas and the Electromagnetic Precursor of Supermassive Binary Black Hole Mergers

    CERN Document Server

    Chang, P; Menou, K; Quataert, E

    2009-01-01

    Using a one-dimensional height integrated model, we calculate the evolution of an unequal mass binary black hole with a coplanar gas disk that contains a gap due to the presence of the secondary black hole. Viscous evolution of the outer circumbinary disk initially hardens the binary, while the inner disk drains onto the primary (central) black hole. As long as the inner disk remains cool and thin at low $\\dot{M}_{\\rm ext}$ (rather than becoming hot and geometrically thick), the mass of the inner disk reaches an asymptotic mass typically $\\sim 10^{-3}-10^{-4}\\Msun$. Once the semimajor axis shrinks below a critical value, angular momentum losses from gravitational waves dominate over viscous transport in hardening the binary. The inner disk then no longer responds viscously to the inspiraling black holes. Instead, tidal interactions with the secondary rapidly drive the inner disk into the primary. Tidal and viscous dissipation in the inner disk lead to a late time brightening in luminosity $L\\propto t_{\\rm min...

  12. Suppression of the accretion rate in thin discs around binary black holes

    Science.gov (United States)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  13. Bio-Inspired Dry Adhesives

    Science.gov (United States)

    2013-02-01

    of mask respirators with bio -inspired adhesive integrated into their peripheral seals; and (2) assessment of the competitive position of the new bio -inspired adhesives in broader fields of application.

  14. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  15. Research Update on Extreme-Mass-Ratio Inspirals

    Science.gov (United States)

    Amaro-Seoane, Pau; Gair, Jonathan R.; Pound, Adam; Hughes, Scott A.; Sopuerta, Carlos F.

    2015-05-01

    The inspirals of stellar-mass mass compact objects into massive black holes in the centres of galaxies are one of the most important sources of gravitational radiation for space- based detectors like LISA or eLISA. These extreme-mass-ratio inspirals (EMRIs) will enable an ambitious research program with implications for astrophysics, cosmology, and fundamental physics. This article is a summary of the talks delivered at the plenary session on EMRIs at the 10th International LISA Symposium. It contains research updates on the following topics: astrophysics of EMRIs; EMRI science potential; and EMRI modeling.

  16. The classical essence of black hole radiation

    CERN Document Server

    Nouri-Zonoz, M

    1998-01-01

    We show that the mathematics of Hawking process can be interpreted classically as the Fourier analysis of an exponentially redshifted wave mode which scatters off the black hole and travels to infinity at late times. We use this method to derive the Planckian power spectrum for Schwarzchild, Reissner-Nordstrom and Kerr black holes.

  17. When Charged Black Holes Merge

    Science.gov (United States)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  18. Cosmological production of noncommutative black holes

    CERN Document Server

    Mann, Robert B

    2011-01-01

    We investigate the pair creation of noncommutative black holes in a background with positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild deSitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive mass spacetimes admit one cosmological horizon and two, one or no black hole horizons, while negative mass spacetimes have just a cosmological horizon. All these manifolds are everywhere regular, since the noncommutative fluctuations at the origin improve the curvature singularity. On the thermodynamic side, the black hole temperature, instead of a divergent behavior for small length scales, admits a maximum value. Then the black hole evaporation proceeds until an equilibrium configuration with the deSitter background temperature. On the other hand, the cosmological horizon is thermalized by the presence of the black hole and has a temperature higher than that of the conv...

  19. Quantum-Inspired Maximizer

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).

  20. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  1. Inspiring a generation

    CERN Multimedia

    2012-01-01

    The motto of the 2012 Olympic and Paralympic Games is ‘Inspire a generation’ so it was particularly pleasing to see science, the LHC and Higgs bosons featuring so strongly in the opening ceremony of the Paralympics last week.   It’s a sign of just how far our field has come that such a high-profile event featured particle physics so strongly, and we can certainly add our support to that motto. If the legacy of London 2012 is a generation inspired by science as well as sport, then the games will have more than fulfilled their mission. Particle physics has truly inspiring stories to tell, going well beyond Higgs and the LHC, and the entire community has played its part in bringing the excitement of frontier research in particle physics to a wide audience. Nevertheless, we cannot rest on our laurels: maintaining the kind of enthusiasm for science we witnessed at the Paralympic opening ceremony will require constant vigilance, and creative thinking about ways to rea...

  2. Perceptually-Inspired Computing

    Directory of Open Access Journals (Sweden)

    Ming Lin

    2015-08-01

    Full Text Available Human sensory systems allow individuals to see, hear, touch, and interact with the surrounding physical environment. Understanding human perception and its limit enables us to better exploit the psychophysics of human perceptual systems to design more efficient, adaptive algorithms and develop perceptually-inspired computational models. In this talk, I will survey some of recent efforts on perceptually-inspired computing with applications to crowd simulation and multimodal interaction. In particular, I will present data-driven personality modeling based on the results of user studies, example-guided physics-based sound synthesis using auditory perception, as well as perceptually-inspired simplification for multimodal interaction. These perceptually guided principles can be used to accelerating multi-modal interaction and visual computing, thereby creating more natural human-computer interaction and providing more immersive experiences. I will also present their use in interactive applications for entertainment, such as video games, computer animation, and shared social experience. I will conclude by discussing possible future research directions.

  3. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  4. #IWD2016 Academic Inspiration

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    What academics or books have inspired you in your writing and research, or helped to make sense of the world around you? In this feature essay, Ninna Meier returns to her experience of reading Hannah Arendt as she sought to understand work and how it relates to value production in capitalist...... economies. Meier recounts how Arendt’s book On Revolution (1963) forged connective threads between the ‘smallest parts’ and the ‘largest wholes’ and showed how academic work is never fully relegated to the past, but can return in new iterations across time....

  5. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  6. Schwarzschild black holes can wear scalar wigs

    CERN Document Server

    Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-01-01

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.

  7. Resonances in Extreme Mass-Ratio Inspirals: Asymptotic and Hyperasymptotic Analysis

    CERN Document Server

    Gair, Jonathan R; Bender, Carl M

    2011-01-01

    An expected source of gravitational waves for future detectors in space are the inspirals of small compact objects into much more massive black holes. These sources have the potential to provide a wealth of information about astronomy and fundamental physics. On short timescales the orbit of the small object is approximately geodesic. Generic geodesics for a Kerr black hole spacetime have a complete set of integrals and can be characterized by three frequencies of the motion. Over the course of an inspiral, a typical system will pass through resonances where two of these frequencies become commensurate. The effect of the resonance will be to alter significantly the rate of inspiral for the duration of the resonance. Understanding the impact of these resonances on gravitational wave phasing is important to detect and exploit these signals for astrophysics and fundamental physics. Two differential equations that might describe the passage of an inspiral through such a resonance are investigated. These differ de...

  8. When science inspires art

    CERN Multimedia

    Anaïs Vernède

    2011-01-01

    On Tuesday 18 January 2011, artist Pipilotti Rist came to CERN to find out how science could provide her with a source of inspiration for her art and perhaps to get ideas for future work. Pipilotti, who is an eclectic artist always on the lookout for an original source of inspiration, is almost as passionate about physics as she is about art.   Ever Is Over All, 1997, audio video installation by Pipilotti Rist.  View of the installation at the National Museum for Foreign Art, Sofia, Bulgaria. © Pipilotti Rist. Courtesy the artist and Hauser & Wirth. Photo by Angel Tzvetanov. Swiss video-maker Pipilotti Rist (her real name is Elisabeth Charlotte Rist), who is well-known in the international art world for her highly colourful videos and creations, visited CERN for the first time on Tuesday 18 January 2011.  Her visit represented a trip down memory lane, since she originally studied physics before becoming interested in pursuing a career as an artist and going on to de...

  9. Coronal Holes

    Directory of Open Access Journals (Sweden)

    Steven R. Cranmer

    2009-09-01

    Full Text Available Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations, and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. These observations point to specific kinds of collisionless Alfvén wave damping (i.e., ion cyclotron resonance, but complete theoretical models do not yet exist. Despite our incomplete knowledge of the complex multi-scale plasma physics, however, much progress has been made toward the goal of understanding the mechanisms ultimately responsible for producing the observed properties of coronal holes.

  10. Mergers of black-hole binaries with aligned spins: Waveform characteristics

    CERN Document Server

    Kelly, Bernard J; Boggs, William D; McWilliams, Sean T; Centrella, Joan

    2011-01-01

    We conduct a descriptive analysis of the multipolar structure of gravitational-radiation waveforms from equal-mass aligned-spin mergers, following an approach first presented in the complementary context of nonspinning black holes of varying mass ratio [Baker et al., Phys. Rev. D 78:044046 (2008)]. We find that, as with the nonspinning mergers, the dominant waveform mode phases evolve together in lock-step through inspiral and merger, supporting the previous waveform description in terms of an adiabatically rigid rotator driving gravitational-wave emission -- an implicit rotating source (IRS). We further apply the late-time merger-ringdown model for the rotational frequency introduced in Baker et al. (2008), along with an improved amplitude model appropriate for the dominant (2,+/- 2) modes. This provides a quantitative description of the merger-ringdown waveforms, and suggests that the major features of these waveforms can be described with reference only to the intrinsic parameters associated with the state...

  11. Inspiration Today: Music, Astronomy, and Popular Culture

    Science.gov (United States)

    Fraknoi, A.

    2016-01-01

    We explore a variety of examples of music inspired by serious astronomy (as opposed to simply an astronomical title or quick allusion to spooning in June to the light of the Moon). The examples are drawn from my recently published catalog of 133 such pieces, including both classical and popular genres of music. We discuss operas based on the life and work of astronomers, six songs based on a reasonable understanding of the properties of black holes, constellation pieces written by composers from around the world who are or were active amateur astronomers, the song that compares walking on the Moon to being in love, the little-known rock song that became a reference in the Astrophysical Journal, pieces that base the patterns of the music on the rhythms of astronomical phenomena, and a number of others.

  12. Geophysics in INSPIRE

    Science.gov (United States)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  13. Suppression of the accretion rate in thin discs around binary black holes

    CERN Document Server

    Ragusa, Enrico; Price, Daniel J

    2016-01-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with $H/R\\gtrsim 0.1$, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on $H/R$) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed...

  14. Toroidal horizons in binary black hole mergers

    Science.gov (United States)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  15. A Biologically Inspired Classifier

    CERN Document Server

    Bagnoli, Franco

    2007-01-01

    We present a method for measuring the distance among records based on the correlations of data stored in the corresponding database entries. The original method (F. Bagnoli, A. Berrones and F. Franci. Physica A 332 (2004) 509-518) was formulated in the context of opinion formation. The opinions expressed over a set of topic originate a ``knowledge network'' among individuals, where two individuals are nearer the more similar their expressed opinions are. Assuming that individuals' opinions are stored in a database, the authors show that it is possible to anticipate an opinion using the correlations in the database. This corresponds to approximating the overlap between the tastes of two individuals with the correlations of their expressed opinions. In this paper we extend this model to nonlinear matching functions, inspired by biological problems such as microarray (probe-sample pairing). We investigate numerically the error between the correlation and the overlap matrix for eight sequences of reference with r...

  16. Theosophically Inspired Movements in Denmark

    DEFF Research Database (Denmark)

    Dybdal, René

    2016-01-01

    The theosophical movement has had a significant influence on the esoteric milieu in Denmark during the 20th Century. In this paper the inspiration on other Groups in Denmark is explored.......The theosophical movement has had a significant influence on the esoteric milieu in Denmark during the 20th Century. In this paper the inspiration on other Groups in Denmark is explored....

  17. Coronal Holes

    CERN Document Server

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  18. Dumb holes: analogues for black holes.

    Science.gov (United States)

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  19. Holography inspired stringy hadrons

    Science.gov (United States)

    Sonnenschein, Jacob

    2017-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.

  20. [Medicine inspired by poverty].

    Science.gov (United States)

    Barnard, H

    2000-05-13

    Since his arrival in Egypt in 1994 the author joined a number of archaeological expeditions as a surveyor and part-time physician. During this latter activity he came into contact with the beliefs and practices of the local workmen and those of the Ababda Bedouin in particular. Living a harsh life in the southern part of the Egyptian Eastern Desert, their medicine seems to be inspired by poverty. Widely used for all internal disorders are 'kaya bil-naar': oval scars made with red-hot metal instruments. Another, less common, form of scarification is 'mi'ah-hed'asher', three parallel lines carved deeply into the cheek of the patient. 'Muhawy' is the bite of a snake into the earlobe of the patient, to prevent snake-bites. Another prophylactic is the 'higab', a small leather pouch containing a magical object or text. Therapies for less serious disorders include the use of herbs, spices and foodstuffs, often prepared in special ways. Externally, car fuel and axle grease are widely used. With the development of the Red Sea coast for tourism, the life of the Ababda Bedouin will change fundamentally. The above practices are likely to be replaced by Western medicine, probably a change for the better for these people.

  1. Inspired by CERN

    CERN Multimedia

    2004-01-01

    Art students inspired by CERN will be returning to show their work 9 to 16 October in Building 500, outside the Auditorium. Seventeen art students from around Europe visited CERN last January for a week of introductions to particle physics and astrophysics, and discussions with CERN scientists about their projects. A CERN scientist "adopted"each artist so they could ask questions during and after the visit. Now the seeds planted during their visit have come to fruition in a show using many media and exploring varied concepts, such as how people experience the online world, the sheer scale of CERN's equipment, and the abstractness of the entities scientists are looking for. "The work is so varied, people are going to love some pieces and detest others," says Andrew Charalambous, the project coordinator from University College London who is also curating the exhibition. "It's contemporary modern art, and that's sometimes difficult to take in." For more information on this thought-provoking show, see: htt...

  2. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  3. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  4. Black Holes and Random Matrices

    CERN Document Server

    Cotler, Jordan S; Hanada, Masanori; Polchinski, Joseph; Saad, Phil; Shenker, Stephen H; Stanford, Douglas; Streicher, Alexandre; Tezuka, Masaki

    2016-01-01

    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function $|Z(\\beta +it)|^2$ as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

  5. Black holes and thermodynamics -- The first half century

    CERN Document Server

    Grumiller, Daniel; Salzer, Jakob

    2014-01-01

    Black hole thermodynamics emerged from the classical general relativistic laws of black hole mechanics, summarized by Bardeen-Carter-Hawking, together with the physical insights by Bekenstein about black hole entropy and the semi-classical derivation by Hawking of black hole evaporation. The black hole entropy law inspired the formulation of the holographic principle by 't Hooft and Susskind, which is famously realized in the gauge/gravity correspondence by Maldacena, Gubser-Klebanov-Polaykov and Witten within string theory. Moreover, the microscopic derivation of black hole entropy, pioneered by Strominger-Vafa within string theory, often serves as a consistency check for putative theories of quantum gravity. In this book chapter we review these developments over five decades, starting in the 1960ies.

  6. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  7. Implementing INSPIRE for the Czech

    Directory of Open Access Journals (Sweden)

    Jiří Poláček

    2012-10-01

    Full Text Available The article is dedicated to the topic of the implementation of INSPIRE directive within the Information System of the Czech Cadastre of Real Estates. The procedure of implementation of the INSPIRE directive for cadastral related themes, which started in 2008, is followed. Currently running view and download services as well as experience with its operational run are described. Finally an overview of the implementation problems and scheduled follow-up activities are outlined.

  8. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    Science.gov (United States)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  9. Physicists Get INSPIREd: INSPIRE Project and Grid Applications

    Science.gov (United States)

    Klem, Jukka; Iwaszkiewicz, Jan

    2011-12-01

    INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.

  10. Inspiring to inspire: Developing teaching in higher education

    Directory of Open Access Journals (Sweden)

    Louise Williams

    2016-12-01

    Full Text Available Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through individual reflections to a set of pre-determined questions, a group of Higher Education teachers (n = 5 with a responsibility for the development of learning, teaching and assessment, share their thoughts, feelings and beliefs on inspiring teaching. The interpretive analysis of the data shows from a staff perspective that the notion of inspiring teaching has three main components which are all interrelated, those being; the actual teaching and learning experience; the design of the curriculum and the teacher/student relationship. Staff development initiatives were found to help people explore and develop their own teaching philosophy, to develop new practices and to share and learn from others. However, individual’s mindset, beliefs and attitudes were found to be a challenge. Teachers can frame their development around the different aspects of inspiring teaching and with support from senior leadership as well as a positive culture, teaching communities can work together towards inspiring teaching.

  11. Understanding Gravitational Waves from Inspiral Binary Systems and its Detection

    CERN Document Server

    Antelis, Javier M

    2016-01-01

    The discovery of the events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure this waves using the interferometer-based detector called LIGO. Subsequently, the work proposes a comprehensive data analysis methodology based on the matched filter algorithm which aims to detect GW signals emitted by inspiral binary systems of astrophysical sources. The method is validated with freely available LIGO data which contain injected GW signals. Results of experiments performed to assess detection carried out show that the method was able to recover the 85% of the injected GW.

  12. Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes

    CERN Document Server

    Varma, Vijay; Husa, Sascha; Bustillo, Juan Calderon; Hannam, Mark; Puerrer, Michael

    2014-01-01

    We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses $20 M_\\odot \\leq M \\leq 250 M_\\odot$ and mass ratios $1 \\leq q \\leq 18$. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate $< 10\\%$) for the detection of GWs with mass ratios $q\\leq4$ using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systemat...

  13. Information retrieval from black holes

    Science.gov (United States)

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-08-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.

  14. Hawking radiation without black hole entropy

    CERN Document Server

    Visser, M

    1998-01-01

    In this Letter I point out that Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries. Hawking radiation arises for any test field on any Lorentzian geometry containing an event horizon regardless of whether or not the Lorentzian geometry satisfies the dynamical Einstein equations of general relativity. On the other hand, the classical laws of black hole mechanics are intrinsically linked to the Einstein equations of general relativity (or their perturbative extension into either semiclassical quantum gravity or string-inspired scenarios). In particular, the laws of black hole thermodynamics, and the identification of the entropy of a black hole with its area, are inextricably linked with the dynamical equations satisfied by the Lorentzian geometry: entropy is proportional to area (plus corrections) if and only if the dynamical equations are the Einstein equations (plus corrections). It is quite possible to have Hawking radiation occur in physical situations in which the laws...

  15. Probing Black Holes With Gravitational Radiation

    Science.gov (United States)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  16. Quasinormal modes and classical wave propagation in analogue black holes

    CERN Document Server

    Berti, E; Lemos, J P S; Berti, Emanuele; Cardoso, Vitor; Lemos, Jose' P. S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the ``draining bathtub'' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Due to the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute reflection coefficients and instability timescales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a non-rotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  17. Hole-pin joining structure with fiber-round-hole distribution of lobster cuticle and biomimetic study.

    Science.gov (United States)

    Chen, Bin; Fan, Jinghong; Gou, Jihua; Lin, Shiyun

    2014-12-01

    Observations of the cuticle of the Boston Spiny Lobster using scanning electron microscope (SEM) show that it is a natural biocomposite consisting of chitin fibers and sclerotic-protein matrix with hierarchical and helicoidal structure. The SEM images also indicate that there is a hole-pin joining structure in the cuticle. In this joining structure, the chitin fibers in the neighborhood of the joining holes continuously round the holes to form a fiber-round-hole distribution. The maximum pullout force of the fibers in the fiber-round-hole distribution, which is closely related to the fracture toughness of the cuticle, is investigated and compared with that of the fibers in non-fiber-round-hole distribution based on their representative models. It is revealed that the maximum pullout force of the fibers in the fiber-round-hole distribution is significantly larger than that of the fibers in the non-fiber-round-hole distribution, and that a larger diameter of the hole results in a larger difference in the maximum pullout forces of the fibers between the two kinds of the fiber distributions. Inspired by the fiber-round-hole distribution found in the cuticle, composite specimens with the fiber-round-hole distribution were fabricated with a special mold and process to mirror the fiber-round-hole distribution. The fracture toughness of the biomimetic composite specimens is tested and compared with that of the conventional composite specimens with the non-fiber-round-hole distribution. It is demonstrated that the fracture toughness of the biomimetic composite specimens with the fiber-round-hole distribution is significantly larger than that of the conventional composite specimens with the non-fiber-round-hole distribution.

  18. Inspiring Student Self-Motivation

    Directory of Open Access Journals (Sweden)

    Virginia Brackett

    2007-01-01

    Full Text Available While normally appreciative of the invitation to join colleagues in a discussion of pedagogy and what “works” in the classroom, I have in most instances reluctantly participated in discussion of student motivation. I dip my toe into this philosophical quagmire only if permitted license to substitute the phrase student inspiration in place of student motivation. I also find it helpful to turn the rhetorical tables, as it were, and consider self-motivation on the part of students. The concept of individuals who hold some sense of self that a classroom mentor may nurture through student inspiration is one in which I place a modicum of trust. To “inspire” is literally to “breathe in,” to actively pull sustenance from a proffered external source. Active student determination based on some sense of self may couple with instructor inspiration to promote academic success.

  19. Inspiring to Inspire: Developing Teaching in Higher Education

    Science.gov (United States)

    Williams, Louise; Nixon, Sarah; Hennessy, Claire; Mahon, Elizabeth; Adams, Gill

    2016-01-01

    Following a three-year staff development initiative within one faculty in a UK university, the authors reflected on inspiring teaching and the role that staff development can play in enhancing individual practice. Teaching is a core component of Higher Education and is complex and multi-faceted both theoretically and in practice. Through…

  20. Gravitational Waves from a Particle in Circular Orbits around a Rotating Black Hole to the 11th Post-Newtonian Order

    CERN Document Server

    Fujita, Ryuichi

    2014-01-01

    We compute the energy flux of the gravitational waves radiated by a particle of mass $\\m$ in circular orbits around a rotating black hole of mass $M$ up to the 11th post-Newtonian order (11PN), i.e. $v^{22}$ beyond the leading Newtonian approximation where $v$ is the orbital velocity of the particle. By comparing the PN results for the energy flux with high precision numerical results in black hole perturbation theory, we find the region of validity in the PN approximation becomes larger with increasing PN orders. If one requires the relative error of the energy flux in the PN approximation to be less than $10^{-5}$, the energy flux at 11PN (4PN) can be used for $v\\lessapprox 0.33$ ($v\\lessapprox 0.13$). The region of validity can be further extended to $v\\lessapprox 0.4$ if one applies a resummation method to the energy flux at 11PN. We then compare the orbital phase during two-year inspiral from the PN results with the high precision numerical results. We find that for late (early) inspirals when $q\\le 0.3$...

  1. Deburring small intersecting holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  2. Scalar fields in black hole spacetimes

    Science.gov (United States)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  3. The Capra Research Program for Modelling Extreme Mass Ratio Inspirals

    CERN Document Server

    Thornburg, Jonathan

    2011-01-01

    Suppose a small compact object (black hole or neutron star) of mass $m$ orbits a large black hole of mass $M \\gg m$. This system emits gravitational waves (GWs) that have a radiation-reaction effect on the particle's motion. EMRIs (extreme--mass-ratio inspirals) of this type will be important GW sources for LISA; LISA's data analysis will require highly accurate EMRI GW templates. In this article I outline the "Capra" research program to try to model EMRIs and calculate their GWs \\textit{ab initio}, assuming only that $m \\ll M$ and that the Einstein equations hold. Here we treat the EMRI spacetime as a perturbation of the large black hole's "background" (Schwarzschild or Kerr) spacetime and use the methods of black-hole perturbation theory, expanding in the small parameter $m/M$. The small body's motion can be described either as the result of a radiation-reaction "self-force" acting in the background spacetime or as geodesic motion in a perturbed spacetime. Several different lines of reasoning lead to the (s...

  4. Life inside black holes

    CERN Document Server

    Dokuchaev, V I

    2012-01-01

    We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.

  5. Inspiration: One Percent and Rising

    Science.gov (United States)

    Walling, Donovan R.

    2009-01-01

    Inventor Thomas Edison once famously declared, "Genius is one percent inspiration and ninety-nine percent perspiration." If that's the case, then the students the author witnessed at the International Student Media Festival (ISMF) last November in Orlando, Florida, are geniuses and more. The students in the ISMF pre-conference workshop had much to…

  6. Novel locomotion via biological inspiration

    Science.gov (United States)

    Quinn, Roger D.; Boxerbaum, Alexander; Palmer, Luther; Chiel, Hillel; Diller, Eric; Hunt, Alexander; Bachmann, Richard

    2011-05-01

    Animal behavioral, physiological and neurobiological studies are providing a wealth of inspirational data for robot design and control. Several very different biologically inspired mobile robots will be reviewed. A robot called DIGbot is being developed that moves independent of the direction of gravity using Distributed Inward Gripping (DIG) as a rapid and robust attachment mechanism observed in climbing animals. DIGbot is an 18 degree of freedom hexapod with onboard power and control systems. Passive compliance in its feet, which is inspired by the flexible tarsus of the cockroach, increases the robustness of the adhesion strategy and enables DIGbot to execute large steps and stationary turns while walking on mesh screens. A Whegs™ robot, inspired by insect locomotion principles, is being developed that can be rapidly reconfigured between tracks and wheel-legs and carry GeoSystems Zipper Mast. The mechanisms that cause it to passively change its gait on irregular terrain have been integrated into its hubs for a compact and modular design. The robot is designed to move smoothly on moderately rugged terrain using its tracks and run on irregular terrain and stairs using its wheel-legs. We are also developing soft bodied robots that use peristalsis, the same method of locomotion earthworms use. We present a technique of using a braided mesh exterior to produce fluid waves of motion along the body of the robot that increase the robot's speed relative to previous designs. The concept is highly scalable, for endoscopes to water, oil or gas line inspection.

  7. Inversion exercises inspired by mechanics

    Science.gov (United States)

    Groetsch, C. W.

    2016-02-01

    An elementary calculus transform, inspired by the centroid and gyration radius, is introduced as a prelude to the study of more advanced transforms. Analysis of the transform, including its inversion, makes use of several key concepts from basic calculus and exercises in the application and inversion of the transform provide practice in the use of technology in calculus.

  8. Noether charge, black hole volume and complexity

    CERN Document Server

    Couch, Josiah; Nguyen, Phuc H

    2016-01-01

    In this paper, we study the physical significance of the thermodynamic volumes of black holes along two different, but complementary, directions. In the first half of the paper, we make use of the Iyer-Wald charge formalism to compute the volume of a particularly hairy black hole. Our computation clarifies and explains existing results, and serves as a prototype for computations of this kind for complicated black hole solutions. In the second half of the paper, we establish a connection between the extended thermodynamics and the Brown et al's "complexity=action" proposal. We show that, in a broad class of AdS black holes, the thermodynamic volume arises as the late-time rate of growth of the bulk action evaluated on the Wheeler-deWitt patch.

  9. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting...... in a presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...... are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  10. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988......The budget forms the legal basis of government spending. If a budget is not in place at the beginning of the fiscal year, planning as well as current spending are jeopardized and government shutdown may result. This paper develops a continuous-time war-of-attrition model of budgeting...... in a presidential style-democracy to explain the duration of budget negotiations. We build our model around budget baselines as reference points for loss averse negotiators. We derive three testable hypotheses: there are more late budgets, and they are more late, when fiscal circumstances change; when such changes...

  11. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  12. Hamiltonian formalism for Perturbed Black Hole Spacetimes

    Science.gov (United States)

    Mihaylov, Deyan; Gair, Jonathan

    2017-01-01

    Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.

  13. Learning about Black-Hole Formation from Gravitational Waves

    Science.gov (United States)

    Kesden, Michael H.

    2017-01-01

    The first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves from two binary black-hole mergers. Although astrophysical black holes are simple objects fully characterized by their masses and spins, key features of binary black-hole formation such as mass transfer, natal kicks, and common-envelope evolution can misalign black-hole spins with the orbital angular momentum of the binary. These misaligned spins will precess as gravitational-wave emission causes the black holes to inspiral to separations at which the waves are detectable by observatories like LIGO. Spin precession modulates the amplitude and frequency of the gravitational waves observed by LIGO, allowing it to not only test general relativity but also reveal the secrets of black-hole formation. This talk will briefly describe those elements of binary black-hole formation responsible for initial spin misalignments, how spin precession and radiation reaction in general relativity determine how spins evolve from formation until the black holes enter LIGO’s sensitivity band, and how spin-induced gravitational-wave modulation in band can be used as a diagnostic of black-hole formation.

  14. Bio-Inspired Odor Source Localization

    Science.gov (United States)

    2011-07-01

    1 Distribution A: Approved for Public Release; Distribution Unlimited Bio -Inspired Odor Source Localization Bio -Inspired Odor Source Localization...2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Bio -Inspired Odor Source Localization 5a. CONTRACT NUMBER 5b. GRANT...Distribution Unlimited Bio -Inspired Odor Source Localization Why study odor tracking? • Engineer odor tracking systems – Gas leaks – Hazardous waste

  15. Eccentric Inspirals with Self-Force and Spin-Force

    Science.gov (United States)

    Evans, Charles; Osburn, Thomas; Warburton, Niels

    2017-01-01

    Eccentric inspirals of a small mass about a more massive Schwarzschild black hole (EMRIs or IMRIs) are calculated using the gravitational self-force and the Mathisson-Papapetrou spin-force. These calculations include all dissipative and conservative effects that are first order in the mass ratio. We compute systems with initial eccentricities as high as e = 0.8, initial separations as large as 50 M, and arbitrary spin orientations. Including the spin-force causes the orbital plane to precess. Inspirals are calculated using an osculating-orbits scheme that is driven by self-force data from a hybrid self-force code and time-domain spin-force calculations. The hybrid approach uses both self-force data from a Lorenz gauge code and highly accurate flux data from a Regge-Wheeler-Zerilli code, allowing the hybrid model to track orbital phase of inspirals to within 0.1 radians or better over hundreds or thousands of orbits. NSF PHY15-06182.

  16. Floating and sinking: the imprint of massive scalars around rotating black holes.

    Science.gov (United States)

    Cardoso, Vitor; Chakrabarti, Sayan; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-12-09

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiraling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body sinks. These effects could be a smoking gun of deviations from general relativity.

  17. Decrypting $SO(10)$-inspired leptogenesis

    CERN Document Server

    Di Bari, Pasquale; Fiorentin, Michele Re

    2014-01-01

    Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of $SO(10)$-inspired models and leptogenesis with hierarchical right-handed (RH) neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry $N^{\\rm p,i}_{B-L}$, the strong thermal (ST) condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the {\\rm ST}-$SO(10)$-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analy...

  18. Metamaterial-inspired silicon nanophotonics

    Science.gov (United States)

    Staude, Isabelle; Schilling, Jörg

    2017-04-01

    The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

  19. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  20. Higher spin black holes

    National Research Council Canada - National Science Library

    Gutperle, Michael; Kraus, Per

    2011-01-01

    .... We find solutions that generalize the BTZ black hole and carry spin-3 charge. The black hole entropy formula yields a result for the asymptotic growth of the partition function at finite spin-3 chemical potential...

  1. Black hole hair removal

    Science.gov (United States)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-07-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  2. Black Hole Hair Removal

    CERN Document Server

    Banerjee, Nabamita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair, -- degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  3. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  4. Black Hole Thermodynamics

    Science.gov (United States)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  5. Stewardship in mental health policy: inspiration, influence, institution?

    Science.gov (United States)

    Brown, Lawrence D; Isett, Kimberley R; Hogan, Michael

    2010-06-01

    The venerable but amorphous concept of stewardship has lately gained prominence in discussions of public policy and management and is sometimes offered as a "strategy" with a distinctive potential to mobilize effective public leadership in the service of broad social missions. In this article we explore how stewardship may be useful to the theory and practice of mental health policy, and, reciprocally, how examples from mental health policy may elucidate the dynamics of stewardship. After examining its key political ingredients--authority, advocacy, and analysis--we discuss the practical challenges in moving stewardship from moral inspiration to institutional reality.

  6. All or nothing: On the small fluctuations of two-dimensional string theoretic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Gerald [Univ. of Maryland, College Park, MD (United States); Raiten, Eric [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    1992-10-01

    A comprehensive analysis of small fluctuations about two-dimensional string-theoretic and string-inspired black holes is presented. It is shown with specific examples that two-dimensional black holes behave in a radically different way from all known black holes in four dimensions. For both the SL(2,R)/U(1) black hole and the two-dimensional black hole coupled to a massive dilaton with constant field strength, it is shown that there are a {\\it continuous infinity} of solutions to the linearized equations of motion, which are such that it is impossible to ascertain the classical linear response. It is further shown that the two-dimensional black hole coupled to a massive, linear dilaton admits {\\it no small fluctuations at all}. We discuss possible implications of our results for the Callan-Giddings-Harvey-Strominger black hole.

  7. Monopole black hole skyrmions

    OpenAIRE

    Moss, I. G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  8. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, I. G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  9. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs. Spin-dependen

  10. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  11. Complexity Growth for AdS Black Holes

    CERN Document Server

    Cai, Rong-Gen; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-01-01

    We further investigate the Complexity-Action (CA) duality conjecture for stationary anti de-Sitter (AdS) black holes and derive some exact results for the growth rate of action within Wheeler-DeWitt (WDW) patch at late time approximation, which is dual to the growth rate of quantum complexity of holographic state. Based on the results from the general $D$-dimensional Reissner-Nordstr\\"{o}m (RN)-AdS black hole, rotating/charged Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a new complexity bound but leave unchanged the conjecture that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  12. Searching for numerically-simulated signals of black hole binaries with a phenomenological template family

    CERN Document Server

    Santamaria, Lucia; Whelan, John T

    2009-01-01

    Recent progress in numerical relativity now allows computation of the binary black hole merger, whereas post-Newtonian and perturbative techniques can be used to model the inspiral and ringdown phases. So far, most gravitational-wave searches have made use of various post-Newtonian-inspired templates to search for signals arising from the coalescence of compact binary objects. Ajith et al have produced hybrid waveforms for non-spinning binary black-hole systems which include the three stages of the coalescence process, and constructed from them phenomenological templates which capture the features of these waveforms in a parametrized form. As a first step towards extending the present inspiral searches to higher-mass binary black-hole systems, we have used these phenomenological waveforms in a search for numerically-simulated signals injected into synthetic LIGO data as part of the NINJA project.

  13. Black-hole Merger Simulations for LISA Science

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  14. Gravitational correlation, black hole entropy, and information conservation

    Science.gov (United States)

    He, DongShan; Cai, QingYu

    2017-04-01

    When two objects have gravitational interaction between them, they are no longer independent of each other. In fact, there exists gravitational correlation between these two objects. Inspired by Verlinde's paper, we first calculate the entropy change of a system when gravity does positive work on this system. Based on the concept of gravitational correlation entropy, we prove that the entropy of a Schwarzschild black hole originates from the gravitational correlations between the interior matters of the black hole. By analyzing the gravitational correlation entropies in the process of Hawking radiation in a general context, we prove that the reduced entropy of a black hole is exactly carried away by the radiation and the gravitational correlations between these radiating particles, and the entropy or information is conserved at all times during Hawking radiation. Finally, we attempt to give a unified description of the non-extensive black-hole entropy and the extensive entropy of ordinary matter.

  15. Generalized uncertainty principles, effective Newton constant and regular black holes

    CERN Document Server

    Li, Xiang; Shen, You-Gen; Liu, Cheng-Zhou; He, Hong-Sheng; Xu, Lan-Fang

    2016-01-01

    In this paper, we explore the quantum spacetimes that are potentially connected with the generalized uncertainty principles. By analyzing the gravity-induced quantum interference pattern and the Gedanken for weighting photon, we find that the generalized uncertainty principles inspire the effective Newton constant as same as our previous proposal. A characteristic momentum associated with the tidal effect is suggested, which incorporates the quantum effect with the geometric nature of gravity. When the simplest generalized uncertainty principle is considered, the minimal model of the regular black holes is reproduced by the effective Newton constant. The black hole's tunneling probability, accurate to the second order correction, is carefully analyzed. We find that the tunneling probability is regularized by the size of the black hole remnant. Moreover, the black hole remnant is the final state of a tunneling process that the probability is minimized. A theory of modified gravity is suggested, by substituting...

  16. Understanding the "antikick" in the merger of binary black holes.

    Science.gov (United States)

    Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis

    2010-06-04

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

  17. Stellar dynamics and extreme-mass ratio inspirals

    CERN Document Server

    Amaro-Seoane, Pau

    2012-01-01

    Nowadays it is well-established that in the centre of the Milky Way a massive black hole (MBH) with a mass of about four million solar masses is lurking. While there is an emerging consensus about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses such as the one in our galactic centre remain an understudied enigma. The key to understanding these holes, how some of them grow by orders of magnitude in mass is to understand the dynamics of the stars in the galactic neighborhood. Stars and the central MBH chiefly interact through the gradual inspiral of the stars into the MBH due to the emission of gravitational radiation. Also stars produce gases which will be subsequently accreted by the MBH by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational rad...

  18. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    other stars in this area. The new NACO instrument [3] was installed in late 2001 at the VLT 8.2-m YEPUN telescope. Already during the initial tests, it produced many impressive images, some of which have been the subject of earlier ESO press releases [6]. "The first observations this year with NACO gave us right away the sharpest and 'deepest' images of the Milky Way Centre ever taken, showing a large number of stars in that area in great detail" , says Andreas Eckart of the University of Cologne, another member of the international team that is headed by Rainer Schödel, Thomas Ott and Reinhard Genzel from MPE. "But we were still to be overwhelmed by the wonderful outcome of those data! " Combining their infrared images with high-resolution radio data, the team was able to determine - during a ten-year period - very accurate positions of about one thousand stars in the central area with respect to the compact radio source SgrA* , see PR Photo 23c/02 . "When we included the latest NACO data in our analysis in May 2002, we could not believe our eyes. The star S2 , which is the one currently closest to SgrA*, had just performed a rapid swing-by near the radio source. We suddenly realised that we were actually witnessing the motion of a star in orbit around the central black hole, taking it incredibly close to that mysterious object" , says a very happy Thomas Ott , who is now working in the MPE team on his PhD thesis. In orbit around the central black hole No event like this one has ever been recorded . These unique data show unambiguously that S2 is moving along an elliptical orbit with SgrA* at one focus, i.e. S2 orbits SgrA* like the Earth orbits the Sun, cf. the right panel of PR Photo 23c/02 . The superb data also allow a precise determination of the orbital parameters (shape, size, etc.). It turns out that S2 reached its closest distance to SgrA* in the spring of 2002, at which moment it was only 17 light-hours [5] away from the radio source, or just 3 times the Sun

  19. Sound Hole Sound

    CERN Document Server

    Politzer, David

    2015-01-01

    The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alternate way to understand the most important of those effects. The measurements also confirm and illuminate aspects of Helmholtz's "bottle" resonator model as applied to musical instrument sound boxes and sound holes.

  20. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  1. On Accelerated Black Holes

    CERN Document Server

    Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.

    1998-01-01

    The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.

  2. Dirac Fermions in Non-trivial Topology Black Hole Backgrounds

    CERN Document Server

    Gozdz, Marek; Rogatko, Marek

    2010-01-01

    We discuss the behaviour of the Dirac fermions in a general spherically symmetric black hole background with a non-trivial topology of the event horizon. Both massive and massless cases are taken into account. The analytical studies of intermediate and late-time behaviour of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string will be conducted. It was revealed that in the case of a global monopole swallowed by a static black hole the intermediate late-time behaviour depends on the mass of the Dirac field, the multiple number of the wave mode and the global monopole parameter. The late-time behaviour is quite independent of these factors and has the decay rate proportional to $t^{-5/6}$. As far as the black hole pierced by a cosmic string is concerned the intermediate late-time behaviour depends only on the hair mass and the multipole number of the wave mode while the late-time behaviour dependence is the same as in the previous case. Th...

  3. Testing general relativity using golden black-hole binaries

    CERN Document Server

    Ghosh, Abhirup; Johnson-McDaniel, Nathan K; Mishra, Chandra Kant; Ajith, Parameswaran; Del Pozzo, Walter; Nichols, David A; Chen, Yanbei; Nielsen, Alex B; Berry, Christopher P L; London, Lionel

    2016-01-01

    The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In addition, the mass and spin of the final black hole can be independently estimated from the merger-ringdown part of the signal. If the binary black hole dynamics is correctly described by general relativity, these independent estimates have to be consistent with each other. We present a Bayesian implementation of such a test of general relativity, and outline the expected constraints from upcoming GW observations using the second-generation of ground-based GW detectors.

  4. Space as an inspiring context

    Science.gov (United States)

    Stancu, Cristina

    2017-04-01

    Using space as context to inspire science education tapps into the excitement of generations of discovering the unknown resulting in unprecedented public participation. Educators are finding exciting and age appropiate materials for their class that explore science, technology, engineering and mathematics. Possible misconceptions are highlighted so that teachers may plan lessons to facilitate correct conceptual understanding. With a range of hands-on learning experiences, Web materials and online ,opportunities for students, educators are invited to take a closer look to actual science missions. This session leverages resources, materials and expertise to address a wide range of traditional and nontraditional audiences while providing consistent messages and information on various space agencies programs.

  5. Natural photonics for industrial inspiration.

    Science.gov (United States)

    Parker, Andrew R

    2009-05-13

    There are two considerations for optical biomimetics: the diversity of submicrometre architectures found in the natural world, and the industrial manufacture of these. A review exists on the latter subject, where current engineering methods are considered along with those of the natural cells. Here, on the other hand, I will provide a modern review of the different categories of reflectors and antireflectors found in animals, including their optical characterization. The purpose of this is to inspire designers within the $2 billion annual optics industry.

  6. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  7. Black hole thermodynamics, stringy dualities and double field theory

    Science.gov (United States)

    Arvanitakis, Alex S.; Blair, Chris D. A.

    2017-03-01

    We discuss black hole thermodynamics in the manifestly duality invariant formalism of double field theory (DFT). We reformulate and prove the first law of black hole thermodynamics in DFT, using the covariant phase space approach. After splitting the full O(D, D) invariant DFT into a Kaluza–Klein-inspired form where only n coordinates are doubled, our results provide explicit duality invariant mass and entropy formulas. We illustrate how this works by discussing the black string solution and its T-duals.

  8. Black hole thermodynamics, stringy dualities and double field theory

    CERN Document Server

    Arvanitakis, Alex S

    2016-01-01

    We discuss black hole thermodynamics in the manifestly duality invariant formalism of double field theory (DFT). We reformulate and prove the first law of black hole thermodynamics in DFT, using the covariant phase space approach. After splitting the full O(D, D) invariant DFT into a Kaluza-Klein-inspired form where only n coordinates are doubled, our results provide explicit duality invariant mass and entropy formulas. We illustrate how this works by discussing the black fundamental string solution and its T-duals.

  9. Black hole clustering and duty cycles in the Illustris simulation

    Science.gov (United States)

    DeGraf, C.; Sijacki, D.

    2017-04-01

    We use the high-resolution cosmological simulation Illustris to investigate the clustering of supermassive black holes across cosmic time, the link between black hole clustering and host halo masses, and the implications for black hole duty cycles. Our predicted black hole correlation length and bias match the observational data very well across the full redshift range probed. Black hole clustering is strongly luminosity dependent on small, 1-halo scales, with some moderate dependence on larger scales of a few Mpc at intermediate redshifts. We find black hole clustering to evolve only weakly with redshift, initially following the behaviour of their hosts. However, below z ∼ 2 black hole clustering increases faster than that of their hosts, which leads to a significant overestimate of the clustering-predicted host halo mass. The full distribution of host halo masses is very wide, including a low-mass tail extending up to an order of magnitude below the naive prediction for minimum host mass. Our black hole duty cycles, fduty, follow a power-law dependence on black hole mass and decrease with redshift, and we provide accurate analytic fits to these. The increase in clustering amplitude at late times, however, means that duty cycle estimates based on black hole clustering can overestimate fduty substantially, by more than two orders of magnitude. We find the best agreement when the minimum host mass is assumed to be 1011.2 M⊙, which provides an accurate measure across all redshifts and luminosity ranges probed by our simulation.

  10. Perspective of an Artist Inspired by Physics

    Science.gov (United States)

    Sanborn, Jim

    2010-02-01

    Using digital images and video I will be presenting thirty years of my science based artwork. Beginning in the late 1970's my gallery and museum installations used lodestones and suspended compasses to reveal the earths' magnetic field. Through the 1980's my work included these compass installations and geologically inspired tableaux that had one thing in common, they were designed to expose the invisible forces of nature. Tectonics, the Coriolis force, and magnetism were among the subjects of study. In 1988, on the basis of my work with invisible forces, I was selected for a commission from the General Services Administration for the new Central Intelligence Agency headquarters in Langley Virginia. This work titled Kryptos included a large cryptographic component that remains undeciphered twenty years after its installation. In the 1990's Kryptos inspired several of my museum and gallery installations using cryptography and secrecy as their main themes. From 1995-1998 I completed a series of large format projections on the landscape in the western US and Ireland. These projections and the resulting series of photographs emulated the 19th century cartographers hired by the United States Government to map the western landscape. In 1998 I began my project titled Atomic Time. This installation shown for the first time in 2004 at the Corcoran Gallery in Washington DC, then again in the Gwangju Biennale in South Korea was a recreation of the 1944 Manhattan Project laboratory that built the first Atomic Bomb. This installation used original equipment and prototypes from the Los Alamos Lab and was an extremely accurate representation of the laboratory and the first nuclear bomb called the ``Trinity Device.'' I began my current project Terrestrial Physics in 2005. This installation to be shown in June 2010 at the Museum of Contemporary Art in Denver is a recreation of the large particle accelerator and the experiment that fissioned Uranium in 1939 at the Carnegie

  11. Gravitational wave tests of quantum modifications to black hole structure

    CERN Document Server

    Giddings, Steven B

    2016-01-01

    A preliminary discussion is given of the prospects that gravitational-wave observations of binary inspiral of black holes could reveal or constrain quantum modifications to black hole dynamics, such as are required to preserve postulates of quantum mechanics. Different proposals for such modifications are characterized by different scales, and the size of these scales relative to those probed by observation of inspiral signals is important in determining the feasibility of finding experimental signatures. Certain scenarios with strong quantum modifications in a region extending well outside the horizon are expected to modify classical evolution, and distort the near-peak gravitational wave signal, suggesting a search for anomalies such as decreased regularity of the signal and increased power.

  12. Nonthermal nature of incipient extremal black holes

    CERN Document Server

    Liberati, S; Sonego, S

    2000-01-01

    We examine particle production from spherical bodies collapsing into extremalReissner-Nordstr\\"om black holes. Kruskal coordinates become ill-defined in theextremal case, but we are able to find a simple generalization of them that isgood in this limit. The extension allows us to calculate the late-timeworldline of the center of the collapsing star, thus establishing acorrespondence with a uniformly accelerated mirror in Minkowski spacetime. Thespectrum of created particles associated with such uniform acceleration isnonthermal, indicating that a temperature is not defined. Moreover, thespectrum contains a constant that depends on the history of the collapsingobject. At first sight this points to a violation of the no-hair theorems;however, the expectation value of the stress-energy-momentum tensor is zero andits variance vanishes as a power law at late times. Hence, both the no-hairtheorems and the cosmic censorship conjecture are preserved. Furthermore,because the incipient black hole does not behave as a t...

  13. Superrotations and Black Hole Pair Creation

    CERN Document Server

    Strominger, Andrew

    2016-01-01

    Recent work has shown that the symmetries of classical gravitational scattering in asymptotically flat spacetimes include, at the linearized level, infinitesimal superrotations. These act like Virasoro generators on the celestial sphere at null infinity. However, due to the singularities in these generators, the physical status of finite superrotations has remained unclear. Here we address this issue in the context of the breaking of a cosmic string via quantum black hole pair nucleation. This process is described by a gravitational instanton known as the $C$-metric. After pair production, the black holes are pulled by the string to null infinity with a constant acceleration. At late times the string decays and the spacetime settles into a vacuum state. We show that the early and late spacetimes before and after string decay differ by a finite superrotation. This provides a physical interpretation of superrotations. They act on spacetimes which are asymptotically flat everywhere except at isolated singulariti...

  14. Hologram of a pure state black hole

    Science.gov (United States)

    Roy, Shubho R.; Sarkar, Debajyoti

    2015-12-01

    In this paper, we extend the Hamilton-Kabat-Lifschytz-Lowe (HKLL) holographic smearing function method to reconstruct (quasi)local anti-de Sitter bulk scalar observables in the background of a large anti-de Sitter black hole formed by null shell collapse (a "pure state" black hole), from the dual conformal field theory which is undergoing a sudden quench. In particular, we probe the near horizon and subhorizon bulk locality. First, we construct local bulk operators from the conformal field theory in the leading semiclassical limit, N →∞ . Then, we look at effects due to the finiteness of N , where we propose a suitable coarse-graining prescription involving early and late time cutoffs to define semiclassical bulk observables which are approximately local, their departure from locality being nonperturbatively small in N . Our results have important implications on the black hole information problem.

  15. Hologram of a pure state black hole

    CERN Document Server

    Roy, Shubho R

    2015-01-01

    In this paper we extend the HKLL holographic smearing function method to reconstruct (quasi)local AdS bulk scalar observables in the background of a large AdS black hole formed by null shell collapse (a "pure state" black hole), from the dual CFT which is undergoing a sudden quench. In particular, we probe the near horizon and sub-horizon bulk locality. First we construct local bulk operators from the CFT in the leading semiclassical limit, $N\\rightarrow\\infty$. Then we look at effects due to the finiteness of $N$, where we propose a suitable coarse-graining prescription involving early and late time cut-offs to define semiclassical bulk observables which are approximately local; their departure from locality being non-perturbatively small in $N$. Our results have important implications on the black hole information problem.

  16. Collisions Around a Black Hole Mean Mealtime

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    When a normally dormant supermassive black hole burps out a brief flare, its assumed that a star was torn apart and fell into the black hole. But a new study suggests that some of these flares might have a slightly different cause.Not a Disruption?Artists impression of a tidal disruption event, in which a star has been pulled apart and its gas feeds the supermassive black hole. [NASA/JPL-Caltech]When a star swings a little too close by a supermassive black hole, the black holes gravity can pull the star apart, completely disrupting it. The resulting gas can then accrete onto the black hole, feeding it and causing it to flare. The predicted frequency of these tidal disruption events and their expected light curves dont perfectly match all our observations of flaring black holes, however.This discrepancy has led two scientists from the Columbia Astrophysics Laboratory, Brian Metzger and Nicholas Stone, to wonder if we can explain flares from supermassive black holes in another way. Could a differentevent masquerade as a tidal disruption?Evolution of a stars semimajor axis (top panel) and radius (bottom panel) as a function of time since Roche-lobe overflow began onto a million-solar-mass black hole. Curves show stars of different masses. [Metzger Stone 2017]Inspirals and OutspiralsIn the dense nuclear star cluster surrounding a supermassive black hole, various interactions can send stars on new paths that take them close to the black hole. In many of these interactions, the stars will end up on plunging orbits, often resulting in tidal disruption. But sometimes stars can approach the black hole on tightly bound orbits with lower eccentricities.A main-sequence star on such a path, in what is known as an extreme mass ratio inspiral (EMRI), slowly approaches the black hole over a period of millions of years, eventually overflowing its Roche lobe and losing mass. Theradius of the star inflates, driving more mass loss and halting the stars inward progress. The star then

  17. Guard Cell and Tropomyosin Inspired Chemical Sensor

    Directory of Open Access Journals (Sweden)

    Jacquelyn K.S. Nagel

    2013-10-01

    Full Text Available Sensors are an integral part of many engineered products and systems. Biological inspiration has the potential to improve current sensor designs as well as inspire innovative ones. This paper presents the design of an innovative, biologically-inspired chemical sensor that performs “up-front” processing through mechanical means. Inspiration from the physiology (function of the guard cell coupled with the morphology (form and physiology of tropomyosin resulted in two concept variants for the chemical sensor. Applications of the sensor design include environmental monitoring of harmful gases, and a non-invasive approach to detect illnesses including diabetes, liver disease, and cancer on the breath.

  18. Stability and thermodynamics of brane black holes

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, E. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: eabdalla@fma.if.usp.br; Cuadros-Melgar, B. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: bertha@fma.if.usp.br; Pavan, A.B. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: alan@fma.if.usp.br; Molina, C. [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, Av. Arlindo Bettio 1000, CEP 03828-000 Sao Paulo, SP (Brazil)]. E-mail: cmolina@usp.br

    2006-09-18

    We consider scalar and axial gravitational perturbations of black hole solutions in brane world scenarios. We show that perturbation dynamics is surprisingly similar to the Schwarzschild case with strong indications that the models are stable. Quasinormal modes and late-time tails are discussed. We also study the thermodynamics of these scenarios verifying the universality of Bekenstein's entropy bound as well as the applicability of 't Hooft's brickwall method.

  19. Stability and Thermodynamics of Brane Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, E; Cuadros-Melgar, B; Pavan, A B [Instituto de Fisica, Universidade de Sao Paulo, C.P.66.318, CEP 05315-970, Sao Paulo (Brazil); Molina, C [Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo Av. Arlindo Bettio 1000, CEP 03828-000, Sao Paulo-SP (Brazil)

    2007-05-15

    We consider scalar and axial gravitational perturbations of black hole solutions in brane world scenarios. We show that perturbation dynamics is surprisingly similar to the Schwarzschild case with strong indications that the models are stable. Quasinormal modes and late-time tails are discussed. We also study the thermodynamics of these scenarios verifying the universality of Bekenstein's entropy bound as well as the applicability of 't Hooft's brickwall method.

  20. Nonthermal nature of incipient extremal black holes

    Science.gov (United States)

    Liberati, Stefano; Rothman, Tony; Sonego, Sebastiano

    2000-07-01

    We examine particle production from spherical bodies collapsing into extremal Reissner-Nordström black holes. Kruskal coordinates become ill defined in the extremal case, but we are able to find a simple generalization of them that is good in this limit. The extension allows us to calculate the late-time world line of the center of the collapsing star, thus establishing a correspondence with a uniformly accelerated mirror in Minkowski spacetime. The spectrum of created particles associated with such uniform acceleration is nonthermal, indicating that a temperature is not defined. Moreover, the spectrum contains a constant that depends on the history of the collapsing object. At first sight this points to a violation of the no-hair theorems; however, the expectation value of the stress-energy-momentum tensor is zero and its variance vanishes as a power law at late times. Hence, both the no-hair theorems and the cosmic censorship conjecture are preserved. The power-law decay of the variance is in distinction to the exponential falloff of a nonextremal black hole. Therefore, although the vanishing of the stress tensor's expectation value is consistent with a thermal state at zero temperature, the incipient black hole does not behave as a thermal object at any time and cannot be regarded as the thermodynamic limit of a nonextremal black hole, regardless of the fact that the final product of collapse is quiescent.

  1. Energetic constraints on electromagnetic signals from double black hole mergers

    Science.gov (United States)

    Dai, Lixin; McKinney, Jonathan C.; Miller, M. Coleman

    2017-09-01

    The possible Fermi detection of an electromagnetic counterpart to the double black hole merger GW150914 has inspired many theoretical models, some of which propose that the holes spiralled together inside a massive star. However, we show that the heat produced by the dynamical friction on such black hole orbits can exceed the stellar binding energy by a large factor, which means that this heat could destroy the star. The energy scale of the explosion and the terminal velocity of the gas can be much larger than those in conventional supernovae. If the star unbinds before the merger, it would be hard for enough gas to remain near the holes at the merger to produce a gamma-ray burst, and this consideration should be taken into account when models are proposed for electromagnetic counterparts to the coalescence of two stellar-mass black holes. We find that only when the two black holes form very close to the centre can the star certainly avoid destruction. In that case, dynamical friction can make the black holes coalesce faster than they would in vacuum, which leads to a modification of the gravitational waveform that is potentially observable by advanced LIGO.

  2. Horizon Quantum Mechanics of Generalized Uncertainty Principle Black Holes

    CERN Document Server

    Manfredi, Luciano

    2016-01-01

    We study the Horizon Wavefunction (HWF) description of a generalized uncertainty principle inspired metric that admits sub-Planckian black holes, where the black hole mass $m$ is replaced by $M = m\\left( 1 + \\frac{\\beta}{2} \\frac{M_{\\rm Pl}^2}{m^2} \\right)$. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability ${\\cal {P}}_{BH}$ that the source is a (quantum) black hole, i.e., that it lies within its horizon radius. The case $\\beta0$, where a minimum in ${\\cal {P}}_{BH}$ is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large $\\beta$ we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing $\\beta$, which creates larger $M$ and $R_{H}$ terms. This is likely due to a "dimensional reduction" feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in $(1+1)$-dimensions and the horizon s...

  3. Horizon Wavefunction of Generalized Uncertainty Principle Black Holes

    Directory of Open Access Journals (Sweden)

    Luciano Manfredi

    2016-01-01

    Full Text Available We study the Horizon Wavefunction (HWF description of a Generalized Uncertainty Principle inspired metric that admits sub-Planckian black holes, where the black hole mass m is replaced by M=m1+β/2MPl2/m2. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability PBH that the source is a (quantum black hole, that is, that it lies within its horizon radius. The case β0, where a minimum in PBH is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large β we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing β, which creates larger M and RH terms. This is likely due to a “dimensional reduction” feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in (1+1 dimensions and the horizon size grows as RH~M-1.

  4. Energetic constraints on electromagnetic signals from double black hole mergers

    CERN Document Server

    Dai, Lixin; Miller, M Coleman

    2016-01-01

    The possible Fermi detection of an electromagnetic counterpart to the double black hole merger GW150914 has inspired many theoretical models, some of which propose that the holes spiraled together inside a massive star. However, we show that the heat produced by the dynamical friction on such black hole orbits can exceed the stellar binding energy by a large factor, which means that this heat could destroy the star and thus make it difficult for enough gas to be near the holes at merger to produce detectable photons. These considerations must be taken into account when models are proposed for electromagnetic counterparts to the coalescence of two stellar-mass black holes. We find that only when the two black holes form very close to the center can the star avoid destruction. In that case, dynamical friction can make the black holes coalesce faster than they would in vacuum, which leads to a modification of the gravitational waveform that is potentially observable by advanced LIGO.

  5. Braneworld Black Holes

    CERN Document Server

    Whisker, Richard

    2008-01-01

    In this thesis we investigate black holes in the Randall-Sundrum braneworld scenario. We begin with an overview of extra-dimensional physics, from the original proposal of Kaluza and Klein up to the modern braneworld picture of extra dimensions. A detailed description of braneworld gravity is given, with particular emphasis on its compatibility with experimental tests of gravity. We then move on to a discussion of static, spherically symmetric braneworld black hole solutions. Assuming an equation of state for the ``Weyl term'', which encodes the effects of the extra dimension, we are able to classify the general behaviour of these solutions. We then use the strong field limit approach to investigate the gravitational lensing properties of some candidate braneworld black hole solutions. It is found that braneworld black holes could have significantly different observational signatures to the Schwarzschild black hole of standard general relativity. Rotating braneworld black hole solutions are also discussed, an...

  6. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  7. Extremal Hairy Black Holes

    CERN Document Server

    Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko

    2014-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.

  8. Charged Lifshitz Black Holes

    OpenAIRE

    Dehghani, M. H.; Pourhasan, R.; Mann, R. B.

    2011-01-01

    We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical pot...

  9. Perturbations around black holes

    CERN Document Server

    Wang, B

    2005-01-01

    Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

  10. Physics of black holes

    OpenAIRE

    Thorne, Kip S.

    1982-01-01

    The activity at the galactic center might be fuelled by energy release near a large black hole. In this talk I describe some relativistic effects which may be relevant to this process. I use Newtonian language so far as possible and illustrate the effects with simple  analogies. Specifically, I describe the gravitational field near a black hole, Lens‐Thirring and geodetic precession, electro‐magnetic energy extraction of the spin energy of a black hole and the structure of accretion tori arou...

  11. The Lazarus project : A pragmatic approach to binary black hole

    OpenAIRE

    2002-01-01

    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation th...

  12. Asymptotic black holes

    Science.gov (United States)

    Ho, Pei-Ming

    2017-04-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  13. Asymptotic Black Holes

    CERN Document Server

    Ho, Pei-Ming

    2016-01-01

    Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.

  14. [Nikola Tesla: flashes of inspiration].

    Science.gov (United States)

    Villarejo-Galende, Albero; Herrero-San Martín, Alejandro

    2013-01-16

    Nikola Tesla (1856-1943) was one of the greatest inventors in history and a key player in the revolution that led to the large-scale use of electricity. He also made important contributions to such diverse fields as x-rays, remote control, radio, the theory of consciousness or electromagnetism. In his honour, the international unit of magnetic induction was named after him. Yet, his fame is scarce in comparison with that of other inventors of the time, such as Edison, with whom he had several heated arguments. He was a rather odd, reserved person who lived for his inventions, the ideas for which came to him in moments of inspiration. In his autobiography he relates these flashes with a number of neuropsychiatric manifestations, which can be seen to include migraine auras, synaesthesiae, obsessions and compulsions.

  15. Decrypting SO(10-inspired leptogenesis

    Directory of Open Access Journals (Sweden)

    Pasquale Di Bari

    2015-04-01

    Full Text Available Encouraged by the recent results from neutrino oscillation experiments, we perform an analytical study of SO(10-inspired models and leptogenesis with hierarchical right-handed (RH neutrino spectrum. Under the approximation of negligible misalignment between the neutrino Yukawa basis and the charged lepton basis, we find an analytical expression for the final asymmetry directly in terms of the low energy neutrino parameters that fully reproduces previous numerical results. This expression also shows that it is possible to identify an effective leptogenesis phase for these models. When we also impose the wash-out of a large pre-existing asymmetry NB−Lp,i, the strong thermal (ST condition, we derive analytically all those constraints on the low energy neutrino parameters that characterise the ST-SO(10-inspired leptogenesis solution, confirming previous numerical results. In particular we show why, though neutrino masses have to be necessarily normally ordered, the solution implies an analytical lower bound on the effective neutrino-less double beta decay neutrino mass, mee≳8 meV, for NB−Lp,i=10−3, testable with next generation experiments. This, in combination with an upper bound on the atmospheric mixing angle, necessarily in the first octant, forces the lightest neutrino mass within a narrow range m1≃(10–30 meV (corresponding to ∑imi≃(75–125 meV. We also show why the solution could correctly predict a non-vanishing reactor neutrino mixing angle and requires the Dirac phase to be in the fourth quadrant, implying sin⁡δ (and JCP negative as hinted by current global analyses. Many of the analytical results presented (expressions for the orthogonal matrix, RH neutrino mixing matrix, masses and phases can have applications beyond leptogenesis.

  16. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  17. Asymmetric interiors for small black holes

    CERN Document Server

    Kabat, Daniel

    2016-01-01

    We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. Then we show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement changes at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not s...

  18. Black holes in the early Universe.

    Science.gov (United States)

    Volonteri, Marta; Bellovary, Jillian

    2012-12-01

    The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics.

  19. Resonance spectra of caged black holes

    CERN Document Server

    Hod, Shahar

    2014-01-01

    Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that {\\it confined} scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstr\\"om black holes whose confining mirrors are placed in the near-horizon region $x_{\\text{m}}\\equiv (r_{\\text{m}}-r_+)/r_+\\ll\\tau\\equiv (r_+-r_-)/r_+$ (here $r_{\\text{m}}$ is the radius of the confining mirror and $r_{\\pm}$ are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled black-hole-field-cage system: $\\omega_n=-i2\\pi T_{\\text{BH}}\\cdot n[1+O(x^n_{\\text{m}}/\\tau^n)]$, where $T_{\\text{BH}}$ is the temperature of the caged black...

  20. Asymmetric interiors for small black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kabat, Daniel [Department of Physics and Astronomy, Lehman College,City University of New York, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science,University of Haifa, Haifa 31905 (Israel)

    2016-08-16

    We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. We then show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement breaks down at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not see local geometry. This picture of the interior allows the CFT to reconcile unitary Hawking evaporation with the classical experience of infalling observers.

  1. Resonance spectra of caged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2014-11-15

    Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstroem black holes whose confining mirrors are placed in the near-horizon region x{sub m} ≡ (r{sub m} - r{sub +})/r{sub +} << τ ≡ (r{sub +} - r{sub -})/r{sub +} (here r{sub m} is the radius of the confining mirror and r{sub ±} are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled blackhole- field-cage system: ω{sub n} = -2πT{sub BH}.n [1 + O(x{sub m}{sup n}/τ{sup n})], where T{sub BH} is the temperature of the caged black hole and n = 1, 2, 3,.. is the resonance parameter. (orig.)

  2. Business Inspiration: Small Business Leadership in Recovery?

    Science.gov (United States)

    Rae, David; Price, Liz; Bosworth, Gary; Parkinson, Paul

    2012-01-01

    Business Inspiration was a short, action-centred leadership and innovation development programme designed for owners and managers of smaller firms to address business survival and repositioning needs arising from the UK's economic downturn. The article examines the design and delivery of Business Inspiration and the impact of the programme on…

  3. Biomimetics of Campaniform Sensilla: Measuring Strain from the Deformation of Holes

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent; Sally E. Clift; Carlo Menon

    2007-01-01

    We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90 by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to displacements of the order of 1 nm. The essential morphology, a hole formed in a plate of fibrous composite material, was modelled by Skordos et al. who showed that global deformation of the plate (which can be flat, curved or a tube) induces higher local deformation of the hole due to its locally higher compliance. Further developments reported here show that this approach can be applied to groups of holes relative to their orientation.The morphology of the sensillum in insects suggests that greater sensitivity can be achieved by arranging several holes in a regular pattern; that if the hole is oval it can be "aimed" to sense specific strain directions; and that either by controlling the shape of the hole or its relationship with other holes it can have a tuned response to dynamic strains.We investigate space applications in which novel bio-inspired strain sensors could successfully be used.

  4. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms....... This work reviews the most effective nature-inspired algorithms and describes learning strategies based on nature oriented thinking. Examples and the benefits obtained from applying nature-inspired strategies in test generation, learners group optimization, and artificial immune systems for learning...

  5. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  6. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  7. Perturbing supersymmetric black hole

    CERN Document Server

    Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki

    1996-01-01

    An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.

  8. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  11. Disregarding the 'Hole Argument'

    CERN Document Server

    Roberts, Bryan W

    2014-01-01

    Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton (1987), is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.

  12. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  13. Roche Accretion of stars close to massive black holes

    CERN Document Server

    Lixin,; Blandford, Roger D

    2011-01-01

    In this paper we consider Roche accretion in an Extreme Mass-Ratio Inspiral (EMRI) binary system formed by a star orbiting a massive black hole. The ultimate goal is to detect the mass and spin of the black hole and provide a test of general relativity in the strong-field regime from the resultant quasi-periodic signals. Before accretion starts, the stellar orbit is presumed to be circular and equatorial, and shrinks due to gravitational radiation. New fitting formulae are presented for the inspiral time and the radiation-reaction torque in the relativistic regime. If the inspiralling star fills its Roche lobe outside the Innermost Stable Circular Orbit (ISCO) of the hole, gas will flow through the inner Lagrange point (L1) to the hole. We give new relativistic interpolation formulae for the volume enclosed by the Roche lobe. If this mass-transfer happens on a time scale faster than the thermal time scale but slower than the dynamical time scale, the star will evolve adiabatically, and, in most cases, will re...

  14. Lifshitz Topological Black Holes

    CERN Document Server

    Mann, R B

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  15. Cosmological Black Holes

    CERN Document Server

    Stornaiolo, C

    2002-01-01

    In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.

  16. Primordial Black Hole Baryogenesis

    CERN Document Server

    Baumann, D; Turok, N G; Baumann, Daniel; Steinhardt, Paul J.; Turok, Neil

    2007-01-01

    We reconsider the possibility that the observed baryon asymmetry was generated by the evaporation of primordial black holes that dominated the early universe. We present a simple derivation showing that the baryon asymmetry is insensitive to the initial black hole density and the cosmological model but is sensitive to the temperature-dependence of the CP and baryon-violating (or lepton-violating) interactions. We also consider the possibility that black holes stop evaporating and form Planck-mass remnants that act as dark matter. We show that primordial black holes cannot simultaneously account for both the observed baryon asymmetry and the (remnant) dark matter density unless the magnitude of CP violation is much greater than expected from most particle physics models. Finally, we apply these results to ekpyrotic/cyclic models, in which primordial black holes may form when branes collide. We find that obtaining the observed baryon asymmetry is compatible with the other known constraints on parameters.

  17. Transition from inspiral to plunge for eccentric equatorial Kerr orbits

    CERN Document Server

    O'Shaughnessy, R

    2003-01-01

    Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive ($10^{5}-10^{8}M_{\\odot}$) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., $a$ fixed). Hence the implications for observations are no better: if the massive body is $M=10^{6}M_{\\odot}$, the captured body has mass $m$, and the process occurs at distance $d$ from LISA, then $S/N \\lesssim (m/10 M_{\\odot})(1\\text{Gpc}/d)\\times O(1)$, with the precise constant depending on the black hole spin. For low-mass bodies ($m \\lesssim 7 M_\\odot$...

  18. Black Hole Critical Phenomena Without Black Holes

    CERN Document Server

    Liebling, S L

    2000-01-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  19. The black hole S-Matrix from quantum mechanics

    Science.gov (United States)

    Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga

    2016-11-01

    We revisit the old black hole S-Matrix construction and its new partial wave expansion of 't Hooft. Inspired by old ideas from non-critical string theory & c = 1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.

  20. The Black Hole S-Matrix from Quantum Mechanics

    CERN Document Server

    Betzios, Panagiotis; Papadoulaki, Olga

    2016-01-01

    We revisit the old black hole S-Matrix construction and its new partial wave expansion of 't Hooft. Inspired by old ideas from non-critical string theory \\& $c=1$ Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model\\textemdash of waves scattering off inverted harmonic oscillator potentials\\textemdash that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.

  1. Effective-one-body modeling of precessing black hole binaries

    Science.gov (United States)

    Taracchini, Andrea; Babak, Stanislav; Buonanno, Alessandra

    2016-03-01

    Merging black hole binaries with generic spins that undergo precessional motion emit complicated gravitational-wave signals. We discuss how such waveforms can be accurately modeled within an effective-one-body approach by (i) exploiting the simplicity of the signals in a frame that corotates with the orbital plane of the binary and (ii) relying on an accurate model of nonprecessing black hole binaries. The model is validated by extensive comparisons to 70 numerical relativity simulations of precessing black hole binaries and can generate inspiral-merger-ringdown waveforms for mass ratios up to 100 and any spin configuration. This work is an essential tool for studying and characterizing candidate gravitational-wave events in science runs of advanced LIGO.

  2. LISA double black holes: Dynamics in gaseous nuclear discs

    CERN Document Server

    Dotti, M; Haardt, F

    2006-01-01

    We study the inspiral of double black holes, with masses in the LISA window of detectability, orbiting inside a massive circum-nuclear disc. Using high-resolution SPH simulations, we follow the black hole dynamics in the early phase when gas-dynamical friction acts on the black holes individually, and continue our simulation until they form a close binary. We find that in the early sinking the black holes loose memory of their initial orbital eccentricity if they co-rotate with the gaseous disc. As a consequence the massive black holes bind forming a binary with a low eccentricity, consistent with zero within our numerical resolution limit. The cause of circularization resides in the rotation present in the gaseous background where dynamical friction operates. Circularization may hinder gravitational waves from taking over and leading the binary to coalescence. In the case of counter-rotating orbits the initial eccentricity (if present) does not decreases, and the black holes may bind forming an eccentric bin...

  3. Constraining properties of the black hole population using LISA

    CERN Document Server

    Gair, Jonathan R; Berti, Emanuele; Volonteri, Marta

    2010-01-01

    LISA should detect gravitational waves from tens to hundreds of systems containing black holes with mass in the range from 10 thousand to 10 million solar masses. Black holes in this mass range are not well constrained by current electromagnetic observations, so LISA could significantly enhance our understanding of the astrophysics of such systems. In this paper, we describe a framework for combining LISA observations to make statements about massive black hole populations. We summarise the constraints that LISA observations of extreme-mass-ratio inspirals might be able to place on the mass function of black holes in the LISA range. We also describe how LISA observations can be used to choose between different models for the hierarchical growth of structure in the early Universe. We consider four models that differ in their prescription for the initial mass distribution of black hole seeds, and in the efficiency of accretion onto the black holes. We show that with as little as 3 months of LISA data we can cle...

  4. Observation of Gravitational Waves from a Binary Black Hole Merger

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  5. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  6. An Empirical Typology of Narcissism and Mental Health in Late Adolescence

    Science.gov (United States)

    Lapsley, Daniel K.; Aalsma, Matthew C.

    2006-01-01

    A two-step cluster analytic strategy was used in two studies to identify an empirically derived typology of narcissism in late adolescence. In Study 1, late adolescents (N=204) responded to the profile of narcissistic dispositions and measures of grandiosity (''superiority'') and idealization (''goal instability'') inspired by Kohut's theory,…

  7. An Empirical Typology of Narcissism and Mental Health in Late Adolescence

    Science.gov (United States)

    Lapsley, Daniel K.; Aalsma, Matthew C.

    2006-01-01

    A two-step cluster analytic strategy was used in two studies to identify an empirically derived typology of narcissism in late adolescence. In Study 1, late adolescents (N=204) responded to the profile of narcissistic dispositions and measures of grandiosity (''superiority'') and idealization (''goal instability'') inspired by Kohut's theory,…

  8. Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.

    Science.gov (United States)

    Page, Don N; Shoom, Andrey A

    2015-04-10

    Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime.

  9. A simple estimate of gravitational wave memory in binary black hole systems

    CERN Document Server

    Garfinkle, David

    2016-01-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.

  10. Nature Inspired Hay Fever Therapy

    Institute of Scientific and Technical Information of China (English)

    Andrei P.Sommer; Dan Zhu

    2008-01-01

    The survival oriented adaptation of evolved biosystems to variations in their environment is a selective optimization process. Recognizing the optimised end product and its functionality is the classical arena of bionic engineering. In a primordial world, however, the molecular organization and functions of prebiotic systems were solely defined by formative processes in their physical and chemical environment, for instance, the interplay between interracial water layers on surfaces and solar light. The formative potential of the interplay between light (laser light) and interfacial water layers on surfaces was recently exploited in the formation of supercubane carbon nanocrystals. In evolved biosystems the formative potential of interracial water layers can still be activated by light. Here we report a case of hay fever, which was successfully treated in the course of a facial reju-venation program starting in November 2007. Targeting primarily interfacial water layers on elastin fibres in the wrinkled areas, we presumably also activated mast cells in the nasal mucosa, reported to progressively decrease in the nasal mucosa of the rabbit, when frequently irradiated. Hay fever is induced by the release of mediators, especially histamine, a process associated with the degranulation of mast cells. Decrease in mast cells numbers implies a decrease in the release of histamine. To the best of our knowledge this is the first report on the treatment of hay fever with visible light. This approach was inspired by bionic thinking, and could help ameliorating the condition of millions of people suffering from hay fever world wide.

  11. Fracture Mechanics: Inspirations from Nature

    Directory of Open Access Journals (Sweden)

    David Taylor

    2014-10-01

    Full Text Available In Nature there are many examples of materials performing structural functions. Nature requires materials which are stiff and strong to provide support against various forces, including self-weight, the dynamic forces involved in movement, and external loads such as wind or the actions of a predator. These materials and structures have evolved over millions of years; the science of Biomimetics seeks to understand Nature and, as a result, to find inspiration for the creation of better engineering solutions. There has been relatively little fundamental research work in this area from a fracture mechanics point of view. Natural materials are quite brittle and, as a result, they have evolved several interesting strategies for preventing failure by crack propagation. Fatigue is also a major problem for many animals and plants. In this paper, several examples will be given of recent work in the Bioengineering Research Centre at Trinity College Dublin, investigating fracture and fatigue in such diverse materials as bamboo, the legs and wings of insects, and living cells.

  12. Inspired at a book fair

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    During the Frankfurt book fair last October, the CERN stand drew quite the crowd. Director-General Rolf Heuer was there to promote CERN’s mission and the "LHC: the Large Hadron Collider" book. He met a lot of visitors and for one of them there was also a nice follow-up…   Marcus and his father visiting the LINAC facility. Fifteen year-old Marcus lives in Lauterecken near Frankfurt. The popular book fair last autumn was for him a nice opportunity to get in touch with the CERN environment. Inspired by the stand and what the CERN people were describing, he started to ask more and more questions… So many, that Rolf Heuer decided to invite him to come to CERN and find out some of the answers for himself. A few weeks later, while recovering from an exciting visit to the ATLAS underground cavern and other CERN installations with a cup of tea in Restaurant 1, Marcus shared his enthusiasm about the Organization: “When I was younger, my moth...

  13. On Thermodynamics of 2d Black Holes in Brane Inflationary Potentials

    CERN Document Server

    Belhaj, A; Moumni, H El; Sedra, M B; Segui, A

    2013-01-01

    Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two dimensional dilaton gravity with an arctangent potential background. We first derive the two dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the Anti de Sitter and the Schwarzchild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.

  14. Revisit on the thermodynamic stability of the noncommutative Schwarzschild black hole

    Science.gov (United States)

    Ma, Meng-Sen; Liu, Yan-Song; Li, Huai-Fan

    In two frameworks, we discuss the thermodynamic stability of noncommutative geometry inspired Schwarzschild black hole (NCSBH). Under the horizon thermodynamics of black holes, we show that the NCSBH cannot be thermodynamically stable if requiring positive temperature. We note the inconsistency in the work of Larrañaga et al. and propose an effective first law of black hole thermodynamics for the NCSBH to eliminate the inconsistency. Based on the effective first law, we recalculate the heat capacity and the thermodynamic curvature by means of geometrothermodynamics (GTD) to revisit the thermodynamic stability.

  15. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  16. Bio-Inspired, Odor-Based Navigation

    Science.gov (United States)

    2006-03-01

    Bio -Inspired, Odor-Based Navigation THESIS Maynard John Porter III, Captain, USAF AFIT/GE/ENG/06-48 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...States Government. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation THESIS Presented to the Faculty Department of Electrical and Computer...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation Maynard John Porter III, B.S.E.E. Captain

  17. La maturità di INSPIRE

    Directory of Open Access Journals (Sweden)

    Mauro Salvemini

    2010-03-01

    Full Text Available INPIRE's maturityThe INSPIRE Conference 2010 took place from 23 to 25 June 2010 in Kraków, Poland. On 22 June pre-conference workshops have been organized. The theme of this year’s edition has been "INSPIRE as a Framework for Cooperation".The INSPIRE Conference has been organised through a series of plenary sessions addressing common policy issues, and parallel sessions focusing in particular on applications and implementations of SDIs, research issues and new and evolvingtechnologies and applications and poster presentations.

  18. Gravitational waveforms for neutron star binaries from binary black hole simulations

    CERN Document Server

    Barkett, Kevin; Haas, Roland; Ott, Christian D; Bernuzzi, Sebastiano; Brown, Duncan A; Szilágyi, Béla; Kaplan, Jeffrey D; Lippuner, Jonas; Muhlberger, Curran D; Foucart, Francois; Duez, Matthew D

    2015-01-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy ...

  19. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  20. Primordial Black Holes

    CERN Document Server

    MacGibbon, Jane H; Linnemann, J T; Marinelli, S S; Stump, D; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.

  1. Black Hole Entropy

    OpenAIRE

    P. Mitra

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy $S^{BH}$ (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy $S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho})$ (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (...

  2. Black hole entropy

    CERN Document Server

    Frolov, V

    1994-01-01

    In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy S^{BH} (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho}) (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (i.e. its independence of the number and properties of the fields which might contribute to S^{SM}) is given.

  3. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  4. Scalarized hairy black holes

    Directory of Open Access Journals (Sweden)

    Burkhard Kleihaus

    2015-05-01

    Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  5. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  6. Black Hole Thermodynamics

    CERN Document Server

    Carlip, S

    2014-01-01

    The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.

  7. Is there an upper limit to black hole masses?

    CERN Document Server

    Natarajan, Priyamvada

    2008-01-01

    We make a case for the existence for ultra-massive black holes (UMBHs) in the Universe, but argue that there exists a likely upper limit to black hole masses of the order of $M \\sim 10^{10} \\msun$. We show that there are three strong lines of argument that predicate the existence of UMBHs: (i) expected as a natural extension of the observed black hole mass bulge luminosity relation, when extrapolated to the bulge luminosities of bright central galaxies in clusters; (ii) new predictions for the mass function of seed black holes at high redshifts predict that growth via accretion or merger-induced accretion inevitably leads to the existence of rare UMBHs at late times; (iii) the local mass function of black holes computed from the observed X-ray luminosity functions of active galactic nuclei predict the existence of a high mass tail in the black hole mass function at $z = 0$. Consistency between the optical and X-ray census of the local black hole mass function requires an upper limit to black hole masses. This...

  8. Exploring Late Globalization

    DEFF Research Database (Denmark)

    Turcan, Romeo V.

    2016-01-01

    The purpose of this viewpoint paper is to motivate a program of research on late globalization, a program that could eventually lead to one or more significant theories of late globalization. The paper explores the phenomenon of late globalization as well as the idea of “late” by drawing on sparse...... literature on late globalization from sociocultural and economic perspectives. It illustrates in a vignette the character and features of late globalization observable in the withdrawal from foreign locations or deinternationalization of universities, as late globalizing entitis. The paper discusses...... the range of constructs around the core idea of late globalization, generating questions for future work in a late globalization research program....

  9. Nature-inspired computing for control systems

    CERN Document Server

    2016-01-01

    The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practi...

  10. INSPIRE and SPIRES Log File Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Cole; /Wheaton Coll. /SLAC

    2012-08-31

    SPIRES, an aging high-energy physics publication data base, is in the process of being replaced by INSPIRE. In order to ease the transition from SPIRES to INSPIRE it is important to understand user behavior and the drivers for adoption. The goal of this project was to address some questions in regards to the presumed two-thirds of the users still using SPIRES. These questions are answered through analysis of the log files from both websites. A series of scripts were developed to collect and interpret the data contained in the log files. The common search patterns and usage comparisons are made between INSPIRE and SPIRES, and a method for detecting user frustration is presented. The analysis reveals a more even split than originally thought as well as the expected trend of user transition to INSPIRE.

  11. String-Inspired Gravity through Symmetries

    National Research Council Canada - National Science Library

    José Antonio Belinchón

    2016-01-01

    We study a string-inspired cosmological model from the symmetries point of view. We start by deducing the form that each physical quantity must take so that the field equations, in the string frame, admit self-similar solutions...

  12. Towards gecko-feet-inspired bandages.

    Science.gov (United States)

    Yanik, Mehmet Fatih

    2009-01-01

    A novel bandage inspired by gecko feet might one day be used during emergencies and internal surgeries. The bandage uses a combination of nanofabricated structures, biodegradable materials and adhesive surface chemistry that allows adhesion onto even wet, moving tissue.

  13. Innovative Didactics in an International Internship - inspiration

    DEFF Research Database (Denmark)

    Lembcke, Steen; Skibsted, Else Bengaard; Mølgaard, Niels

    An inspiration handbook for the international team from the teacher education programme in VIA. Aimed to assist internship supervisors and students during international internships in regards to innovation, social entrepreneurship and development of the international teacher. Introduces why and how...

  14. Bio-inspired dynamic robots

    Science.gov (United States)

    Rudolph, Alan S.; Wax, Steven G.; Christodoulou, Leo

    2003-09-01

    The unique performance of biological systems across a wide spectrum of phylogenetic species has historically provided inspirations for roboticists in new designs and fabrication of new robotic platforms. Of particular interest to a number of important applications is to create dynamic robots able to adapt to a change in their world, unplanned events that are sometimes unexpected, and sometimes unstable, harsh conditions. It is likely that the exploring dynamics in biological systems will continue to provide rich solutions to attaining robots capable of more complex tasks for this purpose. This is because the long-term design process of evolution utilizes a natural selection process that responds to such changes. Recently, there have been significant advances across a number of interdisciplinary efforts that have generated new capabilities in biorobotics. Whole body dynamics that capture the force dynamics and functional stability of legged systems over rough terrain have been elucidated and applied in legged robotic systems. Exploying the force dynamics of flapping winged insect flight has provided key discoveries and enabled the fabrication of new micro air vehicles. New classes of materials are being developed that emulate the ability of natural muscle, capturing the compliant and soft subtle movement and performance of biological appendages. In addition, classes of new multifunctional materials are being developed to enable the design of biorobotics with the structural and functional efficiency of living organisms. Optical flow and other sensors based on the principles of invertebrate vision have been implemented on robotic platforms for autonomous robotic guidance and control. These fundamental advances have resulted in the emergence of a new generation of bioinspired dynamic robots which show significant performance improvements in early prototype testing and that could someday be useful in a number of significant applications such as search and rescue and

  15. A template bank for gravitational waveforms from coalescing binary black holes: I. non-spinning binaries

    CERN Document Server

    Ajith, P; Chen, Y; Hewitson, M; Krishnan, B; Sintes, A M; Whelan, J T; Brügmann, B; Diener, P; Dorband, N; González, J; Hannam, M; Husa, S; Pollney, D; Rezzolla, L; Santamaria, L; Sperhake, U; Thornburg, J

    2007-01-01

    Gravitational waveforms from the inspiral and ring-down stages of the binary black hole coalescences can be modelled accurately by approximation/perturbation techniques in general relativity. Recent progress in numerical relativity has enabled us to model also the non-perturbative merger phase of the binary black-hole coalescence problem. This enables us to \\emph{coherently} search for all three stages of the coalescence of non-spinning binary black holes using a single template bank. Taking our motivation from these results, we propose a family of template waveforms which can model the inspiral, merger, and ring-down stages of the coalescence of non-spinning binary black holes that follow quasi-circular inspiral. This two-dimensional template family is explicitly parametrized by the physical parameters of the binary. We show that the template family is not only \\emph{effectual} in detecting the signals from black hole coalescences, but also \\emph{faithful} in estimating the parameters of the binary. We compa...

  16. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  17. Black hole quantum spectrum

    National Research Council Canada - National Science Library

    Corda, Christian

    2013-01-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re...

  18. Holographic black hole chemistry

    National Research Council Canada - National Science Library

    Karch, Andreas; Robinson, Brandon

    2015-01-01

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation...

  19. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  20. Inspirational Catalogue of Master Thesis Proposals 2015

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    2015-01-01

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project.......This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project....

  1. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    DEFF Research Database (Denmark)

    Goldschmidt, Dennis; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired...... by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural...... learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS) and a late, reflex signal...

  2. Braneworld black holes

    CERN Document Server

    Gregory, Ruth

    2008-01-01

    In these lectures, I give an introduction to and overview of braneworlds and black holes in the context of warped compactifications. I first describe the general paradigm of braneworlds, and introduce the Randall-Sundrum model. I discuss braneworld gravity, both using perturbation theory, and also non perturbative results. I then discuss black holes on the brane, the obstructions to finding exact solutions, and ways of tackling these difficulties. I describe some known solutions, and conclude with some open questions and controversies.

  3. Holes in Heisenberg antiferromagnets

    Science.gov (United States)

    Chen, Yang

    1990-05-01

    In this Brief Report we show that a recent model proposed by Shankar [Phys. Rev. Lett. 63, 203 (1989)], describing the motion of holes in quantum antiferromagnets is equivalent to the Schwinger model [Phys. Rev. 128, 2425 (1962)] in 1+1 dimensions. Some exact results are deduced. In addition to the superconducting long-range order found by Shankar, it is shown that there is a 2pF hole density wave existing with the superconducting pairing instability.

  4. Life Inside Black Holes

    Science.gov (United States)

    Dokuchaev, Vyacheslav

    2013-11-01

    It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.

  5. Modelling quantum black hole

    CERN Document Server

    Govindarajan, T R

    2016-01-01

    Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.

  6. Hydrodynamics and black holes

    CERN Document Server

    Oz, Yaron

    2015-01-01

    This chapter describes how the AdS/CFT correspondence (the Holographic Principle) relates field theory hydrodynamics to perturbations of black hole (brane) gravitational backgrounds. The hydrodynamics framework is first presented from the field theory point of view, after which the dual gravitational description is outlined, first for relativistic fluids and then for the nonrelativistic case. Further details of the fluid/gravity correspondence are then discussed, including the bulk geometry and the dynamics of the black hole horizon.

  7. Black hole geometrothermodynamics

    Science.gov (United States)

    Quevedo, Hernando

    2017-03-01

    We review the main aspects of geometrothermodynamics which is a geometric formalism to describe thermodynamic systems, taking into account the invariance of classical thermodynamics with respect to Legendre transformations. We focus on the particular case of black holes, and present a Riemannian metric which describes the corresponding space of equilibrium states. We show that this metric can be used to describe the stability properties and phase transition structure of black holes in different gravity theories.

  8. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  9. Black Hole Induced Ejections

    OpenAIRE

    Pelletier, G.

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy a...

  10. INSPIRE from the JRC Point of View

    Directory of Open Access Journals (Sweden)

    Vlado Cetl

    2012-12-01

    Full Text Available This paper summarises some recent developments in INSPIRE implementation from the JRC (Joint Research Centre point of view. The INSPIRE process started around 11 years ago and today, clear results and benefits can be seen. Spatial data are more accessible and shared more frequently between countries and at the European level. In addition to this, efficient, unified coordination and collaboration between different stakeholders and participants has been achieved, which is another great success. The JRC, as a scientific think-tank of the European Commission, has played a very important role in this process from the very beginning. This role is in line with its mission, which is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of European Union (EU policies. The JRC acts as the overall technical coordinator of INSPIRE, but it also carries out the activities necessary to support the coherent implementation of INSPIRE, by helping member states in the implementation process. Experiences drawn from collaboration and negotiation in each country and at the European level will be of great importance in the revision of the INSPIRE Directive, which is envisaged for 2014. Keywords: spatial data infrastructure (SDI; INSPIRE; development; Joint Research Centre (JRC

  11. Fly's proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results

    Science.gov (United States)

    Wicaksono, D. H. B.; Zhang, L.-J.; Pandraud, G.; French, P. J.; Vincent, J. F. V.

    2006-04-01

    A new strain-sensing structure inspired from insect's (especially the Fly) propricoception sensor is devised. The campaniform sensillum is a strain-sensing microstructure with very high sensitivity despite its small dimension (diameter ~10 µm in a relatively stiff material of insect's exocuticle (E = ~109 Pa). Previous work shows that the high sensitivity of this structure towards strain is due to its membrane-in-recess- and strainconcentrating- hole- features. Based on this inspiration, we built similar structure using silicon micromachining technology. Then a simple characterisation setup was devised. Here, we present briefly, finite-element modeling and simulation based on this actual sample preparation for the characterisation. As comparison and also to understand mechanical features responsible for the strain-sensitivity, we performed the modeling on different mechanical structures: bulk chunk, blind-hole, thorugh-hole, surface membrane, and membrane-in-recess. The actual experimental characterisation was performed previously using optical technique to membranein- recess micromachined Si structure. The FEM simulation results confirm that the bending stress and strain are concentrated in the hole-vicinity. The membrane inside the hole acts as displacement transducer. The FEM is in conformity with previous analytical results, as well as the optical characterisation result. The end goal is to build a new type MEMS strain sensor.

  12. Redshift Factor and the First Law of Binary Black Hole Mechanics in Numerical Simulations.

    Science.gov (United States)

    Zimmerman, Aaron; Lewis, Adam G M; Pfeiffer, Harald P

    2016-11-04

    The redshift factor z is an invariant quantity of fundamental interest in post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasicircular binary inspirals. Our results confirm the conjectured relationship between z and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor enables tests of analytic predictions for z in spacetimes where the binary is only approximately circular, giving a new connection between analytic approximations and numerical simulations.

  13. The redshift factor and the first law of binary black hole mechanics in numerical simulations

    CERN Document Server

    Zimmerman, Aaron; Pfeiffer, Harald P

    2016-01-01

    The redshift factor $z$ is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasi-circular binary inspirals. Our results confirm the conjectured relationship between $z$ and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor allows us to test analytic predictions for $z$ in spacetimes where the binary is only approximately circular, giving a new connection between analytic approx...

  14. Black hole thermodynamics in finite time

    CERN Document Server

    Gruber, Christine

    2016-01-01

    Finite-time thermodynamics provides the means to revisit ideal thermodynamic equilibrium processes in the light of reality and investigate the energetic "price of haste", i.e. the consequences of carrying out a process in finite time, when perfect equilibrium cannot be awaited due to economic reasons or the nature of the process. Employing the formalism of geometric thermodynamics, a lower bound on the energy dissipated during a process is derived from the thermodynamic length of that process. The notion of length is hereby defined via a metric structure on the space of equilibrium thermodynamics, spanned by a set of thermodynamic variables describing the system. Since the aim of finite-time thermodynamics is to obtain realistic limitations on idealized scenarios, it is a useful tool to reassess the efficiency of thermodynamic processes. We examine its implications for black hole thermodynamics, in particular scenarios inspired by the Penrose process, a thought experiment by which work can be extracted from a...

  15. Electromagnetic Counterparts to Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  16. The Astrophysics of Merging Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    When two supermassive black holes (SMBHs) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.

  17. Detection of gravitational waves from black holes: Is there a window for alternative theories?

    Energy Technology Data Exchange (ETDEWEB)

    Konoplya, Roman, E-mail: konoplya@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Zhidenko, Alexander, E-mail: zhidenko@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Rua Abolição, CEP: 09210-180, Santo André, SP (Brazil)

    2016-05-10

    Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some non-negligible deformations of the Kerr spacetime leading to the same frequencies of the black-hole ringing. This means that at the current precision of the experiment there remains some possibility for alternative theories of gravity.

  18. Floating and sinking: the imprint of massive scalars around rotating black holes

    CERN Document Server

    Cardoso, Vitor; Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo

    2011-01-01

    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiralling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body "sinks". These effects could be a smoking gun of deviations from general relativity.

  19. Detection of gravitational waves from black holes: Is there a window for alternative theories?

    Directory of Open Access Journals (Sweden)

    Roman Konoplya

    2016-05-01

    Full Text Available Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some non-negligible deformations of the Kerr spacetime leading to the same frequencies of the black-hole ringing. This means that at the current precision of the experiment there remains some possibility for alternative theories of gravity.

  20. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  1. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  2. Black hole radiation in the presence of a universal horizon

    CERN Document Server

    Michel, Florent

    2015-01-01

    In Ho\\v{r}ava and Einstein-{\\AE}ther theories of modified gravity, in spite of the violation of Lorentz invariance, spherically-symmetric stationary black hole solutions possess an inner universal horizon which separates field configurations into two disconnected classes. We compute the late time radiation emitted by a dispersive field propagating in such backgrounds. We fix the initial conditions on stationary modes by considering a regular collapsing geometry, and imposing that the state inside the infalling shell is vacuum. We find that the mode pasting across the shell is adiabatic at late time (large inside frequencies). This implies that large black holes emit a thermal flux with a temperature fixed by the surface gravity of the Killing horizon. In turn, this suggests that the universal horizon should play no role in the thermodynamical properties of these black holes.

  3. A comparison of black hole growth in galaxy mergers with Gasoline and Ramses

    CERN Document Server

    Gabor, J M; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas

    2015-01-01

    Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We here compare simulations of black hole growth in galaxy mergers with two codes: the Smoothed Particle Hydrodynamics code Gasoline, and the Adaptive Mesh Refinement code Ramses. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of sub-grid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they "fly-by" within 10 kpc at first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star fo...

  4. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  5. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  6. Kludge modified gravity inspiral-merger-ringdown waveforms: Testing gravitational-wave tests of general relativity

    Science.gov (United States)

    Johnson-McDaniel, Nathan; Ghosh, Abhirup; Ghosh, Archisman; Samajdar, Anuradha; Ajith, Parameswaran; Del Pozzo, Walter

    2016-03-01

    We describe a variety of self-consistent modifications of the effective-one-body framework that yield kludge modified gravity inspiral-merger-ringdown (IMR) waveforms. These waveforms do not correspond to any particular modified theory of gravity, but offer parametrized deviations from general relativity in various regimes. They can thus be used to test the performance of various gravitational wave tests of general relativity (GR). As an example, we introduce the IMR consistency test, which tests for consistency between the estimations of the final mass and spin from the inspiral and merger-ringdown portions of a binary black hole waveform. We show that for reasonable source parameters and SNRs in Advanced LIGO, this test is able to detect a deviation from GR with high confidence for certain modifications of the GR energy flux that are not constrained by observations of the double pulsar. We also consider the performance of a parameterized test of GR on these kludge modified gravity waveforms.

  7. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    The conference 'From DNA-Inspired Physics to Physics-Inspired Biology' (1-5 June 2009, International Center for Theoretical Physics, Trieste, Italy) that myself and two former presidents of the American Biophysical Society—Wilma Olson (Rutgers University) and Adrian Parsegian (NIH), with the support of an ICTP team (Ralf Gebauer (Local Organizer) and Doreen Sauleek (Conference Secretary)), have organized was intended to establish stronger links between the biology and physics communities on the DNA front. The relationships between them were never easy. In 1997, Adrian published a paper in Physics Today ('Harness the Hubris') summarizing his thoughts about the main obstacles for a successful collaboration. The bottom line of that article was that physicists must seriously learn biology before exploring it and even having an interpreter, a friend or co-worker, who will be cooperating with you and translating the problems of biology into a physical language, may not be enough. He started his story with a joke about a physicist asking a biologist: 'I want to study the brain. Tell me something about it!' Biologist: 'First, the brain consists of two parts, and..' Physicist: 'Stop. You have told me too much.' Adrian listed a few direct avenues where physicists' contributions may be particularly welcome. This gentle and elegantly written paper caused, however, a stormy reaction from Bob Austin (Princeton), published together with Adrian's notes, accusing Adrian of forbidding physicists to attack big questions in biology straightaway. Twelve years have passed and many new developments have taken place in the biologist-physicist interaction. This was something I addressed in my opening conference speech, with my position lying somewhere inbetween Parsegian's and Austin's, which is briefly outlined here. I will first recall certain precepts or 'dogmas' that fly in the air like Valkyries, poisoning those relationships. Since the early seventies when I was a first year Ph

  8. Global Structure of Exact Scalar Hairy Dynamical Black Holes

    CERN Document Server

    Fan, Zhong-Ying; Lu, Hong

    2016-01-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the $1/(n-1)$ power of the final black hole mass. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  9. Possible Short Gamma-Ray Bursts Associated with Black Hole - Black Hole Mergers

    CERN Document Server

    Zhang, Bing

    2016-01-01

    The discovery of GW 150914 suggests that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes carries a small amount of charge, the inspiral of the BH-BH system would drive a magnetic dipole normal to the orbital plane. A magnetosphere would be developed, and the system would behave like a giant pulsar with increasing wind power. If the BH charge can be as large as a factor of $\\hat q \\sim 10^{-15}$ of the critical charge $Q_c$ of the BH, a detectable short-duration GRB would be generated right before the final coalescence. The GRB is supposed to have a short duration, nearly isotropic emission, and a delay with respect to the gravitational wave chirp signal. The putative short GRB coincident with GW 150914 detected with {\\em Fermi} GBM can be interpreted with this model. The detections or non-detections of such GRBs associated with future BH-BH merger gravitational wave sources would lead to constraints on the charges carried by isolate black holes.

  10. Alignment of supermassive black hole binary orbits and spins

    CERN Document Server

    Miller, M Coleman

    2013-01-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...

  11. precession: Dynamics of spinning black-hole binaries with python

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael

    2016-06-01

    We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.

  12. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  13. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  14. Black Holes and Beyond

    CERN Document Server

    Mathur, Samir D

    2012-01-01

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome `remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a `fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates ...

  15. Are Nuclear Star Clusters the Precursors of Massive Black Holes?

    Directory of Open Access Journals (Sweden)

    Nadine Neumayer

    2012-01-01

    Full Text Available We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has black holes with masses less than 106M⊙, if any. We also derive new upper limits for nuclear star cluster masses in massive galaxies with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low mass end of the global-to-nucleus relations. We find the following. (1 The MBH-σ relation cannot flatten at low masses, but may steepen. (2 The MBH-Mbulge relation may well flatten in contrast. (3 The MBH-Sersic n relation is able to account for the large scatter in black hole masses in low-mass disk galaxies. Outliers in the MBH-Sersic n relation seem to be dwarf elliptical galaxies. When plotting MBH versus MNC we find three different regimes: (a nuclear cluster dominated nuclei, (b a transition region, and (c black hole-dominated nuclei. This is consistent with the picture, in which black holes form inside nuclear clusters with a very low-mass fraction. They subsequently grow much faster than the nuclear cluster, destroying it when the ratio MBH/MNC grows above 100. Nuclear star clusters may thus be the precursors of massive black holes in galaxy nuclei.

  16. Action growth for AdS black holes

    Science.gov (United States)

    Cai, Rong-Gen; Ruan, Shan-Ming; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-09-01

    Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  17. Entangled black holes as ciphers of hidden information

    CERN Document Server

    Braunstein, Samuel L; Zyczkowski, Karol \\

    2009-01-01

    The black-hole information paradox has fueled a fascinating effort to reconcile the predictions of general relativity and those of quantum mechanics. Gravitational considerations teach us that black holes must trap everything that falls into them. Quantum mechanically the mass of a black hole leaks away as featureless (Hawking) radiation. However, if Hawking's analysis turned out to be accurate then the information would be irretrievably lost and a fundamental axiom of quantum mechanics, that of unitary evolution, would likewise fail. Here we show that the information about the matter that collapses to form a black hole becomes encoded into pure correlations within a tripartite quantum system, the quantum analog of a one-time pad until very late in the evaporation, provided we accept the view that the thermodynamic entropy of a black hole is due to entropy of entanglement. In this view the black hole entropy is primarily due to trans-event horizon entanglement between external modes neighboring the black hole...

  18. Observing extreme-mass-ratio inspirals with eLISA/NGO

    CERN Document Server

    Gair, Jonathan R

    2012-01-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar mass compact objects into massive black holes in the centres of galaxies are an important source of low-frequency gravitational waves for space-based detectors. We discuss the prospects for detecting these sources with the evolved Laser Interferometer Space Antenna (eLISA), recently proposed as an ESA mission candidate under the name NGO. We show that NGO could observe a few tens of EMRIs over its two year mission lifetime at redshifts z < 0.5 and describe how the event rate changes under possible alternative specifications of the eLISA design.

  19. Student project: Of spinning coins and merging black holes

    CERN Document Server

    Bland-Hawthorn, Joss

    2016-01-01

    For the past decade, the SAIL labs at the University of Sydney have been challenging students with short research projects that elucidate basic principles of physics. These include the development of instruments launched on cubesats, balloons, on telescopes or placed out in the field. This experiment is inspired by the spectacular 2015 discovery of merging black holes with the Laser Interferometric Gravitational-Wave Observatory (LIGO). Students are profoundly inspired by LIGO, and for good reason, but it is challenging to construct a table top demonstration of a gravitational wave observatory. Instead we consider chirps which are remarkable transient phenomena in nature involving both frequency and amplitude modulation, as we can demonstrate with a spinning coin. In the case of the LIGO event, orbital energy is being released as gravitational radiation; for the spinning coin, its spin/orbit energy is being released dissipatively (sound, heat, air viscosity). Our experiment involves a simple device to spin a ...

  20. Black hole entropy quantization

    CERN Document Server

    Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2006-01-01

    Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.

  1. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  2. The closest black holes

    CERN Document Server

    Fender, Rob; Heywood, Ian

    2013-01-01

    Starting from the assumption that there is a large population (> 10^8) of isolated, stellar-mass black holes (IBH) distributed throughout our galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter \\lambda. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for b...

  3. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  4. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  5. Janus black holes

    Science.gov (United States)

    Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.

    2011-10-01

    In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.

  6. Black Hole Induced Ejections

    CERN Document Server

    Pelletier, G

    2004-01-01

    Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy astrophysics. The combination of General Relativity and Magneto-HydroDynamics (MHD) makes theory difficult; however great pionneers opened beautiful tracks in the seventies and left important problems to be solved for the next decades. These lectures will present the status of these issues. They have a tutorial aspect together with critical review aspect and contain also some new issues. Most of these lectures has been presented at the "School on Black Hole in the Universe" at Cargese, in May 2003.

  7. Black hole accretion discs

    CERN Document Server

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.

  8. On Mao Zedong in His Late Years and Mao Zedong Thought-Inspirations from Reading A Chronicle of Mao Zedong’s Life (1949- 1976)%晚年毛泽东与毛泽东思想--读《毛泽东年谱(1949-1976)》的启示

    Institute of Scientific and Technical Information of China (English)

    雷云

    2015-01-01

    The issue concerning the relationship between Mao and Mao Zedong Thought,in essence,lies in how Mao himself approached and applied Mao Zedong Thought in practice,and how he integrated his own theory with practice. This article explores how Mao in his late years demonstrated himself on this issue. The abundant o-riginal and objective information from the book,A Chronicle of Mao Zedong’s Life (1949-1976),shows that Mao in his late years,could define and treat Mao Zedong Thought realistically and enriched it with a lot of good ideas, but breached from the Thought on some major issues. Judgment on this subject should be based on the historical resolutions made on the Sixth Plenary Session of the 11th CPC Central Committee,and we should keep an objec-tive,comprehensive,fair attitude,avoid subjectivity and partiality,neither demonizing him with total negation,nor deifying him with absolute acceptance.%毛泽东与毛泽东思想的关系问题,说到底是毛泽东在自己的实践中如何对待和运用毛泽东思想的问题,是理论与实践如何在毛泽东身上实现统一的问题。本文要探讨的是晚年毛泽东在这个问题上呈现的状况。从《毛泽东年谱(1949-1976)》提供的大量第一手客观材料看,晚年毛泽东基本上能实事求是界定和对待毛泽东思想,以许多好见解丰富了毛泽东思想,但在一些重大问题上自己违反了毛泽东思想。我们对这个问题的评述,要以十一届六中全会历史决议为根本立论依据,既不能全盘否定把他妖魔化,也不能全盘肯定把他神明化,坚持客观、全面、公正,防止主观性和片面性。

  9. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  10. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  11. Educating Citizens in Late Modern Societies

    DEFF Research Database (Denmark)

    Christensen, Torben Spanget

    2011-01-01

    . The model is based on the fundamental belief that the overall aim of civic education in democratic, late modern and global societies is empowerment of the citizen in order to establish a self governing citizen who simultaneous is capable of managing and keeping together partly contradictory citizens tasks....... One is being a loyal subject in state and society affairs, a second is being an informed voter in state elections, a third is being a critical participant in state and society affairs and a forth is being an independent, innovative citizen outside state. The model is inspired by rather comprehensive......One way or the other democratic states need to take on the task of educating its rising generation in governmental affairs, societal matters and citizenship in order to sustain the democracy itself. This article presents a model for analysing civic education in late modern, globalised world...

  12. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  13. Correlated Multiphoton Holes

    CERN Document Server

    Afek, Itai; Silberberg, Yaron

    2010-01-01

    We generate bipartite states of light which exhibit an absence of multiphoton coincidence events between two modes amid a constant background flux. These `correlated photon holes' are produced by mixing a coherent state and relatively weak spontaneous parametric down-conversion using a balanced beamsplitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the relative phase and amplitude of the inputs. We measure states of up to five photons and verify their nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical correlations without requiring intense quantum resources.

  14. Are Black Holes Springy?

    OpenAIRE

    Good, Michael R. R.; Ong, Yen Chin

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conj...

  15. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  16. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  17. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  18. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  19. Magnonic Black Holes

    Science.gov (United States)

    Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.

    2017-02-01

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  20. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  1. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  2. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  3. String and string-inspired phenomenology

    CERN Document Server

    López, J L

    1994-01-01

    In these lectures I review the progress made over the last few years in the subject of string and string-inspired phenomenology. I take a practical approach, thereby concentrating more on explicit examples rather than on formal developments. Topics covered include: introduction to string theory the free-fermionic formulation and its general features, generic conformal field theory properties, SU(5)\\times U(1) GUT and string model-building, supersymmetry breaking, the bottom-up approach to string-inspired models, radiative electroweak symmetry breaking, the determination of the allowed parameter space of supergravity models and the experimental constraints on this class of models, and prospects for direct and indirect tests of string-inspired models. (Lectures delivered at the XXII ITEP International Winter School of Physics, Moscow, Russia, February 22 -- March 2, 1994)

  4. Nature-inspired computation in engineering

    CERN Document Server

    2016-01-01

    This timely review book summarizes the state-of-the-art developments in nature-inspired optimization algorithms and their applications in engineering. Algorithms and topics include the overview and history of nature-inspired algorithms, discrete firefly algorithm, discrete cuckoo search, plant propagation algorithm, parameter-free bat algorithm, gravitational search, biogeography-based algorithm, differential evolution, particle swarm optimization and others. Applications include vehicle routing, swarming robots, discrete and combinatorial optimization, clustering of wireless sensor networks, cell formation, economic load dispatch, metamodeling, surrogated-assisted cooperative co-evolution, data fitting and reverse engineering as well as other case studies in engineering. This book will be an ideal reference for researchers, lecturers, graduates and engineers who are interested in nature-inspired computation, artificial intelligence and computational intelligence. It can also serve as a reference for relevant...

  5. Compact and Thermosensitive Nature-inspired Micropump

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2016-10-01

    Liquid transportation without employing a bulky power source, often observed in nature, has been an essential prerequisite for smart applications of microfluidic devices. In this report, a leaf-inspired micropump (LIM) which is composed of thermo-responsive stomata-inspired membrane (SIM) and mesophyll-inspired agarose cryogel (MAC) is proposed. The LIM provides a durable flow rate of 30 μl/h · cm2 for more than 30 h at room temperature without external mechanical power source. By adapting a thermo-responsive polymer, the LIM can smartly adjust the delivery rate of a therapeutic liquid in response to temperature changes. In addition, as the LIM is compact, portable, and easily integrated into any liquid, it might be utilized as an essential component in advanced hand-held drug delivery devices.

  6. Bio-inspired variable structural color materials.

    Science.gov (United States)

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).

  7. Biologically inspired technologies in NASA's morphing project

    Science.gov (United States)

    McGowan, Anna-Maria R.; Cox, David E.; Lazos, Barry S.; Waszak, Martin R.; Raney, David L.; Siochi, Emilie J.; Pao, S. Paul

    2003-07-01

    For centuries, biology has provided fertile ground for hypothesis, discovery, and inspiration. Time-tested methods used in nature are being used as a basis for several research studies conducted at the NASA Langley Research Center as a part of Morphing Project, which develops and assesses breakthrough vehicle technologies. These studies range from low drag airfoil design guided by marine and avian morphologies to soaring techniques inspired by birds and the study of small flexible wing vehicles. Biology often suggests unconventional yet effective approaches such as non-planar wings, dynamic soaring, exploiting aeroelastic effects, collaborative control, flapping, and fibrous active materials. These approaches and other novel technologies for future flight vehicles are being studied in NASA's Morphing Project. This paper will discuss recent findings in the aeronautics-based, biologically-inspired research in the project.

  8. The importance of transient resonances in extreme-mass-ratio inspirals

    CERN Document Server

    Berry, Christopher P L; Cañizares, Priscilla; Gair, Jonathan R

    2016-01-01

    The inspiral of stellar-mass compact objects, like neutron stars or stellar-mass black holes, into supermassive black holes provides a wealth of information about the strong gravitational-field regime via the emission of gravitational waves. In order to detect and analyse these signals, accurate waveform templates which include the effects of the compact object's gravitational self-force are required. For computational efficiency, adiabatic templates are often used. These accurately reproduce orbit-averaged trajectories arising from the first-order self-force, but neglect other effects, such as transient resonances, where the radial and poloidal fundamental frequencies become commensurate. During such resonances the flux of gravitational waves can be diminished or enhanced, leading to a shift in the compact object's trajectory and the phase of the waveform. We present an evolution scheme for studying the effects of transient resonances and apply this to an astrophysically motivated population. We find that a ...

  9. Late Accretion and the Late Veneer

    CERN Document Server

    Morbidelli, Alessandro

    2014-01-01

    The concept of Late Veneer has been introduced by the geochemical community to explain the abundance of highly siderophile elements in the Earth's mantle and their chondritic proportions relative to each other. However, in the complex scenario of Earth accretion, involving both planetesimal bombardment and giant impacts from chondritic and differentiated projectiles, it is not obvious what the "Late Veneer" actually corresponds to. In fact, the process of differentiation of the Earth was probably intermittent and there was presumably no well-defined transition between an earlier phase where all metal sunk into the core and a later phase in which the core was a closed entity separated from the mantle. In addition, the modellers of Earth accretion have introduced the concept of "Late Accretion", which refers to the material accreted by our planet after the Moon-forming event. Characterising Late Veneer, Late Accretion and the relationship between the two is the major goal of this chapter.

  10. Biologically inspired self-organizing networks

    Institute of Scientific and Technical Information of China (English)

    Naoki WAKAMIYA; Kenji LEIBNITZ; Masayuki MURATA

    2009-01-01

    Information networks are becoming more and more complex to accommodate a continuously increasing amount of traffic and networked devices, as well as having to cope with a growing diversity of operating environments and applications. Therefore, it is foreseeable that future information networks will frequently face unexpected problems, some of which could lead to the complete collapse of a network. To tackle this problem, recent attempts have been made to design novel network architectures which achieve a high level of scalability, adaptability, and robustness by taking inspiration from self-organizing biological systems. The objective of this paper is to discuss biologically inspired networking technologies.

  11. Electron hole tracking PIC simulation

    Science.gov (United States)

    Zhou, Chuteng; Hutchinson, Ian

    2016-10-01

    An electron hole is a coherent BGK mode solitary wave. Electron holes are observed to travel at high velocities relative to bulk plasmas. The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code with fully kinetic ions. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. The electron hole signal is detected and the simulation domain moves by a carefully designed feedback control law to follow its propagation. This approach has the advantage that the length of the simulation domain can be significantly reduced to several times the hole width, which makes high resolution simulations tractable. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and energization effects we call ``jetting''. The work was partially supported by the NSF/DOE Basic Plasma Science Partnership under Grant DE-SC0010491. Computer simulations were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki.

  12. Hybrid Black Hole Algorithm for Bi-Criteria Job Scheduling on Parallel Machines

    Directory of Open Access Journals (Sweden)

    Kawal Jeet

    2016-04-01

    Full Text Available Nature-inspired algorithms are recently being appreciated for solving complex optimization and engineering problems. Black hole algorithm is one of the recent nature-inspired algorithms that have obtained inspiration from black hole theory of universe. In this paper, four formulations of multi-objective black hole algorithm have been developed by using combination of weighted objectives, use of secondary storage for managing possible solutions and use of Genetic Algorithm (GA. These formulations are further applied for scheduling jobs on parallel machines while optimizing bi-criteria namely maximum tardiness and weighted flow time. It has been empirically verified that GA based multi-objective Black Hole algorithms leads to better results as compared to their counterparts. Also the use of combination of secondary storage and GA further improves the resulting job sequence. The proposed algorithms are further compared to some of the existing algorithms, and empirically found to be better. The results have been validated by numerical illustrations and statistical tests.

  13. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    Science.gov (United States)

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  14. Rotating regular black holes

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...

  15. Rotating black hole hair

    CERN Document Server

    Gregory, Ruth; Wills, Danielle

    2013-01-01

    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...

  16. Moulting Black Holes

    Science.gov (United States)

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2012-03-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.

  17. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann sp

  18. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  19. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  20. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  1. "Holes": Folklore Redux.

    Science.gov (United States)

    Mascia, Elizabeth G.

    2001-01-01

    Demonstrates that a careful reading of the book for young adults, "Holes" by Louis Sachar, reveals how this contemporary story is grounded in folklore, and that it is this debt to folk literature that allows readers to accept an improbable plot. Shows how the story weaves together elements from traditional folk literature and stretches them across…

  2. Laser bottom hole assembly

    Science.gov (United States)

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  3. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  4. Towards Noncommutative Quantum Black Holes

    CERN Document Server

    Lopez-Dominguez, J C; Ramírez, C; Sabido, M

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Trough the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular we calculate the Hawking's temperature and entropy for the Noncommutative Schwarzschild black hole.

  5. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  6. Low-Frequency Gravitational Radiation from Coalescing Massive Black Holes

    CERN Document Server

    Sesana, A; Madau, P; Volonteri, M

    2005-01-01

    We compute the expected low-frequency gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies. We follow the merging history of halos and associated holes via cosmological Monte Carlo realizations of the merger hierarchy from early times to the present in a LCDM cosmology. MBHs get incorporated through a series of mergers into larger and larger halos, sink to the centre owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become more massive, and form a binary system. Stellar dynamical processes dominates the orbital evolution of the binary at large separations, while gravitational wave emission takes over at small radii, causing the final coalescence of the system. We discuss the observability of inspiraling MBH binaries by a low-frequency gravitational wave experiment such as the planned Laser Interferometer Space Antenna (LISA), discriminating between resolvable sources and unresolved confusion noise. Over a 3-year observing perio...

  7. Hole-Transport Materials for Perovskite Solar Cells.

    Science.gov (United States)

    Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada

    2016-11-14

    The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.

  8. Augmented kludge waveforms for detecting extreme-mass-ratio inspirals

    Science.gov (United States)

    Chua, Alvin J. K.; Moore, Christopher J.; Gair, Jonathan R.

    2017-08-01

    The extreme-mass-ratio inspirals (EMRIs) of stellar-mass compact objects into massive black holes are an important class of source for the future space-based gravitational-wave detector LISA. Detecting signals from EMRIs will require waveform models that are both accurate and computationally efficient. In this paper, we present the latest implementation of an augmented analytic kludge (AAK) model, publicly available at https://github.com/alvincjk/EMRI_Kludge_Suite as part of an EMRI waveform software suite. This version of the AAK model has improved accuracy compared to its predecessors, with two-month waveform overlaps against a more accurate fiducial model exceeding 0.97 for a generic range of sources; it also generates waveforms 5-15 times faster than the fiducial model. The AAK model is well suited for scoping out data analysis issues in the upcoming round of mock LISA data challenges. A simple analytic argument shows that it might even be viable for detecting EMRIs with LISA through a semicoherent template bank method, while the use of the original analytic kludge in the same approach will result in around 90% fewer detections.

  9. Stirring, not shaking: binary black holes' effects on electromagnetic fields

    CERN Document Server

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-01-01

    In addition to producing gravitational waves (GW), the dynamics of a binary black hole system could induce emission of electromagnetic (EM) radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  10. "Exotic" black holes with torsion

    OpenAIRE

    2013-01-01

    In the context of three-dimensional gravity with torsion, the concepts of standard and "exotic" Banados-Teitelboim-Zanelli black holes are generalized by going over to black holes with torsion. This approach provides a unified insight into thermodynamics of black holes, with or without torsion.

  11. A Biologically Inspired CMOS Image Sensor

    NARCIS (Netherlands)

    Sarkar, M.

    2011-01-01

    Biological systems are a source of inspiration in the development of small autonomous sensor nodes. The two major types of optical vision systems found in nature are the single aperture human eye and the compound eye of insects. The latter are among the most compact and smallest vision sensors. The

  12. Water Treatment Technologies Inspire Healthy Beverages

    Science.gov (United States)

    2013-01-01

    Mike Johnson, a former technician at Johnson Space Center, drew on his expertise as a wastewater engineer to create a line of kombucha-based probiotic drinks. Unpeeled Inc., based in Minneapolis-St. Paul, Minnesota, employs 12 people and has sold more than 6 million units of its NASA-inspired beverage.

  13. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...

  14. Inspiration and the Texts of the Bible

    Directory of Open Access Journals (Sweden)

    Dirk Buchner

    1997-01-01

    Full Text Available This article seeks to explore what the inspired text of the Old Testament was as it existed for the New Testament authors, particularly for the author of the book of Hebrews. A quick look at the facts makes. it clear that there was, at the time, more than one 'inspired' text, among these were the Septuagint and the Masoretic Text 'to name but two'. The latter eventually gained ascendancy which is why it forms the basis of our translated Old Testament today. Yet we have to ask: what do we make of that other text that was the inspired Bible to the early Church, especially to the writer of the book of Hebrews, who ignored the Masoretic text? This article will take a brief look at some suggestions for a doctrine of inspiration that keeps up with the facts of Scripture. Allied to this, the article is something of a bibliographical study of recent developments in textual research following the discovery of the Dead Sea scrolls.

  15. Inspirational catalogue of Master Thesis proposals 2014

    DEFF Research Database (Denmark)

    This catalog presents different topics for master thesis projects. It is important to emphasize that the project descriptions only serves as an inspiration and that you always can discuss with the potential supervisors the specific contents of a project. If you have an idea for a project which...

  16. Inspiration in the Act of Reading

    DEFF Research Database (Denmark)

    Zeller, Kinga

    2016-01-01

    In German-language theology, Professor Ulrich H. J. Körtner’s theory of inspiration, as it relates to the Bible reader’s perspective, is well known. His attempt to gain fruitful insights from contemporary literary hermeneutics while linking them to theological concerns makes his approach a valued...

  17. Trauma-Inspired Prosocial Leadership Development

    Science.gov (United States)

    Williams, Jenifer Wolf; Allen, Stuart

    2015-01-01

    Though trauma survivors sometimes emerge as leaders in prosocial causes related to their previous negative or traumatic experiences, little is known about this transition, and limited guidance is available for survivors who hope to make prosocial contributions. To understand what enables trauma-inspired prosocial leadership development, the…

  18. Inspired by Athletes, Myths, and Poets

    Science.gov (United States)

    Melvin, Samantha

    2010-01-01

    Tales of love and hate, of athleticism, heroism, devotion to gods and goddesses that influenced myth and culture are a way of sharing ancient Greece's rich history. In this article, the author describes how her students created their own Greek-inspired clay vessels as artifacts of their study. (Contains 6 online resources.)

  19. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  20. Pop Art--Inspired Self-Portraits

    Science.gov (United States)

    Goodwin, Donna J.

    2011-01-01

    In this article, the author describes an art lesson that was inspired by Andy Warhol's mass-produced portraits. Warhol began his career as a graphic artist and illustrator. His artwork was a response to the redundancy of the advertising images put in front of the American public. Celebrities and famous people in magazines and newspapers were seen…

  1. Early Reading and Practice-Inspired Research

    Science.gov (United States)

    Hill, Susan

    2017-01-01

    Large-scale standardised, early reading assessments abound at the international and national levels, but research into urgent problems facing practitioners remains scarce. Practice-inspired research involves university-researchers in partnership with teacher-researchers undertaking high-quality research to provide relevant and useful knowledge.…

  2. What is Mathematics? Perspectives inspired by anthropology

    DEFF Research Database (Denmark)

    Høyrup, Jens

    The paper discusses the question “what is mathematics” from a point of view inspired by anthropology. In this perspective, the character of mathematical thinking and argument is strongly affected – almost essentially determined, indeed – by the dynamics of the specific social, mostly professional...

  3. Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries

    CERN Document Server

    Santamaria, L; Ajith, P; Bruegmann, B; Dorband, N; Hannam, M; Husa, S; Moesta, P; Pollney, D; Reisswig, C; Seiler, J; Krishnan, B

    2010-01-01

    We present a new phenomenological gravitational waveform model for he inspiral and coalescence of non-precessing spinning black hole binaries. Our approach is based on a frequency domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of non-precessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational wave searches.

  4. Inspiralling, Non-Precessing, Spinning Black Hole Binary Spacetime via Asymptotic Matching

    CERN Document Server

    Ireland, Brennan; Nakano, Hiroyuki; Campanelli, Manuela

    2015-01-01

    We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.

  5. The basic physics of the binary black hole merger GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  6. Understanding the "anti-kick" in the merger of binary black holes

    CERN Document Server

    Rezzolla, Luciano; Jaramillo, José Luis

    2010-01-01

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "anti-kick", namely the sudden deceleration after the merger, has not yet found a simple explanation. We show that the anti-kick can be easily understood in terms of the radiation from a deformed black hole where the intrinsically anisotropic curvature distribution on the horizon determines the direction and intensity of the recoil. Our analysis is focussed on the properties of Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides all the qualitative but also quantitative features of inspiralling black hole binaries, thus opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.

  7. Nonlinear and Perturbative Evolution of Distorted Black Holes; 2, Odd-parity Modes

    CERN Document Server

    Baker, J; Campanelli, M; Loustó, C O; Seidel, E; Takahashi, R

    2000-01-01

    We compare the fully nonlinear and perturbative evolution of nonrotating black holes with odd-parity distortions utilizing the perturbative results to interpret the nonlinear results. This introduction of the second polarization (odd-parity) mode of the system, and the systematic use of combined techniques brings us closer to the goal of studying more complicated systems like distorted, rotating black holes, such as those formed in the final inspiral stage of two black holes. The nonlinear evolutions are performed with the 3D parallel code for Numerical Relativity, {Cactus}, and an independent axisymmetric code, {Magor}. The linearized calculation is performed in two ways: (a) We treat the system as a metric perturbation on Schwarzschild, using the Regge-Wheeler equation to obtain the waveforms produced. (b) We treat the system as a curvature perturbation of a Kerr black hole (but here restricted to the case of vanishing rotation parameter a) and evolve it with the Teukolsky equation The comparisons of the wa...

  8. Late-modern transformation of Islam or Islamic transformation of Late-modern Religiosity?

    DEFF Research Database (Denmark)

    Riexinger, Martin Thomas

    2017-01-01

    The Turkish author Muhammed Bozdağ, who has no formal religious education, has been popular since the late 1990s because of his self-help seminars and self-help books. Though they are based on the adaptation of Western New Age-inspired models, Bozdağ uses many of the models’ parascientific concep...... in parascientific terms. The strong emphases on collective normativity and on a theistic worldview clearly characterize his adaption of elements from new religiosities as highly selective and restricted to very specific purposes....

  9. Kittens! Inspired by Kittens! Undergraduate Theorists Inspired by YouTube

    Science.gov (United States)

    Anderson, Diane Downer; Lewis, Mark; Peterson, Sarah; Griggs, Samantha; Grubb, Gina; Singer, Nicole; Fried, Simone; Krone, Elizabeth; Elko, Leigh; Narang, Jasmine

    2010-01-01

    A professor and students in an undergraduate honors research seminar were inspired to playfully link old and contemporary literacy theories to a 2.0 media artifact, the popular YouTube video Kittens! Inspired by Kittens! (KIbK) starring 6 year-old Maddie. In this article KIbK is theorized drawing on frames of school-based reading instruction,…

  10. Dynamics around black holes: Radiation Emission and Tidal Effects

    CERN Document Server

    Brito, Richard

    2012-01-01

    In this thesis we study several dynamical processes involving black holes in four and higher dimensions. First, using perturbative techniques, we compare the massless and massive scalar radiation emitted by a particle radially infalling into a Schwarzchild black hole. We show that the late-time waveform of massive scalar perturbations is dominated by a universal oscillatory decaying tail, which appears due to curvature effects. We also show that the energy spectrum is in perfect agreement with a ZFL calculation once no-hair properties of black holes are taken into account. In the second part, we study the phenomenon of superradiance in higher dimensions and conjecture that the maximum energy extracted from a rotating black hole can be understood in terms of the ergoregion proper volume. We then study some consequences of superradiance in the dynamics of moons orbiting around higher-dimensional rotating black holes. In four-dimensional spacetime, moons around black holes generate low-amplitude tides, and the e...

  11. A cosmological view of extreme mass-ratio inspirals in nuclear star clusters

    CERN Document Server

    Mapelli, M; Vecchio, A; Graham, Alister W; Gualandris, A

    2012-01-01

    There is increasing evidence that many galaxies host both a nuclear star cluster (NC) and a super-massive black hole (SMBH). Their coexistence is particularly prevalent in spheroids with stellar mass 10^8-10^10 solar masses. We study the possibility that a stellar-mass black hole (BH) hosted by a NC inspirals and merges with the central SMBH. Due to the high stellar density in NCs, extreme mass-ratio inspirals (EMRIs) of BHs onto SMBHs in NCs may be important sources of gravitational waves (GWs). We consider sensitivity curves for three different space-based GW laser interferometric mission concepts: the Laser Interferometer Space Antenna (LISA), the New Gravitational wave Observatory (NGO) and the DECi-hertz Interferometer Gravitational wave Observatory (DECIGO). We predict that, under the most optimistic assumptions, LISA and DECIGO will detect up to thousands of EMRIs in NCs per year, while NGO will observe up to tens of EMRIs per year. We explore how a number of factors may affect the predicted rates. In ...

  12. The butterfly effect in the extreme-mass ratio inspiral problem

    CERN Document Server

    Amaro-Seoane, Pau; Cuadra, Jorge; Armitage, Philip J

    2011-01-01

    Measurements of gravitational waves from the inspiral of a stellar-mass compact object into a massive black hole (MBH) are unique probes to test General Relativity (GR) and MBH properties, as well as the stellar distribution about these holes in galactic nuclei. Current data analysis techniques can provide us with parameter estimation with very narrow errors. However, an EMRI is not a two-body problem, since other stellar bodies orbiting nearby will influence the capture orbit. Any deviation from the isolated inspiral of the binary will induce a small, though observable deviation from the idealised waveform which could be misinterpreted as a failure of GR. Based on conservative analysis of mass segregation in a Milky Way like nucleus, we estimate that the possibility that a star has a semi-major axis comparable to that of the EMRI is non-negligible. This star introduces an observable perturbation in the orbit in the case in which we consider only loss of energy via gravitational radiation at periapsis. When c...

  13. Observation of Gravitational Waves from a Binary Black Hole Merger

    CERN Document Server

    ,

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \\times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$, and the final black hole mass is $62^{+4}_{-4} M_\\odot$, with $3.0^{+0.5}_{-0.5} M_\\odot c^2$ radiated in gravitational waves. ...

  14. Capture of compact objects by supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Filloux, Charline [Dpt. CASSIOPEE, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France); Pacheco, Jose A de Freitas [Dpt. CASSIOPEE, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France); Regimbau, Tania [Dpt. ARTEMIS, Observatoire de la Cote d' Azur, BP 429 06304 Nice (France)

    2007-05-15

    Capture rates of compact objects were calculated using a recent solution of the Fokker-Planck equation in energy-space, including two-body resonant effects. The present study indicates that capture rates scale as {proportional_to} M{sub bh}{sup -1.048} consequence of the fact that dwarf galaxies have central regions denser than luminous objects. If the mass distribution of supermassive black holes has a lower cutoff at {approx}1.4 x 10{sup 6} M{sub o-dot} (corresponding to the lowest supermassive black hole mass), then 9 inspiral events are expected to be seen by LISA (7-8 corresponding to white dwarf captures and 1-2 to neutron star or stellar black hole captures) after 1 yr of operation. However, if the mass distribution extends down to {approx}2 x 10{sup 5}M{sub o-dot}, then the number of expected events increases up to 579 (corresponding to {approx}274 stellar black hole captures, {approx}194 neutron star captures and {approx}111 white dwarf captures)

  15. PRECESSION. Dynamics of spinning black-hole binaries with python

    CERN Document Server

    Gerosa, Davide

    2016-01-01

    We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from numerical-relativity simulations. PRECESSION is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. PRECESSION provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where t...

  16. Binary black hole shadows, chaotic scattering and the Cantor set

    CERN Document Server

    Shipley, Jake

    2016-01-01

    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar--Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of {\\it chaotic scattering}, because they admit more than one fundamental null orbit, and thus an uncountably-infinite set of perpetual orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through an iterative procedure akin to the construction of the Cantor set; thus the shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The s...

  17. Optical black hole lasers

    CERN Document Server

    Faccio, Daniele; Lamperti, Marco; Leonhardt, Ulf

    2012-01-01

    Using numerical simulations we show how to realise an optical black hole laser, i.e. an amplifier formed by travelling refractive index perturbations arranged so as to trap light between a white and a black hole horizon. The simulations highlight the main features of these lasers: the growth inside the cavity of positive and negative frequency modes accompanied by a weaker emission of modes that occurs in periodic bursts corresponding to the cavity round trips of the trapped modes. We then highlight a new regime in which the trapped mode spectra broaden until the zero-frequency points on the dispersion curve are reached. Amplification at the horizon is highest for zero-frequencies, therefore leading to a strong modification of the structure of the trapped light. For sufficiently long propagation times, lasing ensues only at the zero-frequency modes.

  18. Presentism meets black holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.

  19. Photon Black Holes

    CERN Document Server

    Hernández, X; Mendoza, S; Sussman, R A

    2005-01-01

    We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.

  20. Philosophical Issues of Black Holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.

  1. Minimum energy and the end of the inspiral in the post-Newtonian approximation

    CERN Document Server

    Cabero, Miriam; Lundgren, Andrew P

    2016-01-01

    The early inspiral phase of a compact binary coalescence is well modelled by the post-Newtonian (PN) approximation to the orbital energy and gravitational wave flux. The transition from the inspiral phase to the plunge can be defined by the minimum energy circular orbit (MECO). In the extreme mass-ratio limit, up to the highest PN order known, the PN energy equals the energy of the exact Kerr solution. However, for comparable-mass systems the MECO of the PN energy does not exist when bodies have large spins. By including the exact Kerr limit and recently published post-Newtonian terms we extract a well-defined minimum of the orbital energy beyond which the plunge or merger occurs. We study the hybrid condition for a number of cases of both black hole and neutron stars and compare to other commonly employed definitions. Our method can be used for any known order of the post-Newtonian series and enables the MECO condition to be used to define the end of the inspiral phase for highly spinning, comparable mass sy...

  2. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  3. Artificial ozone holes

    OpenAIRE

    Dolya, S. N.

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total ma...

  4. Linear dilaton black holes

    CERN Document Server

    Clément, G; Leygnac, C; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric

    2003-01-01

    We present new solutions to Einstein-Maxwell-dilaton-axion (EMDA) gravity in four dimensions describing black holes which asymptote to the linear dilaton background. In the non-rotating case they can be obtained as the limiting geometry of dilaton black holes. The rotating solutions (possibly endowed with a NUT parameter) are constructed using a generating technique based on the Sp(4,R) duality of the EMDA system. In a certain limit (with no event horizon present) our rotating solutions coincide with supersymmetric Israel-Wilson-Perjes type dilaton-axion solutions. In presence of an event horizon supersymmetry is broken. The temperature of the static black holes is constant, and their mass does not depend on it, so the heat capacity is zero. We investigate geodesics and wave propagation in these spacetimes and find superradiance in the rotating case. Because of the non-asymptotically flat nature of the geometry, certain modes are reflected from infinity, in particular, all superradiant modes are confined. Thi...

  5. Moulting Black Holes

    CERN Document Server

    Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...

  6. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  7. Black hole's quantum levels

    CERN Document Server

    Corda, Christian

    2012-01-01

    By introducing a black hole's effective temperature, which takes into account both of the non-strictly thermal and non-strictly continuous characters of Hawking radiation, we recently re-analyzed black hole's quasi-normal modes and interpreted them naturally in terms of quantum levels for emissions of particles. After a careful review of previous results, in this work we improve such an analysis by removing an approximation that we implicitly used in our previous work and by obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its sub-leading corrections and the number of micro-states, i.e. quantities which are fundamental to realize unitary quantum gravity theory, like functions of the quantum overtone number e (emission) and, in turn,of the black hole's quantum excited level. Another approximation concerning the maximum value of e is also corrected. We also consider quasi-normal modes in terms ...

  8. The Inspiration of Hope in Substance Abuse Counseling

    Science.gov (United States)

    Koehn, Corinne; Cutcliffe, John R.

    2012-01-01

    This study used a grounded theory method to explore how counselors inspire hope in clients struggling with substance abuse. Findings from 10 participants revealed that hope inspiration occurred in 3 phases and consisted of several categories of hope-inspiring processes. Implications for counseling practice, counselor education, and research are…

  9. The stellar cusp around the Milky Way’s central black hole

    Science.gov (United States)

    Schödel, R.; Gallego-Cano, E.; Amaro-Seoane, P.

    2017-05-01

    The existence of stellar cusps in dense clusters around massive black holes is a fundamental, decades-old prediction of theoretical stellar dynamics. Yet, observational evidence has been difficult to obtain. With a new, improved analysis of high-angular resolution images of the central parsecs of the Galactic Center, we are finally able to provide the first solid evidence for the existence of a stellar cusp around the Milky Way’s massive black hole. The existence of stellar cusps has a significant impact on predicted event rates of phenomena like tidal disruptions of stars and extreme mass ratio inspirals.

  10. Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\\"{o}m black hole

    CERN Document Server

    Nozari, Kourosh

    2012-01-01

    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a solution to the information loss problem. We also study thermodynamics of noncommutative horizon in this setup.

  11. Computing precession and spin-curvature coupling for small bodies orbiting Kerr black holes

    Science.gov (United States)

    Hughes, Scott; Ruangsri, Uchupol; Vigeland, Sarah

    2016-03-01

    A non-spinning small body that orbits a Kerr black hole follows a trajectory that looks like a geodesic corrected by ``self force'' effects that drive inspiral and shift the small body's orbital frequencies. If the small body is spinning, then additional forces arise from the coupling of its spin to the curvature of the larger black hole. In this talk, I will describe recent work to compute the precession of this small body in the frequency domain for generic orbit geometries and generic small body orientations, and show how this result can be used to compute the spin-curvature force in a computationally effective way.

  12. N-Body Dynamics of Intermediate Mass-ratio Inspirals in Star Clusters

    Science.gov (United States)

    Haster, Carl-Johan; Antonini, Fabio; Kalogera, Vicky; Mandel, Ilya

    2016-12-01

    The intermediate mass-ratio inspiral of a stellar compact remnant into an intermediate-mass black hole (IMBH) can produce a gravitational wave (GW) signal that is potentially detectable by current ground-based GW detectors (e.g., Advanced LIGO) as well as by planned space-based interferometers (e.g., eLISA). Here, we present results from a direct integration of the post-Newtonian N-body equations of motion describing stellar clusters containing an IMBH and a population of stellar-mass black holes (BHs) and solar-mass stars. We take particular care to simulate the dynamics closest to the IMBH, including post-Newtonian effects up to an order of 2.5. Our simulations show that the IMBH readily forms a binary with a BH companion. This binary is gradually hardened by transient three-body or four-body encounters, leading to frequent substitutions of the BH companion, while the binary’s eccentricity experiences large-amplitude oscillations due to the Lidov-Kozai resonance. We also demonstrate suppression of these resonances by the relativistic precession of the binary orbit. We find an intermediate mass-ratio inspiral in 1 of the 12 cluster models we evolved for ˜100 Myr. This cluster hosts a 100{M}⊙ IMBH embedded in a population of 32 10{M}⊙ BH and 32,000 1{M}⊙ stars. At the end of the simulation, after ˜100 Myr of evolution, the IMBH merges with a BH companion. The IMBH-BH binary inspiral starts in the eLISA frequency window (≳ 1 {mHz}) when the binary reaches an eccentricity 1-e≃ {10}-3. After ≃ {10}5 yr the binary moves into the LIGO frequency band with a negligible eccentricity. We comment on the implications for GW searches, with a possible detection within the next decade.

  13. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.

    2014-06-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This

  14. The Capra Research Program for Modelling Extreme Mass Ratio Inspirals

    Science.gov (United States)

    Thornburg, Jonathan

    2011-02-01

    Suppose a small compact object (black hole or neutron star) of mass m orbits a large black hole of mass M ≫ m. This system emits gravitational waves (GWs) that have a radiation-reaction effect on the particle's motion. EMRIs (extreme-mass-ratio inspirals) of this type will be important GW sources for LISA. To fully analyze these GWs, and to detect weaker sources also present in the LISA data stream, will require highly accurate EMRI GW templates. In this article I outline the ``Capra'' research program to try to model EMRIs and calculate their GWs ab initio, assuming only that m ≪ M and that the Einstein equations hold. Because m ≪ M the timescale for the particle's orbit to shrink is too long for a practical direct numerical integration of the Einstein equations, and because this orbit may be deep in the large black hole's strong-field region, a post-Newtonian approximation would be inaccurate. Instead, we treat the EMRI spacetime as a perturbation of the large black hole's ``background'' (Schwarzschild or Kerr) spacetime and use the methods of black-hole perturbation theory, expanding in the small parameter m/M. The particle's motion can be described either as the result of a radiation-reaction ``self-force'' acting in the background spacetime or as geodesic motion in a perturbed spacetime. Several different lines of reasoning lead to the (same) basic O(m/M) ``MiSaTaQuWa'' equations of motion for the particle. In particular, the MiSaTaQuWa equations can be derived by modelling the particle as either a point particle or a small Schwarzschild black hole. The latter is conceptually elegant, but the former is technically much simpler and (surprisingly for a nonlinear field theory such as general relativity) still yields correct results. Modelling the small body as a point particle, its own field is singular along the particle worldline, so it's difficult to formulate a meaningful ``perturbation'' theory or equations of motion there. Detweiler and Whiting found

  15. Birth of Massive Black Hole Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Colpi, M.; /Milan Bicocca U.; Dotti, M.; /Insubria U., Como; Mayer, L.; /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park

    2007-11-19

    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.

  16. Secular evolution of compact binaries near massive black holes: Gravitational wave sources and other exotica

    CERN Document Server

    Antonini, Fabio

    2012-01-01

    The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their...

  17. Ultra-low frequency gravitational radiation from massive black hole binaries

    CERN Document Server

    Rajagopal, M; Rajagopal, Mohan; Romani, Roger W

    1994-01-01

    For massive black hole binaries produced in galactic mergers, we examine the possibility of inspiral induced by interaction with field stars. We model the evolution of such binaries for a range of galaxy core and binary parameters, using numerical results from the literature to compute the binary's energy and angular momentum loss rates due to stellar encounters and including the effect of back-action on the field stars. We find that only a small fraction of binary systems can merge within a Hubble time via unassisted stellar dynamics. External perturbations may, however, cause efficient inspiral. Averaging over a population of central black holes and galaxy mergers, we compute the expected background of gravitational radiation with periods Pw ~1-10y. Comparison with sensitivities from millisecond pulsar timing suggests that the strongest sources may be detectable with modest improvements to present experiments.

  18. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    CERN Document Server

    Babak, S; Gair, J R; Glampedakis, K; Hughes, S A; Babak, Stanislav; Fang, Hua; Gair, Jonathan R.; Glampedakis, Kostas; Hughes, Scott A.

    2006-01-01

    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky...

  19. A tissue-inspired amorphous photonic metamaterial

    CERN Document Server

    Bi, Dapeng

    2016-01-01

    Inspired by how cells pack in dense biological tissues, we design an amorphous material which possesses a complete photonic band gap. A physical parameter inspired by how cells adhere with one another and regulate their shapes can continuously tune the photonic band gap size as well as the bulk mechanical property of the material. The material can be further tuned to undergo a solid-fluid phase transition during which the shear modulus vanishes yet the photonic band gap persists, hence giving rise to a photonic fluid that is robust to flow and rearrangements. Experimentally this design should lead to the engineering of self-assembled non-rigid photonic structures with photonic band gaps that can be controlled in real time.

  20. Taxonomic etymology – in search of inspiration

    Directory of Open Access Journals (Sweden)

    Piotr Jozwiak

    2015-07-01

    Full Text Available We present a review of the etymology of zoological taxonomic names with emphasis on the most unusual examples. The names were divided into several categories, starting from the most common – given after morphological features – through inspiration from mythology, legends, and classic literature but also from fictional and nonfictional pop-culture characters (e.g., music, movies or cartoons, science, and politics. A separate category includes zoological names created using word-play and figures of speech such as tautonyms, acronyms, anagrams, and palindromes. Our intention was to give an overview of possibilities of how and where taxonomists can find the inspirations that will be consistent with the ICZN rules and generate more detail afterthought about the naming process itself, the meaningful character of naming, as well as the recognition and understanding of names.

  1. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.

  2. Modeling gravitational radiation from coalescing binary black holes

    CERN Document Server

    Baker, J; Loustó, C O; Takahashi, R

    2002-01-01

    With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...

  3. Black Holes with Skyrme Hair

    CERN Document Server

    Shiiki, N; Shiiki, Noriko; Sawado, Nobuyuki

    2005-01-01

    This paper is intended to give a review of the recent developments on black holes with Skyrme hair. The Einstein-Skyrme system is known to possess black hole solutions with Skyrme hair. The spherically symmetric black hole skyrmion with B=1 was the first discovered counter example of the no-hair conjecture for black holes. Recently we found the B=2 axially symmetric black hole skyrmion. In this system, the black hole at the center of the skyrmion absorbs the baryon number partially, leaving fractional charge outside the horizon. Therefore the baryon number is no longer conserved. We examine the B=1, 2 black hole solutions in detail in this paper. The model has a natural extension to the gauged version which can describe monopole black hole skyrmions. Callan and Witten discussed the monopole catalysis of proton decay within the Skyrme model. We apply the idea to the Einstein-Maxwell-Skyrme system and obtain monopole black hole skyrmions. Remarkably there exist multi-black hole skyrmion solutions in which the g...

  4. Neurobiologically inspired mobile robot navigation and planning

    Directory of Open Access Journals (Sweden)

    Mathias Quoy

    2007-11-01

    Full Text Available After a short review of biologically inspired navigation architectures, mainly relying on modeling the hippocampal anatomy, or at least some of its functions, we present a navigation and planning model for mobile robots. This architecture is based on a model of the hippocampal and prefrontal interactions. In particular, the system relies on the definition of a new cell type “transition cells” that encompasses traditional “place cells”.

  5. Oil Price Trackers Inspired by Immune Memory

    OpenAIRE

    Wilson, William; Birkin, Phil; Aickelin, Uwe

    2010-01-01

    We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time series data. The proposed solution evolves a short term pool of trackers dynamically, with each member attempting to map trends and anticipate future price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. The resulting sequence of trackers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving...

  6. Humidification of inspired gases during mechanical ventilation.

    Science.gov (United States)

    Gross, J L; Park, G R

    2012-04-01

    Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.

  7. Spider's web inspires fibres for industry

    Science.gov (United States)

    Dacey, James

    2010-03-01

    Spiders may not be everybody's idea of natural beauty, but nobody can deny the artistry in the webs that they spin, especially when decorated with water baubles in the morning dew. Inspired by this spectacle, a group of researchers in China has mimicked the structural properties of the spider's web to create a fibre for industry that can manipulate water with the same skill and efficiency, writes James Dacey.

  8. InSpiRe - Intelligent Spine Rehabilitation

    DEFF Research Database (Denmark)

    Bøg, Kasper Hafstrøm; Helms, Niels Henrik; Kjær, Per;

    InSpiRe er et projekt, der har haft omdrejningspunkt i etableringen af et nyt netværk indenfor intelligent genoptræning med særligt fokus på rygsmerter. Projektet er gennemført i perioden 1/3 2011 2011-1/3 2012, med støtte fra Syddansk Vækstforum, og er blevet drevet af projektparterne Knowledge...

  9. Underwater Robotic Propulsors Inspired by Jetting Jellyfish

    OpenAIRE

    Marut, Kenneth Joseph

    2014-01-01

    Underwater surveillance missions both for defense and civilian applications are continually demanding the need for unmanned underwater vehicles or UUVs. Unmanned vehicles are needed to meet the logistical requirements for operation over long distances, greater depths, long duration, and harsh conditions. In order to design UUVs that not only satisfy these needs but are also adaptive and efficient, there has been increasing interest in taking inspiration from nature. These biomimetic/bio-insp...

  10. Rotating "Black Holes" with Holes in the Horizon

    OpenAIRE

    Burinskii, Alexander; Elizalde, Emilio; Hildebrandt, Sergi R.; Magli, Giulio

    2005-01-01

    Kerr-Schild solutions of the Einstein-Maxwell field equations, containing semi-infinite axial singular lines, are investigated. It is shown that axial singularities break up the black hole, forming holes in the horizon. As a result, a tube-like region appears which allows matter to escape from the interior without crossing the horizon. It is argued that axial singularities of this kind, leading to very narrow beams, can be created in black holes by external electromagnetic or gravitational ex...

  11. Late recurrence of medulloblastoma.

    Science.gov (United States)

    Stevens, Brittney; Razzaqi, Faisal; Yu, Lolie; Craver, Randall

    2008-01-01

    We present a child with a cerebellar medulloblastoma, diagnosed at age three, treated with near total surgical resection, radiotherapy, and chemotherapy, that recurred 13 years after the initial diagnosis. This late recurrence exceeds the typical 10-year survival statistics that are in common use, and exceeds the Collins rule. Continued follow-up of these children is justified to increase the likelihood of detecting these late recurrences early and to learn more about these late recurrences.

  12. Biologically inspired coupled antenna beampattern design

    Energy Technology Data Exchange (ETDEWEB)

    Akcakaya, Murat; Nehorai, Arye, E-mail: makcak2@ese.wustl.ed, E-mail: nehorai@ese.wustl.ed [Department of Electrical and Systems Engineering, Washington University in St Louis, St Louis, MO 63130 (United States)

    2010-12-15

    We propose to design a small-size transmission-coupled antenna array, and corresponding radiation pattern, having high performance inspired by the female Ormia ochracea's coupled ears. For reproduction purposes, the female Ormia is able to locate male crickets' call accurately despite the small distance between its ears compared with the incoming wavelength. This phenomenon has been explained by the mechanical coupling between the Ormia's ears, which has been modeled by a pair of differential equations. In this paper, we first solve these differential equations governing the Ormia ochracea's ear response, and convert the response to the pre-specified radio frequencies. We then apply the converted response of the biological coupling in the array factor of a uniform linear array composed of finite-length dipole antennas, and also include the undesired electromagnetic coupling due to the proximity of the elements. Moreover, we propose an algorithm to optimally choose the biologically inspired coupling for maximum array performance. In our numerical examples, we compute the radiation intensity of the designed system for binomial and uniform ordinary end-fire arrays, and demonstrate the improvement in the half-power beamwidth, sidelobe suppression and directivity of the radiation pattern due to the biologically inspired coupling.

  13. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  14. Numerical simulation of parallel hole cut blasting with uncharged holes

    Institute of Scientific and Technical Information of China (English)

    Shijie Qu; Xiangbin Zheng; Lihua Fan; Ying Wang

    2008-01-01

    The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with AN-SYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, node velocity, node time-acceleration history and the blasting cartridge volume ratio during the process were analyzed. It was found that the detonation of charged holes would cause the interaction of stress wave with the wall of uncharged holes. Initial rock cracking and displacement to neighboring uncharged holes become the main mechanism of cavity formation in early stage.

  15. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  16. Spectroscopy of the Schwarzschild Black Hole at Arbitrary Frequencies

    CERN Document Server

    Casals, Marc

    2012-01-01

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex-frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for {\\it arbitrary} values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behaviour for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index $n$. We determine these frequencies up to $n^{-5/2}$ and, formally, to {\\it arbitrary} order. Highly-damped quasinormal m...

  17. Double-double radio galaxies: remnants of merger of supermassive binary black holes

    CERN Document Server

    Liu, F K; Cao, S L; Wu, Xue-Bing

    2003-01-01

    The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...

  18. Structural Holes in Directed Fuzzy Social Networks

    OpenAIRE

    Renjie Hu; Guangyu Zhang

    2014-01-01

    The structural holes have been a key issue in fuzzy social network analysis. For undirected fuzzy social networks where edges are just present or absent undirected fuzzy relation and have no more information attached, many structural holes measures have been presented, such as key fuzzy structural holes, general fuzzy structural holes, strong fuzzy structural holes, and weak fuzzy structural holes. There has been a growing need to design structural holes measures for directed fuzzy social net...

  19. Geometry of black hole spacetimes

    CERN Document Server

    Andersson, Lars; Blue, Pieter

    2016-01-01

    These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.

  20. Deep Hole in 'Clovis'

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 At a rock called 'Clovis,' the rock abrasion tool on NASA's Mars Exploration Rover Spirit cut a 9-millimeter (0.35-inch) hole during the rover's 216th martian day, or sol (Aug. 11, 2004). The hole is the deepest drilled in a rock on Mars so far. This approximately true-color view was made from images taken by Spirit's panoramic camera on sol 226 (Aug. 21, 2004) at around 12:50 p.m. local true solar time -- early afternoon in Gusev Crater on Mars. To the right is a 'brush flower' of circles produced by scrubbing the surface of the rock with the abrasion tool's wire brush. Scientists used rover's Moessbauer spectrometer and alpha particle X-ray spectrometer to look for iron-bearing minerals and determine the elemental chemical composition of the rock. This composite combines images taken with the camera's 750-, 530-, and 430-nanometer filters. The grayish-blue hue in this image suggests that the interior of the rock contains iron minerals that are less oxidized than minerals on the surface. The diameter of the hole cut into the rock is 4.5 centimeters (1.8 inches). Data on the graph (Figure 1) from the alpha particle X-ray spectrometer instrument on the robotic arm of NASA's Mars Exploration Rover Spirit reveal the elemental chemistry of two rocks, 'Ebenezer' and 'Clovis,' (see PIA06914) in the 'Columbia Hills.' Scientists found, through comparison of the rocks' chemistry, that Ebenezer and Clovis have very different compositions from the rocks on the Gusev plains.

  1. Artificial ozone holes

    CERN Document Server

    Dolya, S N

    2014-01-01

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  2. Observing braneworld black holes

    CERN Document Server

    Gregory, R; Beckwith, K; Done, C; Gregory, Ruth; Whisker, Richard; Beckwith, Kris; Done, Chris

    2004-01-01

    Spacetime in the vicinity of an event horizon can be probed using observations which explore the dynamics of the accretion disc. Many high energy theories of gravity lead to modifications of the near horizon regime, potentially providing a testing ground for these theories. In this paper, we explore the impact of braneworld gravity on this region by formulating a method of deriving the general behaviour of the as yet unknown braneworld black hole solution. We use simple bounds to constrain the solution close to the horizon.

  3. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  4. A bottom hole motor

    Energy Technology Data Exchange (ETDEWEB)

    Kibishcher, G.B.; Karpenko, V.K.; Pogorelov, V.P.

    1982-01-01

    A bottom hole motor is proposed which includes a body, a push rod with a piston, a spindle, a mechanism for converting the reciprocal movement of the piston into rotation of the shaft and pump and drain cavities. In order to simplify the design the push rod is made with radial openings above and below the piston, while the shaft is made with two longitudinal channels at the level of the radial openings of the push rod on the diametrically opposite sides. The cavity of one channel is constantly connected with the pump cavity, while the other is permanently connected with the drain cavity.

  5. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  6. Black hole accretion discs

    OpenAIRE

    Lasota, Jean-Pierre

    2015-01-01

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. ou...

  7. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  8. Biologically-Inspired Adaptive Obstacle Negotiation Behavior of Hexapod Robots

    Directory of Open Access Journals (Sweden)

    Dennis eGoldschmidt

    2014-01-01

    Full Text Available Neurobiological studies have shown that insects are able to adapt leg movements and posture for obstacle negotiation in changing environments. Moreover, the distance to an obstacle where an insect begins to climb is found to be a major parameter for successful obstacle negotiation. Inspired by these findings, we present an adaptive neural control mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion control, backbone joint control, local leg reflexes, and neural learning. While the first three components generate locomotion including walking and climbing, the neural learning mechanism allows the robot to adapt its behavior for obstacle negotiation with respect to changing conditions, e.g., variable obstacle heights and different walking gaits. By successfully learning the association of an early, predictive signal (conditioned stimulus, CS and a late, reflex signal (unconditioned stimulus, UCS, both provided by ultrasonic sensors at the front of the robot, the robot can autonomously find an appropriate distance from an obstacle to initiate climbing. The adaptive neural control was developed and tested first on a physical robot simulation, and was then successfully transferred to a real hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate obstacles with a height up to 85% of the robot's leg length in simulation and 75% in a real environment.

  9. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  10. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S G

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  11. The Lazarus project: A pragmatic approach to binary black hole evolutions

    OpenAIRE

    2001-01-01

    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is ...

  12. Fly's proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Wicaksono, D H B [Department of Microelectronics, Delft University of Technology, Mekelweg 4, Delft, Zuid-Holland 2628CD (Netherlands); Zhang, L-J [Department of Microelectronics, Delft University of Technology, Mekelweg 4, Delft, Zuid-Holland 2628CD (Netherlands); Pandraud, G [Department of Microelectronics, Delft University of Technology, Mekelweg 4, Delft, Zuid-Holland 2628CD (Netherlands); French, P J [Department of Microelectronics, Delft University of Technology, Mekelweg 4, Delft, Zuid-Holland 2628CD (Netherlands); Vincent, J F V [Department of Mech. Engineering, Bath University Bath, BA2 7AY (United Kingdom)

    2006-04-01

    A new strain-sensing structure inspired from insect's (especially the Fly) propricoception sensor is devised. The campaniform sensillum is a strain-sensing microstructure with very high sensitivity despite its small dimension (diameter {approx}10 {mu}m in a relatively stiff material of insect's exocuticle (E = {approx}10{sup 9} Pa). Previous work shows that the high sensitivity of this structure towards strain is due to its membrane-in-recess- and strainconcentrating-hole-features. Based on this inspiration, we built similar structure using silicon micromachining technology. Then a simple characterisation setup was devised. Here, we present briefly, finite-element modeling and simulation based on this actual sample preparation for the characterisation. As comparison and also to understand mechanical features responsible for the strain-sensitivity, we performed the modeling on different mechanical structures: bulk chunk, blind-hole, through-hole, surface membrane, and membrane-in-recess. The actual experimental characterisation was performed previously using optical technique to membrane in-recess micromachined Si structure. The FEM simulation results confirm that the bending stress and strain are concentrated in the hole-vicinity. The membrane inside the hole acts as displacement transducer. The FEM is in conformity with previous analytical results, as well as the optical characterisation result. The end goal is to build a new type MEMS strain sensor.

  13. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  14. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  15. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  16. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  17. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  18. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  19. Thermodynamics of Accelerating Black Holes

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; KubizÅák, David

    2016-09-01

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon—even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  20. Personality in Late Midlife

    DEFF Research Database (Denmark)

    Mortensen, Erik Lykke; Flensborg-Madsen, Trine; Molbo, Drude

    2014-01-01

    To analyze associations in late midlife between sex, age, education and social class, and the Big Five personality traits; to analyze associations between personality traits and cognitive ability in late midlife; and to evaluate how these associations are influenced by demographic factors....